FROM ENGINEERING SCIENCE TO BIG SCIENCE

The NACA and NASA Collier Trophy
Research Project Winners

Edited by Pamela E. Mack

The NASA History Series

Library of Congress Cataloguing-in-Publication Data

From Engineering Science to Big Science: the NACA and NASA Collier Tophy Research Project Winners/edited by Pancla F. Mack.
p. cm.-(NASASP: 4219) (The NASA history series)

Indudes bibliographical references and indexes.

1. Collier trophy.
2. Aerospace Engineering-I'nited States-History.
3. Aiplanes-United States-Design and Construction-History.
4. Aeromatios-Research-United States-History.
5. Mack. Pamela Futer II. Series. III. Series: The NASAHistoryseries. TL537.F76

1997
97-27899
699.1 10973-(dc21

CII

[^0]
Table of Contents

Introduction xi
Pancla F. Mack, E.titor
Chapter 1 "Engineering Science and the Development of the NACA 1
Low-Dag Engine Cowling," James R. I Iansen
Chapter 2 "Irw Rodert, Epistemological Liaison, and Thermal 29
De-Icing an Ames," (ilenm E. Bugos
Chapter 3 "Research in Supersonic Flight and the Breaking 59
of the Sound Barrier," Johm D. Anderson, Je.
Chapter 4 "The Transonic Wind Tumel and the NACA 91
Technical Culture," Steven T. Comelinssen
Chapter: "The Whitcomb Area Rule: NXCA Aerodyamios Reseath 135 and lmosation," Lane E. Wallace
Chapter 6 "The X-15 Hypersonic Flight Reseath Program: 149Politics and Permotations at NASA," W.D. Kav
Chapter 7 "The Collice as Commemomion: The Project Mercury Astronauts . . . I6 and the Collier Trophy," Jane lle Wamen-Findery
Chapter 8 "Managing America to the Moon: 193A Coalition Analysis," W. Itemy Lambright
Chapter 9 "The Human Touch: The Ifistory of the 213
Shylab Program," Donald C. Elder
Chapter 10 "I ANDSAT and the Rise of Earth Resources Monitoring," 935 Pannela E. Mack
Chapter II "Vovager: The (Band Four of Big Science," Andrew J. Butrica 951
Chapter 12 "The Space Shumbers Fins Flight: STS-1," Henry C. Dethoff 277
Chapter 13 "Mone Favored tham the Bieds: The Manned 999Maneusering Unit in Space," Anne Millbrooke
Chapter 14 "The Advanced Tinboprop Project: Radical 321
Innovation in a Conservative Enviromment,"
Mark D. Bowles and Virginia P. Dawson
Chapter 15) "Retum to Flight: Richard H. Truly and the Recovery 345
from the Challenger Accident," John M. Logsdon
Chapter 16 "The Hubble Space Telescope Servicing Mission," 365
Joseph N. Tatarewic\%
About the Authors. 397
Index 401
The NASA History Series 425

Acknowledgments

Whenever historians take on a project of historical investigation such as this, they stand squarely on the shoulders of earlier investigators and incur a good many intellectual debts. We must acknowledge the assistance of several individuals who aided in the preparation of this study of aerospace research and development projects that have received the Collier Trophy over the years. First, Lee D. Saegesser, NASA Archivist between 1967 and 1997, was instrumental in obtaining documents used in the preparation of the work; Stephen J. Garber, assistant historian in the NASA History Office, critiqued the text; M. Louise Alstork, edited the work and prepared the index; and Nadine J. Andreassen helped with proofreading and compilation. Second, the history representatives at the various NASA Centers provided much needed assistance: Virginia Butler, Kevin Coleman, Deborah G. Douglas, Michael Q. Hooks, J.D. Hunley, Keith Koehler, William A. Larsen, Richard Layman, Elaine Liston, Dan Pappas, Jane Riddle, and Mike Wright. Third, the staffs of the NASA Headquarters Library and the Scientific and Technical Information Program provided assistance in locating materials; and archivists at various presidential libraries, the National Archives and Records Administration, the National Air and Space Museum, and in other research centers aided with research efforts. Fourth, the NASA Headquarters Printing and Design Office developed the layout and handled printing for this volume. Specifically, we wish to acknowledge the work of Janie E. Penn, Lillian Gipson, Patricia Talbert, and Kimberly Jenkins for their editorial and design work. In addition, Michael Crnkovic, Stanley Artis, and Jeffrey Thompson saw the book through the publication process. Thanks are do them all.

Several individuals read portions of the manuscript or talked with me about the project, in the process helping me more than they could ever know. These include Roger E. Bilstein, Michael L. Ciancone, Tom D. Grouch, Dwayne A. Day, David H. DeVorkin, Deborah G. Douglas, Andrew Dunar, Linda Neumann Frell, Charles J. Gross, R. Cargill Hall, Richard P. Itallion, Gregg Herken, Norriss S. Hetherington, Robin Higham, Francis T. Hoban, Karl Hubbuer, Sylvia K. Kracmer, John Howard E. McCurdy, John E. Naugle, Allan E. Needell, David H. Onkst, Craig B. Waff, Stephen P. Waring, and Ray A. Williamson. All of these people would disagree with some of the areas chosen for emphasis, with many of the conclusions, and with a few of the themes, but such is both the boon and the bane of historical inquiry.

Introduction

by Pamela E. Mack

For many scientists and science and technology policy analysts, the cancellation of the Superconducting Supercollider project in 1994 sarved as a symbol of a fundamental change in public and congressional attiudes towards Federal funding for large science and technology projects. At minimum, government funded big science and big technology were not likely to continue to grow at the pace that chatacterized the Cold War era. Politicians in the United States seemed to have tumed against funding very expensive research and development projects without clear, pactical goals, probably because they believed such projects tended to take on a life of their own and require more and more funding. In the eyes of most policymakers, funding for imovation in science and technotogy could no longer easily be justified by the promise of great benefits from the new technology, both because such promises were viewed skeptically and because policymakers believed that budgetary pressures precluded even worthwhile new programs unless they directly saved money for the government.

Even before the trend stanted to turn, historians of science and technology had made important steps in understanding the development of big science and big technology in a mumber of different institutional settings, and the changing current climate can give new perspective. Scholarly interest in "big science" arose out of the perception of scientists in the 1950s and 1960s that the experience of doing science had changed in a fundamental way (at least in some fields) because of the increasing prevalence of expensive instmments and large externally funded research projects. Engineers did not experience a paralled shift of similar intensity; they already had experience with large government-funded projects (such as dams). But, at least in some fields, engineers working on large-scale, govemment-finded research and developmen did experience a shift to a paticular new kind of big technology. For example, at the National Aeromatics and Space Administation this "big technology" involved large projects with a high political profile, quite different from the systematic research into fundamental design paraneters that characterized the "engineering science" approach typical of the National Advisory Committee for Aeronantics before the wat:

Most historians studying big science and technology have focused either on basic science (particularly highenergy physics) or on military research and development. Obviously, the National Aeronattics and Space Administration (NASA) and its predecessor organization, the National Advisory Committee for Aeronautics (NACA), provide another important example. The leaders of NASA during the Apollo program realized that they were pioneers in large program management as well as in space travel, but there has been little integration of the larger background to that story or systematic attention to the role of lage project management in the issues NASA has faced since A pollo.

The NACA and NASA provide an opportmity to study changes in the pattem of major tesearch and development projects over a significant span of time in a government context quite different from the Department of Defense. The chapters of this book discuss a series of case studies of notable technological projects carried out at least in part by the NACA and NASA. The case stude's chosen are those projects that won the National

[^1]Aeronantic Association's (NAA) Collier Trophy for "the greatest achievement in aviation in America, the value of which has been thoroughly demonstrated by use during the preceding yeat:" Looking back on the whole series of projects we can examine both what successes were seen as important at various times, and how the goals and organization of these notable projects changed over time.'

The Collier Trophy provides a way of selecting a series of case studies of projects that can be compared over a fairly long span of time. This volume covers projects that received their awards from 1929 to 1994 . From the point of view of scholars who have studied government support for science and technology, this span of years covers three important periods. The period after World War I saw limited experimentation with the role of the government in supporting research most importantly in the form of engineering science. The period during and after World War II saw an explosion in the government role in science and technology, with another burst after Sputnik. Finally, a reevaluation of science and technology as public goods stanted from one side of the political spectrom in the late 1960s and took on new momentum from the other side in the 1980s. From the point of view of the rise of big science and technology, the projects in this book take us through a period when budgets, the number of people and organizations involved, and bureancracy dramatically increased for most NACA and NASA projects. Not all the later projects covered in this book were large by the standards of their own time, but even the smaller ones, such as the Manned Manewering Unit (chapter 13) or the Fuelefficient Turboprop (chapter 14), look fom in an environment of political and bureancatic pres sures that had developed in NASA because of its role as a big-technology agency.

The series of case studies included here present some of the most successful projects in the history of the NACA and NASA. Fach illuminates the development and limitations of big techoology at these agencies as an example of the larger phenomenon of the development of engineering science and big science. The work of Walter Vincentiand James I lansen has made acronautical engineering in general and the NACA in particular the standard example of engineering science.' While historians have used high-energy physics as the standard example of big science, NASA has some claim to the role of standard example for big technology (using patterns that to a considerable extent were set by the NACA). Apolloera NASA Administrator James Webb certainly sought to make that claim by writing a book on Space Age Management: The Large-Scale Aptmoarh, and the idea had enough public resomance to tum the phase-"If we can send a man to the moon why can't we. . . ?"--into a cliche.' Apollo did not provide the model for the future that Webb had hoped, but NASA continued to grapple in a very public way with the problems of conducting large-scale techoology-development projects that required stpport from diverse interest
3. These projects do mot represent simply a collection of success stories. White some were major tri-
 fithers, or earned theit awards mote for public appeal than for techmological achievement. Other projects, such as the Viking Mars latnding, might have deserved the (ohlier liophy more than some induded here-the Collite Thophprovides an interesting somple, not a list of the No and the NASAs most successful profects. Phe most that cat he satid of all these propects is that they gatued the praise of the aterospace commonity; within the context of the time and that commanity they represent stocesses.
4. Sec (haplers 1,3 , and 4 and Walue G. Vincenti, What Engimens Know and how They Knom ht: Analyhal

5. James E. Webb, Spare Age Managempht: The Larg-Scale Approach (. New York, NY: Ma Graw Hill, 1969).
 NY: Happer and Row, 1970. The "If they can send a man to the Mom" cliché eventatly evolved into a joke; in Philadelphia in the late $] 970$ a business called Hong Kong Costom Tailors advertised with the line: "If they can semel a man to the Moon why can't they make a suit to fit me?"
groups. ${ }^{6}$ The case studies in this book illuminate some of the key issues of big science and big technology, including the role of politics, the management of large enterprises, the relat tionship between basic research and rescarch and development for practical ends, and the declining role of the individual leader or inventor.

The Collier Trophy

The Collier Trophy is the most prestigious award for aerospace achievement in the United States, and the recipients of the trophy have long been proud of the recognition the Collier Trophy brought their activities. While the projects covered in this volume would deserve study whether or not they had won the Collier Trophy, a volume focused on the wimers of a particular award should give some attention to the history and chatacter of that award. In fact, the history of the Collier Trophy and its parent organization, the National Aeromatic Association, provide a unique perspective on prizes for scientific and technological achievement.

The United States has had and still has a number of aviation and acrospace organizations, anging from booster groups to professional societies. The National Aeronantic Association fits somewhere in the middle of that range. In tum, its prize is shaped by the composition of the committee that awards it and by a series of rules, in particular that the prize be given for an achievement in the preceding year. While the Nobel Prize is usually given for an accomplishment whose significance has beon proven by years of experience, the Collier Trophy represents an almost concurent evaluation of an achievement (like the Pulizer Prize, it sometimes lacks the wisdom of hindsight).

In its ealy years, the National Aeronamic Association and its predecessor organization, the Aero Club of America, sought to foster American aviation in all its forms, and therefore both served as a booster club and advocated an increasingly professional approach to aviation. The Acro Club of America was formed by members of the Automobile Club of America in 1905, just two yeats after the first successful flight by the Wright brothers. The model of the Aumomobile Club led the Aew Club into such activities as training and licensing pilots and lobbying the Federal government to give more attention to military aviation during the build-up to the United States' entry into World War I.* As aviation expanded during the War and the club suffered from divisiveness, it fended to lose its central role. Its members responded by negotiating a series of mergers with other clubs, starting with a merger with the American Flying (lub) in 1920." In 1922, a merger with the National Air Association (NAA) led to a new name, the National Aeronatuic Association, and new bylaws that emphasized promoting aviation and lobbying for uniform ferleal regulation of the aviation industry. ${ }^{\text {" }}$
6. For a specilic discussion of the failure of attempts to apply Apollo or Department of Defense models to social problems, see Brace I.R. Smith, Ametcan Sciner Policy Sime Word War I/ (Washingtom, DC: The Brookings Institution, $\mathbf{1 9 9 0}$), Pp. 7i-77. For an imtoduction th the social construction analysis of the wole of interest groups in terlonological change, see Wiehe E. Bijker. Thomas I'. Dughes, and Trevor P'unch, Whe Sorat
 Press. 1987).
7. William Kroger, "For (ireatest Acherement: The Story Behind Amerian Avations Most Prised

 Aswation (Washingen, DC: Smithsonian Institution Press, 1903), p. ix. The federal govemment tow over pilon licensing from the club (at the clubs urging) in 1926.
9. IMid., p. 100.
10. Dhid. p. 103-105. The leadership of the new organization was dominated by industrialists, though none were at the lime primarily emploved in the aviation indusnes.

The Collier Trophy had been established by the Aero Club of America in 1911. The club had a new president at that time, Robert J. Collier, Collier had inherited the Collier's publishing enterprise and fortune in 1909 and also belonged to the community of upperclass men interested in expensive, dangerous sports, such as big game hunting, yacht tacing, and polo. Many members of that community saw aviation as the next frontier for sport, and Collier owned two Wright biplanes by 1911, though he did not learn to fly until the spring of 1919." Interested in improving aviation and in promoting safety, Robert Collier decided to sponsor a trophy, not for another airplane race, but for "the greatest achievement in aviation in America, the value of which has been thoroughly demonstrated by use during the preceding year." ${ }^{*}$ Collier used his political comections to give the trophy prestige, in particular arranging for it to be presented by the President of the United States (an arrangement that has continued to the present). In its early years, the trophy was usually awarded to inventors for specific technologies such as hydroplanes developed by Glemn Curtiss (in 1911 and 1912), an antomatic stabilizing device invented by Orville Whight (1913), and a gyroscopic control invented by Elmer and Lawrence Sperry (1914). ${ }^{14}$

Because of changes in the parent organization, in the 1920s and 1930s the Collier Trophy came to be awarded more often to organizations rather than individual inventors. The U.S. Air Mail system won the trophy in 1922 and 1923 for its safety record and for night flying, the Army Air Service won in 1924 for the first flight around the world, and the Aeronatios Branch of the Department of Commerce won in 1928 for the development of airways and air navigation. The NACA won its first Collier Trophy in 1929 for developing principles for the design of improved engine cowlings. This new pattern of atwards reflected the merger of the Aero (lut) of America into a new organization, the National Aeronautic Association, which put a much greater emphasis on promoting govermment sponsorship and regulation of aviation. Between the formation of the National Aeronamtic Association in 1922 and 1944, eleven Collier trophies listed government agencies or corporations as the first or only recipient, and four more listed organizations along with a key individual. ${ }^{14}$ Orville Wright objected to this pattern in a 1944 letter that called for a ceturn to the pattern of awarding the trophy to individuals for specific inventions."
11. Collier was involved in promoting aviation before learning to fly hinself. ln the yping of lafl he

12. Robie. For the Ciratest Achiowmont, p. XB. quoting from the Bulletin of the Acro Club of Anerica.
 when the Bero Club became the Natomal heromatotic Asociation, but the mame was not officially changed until 194. The bronze trophy was the work of scolptor Emesi Wise Keyser, a former studenot of Augustus

13. Speoty won two Collier Tiophies, in 1014 and 1916 . In the eves of his biographer, these did not compare in importane to the prize he won for his aircraft impmonements in an intemational Competition fon Sately in deroplanes held in France in 1914 or to the John Frive Medit awaded to Spery by the leading engineering societies of imerta in

 of the Collier Trophy at a time when the [1nted States had lallen behind other commetios antation.

15. Wright's letter is quoted at lengiti by Alex Roland. Mouled Restarh: The Matiomal Adrisong Gommitte for
 exambation of the list of recipicnts since that time will reveal that after the N.A. Aame into possession of it the awath lave been mostly to L.S. govemment buteatos and oomanotacturing companies instead of to individuals. [his, no donbs, is due to the fact that individuals have mome modestly [sic] than bumeate athe comporations, and bata
 Roland enmonents that "Wright was sesentywo when he wrote that letter, just four vears fiom death, bua he wat not senile and he wats mot a bitte old man. He was simply the parriarch of avation, free to atl a spate at spate."

However, Wright's protest could not reverse the declining role of the individual inventor or redefine the trophy. The Collier Trophy was an award for achievement, not for invention, and could be given to pilots or organizations as readily as to inventors.

The NAA appointed a new committer each year to select the Collier Trophy winner. The President of the Association nominated the members of the selection commitere. often including previous winners. The nine members of the 1943 committee give a sense of the interests involved: Grover Loenig, advisor on aimeraft of the War Production Board (WPB) (chair), Dr. George W. Lewis, Director of Aeronatical Resarch for the NACA; William R. Enyart, President of the NAA (ex officio); Gill Robb Wilson, aviation editor of the New Yow Herald Tribune, Major Lester D. Gardner, chaiman of the council of the Institute of Aeronautical Sciences; Roger Wolfe Kahn, a famous private pilot; Latrence P. Sharples, chaiman of the board of the Aircraft Owners and Pilots Association; Willian P. MacCracken, Jr., general counsel, and William P. Redding, the treasurer of the NAA. ${ }^{16}$ By the 1990 s, the selection committee had grown to thity to forty members, but continued to represent leaders of all facess of the adrospace industry. ${ }^{\text {.7 }}$ The varying types of projects receiving awards covered in this wolume suggests that the character of the selection committee tended to vary somewhat on the basis of the interests of the NAA President and the Association. The Collier Trophy should therefore be understood as a reflection of attitudes and priorities in the commonity of aviation enthusiasts and those employed in aerospacerelated work in industry and government. It did not have as much built-in protection from bias and shorterm fads as the Nobel Prize, but those involved in the Collier award process valued very highly the prestige of the trophy and sought to preserve that prestige by choosing appropriate awardees. The trophy had litule to back up its significance except for its long history and the tradition that it was awarded by the President of the L'niterl States; its importance rested on the luster of the winners.' ${ }^{18}$

The NACA, NASA, and Government Research

The projects whose stories are told in this book provide a series of case studies of changes in the rescarch and development process in a govemment setting over the period from the 1920s to the 1990 s. They fit into a story of increasing government support for science and technology through one particular govemment agency, which like all organizations and people has been shaped by its own micue history. A brief survey of that history provides important background for any attempt to draw broader conclusions.

The National Advisory Committee for Aeromatios (NACA) helped set the precedent for govemment finding of research and development in twenticth century America, a precedent that represented a very significant change from nineteenth century assumptions. Fven in the nineteenth century the Federal govemment had provided support for research

[^2]in certain key areas where a consensus could be reached about how to serve the public good, such as the Coast Survey and the Department of Agriculture. But a constitutional principle that such functions belonged to the states except in times of national emergency contimed after the Civil War, and laisse faire economic theories actually led to an even more limited definition of the proper role of government in areas that might be considered competition with industry." The new government sponsorship of research and development that had its roots in World War I represented a significant change in the role of the state, and a change that met significant resistance.

The NACA was only one of a number of organizations created as a result of lobbying by scientists and engineers for a new government role in research and development in World War I." The NACA got off to an early start; President Wilson signed the Naval Appropriations Bill that created the National Advisory Committee for Aeronatutics in March 1915. The scientists, engineers, and enthusiasts who had lobbied for the bill for more than four years wanted govemment funding of aeronatical researeh to allow the United States to catch up with rapid developments in Europe, where the possibilities of the Wright brothers' invention had sparked more interest than in the United States. The legislation did not pass until the outbreak of war provided an additional push, and the bill did nothing more than create an advisory committec and provide it with a small appropriation. The NACA then set out to invent its own role.3 In its first few years, the new Committee played a significant role in the wartime coordination of industry and used some of its small budget to sponsor research at private institutions. Its leaders made the building of a new laboratory their highest priority, despite considerable opposition. ${ }^{22}$ The laboratory at Langley Field, in Virginia, established the NACA as a Federal research agency despite its tite as an advisory committee. After the war ended, debates over the role of the Federal govermment in supporting and regulating aviation created considerable uncertainty about the future of the $\mathrm{N} A \mathrm{CA}$. In the end, other aviation related functions-regulation and the sponsorship of infiastructur-were assigned to the Department of Commerce, leaving the Committee with research as its central role."

At the Langley Memorial Aeronatical Laboratory, dedicated in Junc 1920, NACA scientists and engincers set out to establish the place of the Federal government in peacetime aviation research. The laboratory provided fairly up-odate facilities: a wind tunnel, an enginedynamometer laboratory, and a general reseath laboratory buiding. A series of conflicts between persomel at the laboratory and the NACA Headquatters in Washington, DC, tended to dominate the concerns of the leadership, but technical persomel had the equipment they needed to do worthwhile research. ${ }^{3+}$ The labomatory developed a focus on acronatical principles in onder to take advantage of its wind tumel facilities and to avoid competition with the military services (which wanted to maintain control of testing and setting specifications for new aircraft designs for military missions), the National Bureau of Standards, and industry (which had facilities for engine research). ${ }^{\text {.s The The }}$ NA A found a niche not only in its choice of reseateh program but also in how it appoached research problems: "The strength of the NACA seems to be that it had the huxury of pursuing incrementally over a long period of time

[^3]answers to problems that were of great interest to the commercial and military worlds. ${ }^{* 2}$. In other words, the NACA could pursue engincering science: systematic investigation of the parameters needed for engineering design. The leaders of the NACA initially thought that the Committee hat to establish its reputation by scientific (not engineering) achievement, and hired Max Munk from Germany because of his theoretical reputation. ${ }^{27}$ The necessity of practical results to justify Federal funding, and the dominant role of engineers on the NACA main committee gradually reversed that attitude, establishing the relationship between theoretical and practical research ats a central tension within the laboratory and for the agency as a whole. Chapters 2, 3, and 4 of this volume show the central role of these issues in the NACA in the vears before and even commong during and after World War II. As aviation technology became more complex in the late interwar period, the NACA fomd itself sponsoring not only research on components and design parameters, but largescale research and development projects. Wordd War II brought a retum to more practical concerns (see chapter 2 , for example), but with the greater emphasis on government-funded techoology characteristic of the war years, it also provided the NAC iA with broader experience in large development programs and some push to take bigger risks. ${ }^{* 1}$ Perhaps most notably, members of the aviation community satw supersonic flight as the next step, but making that step required both theoretical research (chapter 5), wind tumed testing (chapter 4), and actual building of experimental aircraft (chapters 3 and 6). Those experimental airctaft were no longer prototypes of new military arcraft, but were designed solely for research purposes. The NACA therefore found itself in the business of contracting with industry for the design and manufacture of radically new vehicles. The X-15 project in paticular (chapter 6) differed little in scale and scope from space projects of a few years later. The increasing sophistication of the technological challenges chosen by the NACA was leading the agency oward a project organization typical of big techology even before funding became politicized.

NACA leaders felt some uncertanty about this transition from a wole that centered on basic research and problem solving to one centered on taking responsibility for large projects, and they did not push to take a major role in space research in the period before Sputnik." The agencys budget had not grown with its role; it depended on partnerships with the Department of Defense for the funding of large projects, such as the $\mathrm{X}-15$. While the NACA did not intially move to seize the new opportmities opened by the launch of Sputnik in October 1957, those opportumities proved significant and a unique confluence of circumstances soon thrust the NASA into the center of the Sputnik response. ${ }^{4}$ If the American people demanded that the United States meet aggressively the challenges of the Soviet Union, President Dwight D. Eisenhower at least hoped to keep that effort out of the hands of the Department of Defense, whose mission he wanted to keep aimed at national security. Ile assigned the problem of what to do about spate to his science advisor, and Killian immediately turned to the NACA as a possible alternative to Department of Defense

[^4]control of the space program. Meanwhile, by December 19.57, NACA leaders began trying to define and lobby for a new role for the NACA in space research."

In February 1958, the President's Science Advisory Comminte recommended that the NACA be expanded into a new civilian space agency. NACA leaders found themselves and their vision of how a research agency should operate given second place in the new organization. This marginalization started when Eisenhower assigned an executive branch tean to write the necessary legislation. The Bureau of the Budget had long wanted to reorganize the NACA's committee structure, and insisted that the new agency be organized hietarchically with an administrator appointed by the President. ${ }^{\text {a }}$ NACA leaders had assumed that the new agency would continue a traditional NACA pattern by seeking research assignments and funding for cooperative projects from the military services, but Congress wanted space projects to be defined by NASA, not the Department of Defense." Eisenhower and his advisors had similar interests and insisted on a division of space activities between NASA and the Department of Defense instead of cooperative projects on the model of the X-I5. The President's Science Advisor, James R. Killian, Jr., finally stepped into a deadlocked discussion in which the NACA and the Department of Defense's Advanced Rescatch Projects Agency were trying to divide the space program. Killian insisted that all space activities without a clear military mission be assigned solely to the new National Acronatuics and Space Administration. ${ }^{3 /}$ This decision committed the new agency to a focus on large projects ather than research into basic principles, sudenly completing a nansition that had been in its carly stages with projects like the X-15.

Not all of the new agency took on the new style, but most of the attention of its leadenship and the public went to the space race in the 1960 s . Hesitantly under the Eisenhower administration, and then with a surge of confidence after Kennedy's decision to go to the Moon, NASA leaders shaped the agency towards the pursuit of latge research and development projects whose justification lay as much in national prestige and a belief that space was the new frontier as in specific scientific and pactical objectives. ${ }^{\text {s/ }}$ The Mercury project (chapter 7) represented a mix of old and new constraints and opportunities, but the decision to go to the Moon gave NASA a few years of high priority, generous funding, and public support (chapter 8). The flush years of the carly 1960s depended on congruence between the space program and perceptions of national needs; they did not represent support for a space program for its own sake. That congruence made possible the success of Apollo under the imspired leadership of NASA Administrator James E. Webb, a fine manager and a master of the delicate mancuvering necessary to exert leadership from an administrative position. ${ }^{38}$ But it left NASA in an unstable position, identifed with a melatively short-lived national agenda item ather than with a permanent mission."

31. Ihid. 1:99.1-95.

 the peracefinl uses of space (p .173).

 damental iswos of leadership that athe in executive agencies, which in heonvare supposed only to baty out policies met la the President.
 Imit. p. 9

The Apollo period gave the agency a sense of momentum, but by the late 1960s public and political support had shifted and the agency found it could not get the funding it needed to sustain that momentum." Public suppont declined once it was clear that the U.S. would win the race to the Moon and, in addition, the Vietnam War led both to a budget crunch and to the development of a new left-wing critique of science and technology." In this increasingly hostile enviromment, NASA leaders struggled to maintain the agencys radition of large projects to put people in space and to adapt to the new realites of maintaining a program without a national consensus about the impontance of the space race. In the 1970s, the space agency and its supporters tried a variety of approaches to rebuild the public support that had made so much possible in the Apollo program. Skylab (chapter 9) represented an effort to prove both the value of human beings in space and to hang an expansive space program on the hook of science. Landsat (chapter 10) sought to bring the benefits of the space program back to Earth, an effort that did not get adequate support either in NASA or in the rest of governmem, but which looked enough like the wave of the future to get a Collier Trophy in 1974. The Space Shutle (chapter 12) became identified with a new vision of routine, relatively economical access to space, a promise which the vehicle could never quite meet." The goal of the agency through most of this period was to find a way to continue space exploration in an era of diminishing funding.

The old models became increasingly problematic in the 1980k. Starting with President Jimmy Cater's efferts to cut back big government, NASA leaders found themselves under pressure to commercialize or privatize more operations. At first these pressures had litte effect; an emphasis on the routine operation of the Space Shutle as a "space truck" perhaps represented a new way of thinking for the agency, but the shutte accident made it clear that the vehicle could not fully fill that role. Both the Challengratacident and the problems of the Hubble Space Telescope led to significant criticisms of NASA management, and to changes in management structure to address the pressing problems that had been identified (chapters 15 and 16). These immediate changes fed into a push for boader changes; starting in the carly 1990s the leaders of NASA began to explore altermatives to the big science model. NASA Administrator Daniel S. Goldin's call for a "faster, better, quicker" way of doing business involved not only criticism of the old large-project model but also an attempt to develop an alternative.

Big Science, Big Technology

The changes that took place in the NACA and the NASA form part of a latger pattem that historians call the rise of big science. The case studies covered in this book give a sample of projects over the key period for the development of big science. They do not represent classic cases- the classic case for hig science is usually high-energy physics-but they widen our understanding of how government support and increasing project size affected the reseath and development commmity well beyond the borders of physics. These cases show both the strengths and the limitations of the "big science" approach; in fact NASA may be one of the first agencies where people have begun to be aware of the limits of bigger and bigger projects and to explome alternatives.

[^5]Ever since Derek J. De Solla Price published Little Science, Big Science in 1963, historians have used various concepts of big science as one basis for trying to understand how the practice and character of science have changed in the twentieth century. Our understanding of big science has developed significantly in more than thirty years, and, in addition, we have begun to explore qualitative as well as quantitative effects of scale on lechnology as well as on science. Some historians of technology object to lumping big technology with big science, arguing that big technology has its own independent history, with close ties to big business. But in the case of government support for research, the confusion between science and technology starts not in the minds of historians writing about the projects but in the minds of the policymakers and scientists who shaped and advised these projects. NASA leaders regularly referred to the agency's success in the conduct of "big science" even when the projects involved amed at technological rather than scientific ends, and in many NACA and NASA projects, technological and scientific ends were irrevocably intemixed. The NACA and NASA research projects stories told in this book show some of the complexities of this relationship between science and technology.
looking at science first, the simplest argument makes World War II a turning point in the rise of big science. The development of large telescopes and a few other large scientific instruments before World War II tramed some leaders of the scientific community in administration of large scientific projects. They, in turn, put their experience to use in a series of very successful weapons-development projects during the war: By the end of the war, the military services had come to believe that they needed to continue to support basic scientific research, and significant progress had been made towards a consensus that the Federal government should support large research projects for civilian purposes. Scientists who had been involved in wartime projects hoped for continued government fincling, and while they lobbied for civilian funding agencies such as the AEC and NSF, they also worked out a compromise of interests with the military services to get funding from the Department of Defense on terms that most scientists found agreable." Once new funding mechanisms had been worked out and the start of the Cold War had restored a sense of urgency, government funding for scientific research moved into another growth phase. This gave a significant number of scientists (at least in certain fields) an opportumity to work on a new scale, managing large budgets and tackling scientific problems with expensive instruments and teams of investigators who might all be listed as co-anhors on a single scientific paper. These changes affected not just the conduct of scientific research on certain questions, but also what questions scientists asked; some fields of science came to focts on questions that could only be answered with big instruments. These changes in science tansfomed universities; they became dependent on Federal grants and contracts as the major souces of research funding for basic science. ${ }^{\text {b }}$

More detailed studies of post-World War Il science and technology have revealed a more complex picture. Even in physics, big science represented a choice of styles and organizational approaches, not an inevitable response to particular discoveries in highconergy physics." Other fieds of science felt the effects of big science less, and smatl science

[^6]attitudes survived even in some areas where big instruments were used. ${ }^{17}$ Big projects not dependent on a single instrment took on different characteristics than those organized around one piece of hardware, and the degree to which the research was focused on science or technology and was goatoriented or curiosity-driven made a tremendesus difference in the chatacter of big projects. NASA could not be compared directly to a federal physics laboratory; the scale may have been similar but the mix of goals was different. ${ }^{\text {Ex }}$ But most kinds of big science and technology shared cetain common themes involving the relationship between science and technology and the problems of public relations, administration, and funding."

In the case of the NACA and NASA we can identify certain characteristics of big science and big technology that form clear, thongh by no means unifom, trends. First, NAC A and then NASA became increasingly caugh in a web of bureaucratic and political obligat tions. The kinds of popular projects that might become Collier Trophy wimers had to provide political or bureancratic capital to the agency or its supporters, not just research results. Without that note, they stood little chance of being recognized for "outstanding achievement." Second, larger projects required more complex formal organization to keep control of the details. Individual leaders and imnowators became less important, and the planning process became more important. Third, reseath and development projects became more complicated in fundamental ways over this period. More and more different kinds of expertise went into a single project, and the developers of technology were often no longer in close communication with the users. Fourth, the experience of reseathers and the approaches they took to their research changed as projects grew larger and more bureatcatic. Fifth, attitudes towards funding research changed, though not just in one direction. Before World War II the emphasis was on practical results, while after the war basic research became more acceptable. A shift away from willingness to support basic rescarch for its own sake occurred aromed the time of Apollo, with a new emphasis on cost-benefit calculations but also more willinguess to fund projects on the basis of populat support.

Any govermment agency must cultivate bureatratic and political support in order to survive, but as projects got larger and more expensive (or budgets got tighter) that process shaped more and more of what the NACA and NASA did. The NACA had served its constituencies carefully (mostly by providing practical results) to maintain political support, and the very creation of NASA served political ends at least as much as science and techology. NASA did very well in the 1960)s becanse a growing emphasis on the space race expanded the agency's political and popular support, but that support put the agency into the Washington power game to a greater extent than the NACA had usually experienced. This trend accelerated with the end of Apollo, because the wiming of the race to the Moon brought not a reduction in political pressures, but a more complex web of constituencies as NASA leaders sought to cobble together enough support to continue a large-sale space program. In the 1970s and 1980s, NASA had to play bureauctatic politios and look for new ways to serve political agendas in order to maintain a program on anything like the scale established for Apollo.

[^7]NASA's human space tlight programs also represented significant challenges in the development of large-scale management. ${ }^{\text {sh }}$ Apollo was an overwhelmingly large and complex progran, but the Space Shuttle introduced further challenges by requiring both technological innovation and routine, long-term management control. Not all NASA projects in this period were large (see chapter 14 on the fuel-efficient turboprop), but the space program became increasingly identified with large, spectacular projects that got public attention. The agency and its contractors became accustomed to a technological style that they sometimes called big science, though it had more to do with technology than science. In particular, they preferred programs to build one or two large satellites, or a large platform arrying many sensors, over projects that would launch many small satellites, each carrying one or two sensors (probably somewhat less capable than those a large platform could support). Even when astronants were not involved, these relatively large and complex programs required many layers of management, paperwork, and checks and counterchecks, to control a system that was too complex for a small group of people to keep track of and which needed extremely careful risk management because of the public embarassment of large failures. ${ }^{\text {" }}$ Individual leadership was harder to exert on projects of this scale, and the planning process tended to become an increasingly political negotiation.

Large, involved projects dependent on outside political and bureauctatic support also became fundamentally more complex because they had to serve many masters. Researchers in space science complained particularly vocally about this change, because they assumed that space science projects should be conducted in whatever manner would best serve the interests of scientists. A project like the Hubble Space Telescope servicing mission served the scientists using the instrument but, in addition, NASA achicved important political ends through its success (chapter 16). The inevitable conflicts of interest sometimes irked the science commmity, especially as Congress set the agenda for space science in such missions as the Grand Tour (chapter 11). Projects with practical goals raised even more fundamental problems, particularly for an agency as focused on research and development for its own sake as NASA. In the cases of Landsat (chapter 10), and the fuel-efficient turboprop (chapter 14), NASA successfully developed techmology to do the job, only to find that the intended users were not as interested as had been predicted. In the first case, the problem lay in part in NASA's technology transfer efforts, but in the second case changes in coonomic parameters and issues relating to public opinion kept the new technology from being put to effective use.

Within these projects, the experiences of scientists and engineers had also undergone a fundamental change. The individual inventor had almost disappeared from view, though individuals might still invent small parts of large, complex systems. ${ }^{\text {Th }}$ Teamwork and the ability to provide intellectual leadership while not having control over the entire project became critical skills. Govermment funding made possible projects that would probably never have received funding in a corporate research and development laboratory becatase the total cost was too high or the payoff too uncertain or too far in the future. Pressure for quick results, while very real, could be less intense than in other settings.

[^8]Finally, big seience and techoology shaped and were shaped by changing attitudes towards the relative roles of basic and applied reseath. In the period before World War II, govemment funding required patatical jusifications, but the NAC A found a niche for less goabdriven reseath by pioncering work in engineering science, exploring some of the fundamental parameters of ilight. Word War II made the Federal government mone willing to fund basic researel in some fields, paticulaty in phesios where explomatory researeh had prowed its military value most cleatly. NASA certanly funded mone basic science tham the NACA because its mission included spate seience, but that scientilic reseatch foned a relatively small part of a lange agency. When NASA took in the mational goal of putting people in spate it commined itself to a vision that was not centered on basic reseath. ${ }^{\text {a }}$ Outside factors reinforced this tendency. Stating in the late 1960s, critics of the space program, some of them in the Executive Office, began to demand cost-benefit analyses for at least some spate missions (see chapter 10). This change resulted from the space program’s lower political prionity and from a langer trend wands demanding tighter jusification for government sponsored researth. In patioular, the Mansfied amenelment in 1970 prohibited the Department of Defense firm funding basie research with mo military puposes." However, by the 1990s the trend had split: Congress seemed to lawor projects that were unabashedly basic science (at least if they were not too expensive) or those that would clearIy save the govemment money (though then the question arose of why priate industry couldn't do the job). The tension between basic and applied research and between rescarch and development and routine operations was complitated by a constantly shifting emisoment.

We can also see in the projects covered in the last few chapters of this volume the beginning of a challonge to the big science model. The relum of flight of the Space Shmule (chapter 15) and the Itubble Servicing Mission (chapter 16) mpresent successful recoveries from failues caused by management problems, no just inevitable bad luek. The failures showed some of the limits of big science, and the recovery efforts involved at least in pant attempts to change the big science style of operation (for example, the role of individual kead(eship in the shutle case, chapter 15). Since the catly 1990 NASA has met significant criticism not just for bureancacy but for assming that bage projects are the best way of achereng any end. Studies of such concems as lowering the cost of latuch vehickes have concluded hat "to achicve this gral, it will be necessaty to bring abou major cultual changes within the acrospace commonity." That paticular sudy pointed out that cheaper systems are not necessarily smaller, but changes such as mass production and a greater toleance for failure represent major changes to the big science, big techmology approad. A new NASA Acministrator, Daniel S. Goldin, appointed in April l992, established as one of his intiatives "A shift awas from the pursuit of big seicnce and enginereng programs towat 'faster, better, and cheapery ones." It is too soon to know whether this eppesents the leginaing of the end of the dominame of big science, but its values are certanly being guestioned in a new way within NASA.

[^9]
Chapter 1

Engineering Science and the Development of the NACA Low-Drag Engine Cowling

by James R. Hansen

The agency that preceded NASA, the National Advisory Committee for Aeronautics (NACA), won its first of five Collier Trophies in 1999, and did so basically for advancing a counterintuitive idea. The idea, which flew in the face of a conventional wisdom about proper aircraft design, ventured the following: covering up-not leaving open to the airthe cylinders of an air-cooled radial engine could not only dramatically reduce aerodynamic drag but actually improve engine cooling. The immediate product of this startling engineering insight was the NACA's development of a low-drag engine "cowling," the winner of the 1929 Collier Trophy.

Put simply, the NAGA cowling was a metal shroud for a radial aircooled engine. However, the purpose of the shroud involved much more than hiding an ugly engine or keeping the rain out; rather, its main function was to cool a hot engine. This is what ran so contrary to what throughout the 1920s had been the practical solution to the problem of air-cooling an engine, that was, exposing the red-hot engine cylinders to an outside rush of cooling air. Besides improving the cooling of the engine, the NACA cowling-designed as it was to be a streamlined shroud-also worked to reduce drag. This allowed an airplane to fly faster and farther on less fuel, a signilicant techological accomplishment in the late 1920s, and one that deserved to win the National Aeronamic Association's ($\mathrm{N} A \mathrm{~A}$'s) award for the year's greatest achievement in American aviation.'

Deserving the Collier Trophy is not to say, however, that the NACA's low-drag engine cowling was everything that it was cracked up to be. In the years following the Collier Trophy, American aviation journalists gencrally exaggerated the significance of the cowling, and NACA publicists claimed more credit for the aircraft industry's adoption of the cowling than the govermment research organization deserved. Almost everyone outside the aircraft industry itself fated to appreciate the the character of the NACA's cowling work and credited srience rather than engineering as its source, an all-too-common mistake made in modem American society. Partly as a result of this misapprehension, spokesmen for aviation progress-most of them rabid technological enthusiasts-did not know enough to explain that the cowling was not really an invention in the classic sense, for different crude cowlings were already available and in limited use around the wotld. Nor did they know enough to make clear that every cowling had to be custom fitted: that the cowling was not a magical tin shape that could be applied generically to just any aiplane (at least not with great success), because the effectiveness of the cowl depended signidicanty upon the shape of the airplane behind it. If the NACA engineers at Langley Memorial Aeronatical Laboratory (LMAL), who were responsible for developing the original prizewinning cowling, had tested it with certain other aircraft of the era, such as a Bellanca or

1. For an excellent techmion summary of how cowhings function, past and present, see Peter barrison.

Stinson, rather than with the Cortiss Hawk AT-5A and Lockheed Air Express that flew with it so successfully, the NAC A cowling would not have performed nearly so well.

But these things about the NACA cowling were never well understood outside of the acromatical engincering commonity, and they were e ertainly not commmicated very successfully to the broader aviation public at the time. In the era from Lindbergh to the New Deal, the United States' aviation publicists-devout beliewers in a "winged gospel" and in an aipplane smbolic of the boundess promise of the American funtre-did wor moderstand the techology well coough to see any advantage in making practical qualifiations about the engineering of cowlings. Perhaps some of them realized that the peot ple who built airplanes already had the good sense to monderstand the subtheties of the NACA restate program: that the cowling was not so much an invention or new standad piece of equipment as it was a poerss or method, with every aiplane and engine con-

 SP-4103, 195:3, 1:111-13.
 Oxtomel minersite Press. IG8:3.
figuration requiring a special, customized cowhing for optimum results. ${ }^{\text {P }}$ Perhaps some considered the distinctions too technical for the wider aviation public to understand.

More likely, they were as misled as the rest of American society by a heroic theory of invention in which a few great geniuses like Thomas Edison and the Wright brothers, not industrial teamwork-and certainly not govermment bureaucracy-deserved most of the credit for technological progress. If it was not heroic invention, then the NACA cowling was not really original; it constituted "mere development" and did not deserve to win a prestigions national award like the Collier Trophy.' Better that the award be presented to an individual genius, just as the Collier Trophy itself had been won ten of the last fourteen times since the inaugural award to Glenn H. Curtiss for development of the "hydroaeroplane," or flying boat, in 1911." But the fact that the National Aeronautic Association's judges had awarded the Collier to the NACA in 1929 was proof enough of heroic invention. Thus, with heroic inventors in mind, those explaining the significance of the

4. I wish to thank my colleague in the history depantment at Aubum University, Stephen I. MeFabland. for contributing valuable insights into my understanding of the NA A cowling as a process rather than an invention.
5. For a critique of the heroic theory of invention, see George Basalla, The thwhtom of hehmolug (New

 MA: MIC Press, 19k5), (specially ppe. 40-45.
 Collier "individual" winners before 1929 inchaded: Orville Wright, for developing the antomatic stabilizer (I9t 3);
 (1921); Sydants Albent Reed, for developing the metal propeller (tges); and (harles W. lawrance, foir his
 deromatical homors to be acoorded in the E nited States; the wimer received the awad from the president of the ['ined States. On the history of the Collier Trophy, see Fucelerick J. Neoly, "The Robert J. Gollier Troplas: Its Origin and Pupose," Pegraws (December 1950): $1-16$, and Bill Robic, for the bertest Adhemement A Misomy of the

The Curiss Hawh used in NACA Tests, in Nowember 1928, brfore (aboze) and affer (helon') instrallation of (he combing. (NGC Phote 3018)

(W). Phote 3ols)

NACA cowling did so in close accordance with popular expectations, however naive, about where valuable new technology came from and how it moved from conception to practical reality.?

As the following essay intends to show, the technological process represented in the NACA's cowling investigation was of a particular type that has often proved fundamental to progress not only in aviation but in all engineering fields. It was not the path of inspired genius the public had come to want, but neither was it mere development. Rather, the NACA cowling was something more fundamental and harder to identify, let alone comprehend. It was the fruitful product at a govermment laboratory of what historians of technology have come to call enginerving science: a solid combination of physical understanding, intuition (and commerintuition), systematic experimentation, and applied mathematics. ${ }^{*}$ As such, the NACA cowling evolved during the 1930s into the mature type of basic technokgical achievement that has been extremely hard for the non-technical American public to understand and appreciate for what it is, but which must be explained, understood, and appreciated in a democratic society if basic applied research is to be supported and adequately funded.

Who Asked the Question?

As most successful research programs do, the NACA cowling investigation started with a guestion: "Is it possible to extend a cowling outward over the exposed cylinders of a radiat aircooled engine without interfering too much with the cooling?" It is significant for NACA history that the question, which brought the breakthrough counterintuitive answer, was asked at the NACA's first ammal mamfacturers' conference, which was held at Langley Memorial Aeronatical Labotatory on May 24, 1926. This event became the NACA's "rite of spring." A combined techncal meeting and public relations extravaganza, the anmal conference gave the NACA research staff an opportunity to ascertain the problems decmed most vital by the airctaft industry so that it could incorpotate them as far as possible into its reseateh programs. At the same time, the conference gave the staff a chance to publicize its recent accomplishments before individuals who rarely had the time to read the NACA's published techmical reports but who needed, and wanted, to know what the NACA was doing. The conference also gave the rescarch staff at Langley a chance to bang a big drum before congressmen and other public officials who "had netther the time nor the qualifications to read the techmical reports" but who played critical roles in the appropriations of govermment money. The event started in 1926 as a modest and relaxed onc-day affati, but it soon grew into an claborately staged pageant that took weeks of preparation by the NACA staffs both at Langley and in Washington. By 1936, the spectacle lasted two days, the first day for executives of the aircraft industries and government officials, the second "for persomnel of the government agencies using airctaft, representatives of engineering societies, and members of professional schools." In 1926, only forty-six attended the conference; ten years later, more than 300 people were attending each session, including aviation writers who reported fully on the laboratory's presenlations in newspapers and journals."
7. Other individual winners were Gilenn Curtiss, agam, in 1912: Orville Wright in 1913: Emer A.
 Albert Reed in 1925; Major F. L. Hoffman in 1926; and Charles I.. I awrance in 1927.

8 . For a rich histonical treatment of the roke of engincering science in American acronaties, see
 (Batimore, MD) Johos Hopkins ('niversity Press. L! MOO).
9. For a discussion of the NACAs ammat airctaf engineering conlerences, see Hansen. Vinginery n

The identity of the person who asked the pivotal question about engine cowlings is uncertain, but the subject is worth some speculation because of what it says about the aviation commonity and its process of discovery in the late 1920s. No one attending the conkerence ever went on record about who first asked the question about cowlings, and those who lived long enough to be interviewed by historians (and remember the question being asked) do not remember who it was that did the asking. One likely candidate is Charles W. I awtance, who by 1926 was part of the Wright Aeronatical Corporation in Paterson, New Jersey. In the eady 1920s, Lawrance had buit his own small engine company around a pioneering aitcooled radial engine known as the Whirlwind J-1. The Navy loved the engine, but Lawrance's company nevertheless struggled to remain solvent and could not avoid a buy-out by the huge Wright company. With the resources of the Wright (orporation behind him, Lawance kept improving his engine and, by 1927, had a ninecylinder, $220-\mathrm{HP}$ Whirlwind J^{-5} in mass production. This outstanding radial air-cooled engine powered Lindbergh across the Atlantic in 1927, Sir Charles Kingsford-Smith across the Pacific in 1928, U.S. Amy pilots Itegenberger and Maitland from Oakland to Hawaii in 1927, and Commander Richard E. Byrd over the South Pole in 1929. So impressive was the engine's perfomance, which was highly publicized because of these benchmark flights-espectially lindberghts-that the NAA awarded Lawrance its Collier Trophy for 1927 in recognition of his marvelons cogine." Given the fact a Sperry Messenger aimplane equipped with an aircooled Lawrance engine was demonstrated in a Langley wind tumel at the NAC Conference's moming session in May 1926, one might imagine that Lawrance asked the question about cowlings, but there is no real evidence he did.

Perhaps an even more likely candidate was Captan Holden C. ("Dick") Richardson, an officer in the Nay's Bureau of Aeronatios and one of the original members of the NACA's main committee (from 1915-1917). Richardson, who had completed a master's degree in engineering from the Massachusetts lnstitute of Technology (class of 1907), was one of the Navy's leading aircraft designers. Having "honed his skills in the fields of hydrodynamics and aerodynamics" at the Philadelphia and Washington navy yards (at the latter working with Captains David W. Taylor and Washington I. Chambers on the wind tumel in the experimental model basin), flying boats became his expertise." Along with Dr. Jerome C. Hunsaker (a foure NACA chaman, 1941-1956) and Captain Geoge C. Westervelt, Richardson was one of the designers of the Navys famous NC-4 (NC for NavyCurtiss) flying boats, a 25,000 -pound aircraft that successfully flew the Atlanic in 1919. In the mid-1920s, as head of the design section of the Navys Burean of Aeronamtics' (BuAer's) material division, he was ome of the Navy leaders working hardest to bring about the design of metal flying boats, notably the PN class, which were originally equipped with liquid-cooled Packad engines. Various problems with the heavy engines prompted the Naty in 1927 to move to aircooled engines (ewo 525-HP Wright R-1750 Cyclone radials) for the PN-10, the lirst of the Navys all-metal seaplanes.'" At the time of the NACA's first manufacturers conference in May 1926, which Richardson attended, this conversion to the radial was still being pondered. Thus, the subject of this engine and its potential for further improvements-aterodvamic and otherwise-bhrough an advanced cowling was high on the list of Richatson's concerins.
10. On the tarly in-flight adievennents of the Wright Whimwind engine, see Temy divph-jones,
 Lather Ievin trsociates, Inc.. 1989), p. 54.
11. For infomation on the naval career of Holden (. Richardson, see Willian F. Timable. Wime for the Vray: A

12. Jimole. Wimg /or /he Nit7\%, pp. 97-99.

Therefore, it would not be at all surprising if the cowling question came from Dick Richardson, an aircraft designer totally absorbed in the unique probemers of naval ainctaft Without a doubt, one of the more "rgent qual engines without degrading their cootin the 1920s was how 10 reduce the drag decided that the lightet air-cooled engine, with ing. During the early 1920s, the navy had de radiators, offered a more practical solution to its short crankshafts and crankeases and mon than the heavier liquid-cooled engine with most of its airctaft power-plant problems of coolant favored by the army. The jarring conits water jacket, radiator, and gallons of coolar on aircraft carriers resulted in too many frontations of haval airctaft with arresting sea, including loose joints, leaks, and cracked cooling system maintenance problems at sea, moko made it clear to the Burean of radiators. However, subsequent experion of Admiral Willian A. Moffett in 1921) that Aeronatics (established under the considerable power. The finned cylinders of the radialexisting aitcooled designs wasernal aistream, cansed high drag. cover) over the hub and engine, projected into the puting a propetler spinner (a rounded cover) over hat this left ed to reduce this dag and inner portions of the cylinders wh
covering the crank ase ander jutting into the airstream. the outer ends of tistent design problem in mind, it woud the reseate staff at langley

With this persistent to ask at the NACA conference whether ouward over the cylinders of Captain Richardson to much a cowling could be extended interference with cooling. The could detemme how order to reduce drag without excessive intere expectally shiphoard fightthe radial engine in orden ond advantages for all som of aircratt, espectally shipboard answer promised significant advanag beats.

I Didn't Want People to Expect too Much

The immediate circumstances prompting the cowling question in May 1926 was a demonstation in Langleys new Propeller Research Gumel, a monster was still ahnost a were still being worked out in May 1926 and wenference, as part of a wour of various year away. Dunting the moning session the big tumel so everyone could witness its operLangley facilities, the NACA tmand on the bin whe stream was a small Speny Messenger ation. Monted on the test balance in the engine rmming. The Propeller Research airplane, with its tadial aircooled han, was onty the NACA's third wind thmel, the largest Tunnel, or PRT as it came to be known, wasome buith to that time anywhere in the world. one buill. The PRT was in fact the largestopeller, the throat of the PRT was a spacious Designed to acommodate a full-scate propes size of the langest wind tumel at langley, wenty fee in diameter. This was four tmest seded sixy-for times the volume of any tund and it meant that the PRT structure full-sale tests of propellers to be practicat, the thmbuilt there before. Futhermowe, for 100 MPH , and to achieve that it took $2000 \mathrm{ILP}-\mathrm{cen}$ nel's airflow had to reach at he NACA Wind Tumnel No. 1 (operational June 1920) and times the power it took to drive drive the NACA's second wind tunnet, the VDI and PRT dight times what it 100 k (or VDT, operational ()ctober 1922). Bot impont. As ne ther the Variable-bensity Timnel Max M. Munk, the NACA's brilliant Getmants were large enough to were conceived by Dr. the nearby Newport News generating plank obtaned wo sumplus city of lampton nor electicity to power the PRI, the NACA had obtaned wo smp supply the necessary electricity to powe

[^10]
stration of this huge beast of a machine made a powerfue U.S. Navy. Thus, any demon
What made the PRT demonstration even a powerful impression." May 1926, had not yet been able to get the umore exciting was the fact that the NACA, by explosion that statled engines to tum over, a blast of compengines running properly. To ged the tumnel on the compre uninitiated. For the moming visitors, thed to be used, a minor plane up in the test sectioned air for about a minute, with the the Langley engineers ran memorable-very noicy and with its engine rumning also. The litle Sperry Messenger airquestion prowoking. Whether it saty-but also, as the NACA foundration was not only else who asked the critical question Chatles Lawance, Captain Rich out that afternoon, know from the historical recoden about cowlings carly in the aftehatson, or someone the interest. By the end of the attent several other people immediatelyoon session, we do were rather desperate to know attemoon, it was clear to the NACA that aioke up to second sidered it the job of the governmere about the potential of engine that airplane designers the PRT might be just the rimem laboratory to provide the bate cowlings, that they coninangural NACA conference right place to make a systematic basic information, and that NaCA-industry-military services inuewed its purpose well and set the stane study. The The NACA's Washington office (it won for vears to come. World War II) responded in office (it was hardly ever called investigation of the effect immediately by authorizing Langley todquatters" until after operation of a Wright Apache various forms of cowling on the perfonmance a free-flight gram of cowling tests in the per arowed from the navy) and perpanmance and engine to test full-sime propellers and other aincty that made it possible for the firs a systematic pro-

The onganizing thinker ather aircraft components in a wind tomme fime anywhere Langley was Fred E. Weicl and tean leader of the NACA's wind tumnel. tory of American ateronautione of the most remarkable aceronatical cowing program at developed an avid interest in. Born near Chicago in 1899 , Weick engineers in the his(icere Field and engaging in mation by the age of twelve, going (pronounced Wyke) U'miversity of Illinois in 1929 in model airplane competitions. Gong to air meets at nearby inal (.S. Air Mat Service. he began his professional career as pon graduation from the which time he worked in a converted stay with the Yackey Aircraftsman with the origa converted beer hall in Maywod. Allorat company (during

> 14. lion the devioun,

 172 was kept open umtil l939. I amatory wospend cowling work on the summer of logh, but
16. Fied E. Weick and fangley caried out most of ius work on the Apache and its Whindwind recalled it.

 the Froompe has been gear used todis-e ben for the including development of the stery significime contribu-

 Videlvans, to his ponering work with the L.S. Air Mis autobiography tells his entire bite benefit to both

Fred E. Weick, head of the Poppller Resparh Tinnel section, 1925-1929. (NASA photo)
surplus Breguet fourteen biplanes into "Yackey Transports"), he started a job with the U.S. Naty Bureat of Aeronautics in Washington, D.C., where, within a matter of months, the NACA's director for research, George W. Lewis (1882-1948), personally recruited him for important work to be done at Langley, some 120 miles to the sotheast. (The NACA's Washington office was located in an adjacent wing of the Navy building, thus facilitating close relations between the NACA and the Navy.) Weick arrived at Langley in November 1925 just in time to take over the design and construction of the new Propeller Research Tumel, the job Lewis had specifically picked him to do. ${ }^{17}$

In the weeks following the May 1926 conference, Weick and a small team of engineers and technicians laid out a program for the cowling tests that was tailor-made for the capabilities of Langley's big new tumnel. The primary method Weick chose to employ was something just becoming known to engineers as experimental parameter variation, which has since been defined as "the procedure of repeatedly determining the performance of some material, process, or device while systematically varying the parameters that define the object or its conditions of operation." "Although just being fully articulated in the 1920 s , the method itself was ancient. (areek military engincers had varied the parameters of fullscale machines to find the most effective dimensions for their catapults hundreds of years before the time of Christ." During the Industrial Revolution, engineers had used the method to explore the performance of new construction materials and steam cngines. ${ }^{20}$ The success of the first powered airplane in 1903 followed application of the fundamentals of the method used by the Wright brothers while testing airfoils in their homemade wind tumel."' Over the centuries, many different types of engineers used parameter variation precisely because it permitted solution of a complex problem without a complete understanding of all aspects of the problem. When a complex research problem needed practical solution, and hypotheses were more sattershot than pinpoint becanse complex understanding was still a distant goal, the technique systematized the pragmatic researcher's only real choice for a couse of action: a combination of brainwork, guesswork, and trial and error. By observing the effects of slight changes made one at a time in planned, orderly sequence, an engineer like Fred Weick could add progressively to his knowledge about the actual performance of whatever was being investigated. Seeking effects now and saving causes for later, he could use what he did know, circumvent what he did not know, and discover what would work.

For Weick, the advantages of using such a proven method, though intuitively clear and logical, were a rather recent revelation. While at BuAer in 1924 he leanned, from propeller work carried out by William F. Durand and Everett P. Lesley at Stanford University, what he called "the advantages of using a systematic series of independent variables in experimental research." ${ }^{2}$ (Even carlier, as a senior engineering student at the University of Illinois, hehad based a paper on variable-pitch propellers on data from the Durand-lestey propeller tests in the Stanford wind momel.) ${ }^{\text {a }}$ So it was a method that had proven immensety practical to him in his own work, which gave him confidence to try it again.

[^11]Recognizing that he should extend the cowling investigation well beyond the range of immediate interest, Weick pinpointed the extremes. Obviously, one extreme was a bare engine with no cowling at all; everyone who knew anything about aerodynamios assumed that it would have maximum cooling, but maximum drag as well. The value of the other extreme-enclosing the engine completely-no one hat anticipated because that form seemed to exclude all possibility of air cooling. For smooth flow around the exterior of the cowl, Weick modeled an engine nacelle on the best available airship form, with the idea of bringing in cooling air at the center of the nose. Then the amount of cowling was systematically varied from one extreme to the other until he had produced ten different cowling shapes, ready for testing in the PRI.:4 "After I had completed the ouline of a tentative cowling test program," Weick remembered in his autobiography (published in 1988, when Weick was 89), "the NACA sent it to the military air services and to various manufacturers that had shown interest at the May 1926 conference, and it was approved by all of them. Fortunately, getting their okay took some time, because the propeller research tumel was at this point in no sense ready to operate." ${ }^{2}$. The PRT was not ready for actual testing until early 1927, at which time the systematic experiments began.

The first round of tests in the PRT initiated a process of cowling development that lasted at Langley for more than a decade, into the late 1930 s . With the process came significant design refinement and a far deeper understanding of all the beneficial things property cowled engines could do for an airplane in flight. Most importantly, from the viewpoint of expanding engineering knowledge, the process eventually resulted in a far better understanding of hoo cowlings do what they do. In retrospect, the process was divided into four stages: (1) 1926 to 1929, definition of the cowling's parameters, a stage which ended with the NACA's public announcement of a successful low-drag design that won the Collier Trophy; (2) 1929 to 1931, an important series of engine placement and free-flight cowling tests that resulted in a strong identification thronghout the NACA with the empirical method; (3) 1931 to 1934, when the laboratory began by outlining a new three-pronged experimental attack on cowling and cooling problems, but ended in an impasse when that attack stalled; and (4) 1934 to 1936 and beyond, when a more analytical approach to cowling research began to emerge out of this stalemate to answer some of the basic questions that the empirical approach of the preceding three stages had left manswered. Experimental parameter variation led to results in each of the first three stages; practical use was made of observed performance effects. By the fourth and final stage, it was time to search beneath the effects for causes. It was time to go after that distant goal of complex understanding. By the start of World War II, which in some respects saw the final, cuminating evolution of the propellet-driven arplane, this ultmate goal had been largely achieved."

In 1927, Weick's team at Langley stood at square one. According to Weick:

> The groal that we had set for ourselves was a cowled emgine that wowld be cooled as well as one with no cowling whatsorver. This program procepded easily enough until the complete cowbing, covering the entire engine, was first tried. At this point, some of the cylindre lemperatures poved to be much too high. After soural modifications to the cooling air intet and exit forms, and the use of internal guide vanes or baffles, we finally obtained satisfactory cooling with a complete cowling.

[^12]Donald H. Wood, a 1920 graduate in mechanical engineering from Rensselaer Polytechnic Institute who had been working at Langley since 1924, was in charge of the actual operation of the testing, and the first of these modifications was made while Weick was away on a vacation. When Weick returned to work, it was obvious to him that "the boys were on to something, and from that time on we all worked very hard on the program. ${ }^{\prime 27}$

The airplane that the engineers worked with in the PRT was a Wright Apache, a small airplane, which was equipped with a $J-5$ Whirlwind air-cooled engine. They measured the cooling effectiveness of each of the ten cowlings, investigating their different effects on propulsive efficiency. Each experimental shape underwent numerous, systematically planned variations. With the help of Elliott G. Reid (a 1923 master's graduate in aeronautical engineering from the University of Michigan), the head of Langley's atmospheric wind tummel ("NACA No. 1") who had been studying the effects of Handley-Page wing slots, Weick designed a cowl that brought outside air in and around the engine via a slot at the center of the nose. The potential of a complete cowl then began to look more enticing. The researchers had to modify the cooling air inlet several times, and install guide vanes or baffles to control the air in its passage for a more efficient heat transfer. They also had to design an exit slot that released the air at a slightly higher velocity and lower pressure than it entered the cowling with, but they finally obtained satisfactory cooling with a complete cowl, which they called "No. 10." This cowling covered the engine entirely and used slots and baffles to direct air over the hottest portions of the cylinders and crankcase.

To everyone's surprise, the No. 10 cowling reduced drag by a factor of almost three. As Weick remembered, "The results of this first portion of cowling tests were so remarkable that we decided to make them known to industry at once. In November 1928, I wrote up Technical Note 301, 'Drag and Cooling with Various Forms of Cowling for a Whirlwind Engine in a Cabin Fuselage,' which the NACA published immediately." The summary of the report was as follows:

The National Advisory Committee for Aeronautics has undertaken an investigation in the 20-foot Propeller Research Tunnel at Langley Füpld on the cowting of radial aircooled engines. A portion of the investigation has been completed in which several forms and degrees of cowling were tested on a Wrighl Whirluind J - 5 engine mounted in the nose of a cubin fuselage. The cowlings varied from the one extrome of an entirely exposed engine to the other in which the engine was entirely enclosed. Cooling tests were made and pach cowling modified if necessary until the engine cooled approximately as satisfactorily as when it was entirely exposed. Drag tests were then made with each form of couling and the effert of the couling on the propulsive efficiency determined with a metal propeller. The propulsive efficiency was found to be practically the same with all forms of cowting. The drag of the cabin fuselage with uncowled engine was found to be more than three times as great as the drag of the fuselage with the engine removed and nose rounder. The conventiomal forms of couling in which at least the tops of the cylinder heads and valve gear are exposed, reduced the drag somewhat, but the cowing entively covering the engine reduced it 2.6 times as much as the best ronventional one. The decrease in drag due to the use of spinners proved to be almost negligible.

In concluding the summary, Weick argued that use of the form completely covering the engine was "entirely practical" under service conditions, but warned that "it must be carefully designed to cool properly. ${ }^{\text {"h }}$ In conjunction with the appearance of this report, the

[^13]NACA's Washington office announced to the press that aircraft manufacturers could install the NACA's low-drag cowling as an airplane's standard equipment for about $\$ 25$ and that the possible annual savings from industry's use of the invention was in excess of $\$ 5$ million-more than the total of all NACA appropriations through $1928 .^{* *}$

With the initial round of wind tunnel investigations completed, Langley borrowed a Curtiss Hawk AT-5A airplane from the Army Air Service, that was already fitted with a Wright Whirlwind J-5 engine, and applied cowling No. 10 for flight research. "These tests showed that the airplane's speed increased from 118 to 137 miles per hour with the new cowling, an increase of nineteen MPH," Weick wrote in his autobiography. "The results of the instrumented flight tests had a little scatter, and we could have been justified in claiming that the increase in speed was twenty MPH instead of 19 , but I wanted to be conservative. I didn't want people to expect too much from this cowling, so we called it $19 .{ }^{3}$ so

Godsend

But the lid on the cowling breakthrough was about to be lifted. On February 4-5, 1999, Frank Hawks, who was already famous for his barnstorming and stunt flying, established a new Los Angeles to New York nonstop record (eighteen hours, thirteen minutes) flying a Lockheed Air Express equipped with a NACA low-drag cowling that increased the aircraft's maximum speed from 157 to 177 miles per hour. The day after the feat, the Committee received the following telegram:

COOIING CAREFULLY CHECKED AND OK. RECORD IMPOSSIBIE WITHOUT NEW COWLING. ALI CREDIT DUE NACA FOR PAINSTAKING AND ACC:URATE RESEARCII. [signed] (EERRY VULTEE. I OCKHEED AIRCRAFT CO. ${ }^{31}$

In the following months, as the NACA reported in its annual report to the President of the United States at the end of 1929, "all the high-speed records in this country in the past year were made with airplanes powered with radial air-cooled engines using the N.A.C.A. type cowling." ${ }^{\text {"2 }}$ Amid a burst of publicity-some of it exaggerated-about the benefits of the NACA cowling, the National Aeronatutic Association amounced in January 1930 that the NACA had won the Collier Trophy for the greatest achievement in American aviation in 1929.

The NAA presented the award to the NACA at a brief ceremony on the grounds of the White House on Jume 3, 1930, "before a small but distinguished gathering of aeronamical authorities." ${ }^{34}$ President Herbert Hoover presented the trophy to Dr. Joseph S. Ames, the NACA chaiman (1927-1939). Significandy, none of the speakers said anything

[^14]

W qualify the significance of the design breakthrough or to focus the attention on engineering rather than on science-in fact just the opposite:

> Senator Hiram Bingham, president of the National Aeronautic Association, opponed the aremony by explaining the history and status of the Coller trophy and read the nuard cilation. Piesident Howere, in foresenting the trophy to Dr: Joseph S. Ames, chairman of the National Advisory Committep for Aeronautirs, commended the committee on the siemific |author's emphasis] research which had devenped the cowling. Doctor Ames. in accepting the trophy on behalf of the committer, suid in part: "A sciemtist receives his moard from his oren urom in beliosing that he has added to human knouledge; but he is alurevs gratified when his werk is recognized as good by those competent to judge." is

Onc would hope that Ames, an accomplished physics professor at (and later president of) the Johns Hopkins University, understood that the NACA cowling was producing solid, but not fantastic, results and that there was no magic in the tin shape. As a member of the NAC A Main Committee since the NACA's establishment in 1915, he certainly should have
known enough about the research process at Langley to appreciate the systematic character of the laboratory work that made the breakthrough possible. He should also have known that the genuine achievement of the NACA cowling was part of an experimental process more natural to engineering than to any of the sciences per se; that the cowling certainly was not the product of inspired genius; and that there was still a lot of work to be done to make any great use of it, mostly by industry. But if Dr: Ames knew these things, he did not announce them at the White House; and why should he have done so? The NACA was still a fledgling agency uncertain of its political support; Wall Street had just crashed months before; and the Hoover administration's support for on-going aeronautical research and development (R\&D) was so tenuots that the NACA was going to need all the boosterism it could get just to survive. (In December 1932, as part of his plan to reduce expenditures and increase efficiency in government by eliminating or consolidating unnecessary or overlapping Federal offices, Hoover signed an executive order to abolish the NACA-something that he had recommended doing in the mid-1920, when serving as secretary of commerce. The election of Franklin D. Roosevelt ancelled President Itoover's mergers and left the NACA intact. ${ }^{\text {n/ }}$

The 1929 Collier Trophy thus seemed a godsend to the NACA; certanly Ames and the other leaders of the NACA saw it that way. (It is more than coincidental that John F. Victory, the executive secretary of the NACA, was serving as treasurer of the National Aeronautic Association in the year that the NACA first won the Collier. No NACA official had served on the NAA executive committee before 1929.) The pleasant recognition not only justified the funding levels the NACA had gotten in 1929 and $1930-\$ 836,700$ and $\$ 1.3$ million, respectively, which seems modest but was in fact nearly $\$ 300,000$ more than it had ever received-but was also timely support for the $N A C A$'s request for more money (the FY 1931 appropriation would turn out to be $\$ 1.36$ million) to continue construction of a large, new, full-scale wind tumel at Langley, one even larger than the PRT. It was not the time to be dirtying the water with complex thoughts about the authentic nature of engineering breakthroughs; rather, it was the time to give the aviation public what it wanted. Great science. Heroic thoughts to match the feat of I indbergh. Magical technology. Tin shapes that produced miraculous results. That is the sort of "right stuff" that "flew" with the aviation public in the 1930 s , as it still does today. The "honest stuff" about the details of the NACA research program was too down-to-earth and technically complicated. Better just to call all of your achievements "science."

After all, in 1930, no one yet was absolutely sure whether the NACA was an organizattion for science or for engineering. Congress had created the NACA in 1915 "to supervise and direct the scientific and technical problems of flight with a view to their practical solution." The leaders of America's embryonic aviation establishment, however, had been in sharp disagreement over how to interpret this mandate. Some had felt that the NACA should remain small and continue to serve as merely an advisory body, devoted to pure scientific research. (With qualifications, Dr. Ames had tended to support this view.) Others had argued that the NACA should grow larger and combine basic research with engincering and technology development. This second group, led by the NACA's ambitious director of research George Lewis (M.S. in mechanical engineering, Cornell University, 1910), wanted the NACA to attack the most pressing problems obstructing the immediate progress of American aviation, particularly those that were vexing the fledgling military air services and aircraft manufacturing and operating industries. ${ }^{\text {.5 }}$

[^15]Under Lewis's careful direction (he served as director of research from 1919 to 1947), the NACA moved slowly but surely along the second course. By the mid-1920s, engineers, not scientists, were in charge at Langley, and the keystone of the NACA's charter rested securely in their notion of "practical solutions." Over the next twenty years, the NACA conducted research into basic aerodynamic, structural, and propulsion problems whose solutions led to the design of safer, faster, higher-flying, and generally more versatile and dependable aircraft. With these aircraft, the United States became a world power in commercial aviation and Allied victory in World War II was assured. In the opimion of many experts, the NACA did "at least as much for aeronautical progress as any organization in the world." ${ }^{*}$

Engineering or Science?

Much of the credit for this impressive record rests with the NACA's engineering approach to the technological problems. Scientific principles undergirded aeronatical development, of course, and basic discoveries in the physics of airllows definitely played a major role in focusing the effort. But it was engineering researeh and development that really brought the progress. When langley labomatory stamed flight testing in 1919 (the first LMAL wind tummel did not begin operating until June 1920), faal wooden biplanes covered with fabric, baced by wires, powered by heavy watercooled engines, and driven by handearved wooden propellers still ruled the airways. The principles of acronatitical engineering had yet to be fully discovered, and only a few programs at major schools like MIT and the University of Michigan existed to find them and teach them to students. The design of aireati remaned a largely intuitive and empirical pratelice requining bold speculation and daring, in both a financial and technological sense.

In terms of enginecring, there were still a number of bothersome and potentially dangerous unknowns. As evidenced in the question asked of the NACA at the lge conference, no one knew for sume how to meduce engine diag without degrading cooling. But there were so many of these guestions still needing to be asked. No one knew with certainty how to shape wings to increase lift of to diminish the effeces of turbulence. No one knew how and when flaps, alerons, and other control sulaces worked best. No one knew if it was even worthwhile to reatact landing geats (acording to various pundits. the adeled weight and complexity of a retractable monderamiage would not be worlh the saving in air resistance). Substantial increases in ateodynamic efficiency might follow on the heeds of correct answers to just a few of these techaical concerns. but no one knew exactly how, or even whether io try, to get at them.

If was, therefore unfortunate-and tremendously misleading to the aviation public-for Dr. Ames, at the White House ceremony, wommend the NACA on the "sciontific research which had developed the cowling," for it was not science, but engi-neering-and non scientists, but engineers like Fered Weick and his PRI leam-who arctadly deserved the credit. Engineering deserved the credit not only for the NACA cowling but for most of the design revolution then beginning to take place in American acromatucs. Ames's acceptance speech wats thus like congratuating the Wright beothers for being scientists rather thate engineers, thereby missing the essential points of what the had actually achered and how they adheved it. Of course, the Wrights had bern pontrayed all too ofen as scientists. In this semse, Ames's athibution
for the cowling was in keeping with the American tradition of co-opting engineering achicvements for science.

The failure to distinguish between scientific and enginecring achievement haunted the NACA throughout its history, but never more so than in the early 1930s. The most outspoken critic of the NACA at that time, Frank Tichenor, the editor of the journal Aero Digest, mislabeled the NACA cowling "a development rather than an original work" and misjudged it as being far less effective than the Townend ring, a rival cowling concept developed simultaneously by Hubert (.. Townend at the British National Physical Laboratory." Tichener did so largely because he took the NACA at its own words about being a scientific organization and because he failed to appreciate that aviation progress during the era really depended on engineering being in charge, as it was at Langley laboratory, not science. In his regular monthly column, "Air-Hot and Otherwise," Tichenor attacked the NACA in late 1930 and carly 1931. In the February 1931 issue, he stated the gist of his criticism:
In these columns in December, I mieued the conditions protailing in the National
Adrisory Committer for Aeromautirs which preyent it from functioning in a manner use-
ful to the best interests of the industry it purponts to sertw... The importance of a wise
and honest expenditure of publir funds apprepriated sperifically for scientific lauthor's
cmphasis| research and nof for a chertp substitule for it, is generally rerognized.

In his column, subtitled "The NACA Commers," Tichenor then took on a "defender of NACA management," Dr. Edward P. Warner, editor of the tival trade journal Aviation and a long-time member of the NACAS Comminee on Aerodyamics and Committee on Materials for Aiscrati (Warner had served temporarily in 1920 as Langley laboratory's Chief physicist), who had prepared a response to Tichenor's December 1930 column "Why the NACA:" In his editomial response, published in Axiation in January 1931, Wanner "skinted the definition of scientific reseatch"" and by inference, seemed to concede (as Langley chief of acrodynamies Flton W. Miller also did in an umpublished response he prepared for the NACA Washington Office, which Warner received before writing his own

11. Rolland. Motet Rasimh, 1:133.
rejoinder ${ }^{t 2}$ that very litule NACA work "could be classified as fundamental, according to general acceptance of the term." Still, the NACA research program was scientific, as it involved (in Miller's words) "accumulated and accepted knowledge, systematized and formulated with reference to the discovery of general truths on the operation of gencral laws." Like Miller, Warner argued that Tichenor was looking at aeronautical R\&D at Langley laboratory (a place Tichenor apparently had never visited) in the wrong way: just because research at langley had a practical object, it did not mean that it was not scientific. ${ }^{*}$

But Tichenor did not grasp the point, largely because he saw an all-too-dramatic dropoff from science to whatever else came, in his view, below it. (NACA leaders believed that Tichenor's anti-NACA columns were in fact being fueled-and perhaps even draftedby Aero Digest consultant, Dr. Max Munk, the eccentric German aerodynamicist who had conceptualized the VDT and PK'I at Langley but who had been forced to resign as I MAI chief of aerodynamics in early 1927 after a revolt of all the sections heads in the aerodynamics division against his autocratic style of supervision. Elton Miller was Munk's successor and had played a major part in the revolt. ${ }^{44}$ If it was not science at the NACA, then for the Aero Digest editor (and for the disgruntled Dr. Munk, who really should have known better), it was "a cheap substitute." There was nothing in between, and centainly nothing on par, with science.

Thus, Tichenor took Warner's response-which did not make a temibly clear case for the requirements of an engineening approach to basic applied research but tried instead only to claim the values of science for the NACA-and he turned them against the govermment organization. (Warner had earned a master's degree in physics at MIT in 1919 and, following his brief hiatus at LMAL, taught in the school's pioncering aeronantical engineering program into the mid-1920s, when he became a consultant in Washington, DC, to the President's Aircraft Board, better known as the Morrow Board, after its chairman Dwight Morrow. ${ }^{\text {t }}$ Responding to Warner, Tichenor wrote:

> It almost looks as though the defender of the N.A.C.A. managemem in his own hear agreps with us; and athough he finds it expedient to depreciute our criticism, he writes as though he himself would like to sep reform effected. He does not call attontion to one sucressful research, nor ome scientific advancement which can be crodited to the N.A.C. . Nor does he suggest that such advanes can be expected in the future. . . Our principal criticism, the absence of scientific research, is tacitly admitted. Such research, he contends, is the proper sthere of universities, not of the N.A.C.A.

Tichenor bolstered his case with references to the NACA's own language, its own executive policy decisions, and to the NACA charter itself:

Now, we have not, merely as the result of our own judgment, specified scientific research as the task of the N.A.C.A.; we quoted this as the NACA's task from the Committee's own annual reports. The defender of the N.A.C.A. cannot logically ignore this point altogether, as he does, for it is the most important consideration, the keynote of the
42. As Koland points out in Model Resperch (1:356, n. 18), Elum W. Miller's comments appeared in a 19 December 1930 memorandum tol MAL engineer-in-charge Henry Reid, who then forwarded it to (m eorge I .ewis in the NACA Washington office as "Comments on the Article in the December 1930 Issure of Amp Digest, Entitled Why the NAC.A.?" dated Jamary 2, 1931 , Accession 55 A 312 , Records of the NACA, National Ardhives.
43. Flton W, Miller memorandum, December 19, 1930, cited in ihud.
44. See Roland, Model Ressarch, 1:132-35.
45. On E.P. Warner's career in aemonatics, see Roger E. Bilstein, "Edwad Pearson Wamer and the New Air Are," in Leary, ed., Amation's Golden Agre pp. 11:-26.

Abstract

N.A.C.A.'s shortcomings. This is not a question of opinion only; rather; it is far more a question of kepping faith, of loyally to duties defined by the supervising body of the N.A.C.A. The policy of comducting sriemifie research weas adopted ten years ago by the presiding (Main] Committee, made up of the formost experts of the country. In all anmual reforss sime then, it has been recorded as the accepterl policy of this body. It has been pleaded for in hearings before Comgressional rommittess. Il has formed the basis for public appropriations.

Tichenor then asked the key question, one much more insightful than the Aero Digest editor ever realized at the time: "Does the defender of the N.A.C.A. mean to imply that there is one policy for obtaining appropriations and for general advertising and publicity purposes and quite another one for the actual service and activity within the walls of the N.A.C.A.e"t

The answer, honestly, was, yes, there were two practios, if not policies. Not that the NACA was consciously involved in any deception; it was just that the NACA as an organization was not yet self-conscious enough in 1930 about the value of engineering at its research labomory to extricate itself from the public relations dilemma. The American people expected scientific achevement and did not really understand engineering. The NACA charter said it was the job of the NAC A "to stepervise and direct the scientific study of the problems of flight with a view to their practical solution;" Tichenor thos thought he was calling the NACA to task when he asked, "If money is appropriated for scientific research, can we consider it of no consequence that those funds are spent for something else?"; while Warner thought the NACA rescarch staff was doing exactly what it was supposed to do in seeking practical solutions, no matter exactly what one called in. In Tichenor's purist opinion, "Fither there is scientific rescarch or there is not," and Congress in 1915 had "decreed that the N.A.C.A. should conduct scientific research." In the NACA's more utilitarian view, "Research need not necessarily be aimless to be scientific." ${ }^{\text {w }}$

The two sides were talking past one another. What Tichenor needed to understand, and what the NACA itself needed to grasp more fully and communicate far better and more often to the aviation public, was that a methodologically sophisticated approach to solving technological problems, later to be called enginering srience, was developing in the American engineering profession in the first decades of the twentieth century-and that it, not pure science, held the key to molocking aviation progress and igniting the airplane design revolution of the 1930 s. The fact that engineering had come to dominate the chanacter of the work at NACA Langley was not something to bemoan and condemm, as Tichenor was doing; it was something to praise, explain, and fully exploit.

Because Tichenor did not understand the many advantages of engineering science, he dismissed the NACA cowling work as cut-and-try development. With the actual invention of the cowling, the editor charged, "the N.A.C.A. had nothing whatsoever to do." Nevertheless, according to Tichenor, the NACA was claiming that, "had it not been for the NACA," the industry would not be adopting it. He wrote:

> The industry is alleged to be so timid that the information about improvements avait able is not sufficient to induce it to adopt them; the industry needs the guiding hand of the N.A.C.A.; the industry does not trust and has no confudence in its onen speed tests made by its own prilots. The implication is that, instead, it waits until the N.A.C.A.

[^16]
Abstract

measures in pounds and ounces the diminishment of the drag in consequence of some improvement and then computes the increase in the speed. The industry, it is seriously alleged, has more confidence in such computed speed gain than in speed directly observed. How grotesque! We really have cause to admire the courage of one who advances such opinions. ${ }^{\text {h }}$

Edward P. Wamer, in turn, reassured the NACA privately that Tichenor's indictment was without force in the aircraft industry. On January 5,1931 he wrote to George Lewis: "One thing you never need to worry about in any year is the worth-whileness of the work that you are guiding. I have never overheard so much comment on anything that appeared in Aero Digest as on Frank Tichenor's attack on the Committee, and the comment has been about ninety-eight percent unfavorable-and I have already been receiving congratulations.""

By the time this debate broke out, NACA Langley's cowling program had already coolved into a distinct second stage, one still rooted in the engineering approach to solving the outstanding technological problems. In Fred Weick's formulation, "The second part of the cowling program covered tests with several forms of cowling, including individual fairings behind and individual hoods over the cylinders, and a smaller version of the new complete cowling, all mounted in a smaller, open-cockpit fuselage. We also performed drag tests with a conventional engine nacelle and with a nacelle having the new complete design." ${ }^{\text {w }}$ Though the individual fairings and hoods proved ineffective in reducing drag, Weick and his colleagues found that the reduction with the complete cowling over that with the conventional cowling was in fact over twice as great as with the larger cabin fuselage. Data from the Curtiss Hawk AT-5A flight tests confirmed this conclusion."

In early 1999, Langley's flight research division mounted NACA low-drag cowlings on the engines of a Fokker trimotor. Although Weick did not supervise these tests, he followed their results closely.
The comparative speed trials proved extremely disappointing. Seprarate tests on the indi-
vidual nackles shonoed that cowling the Fokker's nose pngine gave approximately the
improved performance we expected. (Gouling the wing nacelles, however, gave no impronep-
ment in freformance at all. This was strange, because the wind-tunnel tests had alroady
demonstrated convincingly that one could oblain much greater imfromement avith a
rowled nacelle than with a couled engine in fromt of a large fusplage. Some of us started
to wonder how the position of the nacelle with wespert to the wing might affect drag.'

This was a critical design issue, especially for multi-engine aircraft, as big commercial and military aircraft were bound to be. In the case of the Fokker (as well as the Ford) trimotor, the original design location of the wing engines was slightly below the surface of the wing. As the air flowed back between the wing and nacelle, and the distance between them increased toward the rear of the nacelle, the expansion required was too great for the air to flow over the contour smoothly. The LMAL flight research group, in association with the PRT team, tried fairing-in this space, but achieved only a small improvement."

[^17]Nevertheless, the lab's systematic, empirical approach soon yielded its dividend. With the help of his assistants, Weick laid out a series of model tests in the PRT with NACA-cowled nacelles placed in twenty-one different positions with respect to the wing above it, below it, and within its leading edge. "Where it appeared pertinent, extra fairing was put between them," Weick recalled. ${ }^{54}$ The resulting data on the effect of the nacelle on the lift, drag, and propulsive efficiency of the big Fokker trimotor made it clear that the optimum location of the nacelle was directly in line with the wing, and with the propeller fairly well ahead. Although their primary emphasis was on drag and improved cooling, the tests at Langley also confirmed that a cowling No. 10 of the radial engine, if situated in the "Wtimum position, could in some cases actually increase the lift of the airplane's wing." "Without the complete cowling," Weick and the others learned, "the radial engine in this position spoiled the maximum-lift coefficient of the wing. With the cowling, and the smooth airflow that resulted from it, the maximum-lift coefficient was actually increased. "in In transmitting this important information confidentially to the army, navy, and industry, the NACA helped build a several-months lead for American aircraft designers over rival European companies. After 1932, nearly all American transport and bombing airplanesincluding the Douglas DC-3, Boeing B-17, and many other famous aircraft of the era that followed-employed radial wing-mounted engines with the NACA-cowled nacelles located approximately in what Weick and his associates had identified as the optimum position.

Weick and his colleagues remained extremely proud of this contribution for the rest of their lives. In his autobiography, Fred wrote: "This combination, according to some historians, was one of the important advances that enabled airliners to become financially selfsupporting, that is, without the need for government subsidy. ${ }^{577}$ As such, it fulfilled the NACA's public mandate, put another feather in the cap of the still fledgling government research organization, and demonstrated again, for better reasons than even the original ones, that the NACA's winning of the Collier Trophy in 1929 was well deserved.

The cowling was winning so much respect in the late 1920s and early 1930s that the NACA came to identify itself more and more with the systematic experimental approach that had been the basis of the successful cowling research. In 1930, the head of the Langley aerodynamics division, Elton W. Miller (B.S. in mechanical engineering from George Washington University, class of '08) reported to engineer-in-charge Henry J. E. Reid (B.S. in electrical engineering from Worcester Polytechnic Institute, class of '19) that "an effort is being made throughout the Laboratory to conduct every investigation in as thorough and systematic a manner" as the cowling program. ${ }^{5 x}$ The following year, George Lewis told Reid to hang, in his office or along the corridor of the LMAL administration building, a copy of the following quotation from a speech by President Hoover in praise of Thomas Edison:

> Scientific discovery and its fractical applications are the produrls of long and arduous resparch. Discovery and invention do not spring full-blown from the brains of men. The labor of a host of men, great laboratories, long, patient, scientific experiments build up the structure of knowledge, not stone by stone, but particle by particle. This adding of fact to fact some day brings forth a rovolutionary discovery, an illuminating hypothesis, a great generalization of practical invention."

[^18]Although this quotation fell short of the whole truth about how progress was made in science and technology, it was closer to the realities of the cowling achievement than was the myth of heroic invention; Lewis's request for it to be displayed at Langley indicates that some NACA leaders certainly possessed a more mature understanding of the nature of technological change than they were willing to grant for, or explain to, the public at large. Clearly the pattern of work behind the cowling-the NACA's greatest public success to date-contributed to a clearer sense of institutional identity and mission, even if the agency as a whole was not doing much to enhance the public's understanding of the technological process at work.

Experimental Impasse

However, given what was to take place during the third stage of cowling research at langley, from 1931 to 1934, one cannot be too sure even whether this clearer identity for the NACA was an altogether good thing-that is, whether Langley's confidence in systematic parameter variation would continue to signify technological momentum or turn into technological inertia.

A distinct third stage of cowling research began at Langley when many more aircraft manufacturers decided to adopt the NACA design as standard high-performance equipment. A few companies did rather well with their applications of the NACA No. 10 cowling, especially those that put a series of adjustable flajs around the circumference of the metal jacket in the hope of better regulating the release of used air. (Those that tried to encourage more cooling flow by employing larger exit openings failed, however, sometimes to the point of nullifying the external drag advantage.) With the development of twin-row engines such as the Pratt \& Whitney R-1830 of 1933-34-with one row of cylinders behind the other-whole new problems arose." This situation challenged Langley to obtain more trustworthy data on the general aerodynamic properties of the proven NACA design. Practical results had been obtained from experimental parameter variation, and they had been used profitably. Now it was time for a clearer understanding of them, so that still more results could eventually be achieved.

Three major branches of the laboratory became involved in the ambitious program. The power plants division worked to improve the efficiency of radial-engine cooling by varying such engine parameters as pitch, width, thickness, and shape of the fins. The 7×10-foot wind tumnel section, using small models, sought the best possible cowling arrangement for necessary cooling with minimum drag by streanlining the front and rear openings, changing the size of the nacelle, and altering the camber of the cowling's leading edge. The PRT team was then to verify the results of the tests made by the other two groups. Full scale propeller-cowling-nacelle units were to be tested under conditions of taxiing, takeoff, and level flight. ${ }^{\text {.1 }}$ Don Wood was now the head of the PRI' section. In April 1929. Fred Weick took a position with the Hamilton Aero Manufacturing Company in
 DC: NASA SP-45, 1980, pp. 140-41.
61. Noutpenth Anual Report of the National Adovary Committer fon Armautios (Washingtom, DC: L.S. Government Printing (Oftice, 1934), p. 10; Arnold E. Biemann and Benjamin Pinkel, "Heal Transfer from Fimmed Metal Cylinders in an Air Stream," TR $+88,1934$; Donald H. Wood, "Jests of Nacelle-Propeller Combinations in Various Positions with Reference oo Wings, II-Thick Wing-Various Radial-Fingine CowlingsTractor Propedler," TR 436, 1932; idid., "III-Clark Y Wing-Varions Radial-Engine Cowlings-Tractor Popeller." TR th2, 1933; James G. McHugh, dide. "IV-Thick Wings-Various Radial-Engine CowlingsTandem Propellers," TR 505. 1934, E. Floyd Valentine, ibid., "V-Clark Y Biplame Cellule-NACA Cowled Nacelle-Tractor Propeller," TR 506 . 1934 ; Donald H. Wood and Cartion Bioleti, ibid., "VI-Wingsand Nacelles with Pusher Propeller," TR 507.1934.

Milwanke, Wisconsin, a subsidiary of the United Aircraft and Transport Corporation. He returned to langley in less than a year as assistant chief of the LMAL aerodynamics division, a position from which he could work with any of the wind tumels as well as the flight section. In this capacity, Weick stayed in touch with the cowling program but it did not monopolize his time and energies as before.t

Though the first two parts of the program advanced without much difficulty, the PRT tests under Don Wood-the final and most important part-ran into major problems soon after starting in 1933: the 100-mile-per-hour tumed could simulate only the climb speeds of the cowled engine being used (a borrowed Pratt \& Whitney Wasp); the obsolete shell-type baffles employed to deflect cooling air towatd the hottest parts of the engine were too loose for the NACA researchers to work with effectively; ${ }^{63}$ and, more importantly, certain anomalies that no one an the lab could explain plagued the cowling drag measurements. Fogether these problems contributed to a growing "mate of contradictory data" about cowlings. Despite five years of NACA experimentation and three years of general industrial dight test experience, American aeronational enginecrs felt a "general suspicion" that there was "something mysterious or mpredictable determining the efficiency of engine cowling." ${ }^{\text {. }}$

To move beyond this experimental impasse, Langley's cowling research needed some analytical help. It was eventually provided by the head of the laboratorys small Physical Research Division, Theodore Theodorsen (Dr. Ing., Universitetet I Trondheim, '22). A Norwegian-born engineer-physicist with a trigger mind and tremendous power of concenmation, Dr. Theodorsen had already seen, in Langleys pattern of airfoil testing in the variable-density tunnel (VDT), the need for experimental routine to be fertilized with a stronger dose of theory. In the curious introduction to his seminal 1931 report on the "Theory of Wing Sections of Arbitrary Shape"-curions at least in an NACA report for stating a bold personal opinion and implicitly taking part of the parent organization to taskTheodorsen had asserted that
a ssience can dovelop on a purely empirical basis for only a corlain time. Theory is a process of systematic arrangement and simplification of knowon farts. As long as the facts are fou and obvious no theory is necessary, but when they become many and less simple theory is needed. Although the experimenting inself may require lithle effort, it is, however, oflen expedingly difficull to amalyse the results of ruen simple experiments. There exists, therefore, atways a tendency to produce more test results than can be digestad by theory or applied by molustry.

What Theodorsen believed the NACA needed in order for it to move beyond the impasse now blocking the progress of its experimental cowling program was more attention to the "pencil-and-paper" work that could lead to a complete mathematical and physical understanding of the basic internal and extemal aerodynamics of the different cowling

[^19]shapes. ${ }^{5 /}$ And what this meant in terms of the history of Langley's method of cowling research was a turning away from experimental parameter variation, and toward that distant goal of complex understanding.

Theodorsen first perceived new cream to be skimmed off the top of the old cowling and cooling investigation while serving on the LMAL editorial committee that reviewed the draft report on the tests of the full-scale propeller-cowling-nacelle units in the PRT. After pointing to the blunt afterbody of the nacelle as the probable source of the anomalies that had been observed in the drag data, he suggested to his colleagues that the stalled cowling program could be completed as planned (and his resolution of the drag anomalies verified) by a new, more comprehensive and analytical full-scale investigation. Its aim, underscored Theodorsen, would be both to improve basic understanding of the obscure cooling mechanisms of the cowled engine and to put the understanding of the relationship between internal flow and drag on a more rational basis. The provocative suggestion was adopted; engineer-in-charge Henry Reid transferred most of the cowling work and many of its key personnel to Theodorsen's division. ${ }^{166}$

The PRT team had previously focused almost entirely on the net effect of the cowling on drag and engine temperatures. What Theodorsen now proposed was to investigate the fundamental flow involved. In part, the approach of Theodorsen's new cowling research team still followed that of experimental variation. The Wasp engine having proved inadequate as part of the test bed, they built a full-scale wind cunnel model with a dummy engine, which had one cylinder heated electrically. Numerous combinations of more than a dozen nose shapes, about a dozen skirts, six propellers, two sizes of nacelles, and various spinners were tested. But hoping to produce a detailed handbook by which designers could better understand the actual functioning of the NACA cowl, they also included extensive measurements of pressure in both the external and internal flows.

Langley's revised cowling program thus remained primarily experimental, but it now also allowed quantitative analysis and computation of these flow pressures. This quantitative analysis, which had been lacking in the PRT's previous work, eventually produced some new NACA cowling designs, but more importantly it provided solid answers to virtually all the remaining questions about the fundamental principles of the cowling and cooling of radial engines. ${ }^{67}$ It demonstrated conclusively that the early NACA designs had been "quite haphazard and often aerodynamically poor," and had cooled the engine successfully only by a crude excess of internal flow and internal drag-a conclusion that engineers in the aircraft industry, notably at Vought, had already arrived at on their own, on behalf of Pratt \& Whitney and its R-1830 engine. iv Designers of future cowlings, like airfoil designers, would have to be much more sensitive to such subtleties as the ideal angle of the cowling's leading edge attack on the local airflow. The fourth stage of cowling work at Langley even demonstrated as fact something that everyone had unconsciously assumed to be physically impossible when the cowling research began in 1926: a proper engine cowling could, by making the enclosed baffled engine act in essence as a ducted radiator for cooling, lower operating temperatures more than could full exposure of cylinders in the airstream. With this counterintuitive reality confirmed, the national atronatical establishment could now begin to focus on more specific,

[^20]higher-speed applications of cowlings, work that would prove essential to the design of military aircraft used by the United States and her allies in World War II.

Demystifying the Cowling

The history of the cowling research from 1926 to 1936 celebrates the victory of the NACA's winning the National Aeronautic Association's prestigious Collier Trophy for 1929, but it illustrates a more fundamental point about applied basic research. No matter how practical or otherwise advantageous any one rescarch method may be, it always has some disadvantages. Systematic parameter variation had enabled the researchers at Langley to delineate a cowling that significantly reduced the drag of a radial engine without degrading its cooling, but because initial success came rather quickly and easily, they did not have to understand exactly why the cowling worked. When questions and doubts arose, and data seemed contradictory and mysterious, the original empirical method was unable to proceed. Only then did Theodorsen design the research progran whose goal was an understanding that went far beyond the mere collection of overall performance data on a variety of promising but arbitrary shapes. The cowlings that resulted from the Theodorsen program did not beat the earlier shapes as regards extemal drag (which is only a weak function of cowl shape), but with the tight baffles, small exit areas, and low internal drag made possible by the NACA's new criteria of understanding, the total drag of Theodorsen's shapes was dramatically less.

Three-quarters of a century after the initial cowling breakthrough, historians of aeronautics still tend to treat the NACA cowling as a magical piece of tin wrapped around an engine, and they still tend to misinterpret the NACA for its failure to be scientific. As a result, they fail not only to appreciate the systematic character of the laboratory work that made the initial design breakthrough possible, but also to pick up on the later work by Theodorsen and engineering groups in the aircraft industry that made the important final breakthrough in understanding possible. The success of the cowling was not due to magic. Nor was it the result of simple cut-and-try or advanced theory demonstrating its ultimate superiority over empiricism. Rather, the cowling was the product of fruitful engineering science.

Ultimate success in research is never inevitable, however. Without the help of Theodorsen or someone else with comparable analytical and mathematical talents, the cowling research at Langley might have remained indefinitely at the point of impasse. Much of the responsibility for misunderstanding the true achievement of the NACA cowling program belongs to the NACA, whose leaders and publicists of the late 1920 s and early 1930s, in seeking to gain respect and additional funding for the honestly meritorious operations (and future wind-tumnel building projects) of their struggling research agency, exaggerated the mysterious wonders of the NACA cowling and continued to stress the scientific character of all NACA research when they should have been advancing a more utilitarian view of basic research methodology-and of technological progress. In doing so, they condoned the miscasting of the cowling as a heroic invention-which, in some key respects, represented it as something less than it was.

With its winning of the Collier Trophy for 1929, the NACA missed an excellent opportunity to explain to the aviation public, which was growing ever targer and generally more informed during the post-Lindbergh era, what successful applied research done by the government was really all about. Even if the NACA had provided brilliant explanations, of course, the public might not have cared to listen. But for the general
technological literacy of the commty, it would have been worth the try. And at the very least, the NACA would not have left itself so open to criticism from Frank Tichemor and other critics, as well as later historians, for overselling what really did amount to one of the most significant types of accomplishments within the NACA's capability.

The ofiginal cominterintuition that won the NACA its first Collier Trophy was remarkable enough to merit winning the award, because it laid open to public view the many potential advantages of a low-drag engine cowling. But that strange opening idea, which was hard enough for the public to molerstand, represented only the first step in a much more complicated "learning for design" process. Beyond the conceptual breakthough there was much more to be done by American engineers before truly remakable results in airctati perfommance could be achieved. The NACA's Langley laboratory in Virginia, where a culture of "the engineer in charge" took hold in the 1930 s , still had to carry out a rigorous experimental program and analysis. It was then up to the aircrafi industry, not the NACA itself-which, after all, was not in the business of designing aircraft-to incorporate the cowling development into the larger revolution just taking wing in 1929 . In just a few years this revolution would lead to such advanced airplanes as the bouglas DC-3 and Boeing B-17, with cantilever wings, retractable landing gear, efficiently cowled radial engines, controllable-pitch propellers, and all-metal, stressed-skin consuruction. Withont its integration into this larger technological development, moving from the various shapes of ungainly wooden biplanes to sleek metal monoplanes, the singular existence of a low-drag NACA cowling would have been almost meaningless.

Engineering science is not casy for the layperson to understand. Partly for this reason, back in the eaty 1930s, the NAC A had outspoken critics. Some of the criticisms were valid. The NACA's publicists did exaggenate the cowling's significance and took too much credit for the aircraft industry's adoption of the cowling. They could have done a far better job of explaining what really had been accomplished and how important it all was: that is, how systematic research was moving things along nicely and how Langley's Propeller Research Tumnel, a modesty-priced and brand new public facility was already paying off in spades by permitting a team of engincers to work in a wind tumnel with full-scale airplanes. Better experimental equipment was leading to more comprehensive and more useful data. The aircralt inctustry was benefitting from the govermment's help-and was very thankful for it. It was that simple.

This is what the NACA could have said, and perhaps should have said, to the aviation public mather than leave most people with the impression that a magical piece of equipment had been invenued and that science was responsible for it. Like the engineering of cowlings itself, which was work honestly done and honesty explained in NACA's technical reports by talented engineers like Fred Weick, more accinate public expressions out of the NACid's Washington office, although requiring much more understanding from those who both articulated and received them, could perhaps have served the catise of the N $A(A$ better. They could have done so by explaning to the paying public how basic applied research gets done in a laboratory setting and how painstaking research fitels terhnical progress

As hyperbole and myth, NACA statements from which people inferred a beroie invention of the cowling seem, indered, to have had some shortem political value. But one can wonder if such exaggetations have, in the long rum, made it hader to justify public funding for slow-but-sure techmological endeavors. Granted, it might have been chancy public relations for the NACA, especiatly in the midalle of the Great Depression, to take the high road and distinguish its research form pure seience and heroic invention; it very well
could have backfired. But in historical perspective, a more honest and fully informative approach by the NACA to the importance of its basic activity secms worth the risk. The cowled engines of American airplanes probably would not have performed any better, but the public context for government $R \& D$) may have matured a bit-and in the long run, led to a more informed public, wiser political decisions, and more logical next steps.

Chapter 2

Lew Rodert, Epistemological Liaison, and Thermal De-Icing at Ames

by Glenn E. Bugos

A paradox in aircraft icing research took the National Advisory Committee for Aeronautics (NACA) further into actual aircraft design than it had ever before ventured. To gather data on new de-icing equipment under natural icing conditions, and do so safely, NACA needed an aircraft already invulnerable to the dangers of icing. So Lewis A. Rodert, leader of NACA icing research from 1936 to 1945 , built his own de-icing system on two aircraft-first a small Lockheed 12A and next a Curtiss C-46 transport that would become flying laboratories for further research. "Seldom before," wrote Edwin Hartman, NACA's representative in southern California and Rodert's liaison to aircraft manufacturers, "had NACA's research work been carried so far into the hardware stage or so far in achieving a complete and satisfying solution to a major operational problem."

Yet when Rodert received his Collier Trophy in December 1947, the practicality of his innovation had hardly been established. As evidence of practicality, the press release noted only that his specially-modified -46 flew through the weather that grounded other aircraft. Manufacturers had begun building similar do-icing systems, though few followed Rodert's suggestions. Still, despite the narrow practicality of Rodert's work, he was indeed largely responsible for getting industry off its duff. The Collier Trophy, given annually in recognition of outstanding achievement in acronautics, testified to the peculiar and fruitful synergism of his personality with the NACA advisory committee form of research.

Rodert was a short, intense man, just forty years old when he won the award. Born in Kansas City and raised on a farm in Kansas, Rodert studied at the Kansas City Junior College before transferring and graduating with a Bachelor's degree in 1930 from the University of Minnesota. ${ }^{-1}$ He instructed in aeronautical engineering at Duluth Jumior College in Minncapolis before moving briefly to Curtiss Aeroplane \& Motor Company in Buffalo, New York. He joined NACA's Langley laboratory in 1936 to do de-icing work, transferred to the new Ames laboratory in California in 1941, quit briefly to join industry in 1946, then returned to NACA as chief of the flight research branch for the new Cleveland laboratory. The Flight Safety Fotudation cited Rodert in 1953 for his "aircraft fire prevention research work" while at the Cleveland center, and his alma mater gave him the 1954 University of Minnesota Outstanding Achievement Medal. In 1956 Rodert joined Lockheed in Burbank, Califormia, as a special assistant on research management, then quickly disappeared from the aviation scene. Former co-workers passed rumors of his decline into mental illness.

Rodent put everyone on edge with his show-me attitude. Rodert encountered many philosophies of de-icing, and accepted none easily. In the aeronautical research communityrife with epistemological insecurities, where unequivocal proofs were the most exasperating part of any researcher's daily life-work moved forward because peers conferred upon each other the initial benefit of the doubt. Rodert broke that unspoken rule by calling

[^21]

Itrwis A. Rotert, then Chief of the Wight Reswanh Branch at the N.MC. 1 Iacis labernamy, weas abundelt
 the denelopment and pucutiral application of a thermat

everything into question, especially the widespread belief that de-icing was a complex and intractable problem. He did so because of his wartime chos of urgency, his farm-boy abruptness, his distrust of mathematical obfuscation, his own predilection for trial-and-ertor engincering, and his power over the NACA testbed airctaft. Nor did Rodert shy from making his own problematical pronouncements-he was especially quick in proclaiming the BTUs required to de-ice a plane-then working like hell to prove himself right. People had opinions about Rodert, both good and bad, and expressing these opinions caused everyone to think more precisely about their own de-icing work.

Rodert was no organization man. He was a poor manager. He did, however, expertly exploit the most fundamental structure of the NACA research organization-its system of nested advisory committees. Committee business allowed him to visit with virtually everybody-manulacturers, airlines, and military pilots- -0 hash out the details of themal de-icing. Furthermore, Rodert worked oblivious to the rarefied distinctions between basic and applied research that then gripped so many NACA officials, and that today guides so much historical analysis of the NACA. Rodert judged everything simply on how well it kept ice off an aircraft in flight. This study of Rodert's work, therefore, focuses on his role as epistemological liaison-on the practical work involved in establishing certainty for himself, and anongst the many groups mobilized to defeat the icing menace.

Defining an Approach

Following a joint Army-Navy request, in 1928 NACA researchers initiated a small-scale investigation of aircraft icing, then a big mystery as well as a big cause of aircraft crashes. First the NACA surveyed air mail and airline pilots on which aircraft were most likely to ice, and collected reports on crashes attributed to icing. They built a small six-inch refrigerated wind tumel, the first icing research tunnel in the wold, and watched how ice formed on an airfoil. And they installed a free-flight icing rig under the shoulder-mounted wing of an old Fairchild F-17 cabin monoplane. There they mounted a thermometer and a small but visible wing section, on which they spayed water as the aircraft passed through frecoing air:

NACA pilot william H. McAvoy, by just watching this wing section as ice formed, confirmed some suppositions about icing. Ice did indeed form "mushroom" shapes projecting forward of the leading edge, rather than smooth sheets coating the airfoil. Pilots should expect, McAvoy continued, that ice also formed on fast-turning propellers with mushroom projections. Ice that hardened far back on the wing posed no problems because it adhered poonly and slipped off easily. McAvoy also collected anti-icing pastes from the airlines-greases and oils, and water soluble compounds like glycerin, honey,

Karo symp, and soap-but discovered these actually induced icing by trapping ice crystals until huge honks formed. From his window-side survey of the state of the art in aircraft de-icing, McAvoy had established a way of studying icing-flight tests to frame questions about the impact of ice on aircraft performance.

NACA theoreticians Theodore Theodorsen and Willian C. Clay directed the tunnel experiments as part of a broader rescarch program on turbulent airflow. By mounting an electrically-heated, brass wing section in the tumnel, and impregnating it with thermocouples, they showed that heat transfer between an airfoil and its atmosphere varied directly with airspeed and closely followed the pressure distribution of air along the airfoil. Local transmission of heat was high along the leading edge, diminishing to zero by the thirty percent chord. 'With this tumel set up, Theodorsen and Clay also tried out some ideas on thermal de-icing-that is, applying heat to melt ice as it formed. McAvoy also tested thermal de-icing on NACA's free-fight apparatus. NACA shops built a small metal airfoil, of four-foot chord and two-feet span, and mounted it under the Fairchild. Once ice formed, the pilots turned on a small boiler in the engine exhaust manifold and measured how much steam was required to keep ice from forming or to melt ice once it had.

As early as 1931 NACA had established the principle of thermal de-icing as strongly as doubts about its practicability. Theodorsen and Clay concluded that steam heat might de-ice wood-composite wings but the system would be "excessively heavy," especially if designed to de-ice all the struts and support wires that then held together such wings. ${ }^{4}$ The best system, they suggested, would use waste heat from the exhaust stream, but this would likely await development of new all-metal monoplane aircraft. "The recommendation for the guidance of those who must encounter [icing| conditions," concluded McAvoy, "appears to lie entirely along the lines of their avoidance.":

On the last night of 1934 , an aircraft slammed into an Adirondacks mountain killing its passenger and crew of four. The weather remained cold so that a crash inspector, curious that the aircraft had not burned, found the carburetors completely choked with ice. The engines likely just suffocated and stopped, leaving the pilot no way to de-ice and restart it. Publicity prompted the Commerce Department to investigate and discover that, during 1934, twenty-six planeloads of passengers had been forced down by carburetor icing." Some of the most disastrous crashes in aviation history had been attributed to icing, and airline executives widely believed that their industry would never boom until they erased this element of danger.

Pennsylvania-Central Airlines resurveyed its route system for winter flying conditions, raising some minimum ceilings and adjusting ranges. American Airlines improved their runways for winter operations, Northwest added staff for better flight and weather planning, TWA prohibited its pilots from landing when icing conditions prevailed below 1,000 feet, and United Airlines started paying their pilots a base salary in addition to flight pay so they would have no disincentive to cancel flights in bad weather. ${ }^{`}$ This winter, wrote an airline executive in December 1937, "is the best opportunity the industry has ever had to
3. Imagine a chord line numing straight backwards from the leading to the trailing edge of a wing, with a total distance expessed as 100 percent to acount for taper along a wingspan. A thirty percent chord measurement is a point $3 / 10$ hhs of this distance backwards from the wing's leading edge. The higher the chord number, the farther backwards it is.
4. Theorlore Theodorsen and William C. Clay, "Ice Prevention on Aircraft by Means of Engine Exhatust Heat and a Technical Study of Heat Transmission From a Clark Y Airfoil," NACA Techniral Kefomt No. 403 (1931): 3.
5. Thomas Camoll and William H. McAvoy "The Formation of Le U pon Exposed Parts of an Airplane in Flight," Nach Technital Note No. 293 (July 1928): 10.

7. JA. Browne, Meteorologist-n-Charge, "Ice Accretion Within the Convective Layer," TWA Meteorological Department, Technical Note No. 4 (Jme 1940), in Stantont Ibraries.
demonstrate to the public that air transportation is more than reasonably safe." Their strategy: "cooperate with the weather in a big way."*

But airline operators and manufacturers ultimately wanted to defeat the icing menace, not cooperate with it. Aircraft already rivaled the steamship and train for speed and economy; but it lacked regularity. Radio navigation aids had brought aircraft to the brink of being all-weather conveyances, until the temperature dropped. Iacking a technological fix to icing these airlines cancelled or delayed flights-an estimated one-tenth of all flights-at first sight of icing clouds. Icing became a consuming challenge, to both airline economics and engineer pride. Lewis A. Rodert joined the NACA Langley Memorial Aeronautical Laboratory (LMAL) in September 1936, and teamed with Alun R. Jones to re-invigorate NACA's icing research with youth, stubbornness, and a fresh perspective on icing problems.

Ice caused aircraft to crash by adding weight and preventing the pilot from climbing above the icing clouds, so that the aircraft gradually lost altitude and slammed into the ground. That was how most people understood the danger of icing. Rodert and Jones started their studies by showing that icing seldom enveloped the aircraft with weight, but rather icing incapacitated small but crucial parts. As McAvoy had proved with his photos of mashroom-shaped ice projections, and as Rodert and Jones confirmed, ice accreted along the wing and tail leading edges disturbing lift and adding drag. Ice clogged the interstices of rudders and ailerons, preventing control and inducing buffeting. It changed the aerodynamic profile of the propeller, causing it to vibrate and exen less thrust per horsepower. It coated windshields, so the pilot flew blind. Ice made antema wires oscillate and snap, and generated static that rendered useless most radio commonication and mavigation. It distonted pitot shapes, so that pilots gol emoneous airspeed readings. And it dogged caburetors, suffocating the engine. Frequently, the pilot lost each of these systems-engine, wings, control surfaces, indicators, radio, sight-within minutes. With their lives at stake, pilots of ice-hindered aircraft had little time for the careful observations NACA researchers promised to make.

Using a DC-3 Mainliner loaned by United Airlines, in September 1937 Rodert and Jones glued sponge rubber to the leading edge of the wing, simulating ice formations, and showed how a small layer of ice had a big impact on lift, drag, and stalling." NACA headquaters athorized constution of a larger icing tunnel at Langley. LMAL technicians insulated the umnel with a crude layer of kapok pulled from surplas Navy life preservers, and added an open tank of ethylene glycol cooled by dry ice as refrigeration. This tunnd worked well enough for Rodert to further chan the impact of ice on aerodynamic efficiency, and to prove that a full size wing section could be de-iced with exhaust heat." But Roder lost patience with tumel research as he leanned that tunnel ice bore litue relation to the natural ice he hoped to defeat.

The B.F. Goodrich Rubber Company an a small icing tunnel in Akron, where they verilied the pueumatic de-icer they had introduced in 1930. The pneumatic de-icer was a strip of rubberized cloth holding inflatable rubber tubes that atached to the leading edge of a wing or tail. When the pilot unexpectedly encommered icing, he shot compressed air into the strip, coacking the ice so that the wind stream swept it off. It worked well conough to become standat equipment on latge tamsperts by the late 1930s, but never well
 1937): 945
a Lewis A. Roment and Alun R. Jones, "Prolile Drag fovestigations of an dirplane Wing Fiquipped with Rubber Intlatable De-lecr," NAC.. Idzamed Confidential hepont (December 1934).

 the use for which Nica moxt likely intended it. James R. Iansen, Vinginer in Chage: a /history of her Iamghy

enough that aircraft could deliberately fly into icing conditions. Rodert and Jones held the tenet that nothing restrict where aircraft could fly.

Rodert and Jones also claimed the rubber boots were in no way fail-safe. Pilots already knew they were not very clean-they ballooned with changes in air pressure or returned wrinkled on the smooth airfoil contour after inflating. In carefully controlled test flights Rodert discovered pneumatic de-icers worked in really very limited conditions. They seldom cracked ice cleanly, and the jagged edges more quickly accumulated lumps of ice. Furthermore, the pneumatic de-icer attached to the wing at ten percent chord, with strips that protruded into the airstream that further accumulated ice at the place most likely to disrupt lift. If a de-icer failed-and a bullet hole through one shoe would destroy pressure in the whole system-protile drag could increase 458 percent over an unprotected wing, putting the aircraft in greater peril." B.F Goodrich failed to see danger in this, contended Rodert, because the ice created in their tunnel bore little relation to natural ice. Goodrich sprayed water in big drops, which created a smooth coating of glaze ice. Natural icing was more likely to be opaque, crystalline rime ice, created when very small supercooled droplets ran into a crystallizing structure like a wing. Any tunnel that verified the utility of the pneumatic de-icer caused Rodert to doubt the entire enterprise.

So Rodert and Jones kept their research in free flight as often as possible, and worked on thermal de-icing to replace the pueumatic boot. They built a more elaborate icing installation between the double wings of a Martin XBM-1 dive bomber loaned to NACA by the Navy. But rather than using a heavy steam boiler, Rodert and Jones diverted hot exhaust directly from the engine into the model section. NACA Engincer-Test Pilots William H. McAvoy and Lawrence A. Clousing flew the XBM-I into cold air, turned on the water spray, and a camera recorded how quickly the ice melted away. By early 1938 Rodert and Jones were convinced thermal de-icing held great promise. Confirming their optimism were reports, leaked through Naval Intelligence from London, that the Germans had added heat de-icing systems to two production aircraft, the Junkers Ju. 88 and Dornier 217E. ${ }^{12}$ The Germans had first studied thermal de-icing in late 1920 s , as had NACA, but had accelerated their research under the Nazi regime. With war on the horizon, and airlines still agitating about the icing menace, Rodert and Jones thought it high time to prototype a complete thermal de-icing system and test it in real clouds.

The Lockheed 12A

NACA headquarters, anticipating funding for icing studies, allowed the Langley Flight Research Branch to buy a twin-engine, all-metal Lockheed 12A light transport. Rodert got dibs on converting it into what NACA researchers traditionally built so well-a sophisticated and dedicated testing facility, but in the form of a flying laboratory. The 12A would easily accept a "hot wing:" the wing outer panels held no fuel tanks, detached casily at the nacelles, and the engine exhaust stacks were close to the wing leading edge. Most important, the 12A was built by a company interested in staying on the forefront of icing
11. "Ice Off The Wings," Business Week (March 16, 1940): 21; Rodert to chief of the LMAL aerodynamics division, June 24, 1940; File AF 1-15;; Box 66; Central Files, 1939-1957; Records of NACA Ames Aeronautical Laboratory, Record Group 255; National Archives-Pacific Sierra Region, San Bruno, CA. My thanks to Kathleen OConnor, NARASAn Bruno, for her help in making these records available. [Hereafter, citations to Ames records are abbreviated, so the above citation would follow this formula: $\mathrm{R}(255 /$ Central/66/AF1-15a).
12. Royal Aircrafi Establishment, "Report No. E.A. 14/10 Enemy Aircraft: Junkers Ju.88, entited Description of Mam Plane De-leing System." December 1940 (RG255/Central/101/AF19-10). Other, though sague, reports had already appeared in aviation periorlicals.
research. Lockheed vice president and chief engincer Hall L. Hibbard assigned the 12 A modifications high priority. ${ }^{1 s}$

Rodert and Jones started with Lockheed blueprints to sketch a hot wing. They added a butterfly valve in the engine exhaust stack to diver hot gas (at $1500^{\circ} \mathrm{F}$) into a four inch diameter tube, rumning close to the leading edge but insulated from the wing structure, and exhausting out the end of the wing tube. Fo cool the tube and improve heat transfer, an intake scoop sent fresh air around the tube, then through holes in the spar web into the wing structure, and exhausting out louvers at the aileron hinges. They repeatedly calculated wing strengh, since heat weakened metal structures, especially one modified with new tubes and holes. By August 1939 the designs were ready, and NACA went looking for a sponsor:

The Navy BuAer (Bureat of Aeronautics) was so enthusiastic about the idea that they asked Rodert to make the modifications on a Navy production aircraft. Navy PBY patrol boats anchored off the Aleutian Islands had special icing problems. Waterplanes were not casily covered with protective tarps, so thick ice formed on them overnight. Splash during taxiing added more sheet ice. The Navy needed a de-icer with enough punch to knock this thick glaze ice completely off the wing, and Rodert's design promised to do so. But Rodert had the 12A blueprints ready to go; switching aircraft would deter him from test flights the coming winter. Further, NACA had no facilities for moolifying scaplanes. So Buder sent a diaftsman foon its San Diego depot to Langley in September 1939, and NACA engineers helped him modify their 124 blueprints to fit a Consolidated PBY-2 Catalina patrol boat. Buter hired Rodert and Jones to draft specifications for the PBY-2, especially the heat transfer calculations that helped Consolidated define the themal performance of the system. When the PBY-2 was ready for testing the following summer, BuAcr offered Rodert a job. But Rodert stuck with the NACA, and tied his lot with its patrons in the L.S. Amy Air Corps (USAAC).

The USAAC signed a job order for the 12A wings in November 1939. Major C.M. Cummings of the Equipment Branch at Wright Field had helped Rodert at several crucial stages, and supported his project without change. The United States, in any type of war, was sulnerable to two avenues of atack-by air over Alaska or Newfoundland-both with severe ice storms. Germany, Rodert later wrote, "has aircraft which can fly in almost any kind of weather, irrespective of icing conditions. There cannot be a possible defense against such arcaft without similar or superior equipment." ${ }^{14}$ American aircraft must be able to fly through any clouds; indeed pilots will likely seek protective cover in them. For $\$ 25,000$, the AAC bought new wings and a modified windshield from Lockheed, and loaned them to NACA for rescarch. While Lockheed fabricated the wings, Rodert and his Flight Research Branch prepared for a move westward.

NACA had already begun construction on the new Ames Aeronautical Laboratory adjacent to the Navy's Moffett Field on the flat bay lands near Sumpvale, Califomia. Compared to the humid air over the Virginia Tidewater, the cold Sierra Mountain air mixing with the warm, moist air rising off the San Francisco Bay made excellent icing conditions. Furthermore, Rodert had freed his research from wind tunnels, and by July 1940 the well-equipped shops and hangars at Ames were ready for his group. Test pilots McAvoy and Clousing ferried out an old North American O-47 they would use until the 12A was ready. Alun Jones rejoined them in January 1942, along with Carr Neel, an engineer who became increasingly involved in the work. Since the icing research was the first project at the new Ames laboratory, engineer-in-chief Smith DeFrance lent constant aid to his Ames Flight Reseatch Branch.
13. Clatence L. Johnson, Lockhecd Aircrafi Corporation, "Wing Loading, Icing and Asoociated Aspects of Modern Transport Design," foumat of the Aeronautad Siomes 8 (December 1940): 4.3-54
14. Rodert to IMAL Engineer-in-Charge, "Memo: Progress of ice reseatch on Lockheed 12 A Airplame," May 27, 1940 (R (2255/(Contral/66/AF1-15a)

McAvoy picked up the 12A with hot wings from Lockheed's Burbank plant on January 22, 1941. Back at Ames they flew it enough to be sure the heat did nothing to weaken the wing. Then they went hunting for ice.

During March and April 1941, McAvoy, Clousing, and Rodert took up the 19A almost everyday, scanning the horizon for ever more severe icing. United Airlines had compiled atmospheric data to help its pilots avoid icing on their routes; the Ames group used this data to seek out the ice." The Weather Bureau office at the Oakland Airport confirmed that they would find the best icing flying westward from Sacramento to Donner summit in the Sierras. George W. Lewis, director of aeronautical research at NACA Washington headquarters, had recommended that Rodert attach a two-foot long, unheated strut above the right wing. Thus, in one photo they could contrast the clean hot wing with the icing on the unprotected "tell-tale" strut. Lewis was delighted a few months later when he received his copy of the first report out of Ames-Rodert, McAvoy and Clousing's "Preliminary Report on Flight Tests"-"So I am going to celebrate by taking a copy over to Dr. Ames."

While the icing over California was regular, that spring it was hardly severe. To secure ever more dramatic photographs, the group ventured the 12A further north and east. On March 20, 1941, while flying through cumulous clouds over Superior, Michigan, at 9,000 to 11,000 feet, with air temperature at twenty-six to thirty degrees, they got pictures of three inches of ice on the strut while the wing below, on only half heat, was clean. Icing on the few unprotected parts turned so severe on a flight between Minneapolis and Fargo that the 12A slowed thirty-five mph from just the added drag. While flying northward along the Pacific coast, Rodert reported: "The airplane was struck by an electrical charge which melted the trailing edge of one propeller blade and the edges of the airplane struc-

The lonkherd 12A ure rescarch aiphane at Ames. (NASA photo no. Ames AIJ.I/66).
15. R.L.. McBrien, "Icing Problems Attendant to the Operation of Transport Aircraft," Aviation 4 (May 1941): 1.38.
16. Iewis to AAL., April 5, 1941; in File 50-14D Deicing Problems; Box 247; General Correspondence (Numeric File); Records of NACA, Record Group 255; National Archives, College Park. MD. [hereatter abbreviated WID(: RG255: collection name: file namel
ture at several points." ${ }^{17}$ The lightning strike grounded the 12A during a week of excellent icing conditions, but proved they were indeed flying into severe conditions. (McAvoy would win the 1943 Octave Chanute Award of the Institute of the Aeronautical Sciences, and Clousing the 1947 Award, for their test flying in severe icing conditions.) ${ }^{14}$

The drama, the photographs, the urgency all helped Rodert protect and expand his program from a number of competitors. B.F. Goodrich was working hard to improve their pneumatic de-icers. At the 6,288 foot summit of Mt. Washington in New Hampshire, Goodrich mounted a test wing like a weather vane so it stayed in constant wind. There a design team tried out new de-icers with hundreds of smaller, self-sealing inflatable tubes, snap-action distributor valves, flexible camouflage sprays, water-repellent nubbers, and non-adhesive sprays like the silicone Irex." As a result, pneumatic de-icers remained in wide use-and the long wing span of the Douglas C.54 transport was the widest ever--during and well after World War II.

Others preferred new chemical de-icers. Chemicals worked in two ways. Alcohol-based fluids lowered freezing temperatures. Other slick, oil-based fluids, exuded from wing leading edges or sprayed on before take-off, prevented ice crystals from adhering to the wing surface. The British especially advocated chemical de-icing. They claimed Americans like Rodert were misled about the war dangers of icing by inaccurate reporting of early Royal Air Force raids over Germany. As far as the RAF was concerned, chemicals sprayed easily onto any aircraft, lasted for a complete mission, and kept off North Atlantic ice. The Royal Aircraft Establishment at Farnsborough was perfecting a Dunlop strip which leaked a steady stream of chemical along the wing during longer flights. Chemists at the Naval Research Laboratory, looking for quick relevance on U.S. entry into the war, concocted similar anti-icing pastes and fluids. Since Rodert had the only aircraft known to withstand icing, they regularly asked him to try out new fluid recipes. It was highly likely icing conditions over the North Atlantic differed from those over North America, Rodert concluded, but all fluids tested poorly. Perhaps the British realized this too, because they increasingly cancelled icing-bound flights out of distrust of their equipment. For the first three years of the war, in a period of otherwise exceptional technical cooperation, British and American icing researchers kept their distance. Farnsborough transferred the twoengine Bristol bomber they used for icing research to Ottawa in April 1941, and for most of the war the Allies communicated only through the National Research Council of Canada.

The Ames group reported some important discoveries in the spring of 1941 that confirmed the value of thermal de-icing. ${ }^{20}$ Most important, the heat required in free flight was much less than indicated in wind tunnel tests. A seventy-degree rise over the ambient dryair temperature at 200 mph was enough to weaken the bond between the ice crystals and the wing (though a $100^{\circ} \mathrm{F}$ rise had a safer margin). Furthermore, heat concentrated on the leading edge-less than ten percent chord-was enough to protect the trailing parts of the wing. Thus, exhaust heat never weakened the wing structure.

NACA also reported how much heat would damage the structure. Lockheed had designed another "cellular" wing, which passed exhatist gas through large chambers directly on the leading edge with no additional cooling air. Lockheed volunteered to rig the wing with 107 thermocouples, far more than specified, to get information on how evenly it transmitted heat. When flying the cellular wing near Ames in July 1941, McAvoy had applied only partial heat when expansion at the leading edge caused buckling aft of

[^22]the rear shear beam, threatening destruction of the aircraft. ${ }^{11}$ Ames quickly replaced it with the exhaust tube wing, having just learned the upper limits of wing heating. This information was directly useful to the firms that designed and built aircraft-whom NACA referred to by the venereal tem "the manfacturers"-and they requested a great many copies of Rodert and Clousing's flight test reports.

To fly into ice clouds and survive, the Ames group necessarily became expert on the impact of ice on the total aircraft. "I am surprised to find," noted Engineer-in-Chief Smith DeFrance, "that there are so many details which have not been anticipated before the de-icing tests were started." ${ }^{2 n}$ Frosting prevented photographs out cabin windows; Clousing and McAvoy found they needed better instruction on flying blind; electrically-heated pitots looked clean even when ice in the throat skewed pressure readings; exhaust gas corroded the aluminum alloy at the wing tip; and the radio broke regularly. Rodert persuaded United Airlines to install in the 12A a radio they had specially adapted for ice flying. He asked the Massachusetts Institute of Technology (MIT) to design electric-resistance heating for the twenty-five foot long antenna wire that stretched between the cabin and the tail. And he asked the Naval Research Laboratory and the Air Corps labs at Wright Field to design loop antennas that would not collect static as they encountered precipitation. Any sharp corner or gadget protruding into the airstrean, Rodert constantly reminded manufacturers, was an invitation both to icing and static electricity.

In less than a year of flight lesting on the 12A, and carly experience with the Navy PBY-2, thermal de-icing looked promising. Manfacturers kept pressing Rodert for more details on the 12 A installation, which Rodert preferred to deliver in person rather than through reports. Rodert knew manufacturers could improve upon his 12A designespecially in reducing weight by better integrating the tube into the wing structure-and thought being vague about details might prompt them to imnovate. Rodent instead claimed expertise in flight testing. The NACA Special Subcommittee on De-icing Problems, which served as Rodert's peer review group, and from which he often sought advice on how best to report data, encouraged this division of labor.

The Subcommittee did not actually convene until April 1941. Rodert was not initially a member, though its charge was to "help in keeping the research organization in touch with the practical problems that require attack by research." ${ }^{23}$ Early committee meetings would have likely exasperated Rodert: just a bunch of guys sitting around talking about icing. They freely dispensed fragments of experience, ill-formed ideas, and random observations, and passed resolutions on which isolated aircraft parts most needed Rodert's attention. ${ }^{24}$ They collected and amended dozens of leners:

My dear Doctor: The industry is yelling to beat the band for a windshield that they can see through in rain and iof. Is there anyway you can pxperdite your activity on you improved windshield? ${ }^{\text {a }}$

But the committee gave a free hand to NACA's research bureaucracy, and it gave a free hand to Rodert, to integrate and prioritize these requests.

[^23]But Rodert found allies among the committee chairman. He had met J.W. Tomlinson in 1939 when Tomlinson was on the NACA aterodynamics committee and vice president of engineering for Transcontinental \& Westem Airlines of Kansas City. Tomlinson had seen the Ju. 88 on a trip to Gemany and, even though he hat a predisposition toward the rubber de-icers used on his fleet, he understood what Rodert was working toward. And Tomlinson kept writing Rodert letters of introduction and beating the bushes for icing tests. Tomlinson was called to active status with the Air Primary Training Command in April 1942. His last act as chaiman was to meet with Disney Studios to have them make an educational film to "effectively register" the icing issue in the minds of young servicemen.

Kat O. Larson became subcommittee chairman in 1942 and shifted its aegis from the NACA Committee on Aerodynamies to the Committec on Operational Problems. Yet Larson supported Roclerts desire to just make and verify ice-invulnerable aircraft, and not approach icing as an operational problem. I ason was chicf engineer for Northwest Airlines which, like all airlines during the war, had subordinated passenger travel to military ransport. Northwest's biggest military contract cane from the Air Corps Ferry Command torm the "Alaskan airway" between Minneapolis and Fairbanks. Flight experience taught Lasson that the ronte was a natural and reliable icing laboratory. He assembled at the Minneapolis mumicipal airfield, near Northwest's headquarters, the equipment and technicians needed to keep aircraft flying through ice clouds.

Rodert, Clousing, and McAvoy had already talked of setting up flight test operations in the noth, cental states. They wanted a new base with reliable blasts of aretic air, light traffic, and no mountains for when they flew blind, and freezing air at ground level so they could photograph ice on the aircraft underside after it landed. Booth Clousing and Rodert knew Minnesota-Rodert from his years at the Liniversity of Minnesota-and knew Mimneapolis offered all that.

Larson convened an NACA Committer for the Winter Flight Labotatory in June 1942, which proposed that the Air Corps give Northwest a $\$ 55,000$ contract to provide NACA with an office and acess to Northwest facilities and persomel.". Northwest managed operations and maintenance, while NACA directed a cooperanive research project. The Ice Rescarch Project opened in November 1942, and that winter hosted more than ten visitors per week in addition to the seven pilots and seventy-five mechanios on duty. Airlines and mannfacturers were invited to send engineers with new equipment to test. The Weather Bureatu sem a meteorologist to collech data and develop hypotheses on which atmospheric conditions caused icing. The Air Corps remained handseoff, of avoid duplicating operations at its existing Cold Weather Test Station at I add Fiedt in Fairbanks, and sent only pilots from Wright Field, Ohio. Their ask, however, was crucial: to fly thirteen aircraft with new de-icing equipment, including the first aircraft de-iced by heated air.

Heated Air De-Icing

Rodert had formed some negative opinions of heated air-that is, chemically nomal air as opposed to bunt exhanst gas with its attendant carbon gases and water and gas vapors. While trying to complete themal de-icing of the 12 A in late 1939 , without resorting to convoluted ducting, Rodert had canassed industry for a heater to put remotely in the tail. Stewant-Waner sold a gasoline-buming heater, for antomobiles, that put out 8,500 Brts per hour: Roder asked if they might upgrade it to put out 75,000 BTCls, with less weight and very cold ain intake. Stewat-Wamer proposed linking ten bumers together,
26. Kati O. Latsen, "Proposal for the Estabishment of the Wimer Flight Labotatory" Junt lote

but could not get it to Rodert in time. So that winter he put a pneumatic de-icer on the 12A tail. He tried again the following summer, starting with a gasoline heater CurtissWright used for cabin heating. It too proved weak, so Rodert built a long exhaust duct to prove the concept of thermal de-icing in the tail.

Rodert had better luck using heated air to de-ice the 12A windshield. The Pittsburgh Plate Glass (PPG) Co. helped Ames find a laminated safety glass that conducted heat well, and mount double-panes with a $\frac{1}{4}$ inch gap through which heated air flowed. Puting exhaust heat into the windshield was unsafe-seepage would dump toxic gas into the pilot's face, and Rodert wanted to hinge the inside pane so the pilot could move it out of his line of sight in warm weather. Rodert found that air diverted from the cabin heat exchanger was warm enough to keep the windshield free of ice, yet cooler than the critical temperature of the plastic binders. As early as November 1941 Rodert flatly contradicted Boeing's public thinking that much higher heat was required, and pronounced that, at an airspeed of 150 mph , only 1,000 BTUs per square foot per hour was needed to keep any windshield at $50^{\circ} \mathrm{F}$, and thus free from ice. United Air Lines liked the PPG windshield well enough to retrofit it onto all its DC-3s. ${ }^{27}$

Manufacturers were simply afraid of exhaust gas. A bullet hole or weakened seam could poison the cabin (though Rodert designed airflow to exhaust out the wing). A failed engine would send raw, explosive gas vapors into the wing tube or gasoline leaking from a wing tank might ignite against the hot tube (though Rodert claimed the wing got no hotter than if left parked in a tropical sun.) Exhaust gas corroded aluminum and manufacturers refused to take the weight penalty of using stainless steel, as Rodert had done on the 12A. In addition to the dangers of exhaust gas, de-icing the entire aircraft with heated air held some advantages. Manufacturers could couple heated air ducting more neatly with the skin, saving the weight and strength penalties of the exhaust tube. Heated air could be vented out small holes on the wing surface with minimal drag. And a steady source of heated air could provide the cabin comfort all aircraft then lacked. The problem, however, was finding a steady source of heated air.

Rodert tumed his full attention to heated air in September 1941, after learning the Glemn L. Martin Company would use a cabin heater to de-ice the wings of a $\mathrm{B}-26$. Since manufacturers accepted only heated air de-icing, Rodert planned to stay one step ahead of them. He toured plants in Jantary 1942 and, after telling manufacturers de-icing required less heat than previously thought, now he had to tell them their heat exchangers were too weak. To prove this point, in April 1942 Ames again modified the 12A wings-putting corrugated ducting on the right wing and sheet ducting with baffles on the left-to concentrate heated air on a narrower chord of the leading edge. Ames craftsmen built a cast aluminum heat exchanger that transferred heat from the exhaust stream into fresh air flowing to the wings. They also built a variety of heat warning and dump valve controls.

To take advantage of this expertise and to "relieve industry of the design and development work," the Army Air Forces (AAF) asked Ames to build a complete heated air de-icing system to retrofit into the Consolidated B-24D Liberator. ${ }^{24}$ The B-24D was a high-wing, fourengine heavy bomber which would have a long production run. The system would include hot wings and tail, an electrically-heated antenna, an alcohol-based windshield wiper, an anti-static system for the wings and antenna, and a carbon monoxide indicator for the
27. K.L.. Mc Brien, "An Aircraft Double Windshield-Its Development and Use." SAE Journal 51 (October 1943): $35(0-55$.
28. Alun R. Jones and Itwis A. Rodert, "Development of Thermal Ice-Prevention Equipment for the B24D Airplane," Confidential Memorandum Report for the Material Center, USAAF, September 11, 1942 (RG255/Central/ $104 /$ AFI9-10K) 2.

Gabin. ${ }^{2 \prime}$ Heated air would exhaust through hatf-inch holes along the top wing suface, and then travel backwards with the boundary layer. This satisfied AAF specifications that the wings got a $70^{\circ} \mathrm{F}$ temperature rise over the forward 20 percent of chord and a $20^{\circ} \mathrm{F}$ rise back to 75 percent chord. Engineers for the ADF Materiel Command approved Ames' blucprints, and in May 1942 Ames acquired B-24D No. 111678 (soon redesignated the XB-24FCO). The Ames erection shop procured all materials, metals and fasteners, builn the wing tubing, and installed it into the aircraft. Consolidated sent senior engineer Howard F. Schmidt and several draftsmen to Ames, who completed production drawings as the work progressed. As early as June 1942, the B-24D did well in test flights around the Bay area. Rodert declared he had standardized a work outline for retrofitting de-icing into existing aircraft, and was willing to take on more. Then problems arose with the heat exchangers.

Ames had bought exchangers from two exhaust systems spectalists-AiResearch Manufacturing Company of Los Angeles and Solar Aircaft Company of San Diego. They were stock designs, scaled up for greater output than ever achieved in an aircraft. When they failed, Ames commissioned other firms to submit prototypes-AiResearch offered a different hollow-fimed exchanger, Hanlon \& Wilson Company sent a pintype exchanger, and Stewart-Wamer Corporation offered a multiple-fin type exchanger that delivered the required BTLis but buckled under the blast and heat of the exhaust stream. Once word got out of Rodert's quest for an exchanger for a mass-produced bomber, Ames was swamped with prototypes. The Ames crection shop designed a few themselves, applying their new expertise in brazing compounds, metal conduction, and pressure drops.

Rodert's entire plan hinged on getting a workable heat exchanger, and he was confident he could find one. The German Ju. 88 , after all, had used heat exchangers-a series of four along a single exhanst stream-and Rodert heard reports that the Germans had also put similar exchangers on the Ju.59, Ju. 188. Ju. 388 , and the fourengine Ju. 290 search bomber. Rodert considered the Ju. 88 "a splendid de-icing system" and got Wright Field to send him sections of the Ju.88 exchanger, now on the scrap heap, so he could look for some secret the drawings didn't convey, " Roden also wrote to Martin, asking for exchangers Ames could nor duplicate fiom bleteprints. It was common, Rodert discovered, for an exchanger's actual and predicted performance to differ as great as four times. Ames made a flying test bed out of its $C-47$ and, in their desperate seatch for a workable exchanger, Ames pilots caried aloft thirty-two different designs during the summer of 1942. Once trial and error indicated which exchangers promised results, Jones or Neel drove a batch acooss the Bay to the Berkeley labomatory of L..M.K. Boelter, where Ames bought analytical insight.

Boelter, a professor of mechanical engineering and associate dean of engincering at the University of Califomia, was the sort of teacher who kept perpetual office hours. As a student, Jones had worked with Boelter on an carlier NACA contract seeking advice on placing themocouples to study heat transfer along the wing surface. Boelter read wide-ly-even translating aticles on heat exchanger theory from Italian and Geman-and was fascinated with the process of perfecting equations to predict real-world performance of heat tansfer systems. Boelter atso understood the challenge of measuring tiny drops of airbone water from his rests of exaporative cooling towers. So Jones leanned much from his free-ranging conversations with Boelter, though their mission at hand wats perfecting airborne heat exchangers.

Ames asked Boelter to expand his group that summer of 1942 to rum bench tests on all promising heat exchangers. Boelter's goal was to measure static pressure drops and

[^24]
 （10ヶテリ）．
rates of heat transfer．devise a theory of exchanger performance，perfect an equation of design patameters so that predicted values approached measured performance．and ulti－ mately offer to a single mumber for ranking exchanger perfommance．＂Rodert and his AAF patrons knew any number would be ridded with error，but hoped that Boelter could simply standatize the eros－in themoconple placement，pressure drop and conduc－ tivity measures，and BIU output－so that it would still help in comparative rankings． Boelter＇s work on aircraft heat exchangers was widely praised，ats the sort of analytical work Ames should have done on all facets of is icing researeh．＂

31．This was beelfers 1 D atio of unit themal conductance，where 1 was the kength of the heat trats－ fer suface and 1 ）was the hedratic diameter of the ventiang and exhates pipes．Sec 1 M K．Beelfer，R．C．

 Califomia Divisoon of Motor Vehicles to verify designs of headlights，built a heat－power laboratorv to improwe the

The British began following progress in heat exchangers, and softening their allegiance to chemicals, under the guise of better flame suppression. British bombers lit up at night because flames shot from their exhaust stacks as the hot exhaust ignited the fresh air. By moving heat into the wing tube, and thus cooling the exhaust strean below $1300^{\circ} \mathrm{F}$, a heat exchanger prevented this re-ignition and torching. The U.S. Nany contirmed the prospects of flame dampening, by noting that its PBYs could fly only 200 feet over an aircraft carrier, at part throtte, without being detected. The Royal Aircraft Establishment (RAE) representative to the Ice Research Project, J.K. Hardy, began following Rodert's work, offering a good dose of skepticism that helped NACA refinc its reporting.

General Electric's supercharger engineering department, which built turbochargers powered by the exhanst stram, invited themselves to standardize exhaust instrumentation. Their concem-shared by the Army Air Forces-was that putting a heat exchanger in the path of an exhaust stream pulsating at seventeen cycles per second might back up the flow of gases through the engine and impede engine performance. So as the summer dagged on and the BTU output of the exchangers steadily improved, Rodert tumed his attention to ram pressures at the air intake scoop and pressure drops on the wing side of the exchanger.

By September 1942, the Ames group had approved five exchangers rated around 300,000 BTUs per hour that did not greatly diminish the range and speed of the B-24D. They weighed only thirty pounds, occupied a cylindrical space eight inches in diameter and twenty-two inches long. The complete de-icing system weighed an acceptable 300 pounds, less than 1.5 percent of the total gross weight of the aircrafi. Pnemmatic de-icers protecting only the wing and tail leading edges, weighed in at 230 pounds. As soon as the B-24F was out the door and on its way to Minneapolis-following a brief inspection stop at the Consolidated Plant—the Amy Air Forces delivered to Ames a Boeing B-17F Flying Fortress.

Ames drew from their work on the B-24F to quickly retrofit de-icing equipment onto the larger B-17F. They started with the same heat exchangers, then modified those that buckled under the greater heat blast. Unsure of which exchangers would least impad range and speed, the B-17F carried an older exchanger designed for cabin warming in one nacelle and a proposed production exchanger-bought from Mequay, Inc, the Trane Company, and AAF engineers at Wright Field-in each of its other theee nacelles. The Ames group tested pressure distribution around the exchangers well into the fall of 1943. They installed additional thermocouples, and tried out some valves to adjust heat flows from the four engines around the wings. By January 1943, Ames and visiting Boeing drafismen had prepared corrected B-17F production drawings, and the airctaft was ready for icing tests in Minneapolis.

That same month, Ames outined "preliminary design considerations" for the most complete de-icing system yet, for a Curtiss-Wright C-46 Commando tramsport. The Army Air Forces, impressed with the plans, delivered to Ames C-46 No. $41-12293$ in March 1943. once the Ames group returned from Minneapolis. As Rodert and Jones struggled to write up the B-17F and B-24D test results that manufacturers clamored for, they tumed their attention to the C-46." The C-46 was then America's largest transport, much bigger than the B-17 and B-24, with a stressed wing that required more careful revisions and a long series of mock-ups. Ames built and tested two wing inner skins-with baffes on the right wing and corrugation on the left. Becanse the $C-46$ was to be an all-weather aircraft, Ames had to protect the propellers, windshields, antemas, abburetors and
33. I ewis A. Rodert and Alun R. Jones, "Development of Thermal Le Prevention Equipment for the B17F Aipplate", Advanced Restricted Report 3124, WR A-51 (August 1943); 1ewis A. Roder and Alun R. Jomes. "Development of Themal tee lrevention Equipment for the B-2 +1) Airplane." Adameed Comfidential Report. WR A-35 (F.hotaty 1943).
other parts vulnerable to icing. The wider radius of the C-46 propeller, especially. demanded a new approach to de-icing.

Ames had closely followed innovations in these other parts, but now Rodert had to make specific recommendations. Rodert's committee especially urged him to move forward: "The consensus of the subcommittee is that the thermal method of aircraft de-icing has been proved to be sound." ${ }^{" 4}$ Rodert should now help pilots follow the one rule boldfaced in every manual on de-icing: "You must maintain your airspeed."

Propellers and Carburetors

Rodert's work with propellers, as with wings, started with proof that de-icing was crucial, then showing how it was easier than previously thought. By stopping and feathering propeller blades in flight, Rodert, Clousing and McAvoy discovered how propeller icing usually stated with a thin pencil of ice formed at the aerodynamic dead-center of the leading edge. Rodert's position that this pencil was a necessary precursor to de-icing proved controversial. A slight temperature rise weakened its attachment enough that centrifugal force spun it off, whereas a great amount of heat was needed to prevent it foming. Yet manufactures clamed the pencil induced vibration as it unbalanced the propeller, and became a flying missile when spun off.

Chemicals also weakened the pencil adthesion, and their use dominated propeller de-icing. Hamilton Standard offered viscous Lelac, the British their Mark F9 Kilfrost paste, and the Naval Research Laboratory their P-85 paste-which absorbed ice crystals on a lacky, glycerin-like surface before sloughing off the propeller." Slick lacquers-like one developed by MIT-kept ice crystals from adhering to the propelter surface. Or a steady strean of alcohol expelled from a slinger ring at a propeller hub and directed along a slot-

34. "Minutes of Merting of Special Subcommitter on Deicing Problems, Committee on Aerodynamics.
 Problems, Minutes").
 (I.S. Nav; 1942).
36. "Propeller lcing." Srimifir Amorican 172 (April 1945): 215.

 NaCA (-7052).
ted rubber panel, cooled the icing temperature ${ }^{13}$ None of the chemicals, however, worked longer than an hour. The lacquers pitted and eroded; the pastes sloughed off the faster propellers too quickly; the alcohol tanks depleted if used prophylactically. A thee-blade propeller used three quarts of alcohol per hour, and manufacturers hesitated to put reserve tanks of highly-flammable fluids near engine nacelles. To improve de-icer fluid
37. A good description of stinger rings is David (iresg, "(athonetor and Propeller Anti-lecrs." . Wration 40 (March 194]): 19-13+.
economy, Monsanto tried to develop trimethyl phosphate-used in automotive anti-freeze-as a universal de-icing fluid for all parts of the aircraft. Still, the slotted surface that directed fluids over a propeller disturbed its aerodynamic efficiency.

So during 1942, Rodert turned his attention to thermo-electric blade shoes-hard, neoprene strips imbedded with high-resistance wires and built into the leading edge of the propeller blade. The group assembled at Minneapolis that winter-especially engineers from Ames, Wright Field, the National Research Council of Canada, and the Hamilton Standard Propellers Division of the United Aircraft Company-verified the proper size, span, and heat output of the shoes. (Goodrich sent enginecrs to test a proprietary shoe but, in order to protect their trade secrets, kept on the outskirts of NACA-led studies.) As with heated air de-icing, the biggest problem was adequate power. They had to match the shoe with a generator built into the propeller hub-1oo big a generator drained engine power, too small left the shoe underheated. In an April 1943 report, Rodert offered no theory of how to determine the right quantity of heat, but suggested some empirical rules of thumb: an optimum shoe span over twenty percent chord, along ninety percent of blade radius, and a hub-generator putting out 2.5 watts per square inch. Generating the five kW needed for complete protection of the B-17 sapped twenty-eight horsepower from the four propellers, and added 120 total pounds. The AAF committed to thermo-electric boots for its medium-sized bombers, but had Ames keep working on a better de-icer for the (-46 .

The larger radius of $\mathrm{C}-46$ blades made it impractical to heat a boot that long with existing hub-genterators. Since the langer blades were hollow, Ames and Curtiss-Wright engineers proposed pumping heated air into the hollow blades, circulating it through baflles to better transfer heat to the surface, and ejecting it out the tips. Though the exhaust tips imposed no special drag, these engineers failed to devise a method for getting enough hot air into the propeller core. (Researchers at Cleveland experimented with burning fuel inside the core to generate heat.) NACA also tried internal electrical heating, rumning the resistance wires along the inside surface. In the end, the C-46 left for Minneapolis with external thermoelectic boots and a promise of smaller and lighter hubgenerators, which soon followed.

Roclert likewise had to recommend a system for de-icing the carburetor. Three types of ice can silence an enginc. Impact ice forms aromen the air intake or ducting to the carburetor as supercoolled moisture hits a crystallizing surface. Throuling ice encrusts the interior surface of the carburetor, when moisture-laden air expands rapidly. Fuclevaporation ice clogs the passageways to the cylinders, when vaporizing gasoline robs heat from air in the caburetor: Since throtling and fuelevaporation ice foms whenever the air holds moisture, regardless of temperature, research into carburetor icing proved quite complicated.

As an interim precaution, the Civil Aeronautics Authority (CAA) specified that passenger aircraft have pipes to return hot exhaust into the air entering the carburetor, which could melt all three types of ice. The Ames group were satisfied that hot air return on the ir 12 A would keep their carburetor invulnerable. But hot air pipes had weight, and because the hoter air bumed less efficienty than cooler, denser air, pilots used it only when they suspected icing. In July 1940 the Engineering and Maintenance Committee of the Air Transport Association of America passed a resolution ugging NACA to experlite rescarch into carburetor de-icing.

So the NAC convened a Special Subcommittee on Induction System Icing under the Committec on Power Plants (it remained separate from the Subcommitter on De-icing Problems). Rodert was not a committee member, but they asked him to tour engine testing tum-nels-at Wright Field, Wight Aeronautical, Goodich, Pratt \& Whitney, and the Naval Aircraft Factor-and find one for the induction tests. Rodert was most impressed with the carburetor test box at the Naval Aircraft Factory. But it was booked doing expedited production testing, as was every facility save the old altitude chamber of the National Burean of Standards (NBS).

An air-heuted propelter designet ing Curiss and installed on the NACA C-Ah. The heated air oxhasted out the orifire at the the "f curch olade. (NASA photo no. Ames A-\$646).

In September 1940, the Subcommittee reluctantly agreed to fund at $\$ 25,000$ a year a research program led by Dr. Leo B. Kimball of the NBS. The Subcommittee-after throwing out all sorts of speculation-suggested Kimball start by building a window into his test stand so he could pass quick judgment on two existing de-icing systems. Then he should begin deliberate study of icing instrumentation, a temperature and pressure survey of the carburetor, and a process of fundamental research.

Kimball spent several months meticulously constructing a test stand for a Wright engine in his laboratory, trying to simulate rain and altitude. He studied the changing chemical composition of exhaust gases as octane and air combusted at various temperatures before starting on tests of alcohol injection, the first part of his stated task. When NACA pressed Kimball, in June 1941, to release some useful results, he looked through the observation window of his test stand and mimicked some rules of thumb Rodert had offered long ago: avoid any protuberances into the airflow, like bolt heads, and keep air flowing smoothly through cross sections that are geometrically similar. ${ }^{34}$ He then returned to his calibrations of measurements on icing, moisture, temperature, and throttle openings. In March 1942, Kimball was ready to shoot hot air into his test-stand carburetor, the second part of his research program.

By then Rodert, who had largely solved problems of wing and windshield icing, began secing carburetor de-icing as the reverse salient to making an ice-impervious aircraft. Whenever asked to comment on Kimball's progress, Rodert iterated that Kimball's strategy should be more like his:

> I beline that it is better to employ trial-and-error methods in the search for a solution than to devote too much energy io analyzing the causes and effects of the many factors involved in the iaing phenomenon. When an apparently satisfartory solution has been found, research leading to a complete understanding of the fundamentals may be required to perfect it. Such work is easily defined, because we then know what we are after: ${ }^{34}$

Roclert praised the more directed research program pursued by the United Aircraft Corporation to improve its Pratt \& Whitney engines." And he was encouraged wher simple anti-icing tests were added to the Army-Navy specifications for carburetors so the excellent NAF tumel could begin collecting data on induction icting. In Febrtany 1943, Rodert convinced NACA headquarters to move Kimball's test stand to Minneapolis for studies of the XB-17 engine induction system, and to build him a cowled engine test stand that he could tow by car through the clouds along the Sierras. In the meantime, Roderi's grotip determined that, as rukes of thumb for the ('46, they would avoid alcohol sprays, try resistance heating on carburetor parts, and otherwise keep the intake strean at $90^{\circ} \mathrm{F}$ for all its researe aircraft. Carburetor icing delayed none of the test flights in Minneapolis.

Yet in Rodert's hate to devise design males of thumb using cutand-ny methods, he neglected more theoretical analvsis of icing conditions and heat manser: This approach did not go unchallenged. By the summer of 1944 the de-icing community would be rife with disagreements over how to specify a workable system and who should enjoy the flexibility to improwe upon it.

[^25]
Pushed into Theory

On a tour of sonthern Califonia manufacturers in April 1943, Rodert was outraged to find that none were actually building themal de-icing into production aircraft. After two years of expedited work, during which Rodert thought of little else, Ames had designed and proven de-icing for the B-24 and B-17, and had consulted on many more installations. AAF pilots had already flown the XB-24F over 200 hours in expedited service tests. Consolidated was already installing thermal de-icing systems into three Navy production aircraft: PBY-5 Catalinas, PBEY-3 Coronados, and the PB4Y-1, the world's fastest flying boat." Consolidated had developed soft tooling for the B-24 retrofit, including a dimpled imner skin they found easier to fabricate. Consolidated was even installing the new heat exchangers, but for cabin heating only. Even after public pronouncements that production $\mathrm{B}-24 \mathrm{~s}$ sporting thermal de-icing would soon change the face of air battle, the AAF was still retrofiting pneumatic de-icers on B-24s as they left the plant. When Rodert asked why, Consolidated blamed "red tape:" they were confused by conflicting specifications from the AAF Materiel Command, and thes had not prepared final production specifications for approval. ${ }^{2}$

If Rodert hat thoms in his side, they were AAF I.t. Myron Tribus and Douglas Aircraft Company. Douglas was one of the first mamufacturers to design hot wings, by adopting Rodert's 12A design to their XA-26 light bomber. But Douglas never liked exhatust gas or heat exchangers. Instead Douglas adapted a gasoline-buming cabin heater from its DC-3 and scaled it up for wing de-icing. Gasoline burners would be lighter, removable, less vulnerable to gun fire, and independent of engine failure. Burner temperature was more easily conrolled, so excess heat would never weaken the wing structure. Further, Douglas wated no exchangers blocking its ejector-type stack, which tumed exhatust gas into jet thruss. But Rodert's rules of thumb offered conflicting advice on how to alculate thermal requirements of gas bumers. Rodert ran his early flights conservatively and got high numbers, and then had to convince manufacturess they could use less hear. Without clearer calculations, by April 1941, Douglas still considered thermal heating "too experimental.":"

Design politios within Douglas further encomaged them to pass blame to Rodert. Douglas charged the entire weight of thermal de-icing to its equipment group, which atso bought pres surzers and air conditiomers. They, in tum, wished to charge much of this weight back to the wing and structures group by emphasizing the role of immer skin in transmitting heat. The strictures engineens refised any responsibility for the system, however, until the themorlynamios group secified more exactly what thennal stress de-icing imposed on the leading edge. And the themodynamics group, because they specialized in heat transfer theory, wanted NACA to provide some kind of theory rather than just empirical design rules."

Myron Tribus came to Roderts attention in June 1942 when, as an undergraduate in Boedter's mechanical engineering laboratory, he clued in Douglas to another inconsistency in Roderts heat transfer calculations. Tribus entered the Amy Air Fore in September 1942, and wats sent to Wright lield to prepare sperifications for de-icing systems. Wright Fiedel engineers had been enthosiastic and compliant customers of Rodert's work. Rodent reported in Nowember 1941 that Wright Field had agreed that all plans for de-icing "will be refered to me for approval until the Air Corps has developed a group of experieneed

[^26]men in this field." Wright Field had virtually plagiarized the first draft of its specifications fom BuAer's specification SR-105, issuced in December 1941, which in um borrowed Rodern's mules of thumb on heating."

When Tribus arrived at Wright Field he declared the specifications too intlexible. Surely Roderts wing design of ten to fifteen percent chord heating to $100^{\circ} \mathrm{F}$ lise and exchanger design of 1000 BTUs per boot per hour, while good rules of themb, would not fit all aitfoils, wing structures, oruising speeds, or types of clouds. Air entergy loss through tortuous ducting in the $B-24$ atready made Tribus and Consolidated question Roderts I, 000 BTU figure. Tribus knew Rodert's system worked, so instead he held up the uncentanty that the system might be lighter. Tribus wanted the specifications to state the temperature criteria needed to prevent icing-"in air actually containing water droplets"-uhen lend manufacturers thexibility in designing the wing ducting and heating systems. To do so, he wanted NACA to provide better data on the meteorological conditions for icing and better heat transter calculations for wet air, like that in clouds.

Rodert, on the other hand, was in constant, personal contact with the manofacturers precisely becanse most wanted explicit design advice. Rodent had successfally designed new equipment of notable smplicity and good margins of erom using the simpler dryair calculations. He considered Tribus' preoccupation with wetatio both inrelevant, since weakening the ice adhesion bond was a sulficient concern, and too eomplex, since all air tumed turbulent in the presence of water. Rodert dirther knew that Thibus harped on weight isstes because he hat a dight to, and not because Rodert's design was too heavy. Mant engineers in industry considered Rodert a peer, though quirky, and enjoyed mulling over aircrati design with him. This face-to-face contact, and not just the practical orientation, most distinguished Rodert's approach from NACA's taditional mode of encountering manufactures-which used the NACA committec structure as a filter. ${ }^{73}$ As Rodert expanded his program he wold his bosses: "We hope that the NACA policy of permitting a close coordination of our work with the needs of the [ANF] Material Center, Bureat of Acronantics, abline operators and manufacturers will continne."i*

But Tribus considered such liatson his prerogative, and had access to the AE job orders that Ames depended upon. Throughout 1943 , DeFrance accepted more work on calculating wet-air heat transfers even though Rodert, with so many practical problems still to solve, considered such numbercrunching an annoyance. This was good news to Donglas, which continted to complain about discrepancies in Rodert's calculations as a strategy for gaining greater freedom to design their gas-burning system. During 1943 Douglas had many planes with different types of de-icing equipment: (-74 , SB2D-1, XTB2D-1, C-47, and (-54 . Donald Douglas Jr: had invited Rodert to visit his plants every summer, but ustally engaged Rodent on issues peripheral to his work on the hot wing-issues like how best to heat big aircraft cabins, how constant speed propellers could distinguish between friction drag from icing and nomal dag from pitch change, and what to do about melted ice flowing backwards and clogging the aleroms.

At a public meeting of the American Society of Mechanical Engineers (ASME), Alun Jones spoke up about Douglas still specifying inadequate heat on the prototype DC. .

[^27]Douglas had pushed ahead in specifying de-icing equipment based on icing conditions20,000 feet altitude, $0^{\circ} \mathbf{F}$ free air temperature, 0.5 grams per cubic meter liquid water content, and 205 mph true airspeed-rather than simple temperature rise. Douglas and Stewart-Warner had amounced that they designed a burner that weighed twenty-two pounds, put out 240,000 BTUs per hour, with a tungsten igniter that worked at any altitude. United Air Lines intended to buy the D(-f), and sided with Jones. United pilots had flown Ames' C-46, and wanted their procurement contract for the DC-6 to specify similar perfomance. Douglas, however, noted that the Ames' reports never specified this performance data, but only design criteria.

So Rodert and Jones asked DeFrance for time to prepare a text on thermal requirements for de-icing using existing dry-air calculations. De France said no. Manufacturers already understood dry air work; to stay on the cutting edge Ames had to move into the more controversial wet air work. When George Lewis of NACA headquaters asked Rodert and Jones to prepare a manual of standardized data on heat exchanger perfonmance, DeFrance protected them, saying their time would be wasted writing manuals for junior engineers. Captain William A. Bennett, Jr, the AF Materiel Command Liaison Officer to Ames, asked DeFrance to allow him to release preliminary data from Ames exchanger tests. DeFrance agreed, and also asked Boelter to spend the summer revising reports into "The Comparative Perfommance of Several Exhaust Gas-Air Heat Exchangers." (Rodert congratulated Consolidated Vultee Aircraft Corporation, in June 1944, when they took the initiative of releasing a Thermodynamics Manual summarizing Ames data and design experience.)

DeFrance seemed especially sensitive to what roles NACA could play in directing the industry. He also sensed that Roderi's zeal had raised some hackles. NACA had indeed proved that thermal de-icing held promise, and generated some excellent design rules of thumb. But even the urgency of wartime should not allow Rodert to intrude on the procurement responsibilities of young It. Tribus. The AAF had begun giving icing research contracts to more compliant institutions. Nor did urgency allow NACA to come between manufacturers and their customers. DeFrance knew the Ames group would need to shift its focus to more theoretical issues of icing and heat transfer, and encouraged Rodert and Jones to redefine their research agenda before others forced them to.

For example, the AAF announced in April 1943 that it would assume control of the Minneapolis operations, rename it the Ice Research Base (IRB), and expand into a hangar not needed by the Air Transport Command. When the base reopened that September all testing was directed by those engineers in the AAF lingineering Division who needed on standardize acceptance tests, write manuals and technical orders, and approve production drawings of de-icing equipment for twelve new aircraft. Roelert sat out the 1943-44 testing season but kept the XB-24F at Ames until December. De France sent Carr Neel to represent NACA and run the IRB "experimental program," which Tribus had restricted to flight tests in the (-46 "icing lab."" Rodert waited until January 1944 to release the C-46 to the Ice Research Base, then had it retumed to him the following month.

The C-46 Icing Laboratory

Because Ames had built into the C-46 very complete de-icing equipment, they could fly it into the most severe icing conditions and collect data. For the next two years, Ames pilots would fly the C-46 on a triangle route-from San Francisco northward toward Seatte and inland howard Salt Lake City. Local newspapers often report-

ed on passengers stuck weather-bound at an airport, only to see the (-46 barrel through the clouds to a safe landing. Ames research took on a different hue once centered on this C-46.

Begiming in 1944 they focused on statistical definitions of the meteorological conditions for icing. Rodert had previously dismissed all work on icing indicators, arrogantly expecting his thermal system to work so naturally that pilots had no need to know when they encountered icing. Furthermore, the only practical indicators measured atcumulation of ice in order to activate pneumatic de-icers, even though pilots agitated for an indicator that measured the rate of accumulation so they knew when to fly out of icing clouds. " Rodert avoided the debate between accumulation versus rate of accumulation indicators to wail for research on measuring more "fundamental" icing conditions: liquid water content of clouds, free air temperature, droplet size, and the distribution of droplet sizes. (Small drops would deflect around the wing by boundary layers; larger drops would slam into the wing.)

Frec-air temperature was lough enough to measure; doing so in a cloud of unknown moisture content evoked special ingenuity. Jones directed the work on icing
 (0)tober 1942): 138.
indicators-both what they indicated and how well-white Weather Bureat meteorologist William Lewis, working with the NACA Subcommittee on Meteorological Problems, suggested hypotheses on which data best portended icing. J.K. Hardy, the British wartime representative and an impartial observer to the Rodert-Tribus dispute, offered to stay with the Ames group through 1947 and use this wel-air data to work up a de-icing theory. Hardy began by calculating the dissipation of heat in wet air from Rodert's dry-air equations, then devised a theory to predict the de-icing performance of the (-46 . NACA engineers devised an "optical rainbow recorder" to provide continwous measurement of the water content in clouds, a dew-point recorder and drop size recorders in their search for "further acousacy and simultaneous, continuous and instantaneous recording of all meteorological data." Jones considered it especially challenging work. "The detemination of the amount of free water in a cubic foot of cloud through which you are flying at $15010200 \mathrm{~m} . \mathrm{p}$.h.," noted Jones, "is a problem to be approached with respect.":

They began collecting data on icing in other parts of the world, like that encountered by the American-run Chinese National Airways ferrying cargo from India to China over the Himalayan Hump. Ising conditions stretched from 12,000 to 16,000 feet, so a DC-3 could not drop below or climb above it. Ice often formed four inches thick, completely blocking the windshield, and brought down more than 100 transport aircraft flying the llump during the war, including nine in one day.

Rodert, whose reputation continued to spetad, spent more time on ill-defined icing issues-like heat transfer in Nayy airships, de-icing aircraft carrier decks, using a static electric field to repulse cloud droplets, protecting the protruding landing lights on the B-17, and frost on cabin windows. And he made one last cffort at thermal de-icing the 12 A with waste exhaust gas. This time he mixed 15 percent exhaust directly with air, to a temperature of $300^{\circ} \mathrm{F}$, and then pumped it through the thin integral skin along the wing leading edge. This avoided the air pressure problems of heat exchangers, minimized maintenance problems and corrosive acids of pure exhaust, and saved the weight of gasoline burners. But it still produced unacceptable levels of condensation.

By the close of the war most manufacturers were set on using thermal de-icing, but with gasoline burners and methods Rodert had carlier bet against. Most postwar transport aircraft-like the Boeing B-50 Statocruiser, the Douglas DC-6, the Martin 202carried thermo-electric propellers, single-pane non-electrostatic windshields with very hot air blasts on the outside, and hot wings with gasoline-buming heaters built into the nacelles. ${ }^{3}$ Stewart-Warner's South Wind heater, now improved, could put out 300,000 BTUs per hour from just 2.8 gallons of enginc gasoline. Only Consolidated was using NACA-type heat exchangers, on its C-99 and model 39 cargo aircraft, despite trouble with its air-discharge valves. Still, the airlines considered Rodert a herof for calling manufacturess results into question and expediting development across the board.

Rodert's ties with the airlines improved as the war came to a close. The chief engineer from Pemnsylvania-Central Airlines visited Ames and noted that PCA lost $\$ 78,000$ in the first quarter of 1944 alone by holding aircraft on the ground. Most airlines still suffered 20 percent downtime during the winter months. He was planning on retro-
51. Alun Jones to Engineer-in- harge, "Memo: Suggested icing research program for Ames Laboratory." Augus 21, 1946 (RC255/Central/104/AF19-20).
52. Gray frombios of bight, p. 327.
53. "Bocing Themal Anti-Icing," Aeo Diges 55 (December 1947): 71-2; "Martin 2-0-2 Perfenmance," Aew Digest 54 (May 1947): 59; "Thermal be-Lemg on the DC-6." Aem Digres 53 (August 1946): 89+; "Propeller Electric De-Icing System For Wide-Range Operating Condetions," Amation to (April 1947): G5; "Pontwat Sky (iiant," San Fameiso Chonide Febmary 26, 194.
fitting thermal de-icing on all his aircraft and wanted NACA's advice. By 1944, most airlines had specified thermal de-icing equipment on their new aircraft and many were retrofitting it on their old airctaft. After several airlines asked for permission to fly the C-46, Rodert noted "the plans for the future of the airlines may serve as a good guide for expansion of NACA research facilities. ${ }^{34}$ DeFrance planned a conference on thermal de-icing for the airlines that, wencourage more open discussion, would exclude the military.

Meanwhile, Rodert's relations with the AAF deteriorated. Rather than himself collect the data and write the specifications he thought so vital, Tribus continued to blame NACA for not doing so: "Designers, in short, are designing heated wings on the basis of very geneal infomation derived from experiments, which have been neither amalyed nor correlated." DeFrance retorted: "The Laboratory believes that a rigorous analytical treanment of the icing phenomenon is desirable from an actemic viewpoint; however....most questions originate from a reluctance to make the required changes to an existing airplane or to install adequate heating capacity in a new airplane, and that the inquirer is usually secking an escape from the design requirements shown necessary by our data.";

Demobilizing Icing Research

The conflict between Tribus and Rodent came to a head in January 1945, when Tribus publicly presented a paper excerpting NACA reports." Tribus had written the paper back in July 1943, even as he pressed Rodert to hurry the release of the written data that manufacturers clamored for. Rodert's report writing, however, was slowed by new rescarch, the usually slow NACA peer review process, and Army Air Forces classification. Tribus' paper was among the first icing reports downgraded from "confidential" to "restricted." Tribus then manipulated the system to get his paper completely declassified for the Jannary 1945 meeting of the Society of Automotive Engineers, a meeting at which Rodert introduced him, and the paper for which Tribus won the Society's Wright Brothers Medal. Rodert was limious. DeFrance argued Rodert's case, contending that Rodert had dedicated himself to this work only w be robbed of tribute. "Due to the classification imposed on ice-prevention research" by the AAF, DeFrance wrote, whenever Rodert presented papers he "was required to speak only in general terms thereby impairing the quality and value of his paper." ${ }^{3}$ Rodert was fither incensed that Tribus would claim credit for work-on dry air heating requirements and exchanger design-he routinely belituled. Rodert saw his group suffer a morale decline from laboring so hard in obscurity. Thereafter, NACA more carefully daimed credit for their work on thermal de-icing, and Rodert and Jones found time

[^28]to finish reports of wartime work. " (Tribus, meanwhile, after pressing his semiors so hard for "A Theory of Heat Anti-leing," returned for a master"s degree at wat's end rather than entering industry, and remained an academic his entire career.)

Rodert left Ames in September 1945 , to cash in on the growing demand for heat exchangers he had reated. He joined the Indianapolis-based South Wind Division of Stewart-Wamer Corporation, with whon he had worked closely in the past, and remained active with NACA as chair of the de-icing committer.

But within a year he was back with NACA, whead the growing flight reseatch branch at the NACA Aircraft Engine Reseath I abomatory in Cleveland. As early as January 1940 Rodent had outlined a program of engine and propeder icing researeh that was later written into the laboratory's agenda. ${ }^{*}$ By VI Day, the Cleveland labonatory had forty-nine people engaged in icing research, companed with thiry-mo at Ames. There Roxlent had three research airctaft at his disposal. A $3-25$ was calibrated so that they could swite of of one patt of the de-icing system, like the propeller, and then meastme how icing there affected total airetaft performance. A B-24 had special installations for lests of windshields and anterna-placing them at various angles and measuring both dage and proclivity to icing. These flight tests mirrored many done during the war, except they were done with mud greater precision.

Rodert's flight research complemented icing tumel reseateh under the divection of Wilson II. Humter, former chief of Goodrich's icing tumel. NAC B built the world's largest refrigeration plant to serve Cleveland's new high-altitude wind mund, and the plant had sumplas chilling for a smaller six by nine foot icing research funned. Winds at velocities up to 300 mph passed through a heat exchanger that cooled it down to minus sixty-five degrees, when a spray bar shot water into the refrigerated aisstrean. The tumel had three sections-one for propellers, one for rotary wings, and one for engines, wings, windshields, and antemmat. While droplet size in the tumel was ten times loo large to truly simulate natural icing, the Cleveland grotp made good use of in. They designed an incrial separator for carbure to deicing, essentially a curve in the intake housing that divided heavier, moisture-laden air from the drier air that then entered the engine. [hey abs andyed the trajectory of a water-drop) aromed an airfoil. to modestand how water intercepted by a heated body was dispersed.

The (ivil Aeronantics Board was so enthralled with the continning improvements to themal de-icing that in July 1946 they proposed, then shelved, rules requiring it on all transports that might fly into ice. Under the proposed moles hundreds of airerate already in service would have to be grounded and retrofited at great cost. Mirline engineers contended the CAB requirements "wond force prematume installation of devices that hate not been fully proven. ${ }^{\text {bos }}$ Douglas espectally chamed they simply could not remofit thermal ducting into their popular I C -3 and D (-4 s, meaning only one-third of the total airline Ilee could have hot wings by Jamotry 1948 , the proposed enforcement date. Yet most
 Martin 202 and 303 , Republic Rambow, Consolidated 240 , and Bocing 377 and $417-$ g:mbling that their designs womld satisfy still-fothoming (AB certification moles.

In his context, the awated of the 19 foc Colliee Tophy 10 Rodert probably served several purposes. The award signaled enthosiasm anong atinge owners and the other representatives of civil aviation on the Collier committee, "that ice has been virmally eliminated

 1938-1959: Box 18: Fike -il "Iring Researh I939-11").
 194(i): 27-28.
as a major menace in air tamspotation." ${ }^{\text {b }}$ Roelent was nominated for the award by fohn F. Victory, the executive secretary of the NAC A and honomary secretary of the NAA Collier committee. Victory's areful description of Rodert's work highlighted the unrestricted research tlights of the C-46, was vague about Roderts methods, and merely mentioned its impending use on production aircraft: "Mr. Rodert's contributions involved the detemination of the amount of heat required and where it was most needed, and the development of a practical means of conducting the heat to those areas in sufficient guantities withou impairing the perfomance of the aircraft." ${ }^{n 2}$ That is, Rodert was a patatable choice because his work drove the rest of the industry and undergirded de-icing specifications generally, but none specifically.

Rodert won each step in the balloting that year, with nine of eleven votes cast. General Carl Spatz withdrew his carlicr nomination of the USAF 72nd Reconnaissance Squadron (VIR), not wishing to draw too much attention to the new techniques they developed for mapping the polar regions. Committer chaiman William Burden nominated Igor Sikossky, but several other companies also staked clams to recent improvements in helicopters. Jacke Cochran nominated the propeller division of Curtiss-Wright Corporation for the reversible propeller used as a landing brake. Curtiss noted that their "purely American development" of the reversible propeller helped the aircraft canving the atomic bomb to Hiroshima avoid the problems of maneuvering, overshooting, and aborting take-offs on the shorter forwadairfields in the Pacific. Because the propeller allowed braking independent of rumway conditions, it made American transit aircaft more all-weather. Techoology that helped America's burgeoning air tansportation industry in the post wat period tit nicely with the Commituees subtle political leanings. Three Curtiss engineers won honorable mention for this work, but the Trophy went to Rodert."
> "President Truman, in presenting the Trophy to Rodert, had a pensonal interest in thas yeders winner mot only becrause Rodert is a mative Missouriam but abo because the Prodemis plane, The Independense, a Doughts DC-0, is one of the fors froduction modeds utilizing the thermal system. ",

In fact only a few military airctati caried Roderts complete de-icing system as he shook Truman's hand in December 1947, but "one or more of these features are to be fomed on all postwat combat and multiengine transport airctaft already flying or in the design stage." ${ }^{\text {an }}$

Rodert let others interpret the significance of his Collies. At the time of the avard, NACA was still undergoing an uncertain transition from a wartime to a peacetime reseatch institution. The Troply forced NACA leaders to confrom differing perceptions of NACA's role. Some argued the NACA had lost its prewar independence; that it too often let the miliary services set its reseath agenda; that it was wet-masing maginal designs from companies that had faled to invest emough in basic rescarch apabilities." ${ }^{\text {n }}$ Ohers argued that Roderts icheg reseath was a model for how NAC A should mote directly serve the needs of postwar American aviation.

[^29]

Rodert himself soon tumed from icing rescarch to another operational problempreventing fires following aircaft crashes. Of the 121 passenger airctaft crashes during 1946, twenty-two involved fires, and sixteen of those fires stated after the aircraft hit the ground. ${ }^{n \prime 2}$ The airlines, concerned with any public perception that air thavel was masafe, asked the NACA Committee on Operating Problems to approach this problem as well. A group at the (leveland labotatory, led by Abe Silverstein, outined a researeh program in the "Reduction of Itazards Due to Aircraft Fires" to discover why airctaft flamed after impact. Rodert reprised his role of liaison with mamufacturers and all other agencies concerned with aircrafi crashes, and secured NACA funding and access to the Ravema Arsenal in Ohio for full-sale carsh tests. The Civil Aeronatics Authority (O A) crash research facility at Indianapolis competed intensely for this same research funding, especially since the results would be used in CAA design codes for safer aircraft. But the more aggressive NACA progran got the backing of the Aircraft Industry Association, representing the manufacturers, and the Air Transpont Association, representing the airlines.

NACAS icing reseath program, meanwhile, had reached a natural termination poim. In October 1948, Jones and Lewis remurned the meteorological data the CAA would
 (Wrashingtom, D) \because N \triangle SA SP-44ti, J985), p. 117.
eventually use for its design specifications.'* Soon thereater, DeFrance closed out Ames' work on icing, sold the 12A for scrap, and sent all those still interested in icing research to Cleveland. At Cleveland, Irving Pinkel of the physics section assumed leadership of icing research, and broadened their work into the physics of the icing cloud. They improved the water atomizer of the icing tumel so it sprayed more natural droplet sizes, and used it to calibrate a simplified pressure-type icing rate meter that became standard equipment on most jet transports. With this new meter, the CAA collected icing data during many regular airline flights and, by the late 1950s considered the icing menace resolved if not exactly solved.

NACA shut its icing tumel in 1957, and archived its data on icing." Air tavel was then done mostly with turbojets, which provided plenty of hot air from the mid-stages of their compressors to heat the wing as it passed through the boundary layer control ducts. And with pressurized cabins, aircraft could cruise well above icing clouds at 18,000 . Icing was still a problem near the ground, but modem airports had better de-icing fluids to apply before take-off.

But by the late 1970 s, airctaft techology again had evolved so that the icing menace reappeared. More efficient turbofans generated less waste heat, supercritical wing shapes proved tougher to de-ice, some de-icing fluids were eliminated as hazards to rumways and watersheds, and deregulation put into service more small aircraft and helicopters that flew low through icing clouds. In 1978, the National Aeronautics and Space Administration reopened its icing tunnel, outlined a research program focusing on flight tests, and secured the cooperation of government agencies, military services, university researchers, manufacturers, and suppliers. Once again they sought to solve the operational problems of aircraft icing-assisted by the knowledge acquired earlier by Lewis A. Rodert, his associates, and rivals-and with rules of thumbevolving, perhaps someday, to a theory of aircraft icing.

[^30]
Chapter 3

Research in Supersonic Flight and the Breaking of the Sound Barrier

by John D. Anderson, Jr.
"We call the speed range just below and just above the sonic speed-Mach number nearly equal to 1 -the transonic range. Dryden [Hugh Dryden, well-known fluid dynamicist and past administrator of the National Advisory Committee for Aeronautics 7 and I invented the word 'transonic'. We had found that a wood was needed to denote the critical speed range of which we were talking. We could not agree whether it should be written with one sor two. Dryden was logical and wanted two s's. I thought it wasn't necessary atways to be logical in aeronautics, so I wote it with one s. I introduced the term in this form in a report to the Air Force. I am not sure whether the general who read it know what it meant, but his answer contained the word, so it seemed to be officially accopted. . . I will remember this period (about 1941) when designers were rather frantic because of the unexpected difficulties of transonic flight. They though the troubles indicated a failure in arodynamir theory."

The morning of Tuesday, October 14, 1947, dawned bright and beautiful over the Muroc Dry Lake, a large expanse of flat, hard lake bed in the Mojave Desert in California. Beginning at 6:00 a.m., teams of engincers and technicians at the Muroc Army Air Field readied a small rocket-powered airplane for flight. Painted orange, and resembling a 50 caliber machine gun bullet mated to a pair of straight, stubby wings, they carefully installed the Bell X-1 research vehicle in the bomb bay of a four-engine B-29 bomber of World War II vintage. At 10:00 a.m., the B-29 with its soon-to-be historic cargo took off and climbed to an altitude of 20,000 feet. As it passed through 5,000 feet, Captain Charles E . (Chuck) Yeager, a veteran $\mathrm{P}-51$ pilot from the European theater during World War II, struggled into the cockpit of the X-1. This morning Yeager was in pain from two broken ribs incurred during a horseback riding accident the previous weekend. However, not wishing to disrupt the events of the day, Yeager informed no one at Muroc about his condition, except his close friend Captain Jack Ridley, who helped him to squeere into the X-I cockpit. At $10: 26 \mathrm{a} . \mathrm{m}$, at a speed of 250 miles per hour, the brightly painted X-1 dropped free from the bomb bay of the B-29. Yeager fired his Reaction Motors XIR-11 rocket engine and, powered by 6,000 pounds of thrust, the sleek airplane accelerated and climbed rapidly. Trailing an exhaust jet of shock diamonds from the four convergentdivergent rocket nozzles of the engine, the X-1 soon approached Mach 0.85, the speed beyond which there existed no wind tumel data on the problems of transonic flight in 1947. Entering this unknown regime, Yeager momentarily shu down two of the four rocket chambers, and carefully tested the controls of the X-1 as the Mach meter in the cockpit registered 0.95 and increased still. Small invisible shockwaves danced back and forth over the top surface of the wings. At an altitude of 40,000 feet, the X-1 finally started to level off, and Yeager fired one of the two shutdown rocket chambers. The Mach meter moved smoothly through $0.98,0.99$, to 1.02 . Here, the meter hesitated then jumped to

[^31]1.06. A stronger bow shockwave now formed in the air ahead of the needlelike nose of the X-1 as Yeager reached a velocity of 700 miles per hour, Mach 1.06 , at 43,000 feet. The tlight was smooth; there was no violent buffeting of the airplane and no loss of control as feared by some engineers. At this moment, Chuck Yeager became the first pilot to fly faster than the speed of sound, and the small but beautiful Bell X-1, became the first successful supersonic airplane in the history of flight. ${ }^{2}$

Whe Brll X-I. (NASA photo)
2. This description of the dirst supersomic Aight is excerpted from Johan D. Anderson, Jr., Mordent
 genemal reference, from Chuck Yeager's point of view, see General Chuck Yeager and leo Janos, Yeager: An
 and surbounding the development and flight testing of the Bell X -1, see Richard P. Hallion, Suphomic flight (New York, NY: Macmillan, 1972).

As the sonic boom from the X-1 propagated across the California desert, this light became the most significant milestone in aviation since the Wright brothers' epochal first flight at Kill Devil Hills fourty-four years earlier. But in the history of human intellectual accomplishment, this flight was even more significant; it represented the culmination of 260 years of research into the mysteries of high-speed gas dynamics and acrodynamics. In particular, it represented the fruition of wenty-three years of insightul research in high speed aerodynamics carried out by the National Advisory Committee for Aerodynamics (NACA) - rescarch that represented one of the most important stories in the history of aeronatical engine ering. The purpose of this chapter is to tell this story. The contribution by the NACA to the Bell X-I was much more technical than it was administrative. Therefore, this chapter will highlight the history of that technology.

The NACAs work on high-speed aerodynamics described in this chapter is also one of the early examples in the history of aerodynamics where enginering science played a deciding role. Beginning in 1919, the NACA embarked on a svstematic intellectual quest to obtain the knowledge required to eventually design proper high-speed arfoil shapes. Historian James R. Hansen, in his chapter on the NACA low-drag engine cowling, in the present book, asks the following question about the cowling work: Was it science, or was it engincering? Ile comes to the conclusion that it was somewhere in between-that it was an example of engincering science in action at the NACA. In arriving at this conclusion. Hansen draws from the thoughts in Walter Vincenti's book, What Engineers Knoze and How They Know It, where Vincenti clearly makes the following distinction between science and engineering: science is the quest for new knowledge for the sake of enhancing understanding, and engineering is a self-standing body of knowledge (separate from science) for the sake of designing artifacts. For the purpose of the present chapter, I suggest this definition of enginecring science: Engineering scieme is the search for now scientific knowledge for the explicil purpose of (1) Providing a puatitative understanding which allows the more efficient design of an enginerring arifact, and/or (2) Providing a quantitative (predictive) terhmique, based on science, for the more officient design of an enginering artifat. In this chapter we will see that NACA researchers in the 1920s and 1930 s were working hard to discover the scientific secrets of high-speed aerodynamics just so they could properly design airfoils for highspeed flight-truly engineering science in action. Also, within the general framework of the historical evolution of aerodynamic thought over the centuries, the NACA's highspeed research program is among the earliest examples of engineering science, although that label had not yet been coined at the time.

The Prehistory of High-Speed Flight: Point and Counterpoint

Most golfers know the following rule of thumb: When you see a flash of lightning in the distance, start comming at a nomal rate-one, two, three. . . For every count of five before you hear the thunder, the lightning bolt struck a mile away. Clearly, sound travels through air at a definite speed, much slower than the speed of ligh. The standard sea level speed of sound is 1,117 feee per second-in five seconds a sound wave will travel 5,585 feet, slightly more than a mile. This is the basis for the golfer"s "comm of five" rule of thomb.

The speed of sound is one of the most important quantities in acrodynamics; it is the dividing line between subsonic flight (speeds less than that of sound) and supersonic flight (speeds greater than that of sound). The Mach number is the ratio of the speed of a gas to the speed of sound in that gas. If the Mach number is 0.5 , the gas flow velocity is one-hatf the speed of sound; a Mach number of 2.0 means that the flow velocity is twice
that of sound. The physics of a subsonic flow is totally different from that of a supersonic flow-a contrast as striking as that between day and night. This is why the first supersonic flight of the $\mathrm{X}-1$ was so dramatic, and why the precise value of the speed of sound is so important in aerodynamics.

Knowledge of the speed of somad is not a product of twentich century science. Precisely 260 years before the first supersonic flight of the X-I. Isata Newton published the first calculation of the speed of sound in air. At that time it was clearly appreciated that sound propagated through air at some finite velocity. Newton knew that artillery tests had already indicated that the speed of sound was approximately 1,140 feet per second. The seventeenth century artillery men were preceding the modem golfers experience; the tests were performed by standing a known large distance away from a cannon, and noting the time delay between the light flash from the muzle and the sound of the discharge. In Proposition 50, Book 11 of his Principia (1687), Newton calculated a value of 979 feet per second for the speed of sound in air-fifteen percent lower than the existing artillery data. Undatunted, Newton followed a now familiar ploy of theoreticians; he proceeded to explain away the difference by the existence of solid dust particles and water vapor in the atmosphere. Itowever, in reality Newton had made the incorrect assumption in his analysis that the air temperature inside a sound wave was constant (an isothermal process), which caused him to underpredict the speed of sound. This misconception was corrected more than a century later by the famous French mathematician, Pierre Simon Marquis de Laplace, who properly assumed that a sound wave is adiabatic (no heat loss), not isothermal. Therefore, by the time of the demise of Napoleon, the process and equation for the speed of sound in a gas was fully understood.

This is not to say that the precise value of the speed of sound was totally agreed upon. The debate lasted well into the twentieth century. Indeed, although this event is little known today, the NACA was an arbiter in setting the standard sea level speed of sound. On October 12, 1943, twenty-seven distinguished U.S. leaders in acrodynamics walked through the doorway of NACA Headquarters at 1500 New Hampshire Avenue in Washington, DC:. They were attending a meeting of the Committec on Acrodynamics, one of the various adjunct committees set up by the main NACA. Among the experts present were I lugh I.. Dryden from the Burean of Standards, and John Stack, whose career as an atcodynamicist at the NACA Langley Memorial laboratory was on a meteoric rise. Also present was Theodore von Kármán, director of the Guggenheim Aeronautical Laboratories at Cal Tech, who represented an intellectual pipeline to the seminat aerodynamic rescarch by Ludwig Prandtl at Gottingen University in Gemany, where von Kimán had been Ptandtl's Ph.D. student before World Wat I. After subcommittee reports on progress in helicopter aerodynamics, and recent aerodynamic problems in wing flutter and vibration, the matter of speed of sound was brought up as new business by fohn Stack, who stated that "the problem of establishing a standard speed of sound was raised by an aircraft manufacturer. ${ }^{*}$

Stack reported that the Committe's laboratory staff had surveyed the available information on specilic heats of air-thermodynamic information that goes into the calculation of the speed of sound-which led to a calculated value of the speed of sound of
3. Pierte Simen Marepus de Laplace, "Sut la vitesse du son dans loaire et dan l'cati," Ammers de Chime at at Physifur, 1816.
4. Mimotes of the Meeting of Committee on Aerodynamios. Otober 12, 1943, p. 9. Fommd by the athore in the John Stach files at the NASA Langley Researeh canter Archives. langley Research Genter, Hampton, VA. Originally marked with security dassification Comfidential, the mimmeshave since becon deelassi-
 the comse of texearely lar this chapter:

 No. $I .1 / \mathrm{A} / .+800 /$.
1,116.2 feet per second. Measured values gave weighted means of $1,116.8$ to $1,116.16$ feet per second. Dryden moted that the specific heats were "not necessatily the same for all conditions" and suggested that the Committee select 1,117 feet per second as a round figure for a standard value of the speed of sound for sea level conditions for aeronantical usage. The outcome of this discussion appeared in the meeting minutes: "After further discussion it was agreed that the recommendation of a standard value for the speed of sound would be left for Dr. Dryden and Mr. Stack to work out jointly." Today, the accepted standard speed of sound depends on which "standard amosphere" table you look at, ranging from a value of $1,116.4$ feet per second in the 1959 ARDC: Model atmosphere to $1,16.9$ feet per second in the 1954 ICAO Model atmosphere. However, for engineering purposes this is splitting hairs, and Dryden's suggestion of a round value of 1,117 feet per second is still used today for many engineering calculations. Here is a little-known example of how the NACA played a role in the fundamentals of high-speed compressible aerodynamics-even to the mundane extent of providing to industry a "standard" value of the speed of sound.

On October 14, 1947, as the Bell X-I nudged closer to Mach one, a region of the aerodynamic flow over the wing became locally supersonic. This is because the airflow increases its velocity while moving over the top of the wing, and hence there is always a region of the flow over the wing where the local velocity is larger that the velocity of the airplane itself. As the X-1 accelerated through Mach 0.87, a pocket of locally supersonic flow formed over the top of the wing. This supersonic pocket was teminated on the downstream end by a shockwave oriented almost perpendicular to the flow-called a normal

 Wark nomber pom l. 1 to about 1.2.
shock (as shown above). This shock formation was the culprit which made flight through Mach one such a harrowing concem at that time. Finally, when the X-1 accelerated through Mach one to supersonic speeds, another shoek wave fomed a short distance in front of the nose; this shock, called the bow shock, was curved and more oblique to the flow (A shown above). Shock waves are extremely thin regions-much thinner than the thickness of this page-across which drumatic and almost discontinuous increases in pressure and temperature occur: Shock waves are a fact of life in the aerodyamic flow over transonic and supersonic airplanes.

Knowledge of shock waves is not mique to the twentieth century; their existence was recognied in the eats nincteenth century. The Geman mathematician G. F. Bemhard Riemam first attempted woalculate shock properties in 1858 , but he neglected an essentiat physical feature and hence obtained incorred results.' Twelve years hater, William John Rankine, a noted engineering professor at the University of Glatgow, correctly derived the

proper equations for the flow across a normal shock wave. Not cognizant of Rankine's work, the French ballistician Pierre Hugoniot rediscovered the normal shock wave equations in 1887. To the present day, the governing equations for flow across a shock wave are called the Rankine-Hugoniot equations, in honor of these two men." This work was expanded to include oblique shock waves by the famous German acrodynamicist, Ludwig Prandtl and his student Theodor Meyer at Göttingen University in 1908. ${ }^{7}$ Hence, only five years after the first flight by the Wright brothers, the necessary theory for the calculation of shock wave properties in a supersonic flow was in hand, albeit considered a purely academic subject at that time.

The nineteenth century was also a time of experimental work on supersonic flow. Perhaps the most important event was the proof that shock waves were not just a figment of the imagination-they really existed in nature. This proof was given by the physicist-physician-philosopher Ernst Mach in 1887. Mach, while a professor of physics at the University of Prague, took the first photographs of shock waves on a body moving at supersonic speeds. Shock waves are normally invisible to the naked eye. But Mach devised a special optical arrangement (called a shadowgraph) by which he could see and photograph shock waves. In 1887, he presented a paper to the Academy of Sciences in Vienna where he showed a photograph of a bullet moving at supersonic speeds. Using his shadowgraph system, the bow shock and trailing edge shock were made visible (as shown below). This historic photograph allowed scientists, for the first time in history, to actually see a shock wave. The experimental study of shock waves was off and running.

1hotograph of a bullet in whotanic light, fubliwhed by lime Math in 1887.
 Hill, 1990), pp, 92-95.
7. Mid., pp 140-43.

This prehistory of supersonic flight, both theoretical and experimental, was carried out by basic researchers who were interested in the subject on an academic basis only. The tue practical value of this work did not come to fruition until the advent of supersonic flight in the 1940 s . However, this is an excellent example of the value of basic research on problems that appear only purely academic at the time. In the 1940s, when basic supersonic flow theory and fundamental understanding of shock waves was suddenly needed due to the advent of high-speed airplanes and rockets, it was there-quietly residing and sleeping in a few dusty books and archive jounal articles in the libary.

In light of our carlier discussion of engineering science, was this early work on shock waves engineering science? Emphatically no! The researchers involved in this work were after scientific knowledge, and just that. There was no force behind these researchers driving them to design any related engineering artifacts at the time.*

Compressibility Problems: The First Inklings (1918-1923)

Airplane aterdynamics, from the time of the Wright Flyer to the begimning of World War II, assumed that changes in air density were negligible as the air flowed over the ainplane. This assumption, called incompressible flow, was reasonable for the 350 mph or slower flight speeds of airplanes during that era. Theoretically, it was a tremendous advantage to assume constant density, and physically the low-speed aerodynamic flows usually exhibited smooth variations with no sudden changes or sumprises. All this changed when flight speeds began to sneak up close to the speed of sound. Aerodynamic theory had to account for changes in the air density in the flow field around the airplane, and physically the flow field sometimes acted eratically, and frequently surprised and greatly challenged aerodynamicists. Acrodynamicists in the 1930s simply threw these phenomena into one pot and called them generically "compressibility problems."

Ironically, the first inklings of compressibility problems occurred during the age of the strut-and-wire biplanes, with flight velocities about as far away from the speed of sound as you can get. It had to do with an airplane part, namely the propeller. Although typical flight speeds of World War I airplanes were less than 125 miles per hour, the tip speeds of propellers, becanse of their combined rotational and transtational motion through the air, were quite large, sometimes exceeding the speed of somm. This fact was appreciated by aeronatical congineers at the time. This drove the British Advisory Committec for Aeronatios to show some interest in compressible flow theory. In 1918 and 1919, G. II. Bryan, working for the Committee at the Royal Aeronautical Establishment, carried out a theoretical analysis of subsonic and supersonic flows over a circular cylinder (a simple geometric shape chosen for convenience). He was able to show that in a subsonic flow the effect of compressibility was to displace adjacent streamlines farther apart. His analysis was cumbersome and complex-a harbinger of things to come-and provided little data of value. But it was evidence of the concern felt by the British over the effects of compressibility on propeller performance."

At the same time, Frank Caldwell and Elisha Fales of the propeller branch of the Army Air Service Engineering Division at McCook Field in Dayton, Ohio, took a purely experi-

Vibl Der (11 Hryan "The liflect of Compressibility Report of the Advisory Committe for Aeromatacs, Vol, Dec.

mental approach to the problem. (This was the beginning of a blurred dichotomy between British and American research on compressibility effects. Over the next two decades, the major experimental contributions to understanding compressibility effects were to be made in the United States, principatly by the NACA, and the major theoretical contributions were to be made in England.) In 1918, Caldwell and Fales designed and built the first high-speed wind tumel in the United States-purely to investigate the probkems associated with propellers. The tumel velocity range was from 25 to a stuming 46.5 miles per hour. It had a length of almost nineteen feet, and the test section was fourteen inches in cliameter. This was a big and powerlul machine for its day. Six different airfoils, with thickness ratios (atio of maximum thickness to the chord length) from 0.08 to 0.2 , were tested. At the higher speeds, the results showed "a decreased lift coefficient and an increased drag coefficient, so that the lift-drag ratio is enomously decreased." Moreover, the airspeed at which these dramatic departmes took place was noted as the "rritical speed."." Because of its historical significance, some of their data is shown above, reproduced directly from NACA TR 83. Here, the lift coefficiont for the airfoil at eight-degree

[^32]angles of attack is plotted versus airstream velocity. Note the dramatic drop in lift coefficient at the "critical speed" of 350 miles per hour-the compressibility effect. This plot, and ones like it for other angles of attack that were published in NACA TR 83, are the first published data in the history of aerodynamics to show the adverse effects of compressibility. Although Caldwell and Fales made an emor in the reduction of their data (an understandable eror associated with the inexperience of dealing with compressible flow conditions at the early date of 1919) which caused their reported lift and drag coefficients to be about ten percent too low at the higher speeds, this did not compromise the dat matic and important discovery of the large increase in drag and decrease in lift when the airfoil sections were tested above the "critical speed." Moreover, they were the first to show that the "critical speed" for thin airfoils was higher than that for thick airfoils, and hence by making the airfoil section thimner, the adverse compressibility effects can be delayed to higher Mach numbers. This was an important finding, and one which would have a lasting impact on high-speed vehicle design."

It is noteworthy that the fledgling NACA was the govermment agency which published the results of Caldwell and Fales. ${ }^{14}$ The NACA was carrying out its duty as stated in Public Law 271, which created the Committer in 1915, namely "to supervise and direct the seiemtific study of the problems of flight, with a view to their practical solution, and to determine the problems which should be experimentally attacked, and to discuss the solution and their application to practical questions." Publishing the Caldwell and Fales work is in the latter category-the NAC A was already earmatking compressibility effects as a prob)lem "which should be experimentally attacked."

In the chronology of events, the British were next to examine the effects of compressibility on propellers. In 1923, G. P. Douglas and R. McK. Wood, two aerodynamicists at the Royal Aeronatical Establishment, tested model propellers at high rotational speeds in the seven-foot low-speed wind tunnel (100 miles per hour airstream) at the National Physical Labotatoy in London. They also catried out flight tests on a DeHaviland D.H. 9Abiplane. Their data were the global measurements of the thrust and torque generated by the whole propeller, so the details of the compressibility effects affecting the airfoil sections at the tip of the propeller were somewhat obscuted. However, one of their conClusions anticipated the adverse effects of compressibility, manely that "higher tip speeds than at present used will probably involve a serious loss of efficiency."

[^33]
The Compressibility Burble-NACA's Seminal Research, 1924-1929

Meanwhile, the NACA was forging ahead. During the 1920s, the Committee sponsored a series of fundamental experiments in high-speed aerodynamics at the Bureau of Standards with Lyman J. Briggs and Dr. Hugh I.. Dryden. Hugh Dryden was a fresh, young Ph.D. graduate from Johns Hopkins Liniversity in physiss; he had received his Ph.D. in 1919 at the age of twenty. (Dryden much later was to become the Director of Research for the NACA from 1947 to 1958.) This work progressed in three stages, each one documented in a separate NACA Technical Report, and covered the period from 1924 to 1929. As before, the primary motivation for this research was to understand the compressibility effects at the tips of propellers.

The firss stage simply confinmed the trends already observed by Caldwell and Fales four years earlier: Briggs and Dryden, with the help of LI. Col. G. F. Hull of the Army Ordnance Department, jury-rigged a high-speed wind tumel by connecting a vertical standpipe thirty inches in diameter and thinty feet high to a large centrifugal compressor at the Iymu Works of the General Electric Company in Massachusetts. At the other end of the pipe was a cylindrical orifice that served as a nozfle 12.24 inches in diancter. With this device "ait speeds approaching the speed of sound were obtained." " Unlike Caldwell and Fales, Briggs and Dryden used the proper equations for compressible flow to calculate the air velocity. Although not yet in the standard textbooks, these equations were known by Dryden as a result of his Ph.l). studies in physics. (The first engincering texibook in English to focus on compressible flow was not published until 1947.) ${ }^{\text {: }}$ Rectangular planfom models, with a span of 17.2 inches and a chord length of three inches, were placed in the high-speed airstream, and lift, drag and centerof-pressure were measured. The results supported the carlier trends observed by Caldwell and Fales. In particular, Briggs found: ${ }^{16}$
(1) Lift coefficient for a fixed angle of attack decreases very rapidly as the speed increases.
(2) The drag coefficient increases rapidly.
(3) The centerof-pressure moves back towards the trailing edge.
(4) The "critical speed" at which these occur decreases as the angle of attack is increased and the airfoil thickness is increased.

In 1924, the culmination of this work, as well as that which went before, was the waving of a red flag-compressibility effects were nasty, and they markedly degraded airfoil performance. But nobody had any fundamental understanding of the physical features of the flow field which were causing these adverse effects. This was not to come for another decade.

Briggs and Dryden made an important step towards this fundamental understanding in the second stage of their work. Because the Lynn Works compressor was no longer available to them, Briggs and Dryden moved their experimental activity to the Army's Edgewood Arsenal, where they constructed another high-speed wind tunnel, this one much smaller, with an airstream only two inches in diameter. However, by careful design of the small airfoil models, two pressure taps could be placed in each model. Seven iden-

[^34]tical models were used, each one with different locations of the pressure taps. A total of thinteen pressure tap locations, seven on the upper suface and 6 on the lower surfare, were employed (for the reader who is counting, the seventh model had only one tap).

With this technique, Briggs and Dryden measured the pressure distributions over the airfoil at Mach numbers from 0.5 to 1.08 . The results were dramatic! Beyond the "critical speed," the pressure distributions over the top of the airfoil exhibited a sudden pressure jump at about one-thitd to one-half the distance from the leading edge, followed by a rather long plateau towards the tailing edge. Such a pressure plateau was familiar-it was very similar to that which exists over the top surface of an airfoil in low-speed flow when the airfoil stalls at high angle of attack. And it was well known that airfoil stall was cansed by the separation of the flow off the top surface of the airfoil. Briggs and Dryden put two-and-two together, and concluded that the adverse effects of compressibility were catused by flow separation over the top surface, even though the airfoil was at low (even zero) angle of attack. To substantiate this, they conducted oil flow tests, wherein a visible, pigmented oil was painted on the model surface, and the model was placed in the high-speed airstream. During the tests, the tell-tale flow separation line formed on the oil pattern. Clearly, beyond the "critical speed," flow separation was occuring on the top surface of the airfoil. The next question was: Why? What was causing the flow to separate? The answer to this question still lay eight years in the fiture.

Was this work of Briggs and Dryden engineering science? Emphatically yes! Their experiments were designed to obtain basic scientific infomation about the physics of the high-speed flow over an airfoil, but always for the purpose of learning how to design betler airfoil shapes for high-speed flight.

The third stage of the work by Briggs and Dryden was utilitarian, and was in keeping with the stated duty of the NACA to work on the problems of flight "with a view to their practical solution." Towards the end of the 1920)s, they carried out a large number of detailed measurements of the aerodynamic properties for 24 different airfoils at Mach numbers from 0.5 to 1.08 . The arfoils chosen were those conventionally used by the Army and the Naw for propelless, consisting of the standard family of British-designed RAF airfoils, and the American-designed Clark Y family. These data provided the first definitive measurements on standard series of airfoils showing compressibility effects."

It should be noted that theoretical solutions of high-speed compressibility effects in a subsonic tlow were virtually non-existent during the 1920 s . The only major contribution was that by the famous British aerodynamicist Herman Glauert, who rigoronsly derived a correction to be applied to the low-speed, incompressible lift coefficient in order to conrect it for compressibility effects." This was the first of a series of theoretical rules labeled "compressibility corrections." Because it was known that Ludwig Prandu in Gemany had also derived the same rule a few years earlier, but had not published in, Glauert's result has come down through the decates as the Prandll-Glauert Rule. However, such compressibility corrections are applicable to the variation of lift coefficient with speed below the "critical speed," and hence have no way of predicting the lift coefficient in the "compressibility burble."

Throughout this, the primary motivation for all the above work on compressibility effects was for application to aipplane propellers. But the focus was about to change, and change dramatically.

[^35]
John Stack and the NACA Compressible Flow Research-A Breakthrough

In July 1928, a young New Englander, born and aised in Lowell, Massachusetts, began his career with the NACA Langley Memorial Aeronamical Labomatory. Having just graduated from the Massachusetts Institute of Techoology with a B.S. degree in ateronational engineering, John Stack was assigned to the Variable Density Tunnel, the pemere wind funnel in the world at than time. Stack was absolutely dedicated to ateronantical engincering. White in high school, he eaned money so that he could take a few hours of flight instruction in a Camuck biplane. He helpedout with the maintenance of a Boeing biplane owned by one of his part-time employers. Before he went to college, he had made up his mind to be an acronatical engincer: However, his father, a carpenter who was also very successful in real estate, wanted his son to study architecture at MIT. Instead, when Stack entered MII, he emolled in acronatioal enginecring, keeping it a secret from his father for the first year, but with the understanding approval of his mother. Much later, Stack commented: "Then when Dad heard about it, it was too late to protest.""

When Johm Stack first walked into the Langley laboratory that July of 1928, a vear's worth of design work had already been done on Langleys first high-speed monel, and the facility was already operational with an open throat lest section." Success had been achieved by the work of Briggs and Dryden, and the growing importance of high-speed rescarch was perceived by some visionaries. Because of thas perception, Joseph S. Ames. President of Johns I Opkins I niversity and the new Chaman of the NAC A, in 1927 gave prionty to highspeed wind tumels and reseateh. ${ }^{2}$ Eastman Jacobs, who had joined the NACA in 1925 after receiving his B.S. degree in mechanioll enginecring from the University of Califomia, Berkeley, was the chief designer of the open-thoat eleven-inch High Speed Timmel. (Jacols would later ean an intemational reputation for his work on the famous NACA airfoil sections in the 1930s, and for his conception of, and pioneering research on, the NAC A laminar flow airfoils just before the beginning of World War II.) An innovative aspect of the eleven-inch High Speed Tumed was that it was driven from the wenty atmosphere pressure tank of the Langley Variable Density Tumel. For a change in models in the Variable Density Tunnel, the twenty atmosphere tank which encased the entime tumed was blown down to onc atmosphere; this represented a wasted energy soure which the Langley engineers ingeniously realized could be tapped for the eleven-inch High-Speed Tumel. The 5,200 cubic foon capacity of the high pressume tank allowed about one minute of operation for the tunnel. John Stack was given the responsibility for improving the High-Speed Timmel by designing a closed throat. This impreved facility shown on the next page, was operational by 1932. It was his participation in the design and developmemt of the eleven-inch High-Speed Timmel that tanched John Stack on his life-long career in high-speed aerodyamios.

While Stack was working on the Itigh-Sperd Tumel, an event occumed in England which made a great impression on him, and which would rapidly refocus the NACA highspeed research program. On Sunday, September 13, 1931, a beatuful, highly streambineal
 along the southern English coasi. Flown by Flt. It. John N. Beothman, his expuisite racing

[^36]

aiplanc averaged a speed of 340.1 mph around a long, seven-lap course, winning the coveted Schneider Trophy permanently for Britain. Later that month, on September 29, Flı. Lt. George H. Stainforth set the world's speed record of 401.5 mph in the same S.6B. Looking at this figure, it does not take an aerodynamic expert to appreciate that by 1931 the concept of streamlining in order to reduce diag had taken root. The Supermarine S. 6 B simply looked like it could fly at 400 miles per hour-at Mach 0.53 , over half the speed of sound. Suddenty, the aeronautical engineer's concern over compressibility effects on propeller tips, an important but tolerable situation, became an absolutely major concern over compressibility effects on the airplane itself, a problem of showstopper proportions.

Such concern was begimning to dawn on the aircatt industry itself. In 1936, Lockhecd's Kelly Johnson began carly design studies for the P-38, which was the first airplane to encounter major, and sometimes fatal, compressibility effeets. By the mid-1930s, the aircrati industry was wading into uncharted water, and the NACA's high-speed research program became absolutely vital to the future progress of high-speed airplane design.

stack became acutcly awate of this new compressibility challenge. In 1933, he published in NACA TR 463 the first data to come from the newly modified, closed-h 4 oat High-Speed Fimnel. Although the airfoils were propeller sections. Stack wrote in the introduction, obviously referring to the Schneider Trophy racer:

A knowledge of the compressibility phenomenom is essential, hourver, bectuse the lips speeds of properlers now in use are commonly in the neighbomood of the velocily of sound. Parther; the sperds that haze been attained by rating aiphlanes are as high as hatf the uphocity of soumel. Liven at oddinary aiphlane speeds the effects of compressibility should not be distrgarded if accurate mersurements are desived."?

For the most part, stack's data in 1933 served to confim the trends observed earlier For example, Sak's measurements of the variation of drag coeflicient with Mach mumber for a ten pereen thick Clark Y airfail are shown below; the large dagg rise at high

 Himbor simetatad.

speeds is clearly exident. He also confirmed that the onset of the adverse compressibility effects occur at lower Mach mumbers as either or both the airfoil thickness and angle of attack increase. One of his conclusions rellected on the theoredical Prandth-Glatert compressibility correction mentioned earlier. From his measurements, Stack concluded: "These results indicate that the limited theory available may be applied with sufficient accuracy for most practical purposes only for speds below the compressibility burble." This conclusion presaged amost forty years of a theoretical void. The aerodynamic equations applicable to the transonic flight regime, Mach numbers between about 0.8 and 1.2 are non-linear partial differential equations that defied solution until the 1970 . And even then the solution was by brute force-mumerical solutions using the power of the newlydeveloped discipline of computational fluid dynamics carried out on high-spered digitat supercomputers.

By the way, the term "compressibility burble" was coined by Stack in the same Nita Technical Report. He wrote:

The life coefficients increase as the sperd is increased, slowly as the speed is increased ouer the lower pertion of the range, then more rapidly as sperds above hatl the welocits of sound are pxreded, and finally at highter speeds, depernding on the airfoil wrion and the angle of attack, the flowe breaks down as shown by a drop, in the lift coeffaciont. This braklowen of the flone, heminafler called the compressibility burble, oriwn al haver speeds as the lifl is imoreased by changing the angle of athach of the model:"

Driven by the conviction and foresight of John Stack, the NACA now waved the red flag of compressibility problems to the whole world of acromatical engine ering. In January 1934, the first significant professional ateronatical sociely in the United States, the Institute of Aeronatutical Sciences, published the first issue of its soon-to-be recognized premier journal, the fommal of the Aemomatical Sciences. It contained an article by Stack centited "Effects of Compressibility on I Iigh Speed Flight.": In the first paagraph, Stack makes clear the theme that would be played out by the NACA for the next several decades:
The affects of compressibility hate commonty been megherted becouse whtil the matatert
recont demelopment of the less Schneider bophy aircratl the speeds have been lowe as rom-
pared with the uelocity of soumd, and the consequent local perssams over the surfares of
high-spered aiphlanes have diffored but stightly from atmospheric pressure. At the present
time, houeter, the sperds assoriated with the fastest airplames approach of pervent of
the welocity of sound, amd the induced relocities oner their exposed surfaces lead to local
prescumes that differ apperiably from the presswe of the atmosthere. When this comdi-
liom exists, air ata no lomge be regarded as an incompessible medium. The effects of
compmasibility on the arodynamir charateristios of aivfoils hate been whder imoesti-
gation by the N.A. (.A. in the high-sperd wind lumuel, and it is the purpose of this
peaper to examine the possibility of further increases in spepels in the light of this reta-
litely rechl researh.

By this time, it was clear that the NACA was the leading researeh institution in the world in the area of compressibility effects. Through its influence and sponsorship of the fledgling experiments in the 1920s by Caldwell and Fales an MeCook Field, and by Briggs

[^37]and Dryden at the Burcau of Standards, and now by its own carefully conducted experiments at Langley, the NACA had been able to identify the first two aspects of the basic nature of compressibility effects, namely that (1) above a certain "critical speed," the lift decreased dramatically and the drag skyrocketed almost beyond comprehension, and (2) this behavior was caused by sudden and precipitous flow separation over the top surface of the wing or airfoil. There remained one question, the most important of all-Why:

John Stack and the NACA were responsible for the answer to this question-a breakthrough that occured in 1934. By this time, Stack had a new instrument with which to work-a schlieren photographic system, an optical arrangement that made density gradients in the flow visible. One of nature's mechanisms for producing very strong density gradients is a shock wave; hence a shock wave ought to be visible in a schlieren photograph. Stack's boss, Eastman Jacobs, was familiar with such optical systems through his hobby of astronomy; it was in keeping with Jacob's innovative mind to suggest to Stack that the use of a schlieren system might make visible some of the unknown features of the compressible flow field over an airfoil, and might shed some light on the nature of the compressibility burble. It did just that, and mote!

With the 11 -inch fumel rumning above the "critical speed" for an NACA 0012 symmetric airfoil momed in the test section, and with the aid of the schlieren system, Stack and Jacobs observed for the first time in the history of aerodynamics a shock wave in the flow over the top surface of the airfoil. The shockwave was like that sketched in the figure below. It became immediately clear to these two experimentalists that the separated flow over the top surface of the airfoil, and the resulting compressibility burble with all its adverse consequences, was cansed by the presence of a shock wave. The nature of this flow is sketched below, and it clearly shows that the shock wave interacts with the thin, friction-dominated boundary layer adjacent to the surface of the airfoil. This causes the boundary layer to separate in the region where the shock impinges on the surface. A massive region of separated flow trails downstream, greatly increasing the drag and decreasing the lifi. One of the pioneering schlieren pictures of the flow over the NACA 0012 airtoil taken by Stack in 1934 is shown on the page 73." The quality is poor by present-day standards, but it is certainly sufficient for identifying the phenomena. This is a historic photograph in the amals of the history of aerodynamics-one which led to the final understanding of the physical nature of the compressibility burble. This was a breakthrough of enomous intellectual and practical importance. And it was totally due to the work of two imovative and highly intelligent aero dynamicists at the NACA Langley Laboratory, John Stack and Eastman Jacobs, operating under the umbretla of an inspired creative atmosphere associated with the NACA in gen-

 Lameloy Amhoes. Coutesy of Richand Lavman, Anhirist.
eral, and the foresight of Joseph Ames and George Lewis at NACA Headquarters in Washington who placed priority on the NACA high-speed research program at a time when most airplanes of the day were lumbering along at 200 mph or slower.

Was this work by Stack and Jacobs engincering science? Absolutely yes! It provided the fundamental physical understanding of the root source of compressibility problems. This understanding was mainly qualitative at the time, but it allowed designers of high-speed airfoils to make more intelligent decisions about proper airfoil shapes-it helped to make the uncharted waters more navigable.

As with many new discoveries in science and technology, there are always those skeptical at lirst. One of those was Theodore Theodorsen, the best theoretical acrodynamicist in the NACA at the time, with a worldwide reputation for his pioncering papers on airfoil theory. John Becker, who joined the NACA in 1936 and who went on to become one of the most respected high-speed acrodynamicists at Langley, tells the following anecdote about Theodorsen's reaction to the schlieren photographs taken by Stack and Jacobs. It is repeated here because it reflects just how much a radical departure from the expected nom the results were.

> The firm tests wemp made on a circular cylinder about $1 / 2$ inch in dameter, and the resulls weve spectarnlar in spite of the poor quality of the optics. Shockwates and attendant flowe separations were seen for the first time starting at subsomic stryam speeds of about 0.6 times the speed of sound. Visitors from all oner the Laboratory, from Engineer-in-Charge H.J.E. Reid on down, came to view the phenomena. Langloy's ranking theorist, Theodore Theodorsen, vieued the results skeptically, proclaiming that since the stream flow was subsomic, what appeared to be shockeaves was an 'optical illusion,' an ervor in judgement which he was never allowed to forget.'

An interesting confluence of events occurred in 1935 that allowed the NACA in a timely fashion to inform the international research community of this intellectual breakthrough in understanding compressibility effects and the compressibility burble. One was the existence of the data itself-fresh, exciting, and revolutionary. The other was the scheduling of the fifth Volta conference in Italy:" Since 1931, the Royal Academy of Science in Rome had been conducting a series of important conferences sponsored by the Alessandro Volta Foundation. The lirst conference dealt with nuclear physics, and then rotated between the sciences and the humanities on altemate years. The second Vola conference had the title "Europe" and in 1933 the third conference was on the subject of immunology.

This was followed by the subject "The Dramatic Theater" in 1934. During this period, the influence of Itatian aeronautics was gaining momentum, led by General Arturo Crocco, an aeronautical engineer who had become interested in ramjet engines in 1931, and therefore was well aware of the potential impact of compressible flow theory and experiment on future aviation. This led to the choice of the topic of the fifth Volta con-ference-"High Velocities in Aviation." Participation was by invitation only, and the select list included all the leading aerodynamicists at that time. Because of his reputation in the design and testing of the famous NACA four-digit airfoil series, and the fact that he was the Section Head of the NACA Variable Density Tunnel which had put the NACA on the international aerodynamic map in the 1920s, Eastman Jacobs received an invitation. He took the opportmity to present a paper on the new NACA compressibility research.

[^38]Hence, during the period between September 30 and October 6, 1935, the major figures in the development of high-speed acrodynamics of the 1930s (with the exception of John Stack) gathered inside an impressive Renaissance buidding in Rome that served as the city hall during the Holy Roman Empire, and discussed fight at high subsonic, supersonic, and even hypersonic speeds. The fifth Vola Conference was to become the springboard for new thought on the development of high-speed flight.

In the midst of all this discussion was Eastmann Jacobs representing the NACA. Jacobs' paper, entitled "Methods Employed in America for the Experimental Investigation of Aerodynamic Phenomena at High Speeds," was both thtorial and informative. ${ }^{\text {2h }}$ Ite took the opportunity to derive and present the basic equations for compressible flow assuming no friction and no thermal conduction. Then he described the NACA High-Speed Tunnel, the schlicren system, and the airfoil experiments carried out in the tumnel. Then came the blockbuster. He showed, for the first time in a technical meeting, some of the schlieren pictures taken at Langley. One of these was the photograph shown on page 73. Conscious of the NACA's penchant for perfection, especially in its publications, Jacobs apologized for the quality of the photographs, a very modest gesture comsidering their technical (and historical) importance: "Unfortunately the photographs were injured by the presence of bent celluloid windows foming the tunnel walls through which the light passed. The pictures nevertheless give fundamental information in regard to the nature of the flow associated with the compressibility burble." With this, the NACA high-speed research program was not only on the map, it was leading the pack.

By this time, Stack had a newer, larger facility-the 24 -inch High Speed Tumel equipped with an improverl shlieren system. The basic testing of compressibility effects on flows over airfoils continued in this facility. In 1938, Stack published the most definitive document yet on the nature of high-speed compressible flow over airfoils, including many detailed surface pressure measurements." With this, the NACA continued to be the undisputed leader in the study of the effects of compressibility and the consequences of the compressibility burble.

The atmosphere at the Langley Laboratory during the 1930s allowed engineering science to flourish, although the laboratory never explicitly adopted this as a priority. It just happened when it needed to happen. The culture among its engineers was one of inquiry and free exchange of infomation; thoughts were readily shared on an interpersonal basis. Moreover, Langley had engincers who were adept at building new facilities, especially new wind tumnels. It was natural that a high-speed wind tumel was built at Langely providing a unique facility for Langley engineers to unlock the secrets of high-speed acrodynamiss. And the fact that the NACA had money, even during the depression years, allowed such wind tunnels to be first-class facilities. All this, in combination with first-class engineers and scientists, made Langley the leading research institution in high-speed compressibility effects during the 1930 s .

Jacobs' paper at the fifth Volta conference represented in some sense a celebration of the second phase of the NACA research on high-speed flight. The first phase was the embryonic wind tumel compressibility work of the 1920s, clearly oriented towards appli-
98. Fasman Jacobs, "Merhods Fmploved in America for the Fxperimental [mestigation of Aerodynamic

99. Lhid.

cations to propellers. The second phase was the refocusing of this high-speed wind tunnel research on the airplane itself, complemented by a new initiative-the design and development of an actual research airplane.

The High-Speed Research Airplane: An NACA Idea

 statk. 103?

The idea of a researeh airplane-an airplane designed and built strictly for the purposes of probing unknown flight regimes-can be taced to the thinking of John Stack in 1933. On his own initiative, Stack well through a very preliminary design analysis which, in his own words was "for a hypothetical airplane which, however, is not beyond the limits of possibility." The pumpose of the aiplane, as presented in his 1933 article in the Journal of the Arronautical Sciences, was to fly very fast-well into the compressibility regime." His design considered the airplane shown to the left; reproduced directly from his paper; here you see a highly streamlined airplane (for its time) with a straight, tapered wing having an NACA 0018 symmetric airfoil section at the center, and thiming to a 9 percent thick NACA 0009 airfoil at the tip. Stack even tested a model of this design (without tail surfaces) in the Langley Variable Density Tunnel. He estimated the drag coefficient for the airplane using the data he had measured in the eleven-inch High-Speed Tumnel. Assuming a fuselage Large enough to hold a 2,300 horsepower Rolls-Royce engine, Stack calculated that the propeller-driven aiplane would have a maximm velocity of 566 miles per hour-hat begond that of any airplane flying at the time, and well into the regine of compressibili1y. Stack's excitement about the possibilitics for this airplane is reflected in the hand-drawn graph, reproduced on page 77. Drawn by Stack in 1933, this graph shows the honsepower required as a function of speed. comparing the results with and without the effects of compressibility. His hand sketch of the airplane is at the top of the graph (along with the aged rust maks of two paper (lips). This graph was found by the author buried in the John Stack files in the Langley archives. The reason it is mentioned and reproduced here is that, bately distinguishable at the bottom of the reproduced graph, Stack had written "Sent to Committee Meeting. Oct. 1933." Stack wats so convinced of the viability of his proposed rescath airplane that he had sent this quickly-prepared hand-dawn graph to the bianmal meeting of the full committee of the NACA in Washington in October 1933. Whmately the NACA did not act on helping Stack lind a developer for the aipplane, but in the words of Hansen, "the optimistic resules of his paper study convinced many people at langley that the potential for flying an speeds tar in excess of soo miles per hour was there."

[^39]

The High-Speed Research Airplane—For Real

The state of high-speed aerodynamics in 1939 can be illustrated by one graph, shown schematically in the figure below. Here, the variation of drag coefficient for an airplane is shown as a function of free stream Mach number. On the subsonic side, below Mach one, wind tumel data indicated the familat rapid increase in drag coefficient as Mach one is approached. On the supersonic side, ballisticians had known for years, supported by the results of linearized supersonic theory developed by Jakob Ackeret in Germany since 1928, how the drag coefficient behaved above Mach one. Of course, all airplanes at that time were on the subsonic side of the curve shown in the figure below. John Stack nicely summarized the situation in 1938 :

The development of the knouledge of compressible-flow fhenomena, particularly as related to aromautical applications, has been attended by considerable difficulty. The complicated nature of the phenomena has resulted in litte theoretical progress, and, in general, recourse to experiment has been necessary. Until recontly the most important experimental results have been oblained in connection with the science of ballistics, but this information has been of litte value in aeronautical prohlems bectuase the range of speeds for which most ballistic experiments have been made extends from the spered of sound "puated; whereas the important region in aeronautios at the present time extends from the speed of somud doronward.;

In essence, the flight regime just below and just beyond the speed of sound was unknown-a transonic gap, as shown schematically below.

[^40]The general acronautios commonity was suddenly awakened to the realities of the unknown flight regime in November 1941, when I ockheed test pilot Ratph Virden could not pull the new, high-performance P-38 out of a high-speed dive, and crashed. Virden was the first human fatality due wadverse compressibility effects, and the P - 38 , shown below, was the first airplane to suffer from these effects. The P-38 exceeded its eritical Mach number in an operational dive, and penetrated well into the regime of the compressibility burble at its teminal dive speed, as shown by the bar chat on page 80." The problem encountered by Virden, and many other P-38 pilots at that time, was that beyond a certain speed in a dive, the elevator controls suddenly felt as if they were locked. And to make things worse, the tail suddenly produced more lift, pulling the P-38 into an even

Lockhed P-38, the first airflane to monntar wom compressibitity froblems.

[^41]

stecper dive. This was called the "tuck-under" problem. It is important to note that the NitCA soon solved this problem, using its expertise in compressibility effects. Although Lockheed consulted various acrodynamicists, including Theodore Von Kármán at (Gatech, it turned out that John Stack at NACA Langley, with his accumulated experience in compressibility effects, was the only one to properly diagnose the problem. The wing of the P - 38 lost lift when it encoumered the compressibility burble. As a result, the downwash angle of the flow behind the wing was reduced. This in turn increased the effective angle of attack of the flow encomented by the horizontal tail, increasing the lift on the tail, and pitching the P-38 to a progressively steepening dive totally beyond the control of the pilot. Stack's solution was to place a special flap under the wing, to be employed only when these compressibility effects were encountered. The flap was not a conventional dive flap intended to reduce the speed. Rather, Stack's idea was to use the llap to maintain lift in the face of the compressibility burble, hence eliminating the change in the downwash angle, and therefore allowing the horizontal tail to function properly. This is a graphic example of how, in the early days of high-speed flight, the NACA compressibility research was found to be sital ats real airplanes began to sneak up on Mach one.".
lndeed, it was time for malairplanes to be used to probe the mysteries of the unknown tansonic gap. It was time for the high-speed research aipplane to become a reality. The earliest concrete proposal along these lines was made by Eara Kotcher, a senior instructor at the Army Air Corps Fngineering School at Wright Field (a forermner of today's Air Force Institute of Technology). Kotcher was a 1928 graduate of the University of Califomia,
36. The "tuck-nnder" problem, and its techmical solution, is deseribed in fohn 1). Ancterson, Jre,

Berkeley, with a B.S. degree in mechanical engineering. The same year that John Stack first walked through the gates of Langley as a junior aeronautical engineer, Kotcher first walked into the Air Corps Wright Field, also as a junior aeronautical engineer. These two engineers were contemporary with each other, and both had a driving interest in high-speed acrodynamics. The careers of these two people would come together for the development of the Bell X-1 in the 1940s. Kotcher's proposal, drafted during the period May-August 1939, was a response to Major General Henry H. "Ilap" Arnold's request for an investigation of advanced military aircraft in the future. The proposal contained a plan for a high-speed fight research program. Kotcher pointed out the unknown aspects of the transonic gap, and the problems associated with the compressibility burble as elucidated by the NACA, and concluded that the next important step was a full-scale flight research program. ${ }^{32}$ The Army Air Corps did not immediately respond to this proposal.

Meanwhile, back at Iangley, the iflea of a high-speed research airplate was gaining momentum. By the time the United States entered World War II in December 1941, John Stack had studied the behavior of the flow in wind tumels when the flow in the test section was near or at Mach onc. He found that when a model was mounted in the flow, the flow field in the test section essentially broke down, and any acrodymamic measurements were worthless. He concluded that the successful development of such transonic wind umnels was a problem of Herculean proportions, and was far into the future. In order to learn about the aerodynamics of transonic flight, the only recourse appeared to be a real airplane that would fly in that regime. Therefore, during several visits by Dr. George Iewis, NACA's Director of Aeronautical Research, Stack seized the opportunity to mention the idea. Lewis, who liked Stack and appreciated the talent he brought to the NACA, was not immediately partial to the idea of a research airplane. But in carly 1942, he left a crack in the door. In I lansen's words: "He left Stack with the idea, however, that some low-prionity, back-of-the-envelope estimates to identify the most desirable design features of a transonic airplane could not hurt anyone, providing they did not distract from more pressing business." "M

Given Stack's driving personality, this was all that was needed. With the blessing of the local management at Langley, Stack immediately formed a small group of engineers, and started to work on the preliminary design aspects of a transonic research airplane. By the summer of 1943 , the group had produced such a design. Its principal features are listed below. This design established a mind-set for John Stack that guided NACA thinking on the transonic research airplane for the next five years-a mind-set that was to clash with the later ideas coming from Kotcher and the Army. The NACA design:
(1) was a small turbo-jet powered airplane,
(2) was to take off under its own power from the ground,
(3) was to have a maximum speed of Mach one, but the main feature was to be able to fly safely at high subsonic speeds,
(4) was to contain a large paylead of scientific instruments for measuring the aerodynamic and flight dynamic behavior at near-sonic speeds, and
(5) was to start its test program at the low end of the compressibility regime, and progressively over time sneak up to Mach one in later flights.
37. Kotchers mole in the development of the high-speed researeh airplate is nicely presented by Hallion in Supersmif Plyht, starting with p. 12, and continning throughou the beok, As satacd in note 1 above Hallion's book is still oday the mose definitive source on the circumstancer leading of the Bell X-1.
38. Hansen, Enginer in Charg, p. 259

The important goal was acrodynamic datat at high subsonic speeds, not necessarily to fly into the supersonic regime. These features became [almost] a magna carta to langley engineers, and to john Stack in particulas:

The exigencies of wartime greatly accele wated research into high-speed aterodynamics; compressibility problens now had the attention not only of the NACA, but also of the Army and Naty as well. Stack, who had risen to be Easman Jacob's Assistant Section Chief of the Variable Density Tumnel in 1935, and Head of the High-Speed Wind Tumels in 1937, was made (hicf of the newly formed Compressibility Research Division in 1943: Stack now had his most inflemtial position to date to push for the high-sperd rescarch aimplate.

The Bell X-1: Point and Counterpoint

Nthough the NiACithad the compressibility knowledge and technology, the Amy and Navy had the moncy that would be necessary for the design and building of a research airplane. So it was approptiate that the Bell X-I was conceised during a fatefal visit by Robert J. Woods of Bell Airatat to the oflice of Eara Kotcher on 30 November lot4. Woods, who had NACA ties becatose he had worked at angley doring logx-lyeg in the Variable Density lummel, had joined with Iawrence D. Bell in 1935 to form the Bell ditctaft Copotation in Buflalo. New York. That day in November, Woods had dropped by Kotcher's office simply to chat. During the comversation, Kotcher relayed the infomation that the Army, with the help of the NACA, desined to build a serial, mon-military high-speed researd aimplane. After detailing the Amys specilications for the aircraft. Kother asked Woods if the Bell Corporation was interested in designing and building the atiplane. Woods said yes. The die was cast."

When Kotcher had been talking with Woods, he was operating with some authority During 1944. Army and NACA engineers had been meeting to outhe the nature of a joint reseateh aipplane program. Moreover, by mid-1944, Kother had received the Army's appowal for the design and acquisition of such an airplane. However, the Armys concept of the high-speed reseam aiplane was somewhat different than that of NASA. Fo understand this difference, we have to examine wo sitmations in existence at the time .

The dirst station was that of a common, public belief in the "sotmed batriet" The myth of the somm barier had its begimning in 1935, when the British aterolyamicist W. F. Hilton wats explaining to a newsman about some of the high-speed experiments he was conducting at the National Physical Laboratory. Pointing to a plot of aidfoil dage, Hilton sade: "See how the resistance of a wing shoots up like a barrier against higher speed as we approach the spece of somed." The next morning, the leading British newspapers were misrepresenting Hilton's comment by refering to "the somed barrier." The idea of a physical bander to thight- that aimplanes could never fly faster than the speed of somd-became widespread anomg the public. Furthermore, even though mose engineces knew differently, they still had meretanty in just how much the drag would increase in the transonic regime. and given the low thrust levels of atiplane powerplants at that time the speed of sound eertambloomed as a remendous momentan to climb.

[^42]The second situation that colored the Army's thinking at that time was lecal, namely that Kotcher was cominced that the research aimplane must be powered by a rocked engine rather than a tubejet. This stemmed from his experience in 1943 as project officer on the proposed Northrop XP-79 rocket-propelled flying wing interceptor, as well as the knowledge within the Amy of Gemanys new rocket-propelled interceptor, the ME-163.

Therefore, the Amb viewed the high-speed research aiplane as follows:

$$
\begin{aligned}
& \text { (1) If should be rocket-ponerwed. }
\end{aligned}
$$

> areryhoody that the sound bamien rould be broken.
> (3) Later in the design process, it was detemmimel that it should be air-laumbed rather than take off from the gemand.

All of these were in conflict with the NACA's more careful and scientific appromed. However, the Amy was paing for the $\mathrm{X}-1$, and the Amys wews prevaled.

Athough foh Stack and the NACA did not agree with the Amy's specifieations, they nevertheless provided as much technical data as possible throughout the design of the $\mathrm{X}-1$. Lacking appopriate wind tunnel data and theoretion solntions for transonic aterodynamios, the NACA developed there stopgap methods for the acquisition of transonic acrodynamic data. In 1944, langley caried out tests using the drop-body concept. Wings were momed on bomb-like missiles which were dropped from a $\mathrm{B}-29$ at an attitude of 30,000 feer. The terminal velocities of these models sometimes reached supersonic speeds. The data were limited, mainly consisting of estimates of the drag, but NACA engineers considered is reliable emough to estimate the power requised for a transonic aiplane. Also in 19.44, Robert R. Gilmoth, Chief of the Flight Reseath Section, developed the wing-fleme methot, wherein a model wing was mounted perpendiculat at just the right location on the wing of a P-51D. In a dive, the P-5l would pick up enough speed, wabout Mach 0.81, hat locally supersonic flow would occur over its wing. The small wing model mounted perpendicular on the $P-51$ wing would be totally immersed in this supersonic flow region, providing a migue high-speed flow covimoment for the model. uthmately, these wing-flow tests provided the NACA with the most sstematic and contimous plots of transonic data yed assembled. The thiod stopgap, mohod was roket-modeh lesting. Here wing models were momed on rockets, which were fired firom the NACA's lacility at Wallops Island on the coast of Virginia's Eastern Shore. The data from all these methods, along with the existing cone of compressibility data obtained by the NACA over the past 20 years as described in the earler sections of this chapter, constituted the seientific and engincering base from which the Bell Aircraft Comp. designed the $\mathrm{X}-1$.

Finally, we note that the NACA was responsible for the instrumentation that was housed inside the Bell X-l. This instrmmemation and its location on the $\mathrm{X}-1$ is illustated on page 84 . This is an example of one of those unseen aspects of technology upon which the acquisition of historic data depends. It is fitting that the NACA excelled in both aspects of the $\mathrm{X}-\mathrm{l}$ concept-the extemat configutation and the essential instruments mounted inside for the acquisition of quantitative knowledge.

[^43]

NACA RESEARCH INSTRUMENTATION IN XS-1 ROCKET AIRPLANE

Shematic of the instrumentation monnted by the NACA in the Rell X-1.

Breaking the Sound Barrier

We began this chapter by tansponting ourselves back to October 14, 1947, and riding with Chuck Yeager as he flew the Bell $\mathrm{X}-1$ through the sound barrier, becoming the first human to fly faster than sound. The detailed events of 1946 and 1947 that finally resulted in this flight-the design, construction and early flight testing progran by Bell, and the Amy's intense preparations for the handling of the $\mathrm{X}-1$ at Muroc-are nicely related by historians Richard P. Hallion and James O. Young." Nothing is served by repeating them here. Rather, we return to the purpose of this chapter as stated in the introductory paragraphs. The first supersonic flight of the Bell X-1 represented the culmination of 260 years of research into the mysteries of high-speed aerodynamics. In was especially the fruition of 23 years of insightful research in high-speed aerodynamics by the NACA-reseach that represents one of the most important stories in the history of aeronatical engineering.
43. Itallion, Supenomiu Might, James O. Soung, Supersonic Sympenium: The Men of Mach I (Edwards Air Fonce Base, CA: Air Fone Flight Gest Center History Office. September 1990). pp. 1-89.

On December 17, 1948, President Harry S. Truman presented the thirty-seven-vearold Collier Trophy jointly to three men for "the greatest aeronatical achievement since the original flight of the Wright Brothers' airplane." "The Trophy, officially the Collien Trophy for the year 1947, was the highest possible official recognition for the accomplishments embodied in the X-1. The announcement page from the December 25, 1948 issue of Collier's magazine is shown on page 86. Properly, John Stack was one of the three men, recognized as the scipntist, along with Lawrence D. Bell, the manufacturer, and Captain Charles E. Yeager, the pilot. The citation to Stack read: "for pioneering rescarch to determine the physical laws affecting supersonic flight and for his conception of transonic research airplanes." A major purpose of this chapter was to bring meaning to this ciltationso much is hidden in these few words. "Unseen in this photograph, but present in spirit, is the team of NACA researchers who also worked towards detenmining the physical laws affecting supersonic flight, and to conceptualize the transonic research airplane. In this sense, the 1947 Collier Trophy was a "global" award to the entire NACA high-speed research program.

The 1947 Collier Trophy was also a recognition of the role of engineering science in the ultimate success of the Bell X-1. Note that in the award John Stack is explicitly recognized as a scientist (not an engineer). This is somewhat of a misnomer-Stack was performing as an engineering scientist in this activity, neither a pure scientist not a pure engineer. The NACA had provided all the elements that allowed this engineering science contribution to accur.

At the time of this award, John Stack was Assistant Chicf of Research at NACA Langley. In 1952, he was made Assistant Director of Langley. By that time he had been awarded his second Colliee Trophy, the 1951 Trophy, for the development of the Slotted-Throat Wind Tumnel. In 1961, thee years after the NAC A was absorbed into the National Aeromatuics and Space Administration, Stack became Director of Aeronatical Research at NASA Headquaters in Washington. Despairing of the de-emphasis of aeronatuics in NASA, after thirty-four years of government service with the NACA and NASA, Stack retired in 1962 and became vice president for engineering for Republic Aircraft Corpotation in Long Istand. When Republic was absorbed by Fairchild Hiller in 1995, Stack was appointed a vice president of that company, retiring in 1971. On June 18, 1972, Stack fell from a horse on his fam in Yorktown, Virginia, and was injured falally. He is buried in the chunchyard cemetery of Grace Episcopal Church in Yorktown, only a few miles away from NASA's Langley Research Center. Today, F-15s from the nearby Langley Air Force Base fly over the churchyard-airplanes that can routinely fly at almost three times the speed of sound, thanks to the legacy of John Stack and the NACA high-speed research program.

[^44]

The Collier Trophy

For Flight Beyond the Speed of Sound
By FREDERICK R. NEELY

For bringing about the achievement of human supersonic filght. John Stack, Lawresce D. Bell and Captain Charlea E. Yeager, USAF, win America's higheat aviation award

Chapter 4

The Transonic Wind Tunnel and the NACA Technical Culture

by Steven T. Comeliussen

When moclear physies emerged as a compelling field of findamental scientific inquiry during the 1920s, it needed new research tools, espectally the invention of accelerators for probing nuckei with artificially energized subatomic particles.' Similarly, when the United States began expanding a national effon in applied acronamtical reseateh during the 1920s, that too nceded new research tools, espectially improved wind tunnels for experiments using artificial airllows. Subsequent progress in both fields regularly resulted from rescarch-tool advances-as subsequen Nobel Prizes regularly recognized, and as subsequent Collier Trophies did not.

By mideentury this contrast could be comed with the more olvious dissimilarities between the wo fields. Though both muclear physies and American acronatios had continnally required new empirical knowledge, their preeminent prizes since the 1920s had shown matkedly differing esteem for advances in the means for generating it. In 1951, when particleaccelemator pioneces Sir John Cockrofi and Ennest T. S. Walton won the Nobel Prize for physics, they jomed previons lateates who had advanced nuclear science by inventing the cycotron-rype acceletator, the cloud chamber for making subatomic particle tracks visible, the magnetic resonance experiment method, further cloud chamber refinements, and a photographic technique for studying acceleratorgenerated nuclear processes. But until the Collier Trophy for that same year-save for the special case of 1947-the Collier's awarding committee had ignoted reseath tools altogether, instead naming as the greatest adances in American acromatios only aitcraft equipmeme aio operations, heroic flights, and new aiplanes. Yed aconamical reseatehers with their contimually improving researh tools, especially the engineers and wind tunncls of the National Advisory Commitue for Aeronatios, had contributed importantly to many of these adances. Thus the awarding committee for 1951 added importantly to the Collier's soope when it recognized the NACAs new transontic wind humels and the went VAC A technical staff most closely associated with their advent.

[^45]
The Midcentury Need for Transonic Tunnels

In the 1947 special case, combat aviato Chuck Yeager flew manufacturer Lawrence Bell's new X-1 airplane faster than the speed of sound. Yeager thereby not only pierced the so-called sound barrier, but helped operate a transonic research tool conceived mainly by veteran NACA high-speed researcher and manager John Stack. The resulting Collier cited not only the heroic flyer and the airplane builder, but the NACA research-tool innovator as well." Stack himself was not present in the Californa desert below the X-1 in its transonic research flights, but some of his NACA colleagues were. A detachment of engincers from Langley Memorial Aeronatical I aboratory in Virginia masterminded the experimental airplane's operation." They instrumented it for data-gathering, planned and then observed each flight in detail, and assessed what was measured and recorded. They wanted new empirical knowledge of the bewilderingly complex, sometimes literally dangerous range of air speeds near the speed of sound, which varies with air temperature and can surpass 740 miles per hour.

Their NACA bosses at Langley Field and in Washington wanted transonic reseatch advances too. Air speed had proven crucial in World War II, and jets were begimning to replace propeller-driven warplanes. In a high-profile 1946 assessment of the national defense program, Senator James M. Mead's special investigating committee had severely rebuked the NACA, charging past failures of "vision and imagination" concerning "revolutionary acronautical developments" like Nazi Germany's missile technology and the jets that both Great Britain and Germany had developed in the 1930s, when the American acronatical establishment still thought jets infeasible.' Accordingly, the NACA's 1946 annual report to Congress stated a resolve "to face the urgent necessity for renewed emphasis on fundamental research," as the NACA customatily called its practical-minded but scientifically grounded enginecring studies. "Without certain essential design data," the report continued, "the development of very high-speed airctaft and guided missiles cannot proceed."5 That word urgent recurs conceming transonics throughou NACA documents of the carly postwar era, when air-war memories were fresh, Cold War wortes were intensifying, and NACA burcaucratic-war strategies were beginning to target the Army Air Forces. Like the NACA, the AAF-soon to become the Air Force-
 Macmillan Company. 1972) , p. 176, notes that research aipplanes like the X-1 were not "fabricated for selting cocods. Rather, they were designed as reseach tools. Though they set some spectacular records. . . their main fancton romatied unchanged: the acquisition via flight instrmentalion of data on a variedy of areas." The NACA's 1954 ammal report, p. t, sass the restach airplanes "prime justilication was as tools to be used in developing necessary transonic infomation," (NACA ammal reports are cited hereafter in the form AR54.) The 1947 Collier, following the frequent patace of the day, cited engineer Stack as a "scientist." But Stack's letex MIT degret was in aeronautical engineering, as reported in James R. Hansen, Enginer in Chage: A History of the Langlo Ammantical Laboratory, 1977-1958 (Wishington, D(: NASA SP 4305, 1987), appendix B. The influence of llansen's engineering-entered interpectation of NACA researh hintory perades this esty.
3. To comere the motion of military control of "the research diection" of the $\mathrm{X}-1$ program. Richard P . Hallion emphasizes the NACA's "virtual total contol" in his review of Walter A. MeDougall's . . . the Mramen and the Earth: A Pelitical History of the Spour Age (New York, NY: Basic Books, 1985): see Trehoology and Calhur 28 (Fantary 1987): 130-32.
4. Excerpt from Mead committer reporn. "Miscellaneous" folder, John Stack collection, Langley Historical Arehive-hereatiey called $I H A$-NASA Langley Research Conter library. For IIHA acress and med else. I thank langley historical progran coordinator Richand T Layman.
5. AR46, p. 2
aspired to create and control expensive new national acronatutical research tools: large wind tumels for experiments using artificial transonic and supersonic airflows."

As a motivation for high-speed reseach, the urgency of intemational military competition-though not that of Washington political competition-shows in separate, representative pronouncements by the NACA and AAF research directors in 1947. "The "rgency of aeronautical research results from the relation of air power to national security," reported Hugh L. Dryden to the NACA's main committee a few days after the X-l's famous October flight. "Aircraft having the highest speed dominate the air;" he noted, adding-in a complete reversal of the NACA's cautions prewar belief-that it was "clear that there is no upper limit to the possible speed of arcraft." Dryden declared that "the nation that makes the best research effort to develop the new power plants and explore the problems of high-speed flight can lead the world in air power. That nation must be the United States. . . It is the duty of the NACA to provide for the military services and the industry the basic data on aerodynamics and propulsion to make piloted supersonic flight not only possible, but sate and reliable." ${ }^{7}$ In even more forceful terms, these themes had also appeared that April in a magazine editorial titled "We Must Fumish the Tools" by Maj. Gen. Curtis E. Le May, the aggressive World War II strategic bombing leader who now headed the AAF Research and Development Agency. So emphatic was this two-page argument for new national high-speed wind tumels that John Stack kept a photostat of it in personal papers now preserved in the NASA Langley Research Center historical archive. ILeMays editorial waned that for lack of proper research tools the United States risked losing the air-superiority ace. In World War II, it said, the Nazis had been "at least five years ahead," though fortunately not in actually "applying the results of the cir technical superionity." In the postwar world, however, "even a onc- or two-year lag" could probably "never be recovered." Similar arms-race language concerning wind tumnels also appeared a few years later when the Colliers magazine aticle amouncing the 1951 Collier Trophy headlined the awarding committee's assertion: "Now the U.S. has a two-year lead on the Commonists in perfecting vital faster-han-sound planes.""

Harder to see in the late 1940s were the urgent political and bureauctatic motivations involved in the high-visibility push for new national aeronantical research facilities. Dryden and LeMay wrote only about the cooperation, not the rivalry, between the NACA and the Army Air Forces. Bu NACA historian Alex Roland has desoribed a postwar NACA "at its nadir in reputation and influence" struggling "in deep and surreptitious comperition" with the AAF." Thus for Hugh Dryden in Washington and John Stack at Langley, the NACA's organizational self-interest must have accompanied the arms-race justification as a motivation to develop technology, and to seek construction funding, for new high-speed reseatch tools.

 for postwat mational wind tumed facility constraction. It mast be moted that in an April 3 , IGGi, telephome intervew, NACA and NASA high-speed research veteran fohn V. Beeker realled mon particular wrgency in the dav-lodav postwat tamsomios work at Lamgle Feld, whatever the outhok amd motivations of the Nac A itself might
 this essaty to ereot interviewere, and am indebled to all of them.
7. "Report of whe Director of Aeromatical Researh submitted to the National devisory Committer for Aeromatios at its ammal meeting. (Otober 23, 1947," reprinted Roland, Motel Romanch, 2:713-16; guotations fromp. 714.

9. Cinlieri, Decenaber 20, 1952, pp. 24-25.
10. Relamd, Wodd Rowamh. $1: 259$ and $1: 914$

In any case, wind tunnels were the desired tools. To most American acronautical researchers it seemed clear that whatever the usefulness of research aircraty for transonics, tuly comprehensive empirical knowledge in the long rum would have to come manly from these gromodest facilities with their convenient, versatile, relatively affordable, and safe babomatory conditions." In the distinct NACA technical culture especially, airbome tests represented a component that could only complement, not replace, the wind-tumel-test component. Although the airflow physics of a purely supersonic tunnel differs fundamentally from that of a subsonic cumel, the NACA already had effective supersonic cunnels when the X-1 flew in 1947, and at Langley in the following month John V. Becker even began operating a small hypersonic tumel hat could reach speeds well beyond five times that of sound.'2 But in the airflow of high-subsonic, or near-sonic, wind tumels-tools for the main transonic parts of the work that reseach directors Dryden and LeMay were emphasizing-complex troublesome effects arose, hampering tumel operation and polluting or even ruining experimental data. No munel had yet been invented for overcoming these vexing ransonic effects, despite NACA efforts dating back to the 1920)s, despite efforts elsewhere, and despite a long-standing intuition that Stack and others shared about how to solve the problem.

So during the X-I's reseatch flights in 1947, Stack-a high-speed wind monel innobator since 1928, and now a research manager-was not present in the Califomia desert. Instead he was back at Langley, encouraging, smoothing the way for, and cajoling others who were trying to synthesize years of NACA experience to capitalize on that intuition and develop that solution. "Aeronatical experts swore it couldn't be done," the Collier's headline would trumpet once they had succeeded. But in reality engineers had long suspected that it could incleed be done, and that the answer would lic in somehow partly opening up a wind tumel's walls. Just after the war Langley physicist Ray II. Wright, skilled in applied mathematics and widely knowledgeable concerning tumel technology, "had used subsonic aerodynamic theory to calculate a solution: a tunnel with ventiation slots in the walls of its test section, the experiment chamber where the tumel's artificial airflow moves across an instrumented test subject such as a scale-model segment of a wing. These testsection slots had to be precisely placed, paralleling the airflow direction, in the tumel's interior surfaces above, below, and beside the test subject, which might either span a ronghly cylindrical test section or be held in place by an apparatus behind it downstream. Wright and Stack and their colleagues hoped that these longitudinal openings could manipulate the complexities of air flowing at up to sonic speed, channeling the air around the test subject in just such a way as to yield valuable transonic research data.

In 1947 Langley was already trying out the sloted-wall idea in the test section of a small pilot tumel, and had learned, apparently serendipitously, that the slots emabled smooth operation not just at very high subsonic speeds, but at low supersonic speeds too. By the time of Yeagers famous research flight that October, Stack had long since begum considering how to apply the slonted-wall results in two full-size high-speed tumels-industrial-scale facilities with huge powerfal fans and testsection diameters of eight feet and sixteen feet, sizable by any era's standards. With Ray Wright's specific design concept, Stack's vision and leadenship, engineer Vernon G. Ward's technology-development contributions, and the NACA Langley technical staff's wind tunnel expertise and experience, the research-and-development effort relatively soon led to the conversion of these two
11. Hallion, Sufervonic Migh, p. 45, witerates in h. 2 what he has made elear thoughomt ch. 1: "The puncipal reason" for transonic researh dircraft "was the inability of existing wind tumels to furmish satisfan tois and reliable tansonic nerodynamic data."
12. Dansen, Linginer in Change, pe. 467, 471, and 344-47.
13. The cond of this esway addeessen contlicting interpretations of the Ineadith of Wrights tethological awareness.

 approximate dirmeter. The stottet-wedl configuration shawen here desconds divertly fom the one in this tumet that hetped win the 1951 Calliar Trophy (NASA I-9(0) (04029).
national research facilities: the now-retired 8 -Foot High-Speed Tunnel, designated a national landmark in 1985, and the 16 -Foot High-Speed Tumnel, later called the 16 -Foot Transonic Tunnel and still operational with slotted walls in 1998. The resulting Collier Trophy for Stack and nineteen of his colleagues was the first ever awarded outright for a research tool, and the only Collier ever awarded for a ground-based one-cven though, as with particle accelerators and detectors for nuclear science, wind tumels have been crucially important for American aeronautics."
14. "From the time of the Wright brothers, the wind numel. . . proved to be the essential piece of we satile experimental mathinery on which mach about the progressive evolmion of aicratt depended," writes
 NASA SP-4308, 1995), p. 436, restating a main message of his earlier Emginer in (harge "The wind funnel dominates ateromatical research just as the microscope dominates biology, the telescope astromomy, and the particle
 Roland's mane for a criticism of the NAC occasionatly mentioned but seldom forthrighte leveled: that its romi neers tow often allowed rescareh took, especially wind tumels, to dictate rather than merely seme resear h programs. In Mode hestoch see espectally 1 :xiv-xs, but also $1: 108$, $220-21$, and 309 and $2: 507$ and 520 ; see also Fdwad W: Constant, Bis, 73:4:269 (19x2) 609-10.

In fact, given the wind tumel componem in the NACA's overall contributions, a Collier Trophy for an NACA tumel secms fiting, as three low-subsonic examples from the 1920)s and early 1930 s illustrate. Each was the first of its kind in the world, and was soon copied elsewhere." The Variable-Density Tunnel, or VDT, could, with fairly good success for the time, comberact scate effect-the skewing of test data inherent in testing scale models instead of full-scale aircraft or aircraft components. By the early 1930s, according to acronantics his torian Richard K. Smith, VDT-generated information published in fomal NACA reports enabled aircraft designers to select a wing shape for a given application incisively, rationally, and conveniently." That the VIDT became an official national landmark in 198.5 may help, validate its historical significance. The Propeller Rescarch Tumed, or PRT, circumvented scale effects and other technical difficulters simply by being powerful enough, and large enough in its test-section diameter of twenty feet, to test at full scale a propeller and engine mounted on an actual fuselage or on a portion of a full-size wing. Several observers have noted that the NACA's first Collier Trophy, the one for the speedernhancing engine cowling discussed in chapter 1 , might well have recognized instead the PRT, the rescarch tool that enabled the cowling's development. ${ }^{1 \times}$ 'The Full-Scale Tumel, or FST, operational for neaty two-thirds of a century starting in the early 1930 s, took the PRT's full-scale-testing principle one step further: in its thinty-by sixty-foot test section it could hold an entire small airplane. The FST was also designated a national landmark in 1985.

With a technical staff contimually devising such tumels and other research tools, the subsonicera NACA became widely recognized for its applied acronatical rescarch. The organization became highly adapable for fulfilling its statutory charge of finding practial solutions to the problems of flight-problems eventually defined as including the acrodynamics, and somewhat belatedly the aeropropolsion, of transonic and supersonic flight. In fact, during the 1920s and 1930s the NACA's earliest efforts in transonics began to grow out of its extensive subsonic efforts, and ultimately led to the tansonic wind tunnel for which the 1951 Collier Trophy recognized "John Stack and associates at the Langley Aeronantical Laboratory, NACA." So besides celebrating the slotted-wall transonic tumel's promise for jets, and beyond tinally recognizing one representative NACA wind tumel, the Collier Trophy for that year illaminates the effectiveness of the research-tootcentered NACA technical culture.

 York, NY: Hugh Intuter I evin, 1989), 2e9-!

 SP-44, 1980), 1. 140. For the present essay and moch else. Beckers book is centrally important as beoth at pri-

 tive researehers, and umparalleled lacilites," and becanse he be lieves that to "provide fundanental insights inter

 discossions that provided new insights, and the gradual evolation of the final solution. This hind of information

 history ol science of by the history ol techmologs:"

A Technological Organization's Group Achievement

Academic or Nobel Prizc-like noms for assigning credit were only partly relevant in the Collier's recognition of the transonic tumnel achievement, for the cited triad of "conception, development, and practial application" of the slotted wall incladed effective work outside the purely intellectual realm. In fact, the Collier for 1951 required distinguishing among specific kinds of contributions as well as among contributors, including the technological organization itself-though the Collier committee at first adopted a simpler view. A look at how and where slotted-wall credit has been conferred, both by the Collier and by other means since, may show something about NACA-era views of the nature of technological achievement, and does show the central importance of a wellintegrated technical culture in the NACA's work.

The slotted-wall achievement did have an important intellectual component, as Stack's technical peers have duly recognized in later citations and discussion in aeronattical publications. But Collier Trophy notwithstanding, they have not credited Stark. Athough the Collier committee singled him out, and in fact originally intended the award for Stack alone, for over half a century Stack's professional peers have generally attributed the origin of slotted walls either by crediting the NACA generally or by citing the 1948 paper of Stack's Colliet-winning "associates" Ray Wright and Vernon Ward, the engineer who spearheaded proof of the slotted-wall principle with the first smatl pilot tunnel." Sechnical authors have left Stack not only uncited but ummentioned, even in passages that summarize historical background. It must be noted that Stack's rise within Langley management during the 1940s meant fewer papers from him and, when he did write, a broadoverview approach not conducive to academic citation. ${ }^{24}$ And it must also be noted that Stack quite possibly intended not to take academic credit; Wind Tunnels of NASA author: Donald D. Baals, one of Stack's Collier-shating associates, said in 1996 that Stack might well have intended to send credit Wright's way. ${ }^{\text {at }}$ Another associate, veteran NACA and NASA high-speed researcher John V. Becker, emphasizes the distinction between kinds of contributions. His book the High-Speed frontior: Case Histories of Four NACA Programs, 1920-1950 says unambiguously that the "first successful many-slotted transonic tumel configuration was devised single-handedly by Ray II. Wright," that Wright was "the designer of the tansonic tumel," that "Wright's personal decision in 1945 to get down to cases" intiated the multiyear transonic tunnel effort, most of which "clearly bears the stamp of
 "Standardization of Wind Timnels. October 13. 1948-Than Feb. 1949" in the Research Authonization 70 file, IIIA, comatos this paper's appronal and distribution paperwork as well as the ortober 6 . 1 g.ts, final editorial

 Wright-Ward paper in 1995 as Technical Report 1231 , but changed it somewhat, mainly by delefing a paragraph nean the end reponting lack of umderstanding of the low-supersonic capability and by slighty altering conchtsions 1 and 6 . The NASA langley libaty holds the original 1948 RM vemsion on michofiche. Key antecedents for the 1948 piteer include Ray H. Wright. Plossicist, and Vernon G. Ward, Aemonantical Fingineer, lo Compressibility Research Division Files, "Tumacl Wall Interlerence Efects it an Axially Sholted Test Section-
 Wright to (ihef, Full-Scale Division, "Theoretical eonsideration of the use of axial slots wominmize windtumal blockage," May 24, 1948 (Stack collection folder "Shoted-Throat Tests, 1946-48," 1.1AA). The latter says the "theoretical investigation" it means "to record and preserve" mat "later be combined and published with the resalts" of an experment in progress, obvionsly the Wright-Ward pilat-tanmel expermentation-and imeded the eventual Wright-Ward paper reflects much from Wrights memo.
20. Becker, High-Sperd Fromien, pp. 52, 53.
21. Celephene interview, April 7, 1996.

Wright's insights and personal integrity," but that it "is equally clear that without the enormous contributions of a quite different kind made by Stack, the achievement of the large slotted tumels would not have happened" as soon as it did.?

The practice of excluding Stack from credit appears to have begun well before 1951, and it has continued for half a century. In October 1948, NACA research director Hugh Dryden began limited, high-priority circulation of the Wight-Ward paper. Within days, Clark Millikan of the Guggenheim Aeronautical Laboratory wrote to congranulate the NACA and to express hope for "following the lead given by Messos. Wright and Ward." His letter does not mention Stack. Within weeks, Air Force wind tumel expert Bernhard H. Goethent, formerly of the German acronatical research establishment, visited Langley; Dryden had officially informed the military about the sloted wall's "revolutionary nature," and Goethert hoped to leam how to apply it. Wright. Ward, and Stack himself, together with engineer Eugene C. Draley, hosted Goethert's intensive visit and tour. ${ }^{2 / 3}$ Yet Goethert wrote in his 1961 book Tramsmie Wind Timnel Testing that the "first really successful transonic wind tumel was investigated in the United States in 1947 in tests at the NACA." The passage foomotes Wright and Ward and leaves Stack tumentioned. Moreover, Stack's name barely appears at all in Gocthert's book, an exhaustive survey of a research technology that the 1951 Collier Trophy credits Stack above all others with founding. ${ }^{2 t}$ Similar attribution patterns appear in a 1955 NACA paper that in patt reviews past NACA sloted-wall work, in a 1960 Air Force paper summarizing that service's wind-munneldevelopment efforts, and in the 1965 textbook HightSperd Wind Tumel Toxting." Stack's exclusion persisted in the mid-1990s at NASA Langley Research Center, where wo papers addressed the slotted-wall issues that Wright and Ward first discussed in prim. Both explicitly attribute the technology's origin to Wright and Ward. Neither mentions Stack, though upon inquiry, cach principal author readily confirms clear awareness of him. One of these papers surveys the characteristics and technical history of what is now called the 16 -Foot Transonic Tunnel, one of the two lage Langley facilities where "practical application" of the slotted wall helped carn the 1951 Collier Trophy for Stack and his associates. ${ }^{2 /}$
22. Becker. High-Sperd Froution, pp. 99, 119, I55. In a July 15,1988 , lener to historian Hansen (cope in my files), Wand assemed a creditectaming versiom of "the nue fieds ma regad to the eliminatom of choking in wind umbels and the developmental and design reseath of the Na iA Transonic Wind Tumel," (ereanly his pilot-mmel efferts did contribute importandy, and apparently he did personatly discover the unexpected low supersonic capability. However, his recollections conflict with the documentary reond, discussed later in the preseme essay conceming the chates, and thus the priority, of Wrights 1946 expectations and intemtions for the neansonic significance of the theoretical work Wrigh began comducting before Ward became involved.

 which a signed copy is in the "Research Authorization 70 " fotder, wgether with copies of Dradenis Ochober x, 19.4. "revolutionay nature" letters to military research thag officers.
 6i1. (Publication of the Nomb Adantic Treaty Organizations Advisory Gonp for Acmomatioal Rescarch and Development, edited by Wilbur Ci. Nelsen, from a series by the NATO-AGARD Fluid Dynamics Pamel, which under an carlier name had also poblished (ecethert's impertant paper "Flow Establishment and Wall Interference in

25. B. II. Little, Jr., and Jancs M. Cubbage, Jr., "Ihe Development of an 8-lnch be R-In la Slouted Tumed for Mach Numbers up to 1.98," NASA TX D-90x, Angust 1961 , originally published January 1955 an dassified NACARMLESBOX; M. Pindahat W. I. Chew, "A Summary of Perforated Wall Wind Timmel Studics at the
 High Sfred W'md humet Tosing (New York, NY: John Wiley \& Sons, Inc., 1965), Pp. 103, 104.
26. Joed 1. Ferhart and Pery J. Bobhitt, "Experimental Studies of Transonic Flow Fiedd Neat a Longitudinally Slotted Wind Tumel Watl." Nast Technical Paper 3392, April 1994, and Francis J. Capone,
 Tmucl: Historical Owervew, Facility Description, Calibation, Flow Chatacteristics, and Test Capabilities," NaSA Technical Paper 3521, semember fows.

So why did the Collier committee members plan originally to cite Stack alone? Possibly they simply wanted a heroic interptetation like that in James Michener's 1982 nowed Space, which attributes the transonic tumel solely to "a genius named John Stack" who had a "brilliant idea" that led to "airplanes that could break through the somed barrier almost as undisturbed as a horsedrawn carriage heading for a country picnic in 1903." Possibly the committee's initial plan reflected a view like that of Orville Wright, who-no doubt remembering what actually led up to 1903 -had complained in 1944 that Colliers were going too often to aviation organizations instead of imnovative individuals. Possibly the intention reflected public relations aims of the NACA, whose executive secretary and chief propagandist John F. Victory chaired the Collier committer for 1951. The NACA apparently had a long-standing involvement in the award selection, and in at least one case-1947, when it secmed certain the NACA would be among those recognizedhad calculated possible combinations of recipients to promote. ${ }^{-\quad}$

If the committee members did intend the heroic interpretation, probably they wanted to lend a bit of romantic appeal to an award for an unronantic, ground-based researeh tool. Historian fohn William Ward has analyed an analogous and much better known instance of creditassigning in American aeronantios: the case of Charles Lindbergh. Conceming the adulation of Lindbergh, Ward observes that it is "stange that the longdistance flight of an aipplane, the achievement of a highly advanced and organized technology, should be the occasion of hymms of praise to the solitary, unaided man." He describes a tension inherent in Americans' understanding of the new phenomenon of aviation: their identification with pioneering, self-reliant, free individuals versus their lack of interest in the collectivized, organized industrial society such individuals often actually represented. Possibly the Collier committer saw and songht to avoid such a tension in the choice between the pioneering Stack and the technological organization he represented. Ater all, this was already going to be the only Collier ever given for something so likely to be seen as inherently boring: not a heroic tlight, not a new airplane, not a successful atiation program, not an improvement in airplane equipment. Just a wind tumel, a noisy industrial plant for tuming out research data. The NACA isself is the analog of the monteresting and therefore uncredited collectivized industrial society in the Lindbergh achevement, but the analog of the lionized Lindbergh himself is John Stack, already identified by an earlier Collier as a pioneering individual for conceiving the plane that broke the somid barrier. A Washington Post article the week after that carlier award had said he didn't "look like a man of science" but was instead "a rather handsome fellow whom you'd take for a lawer, a football coach, or even an actor." ${ }^{\text {en }}$

In any case, in public relations and other nontechnical realms the stack-alone interpretation lived on even after the 1951 award actually did partly credit members of the technological organization that stood behind Stack. The 1954 NACA ammal report tilts toward such a description. emphasizing Stack's primacy in the achievement. In a 1957 speech, NACA executive secretary Vietory tilted all the way: he portrayed the accomplishment as an individual one, and fatly atributed it to Stack atone. At the 1962 ceremony

[^46]awarding the Wright Brothers Memorial Trophy to Stack, the printed program declared that Stack had won two Colliers: one jointly for the X-1, and another "singly . . . for his development of the transonic wind tumel." A 1993 history of the National Aeronautic Association, the organization that awards the Collier, mentions the associates and the teamwork, but names only Stack. ${ }^{\text {² }}$

But Stack himself knew better. When he learned of the Collier awarding committee's impending misassignment of credit, he took decisive steps to correct it. Recognition of the nineteen associates, a substantial partial cross section of the NACA technical culture, resulted from plain forthrightness in Stack, a product of that culture and in many ways an exemplar of its norms. High-Speed Frontier author John Becker, one of the nincteen himself, described Stack's reaction to word that he had won this second Collier to go with the one he had already shared with Yeager and Bell:
A frow weeks before the second auard was presented to him by President Harry S :
Truman on Decpmber 17, 1952, Stack appeared unexpectedly in my office in a state of
considerable agitation. He had just recived notice of the award from J. I: Victory,
chairman of the committee for the Collier Trophy. Stack said he was relurtant to accopt
the azoard as the sole recifiont because so many others at Langley hat comtributed
importantly. He uondered how the others would react. I believed they would feel as I did
that he richly deserved thes vecognition. Withoul his aggressive leadership and promo-
tional efforts there would have been no large transomir lumnels at Langley at that time.
Bul Stack was insistent that the other principals should be included and we worked up)
a list of some 19 names.

In the end Stack could not get his colleagues individually cited, but did manage to distribute some of the recognition by getting the words "and associates at Langley Aeronautical Labotatory, NACA" added to the formal citation. Before the award ceremony he issued a press release describing each person's paticipation and emphasizing the "teamwork, the pooling of scientific capacities in a rescarch laboratory, that makes an idea successful." He also helped organize a dinner to recognize the nineteen. Even a decade later, Stack's official NASA biography sheet still made the point that in his 1952 acceptance of the Collier for 1951, he had "confimed that NACA know-how and teamwork were largely responsible" for it."

Like Stack in 1952, previous NACA individual Collier winners Lewis A. Rodert for 1946 and Stack himself for 1947 had also publicly declared NACA teamwork the real basis for their achievements. Rodert had said that his Collier was "awarded for the general work of all of us" and that he had been named "because only individuals [could] be so designated." Stack had emphasized a nearly identical sentiment." This focus on the effective team rather than on any individual was entirely consistent with both the official outook and the actual practice of the NACA. Aerospace historian James R. Hansen says that
29. AR54, p. 13; "Current Status of Aeronantical Research and Trends Towards Jomomow," Jume 8 ,
 © Jut of Whathgton, December 17, 1942, Sheraton Park Hotel, Witshington, D. C.," Stack collection folder

 December 19, 1959, avalable in the I.lA, Stack hiography sheet, Stack collection folder "Awards and
 at case" when he heard about the award, and that "it didut cost him anybing to add on" the associates, for he knew that in any case he would ger most of the credit.

George Lewis, whose quarteremtury tenure as the NACAs first research director lasted motil after World War II, characteristically "emphasized teamwork over individual gemius" and that Lewis believed in Thomas Edison's "nonheroic theory of invention and especially liked its emphasis on collective action." Lewis once asked that Langley frame and display a presidential tribute to Edison that he thought "aptly cover[ed] the aims and purposes" of the NACA. In the quotation, President Hoover-like Lewis, an engineer-had atuibuted "both scientific discovery and its practical application" to the "labor of a host of men" gradually "building up the structure of knowledge" in "great laboratories." Lewis's successor Hugh Dryden, coathor in the 1920s of NACA reports on wind-tumel-like experiments with transonic jets of compressed air, held similar views. His wo-sentence letter transmitting the 1948 Wright-Ward report to Clark Millikan ends with a forthright attribution of slotted-wall "development"-a term in the eventual Collier citation's triad of "conception, development and practical application"-not to the umentioned Stack, and not even to authors Wright and Ward, but to "the Committee's Langley Labomatory", where flourished what later came to be called the NAC A techmical culture.

As a management cliche, tramaork can obviously evoke skepticism or even cynicism, but NACA vetetans have confinmed that this officially dectared teamwork actuatly did flourish at the level of handson routine, and not just in managers' imaginations or public pronomoments. Stanford aeronantical engineering professor emeritus Walter \mathbb{G}. Vincenti, for instance, who helped comprehensively define the transonic wind tunel problem as an NACA engineer in the 1940s, and who writes on NACA history and the epistemology of engineering, has described the group dynamies of some important NACA tlight reseate of aboul 1940 as exemplifying "the kind of fruitful melding of personal and group anbition and interest that an arise when tatented techical people join in what they see as a demanding and worthwhile task. The whole was more than the sum of the parts." Becker, who joined the NACA Langley staff in 1936, ways that a consequence of daily group discussions in the mid-1930s Langley lunchroom was that "often no one originator of an important new research modertaking could be identified. The idea had gradWally taken form from many discussions and in truth it was a product of the group." He reiterated in 1996 that "seldon was there one clear, unequivocal route to a solution" to be found by one person alone; mote often, he said, things really did happen by way of the group's interactions over time. Concerning the overall assignment of sloted-wall credit, Becker, who avoids expansive phases and carefully distinguishes NACA public relations pronouncements from technical facts, tends to view the achievencot as an important subset of all the late-1940s NACA tamsonics work-and he calls that overall program "one of the most effective team efforts in the amals of aeronautics. ${ }^{*}$.

Four decades after the Collier Trophy for 1951 , this teamwork-oriented, sometimes underappreciated NACA technical culture became a topic of some interest conceming NASA, especially in public-policy discussions of NASA's future. "NASA did not rise like a new creation from the sands of time when the space race began in 1997," declared

[^47]Howad E. McCurdy in his 1989 article "The Decay of NASA's Technical Cultme." There and in a 1993 book, McCurdy describes the technical culture of the . NACA as both an antecedent and a standard for that of NASA, which came into being in 1958 to combine, replace, and extend the NACA and other federal organizations. An underused means for adding to understanding of this technical cultual hertage is historical study, and one useful topic for such study is the NACA's handling of the transonic wind tumel problem over the course of the the dee deades leading up 101951.

To idemify chatacteristics of the NACA and early NASA cultures, MoCurdys book relies primarily on observations and impressions of NASA staff, drawing secondarily on several historians of the NACA. The result, says sociologist Diane Vaughan in her book on the 1986 challenger disaster, is an "mparalleled history of organzational culture" that shows NASA able during the 1960 s "to maintain the strong technical culture that preexisted Apollo." Vanghan's own extensively reseathed study cites few directly NACA-related historical sources." Other public discourse has also addressed NASA's NACA technical coltual heritage, sometimes with little reference to formal scholarship of any hind. In popular literature. Michence's Space, Com Wolle's The Right Stuff, and Apollo: The Rue to the Moon by Charles Muray and Catherine Bly Cox presume the importance of the techical cultural link." So do public-policy studies from Washington. A 1994 National Research Comencil report takes an explicitly historical approach inwolving the NACA to justify recommendations about NASAs building new national subsonic and transonic wind fumbels, but uses as its sole NACA source a self-serving, semiofficial historical summary ghostwritten in the 1950 s for the NAC chaman by a public affairs officer. A 1994 Congressional Budged Office study of possible new NASA directions asserts that the agencys "organizational history is relevant to the criticism of its curcont conduct" and observes that among "NASA's institutional predecessors was the National Advisony Committee on \mid sic \mid Acronamios. Its purpose was to develop useful aviation technology a task that by most accounts it accomplished well." But beyond tying discussion of NASA's "original organizational culume" to McCudy, the CBO study names no such accomes." So there may well be room in the conventional wisdom, and a use in public-policy discussions. for an enlarged historical perspective conceming the NACA technical culture. Useful materiats are available for it. Historian James R. Hansen's work, especiatly fingine in Charge: A Mistory of the Iangley Aeromadial Latormom, 1917-1958 and Spariflight Revohution: NASA Langloy Resparch Coutar from Sputmik to Apoilo, contributes substantially wo chacidating the echnical cultual link between the NACA and NASA. So does Alex Roland's Model Research: The Natomal Aduison Commiller for Aeromantios, 1915-195e.

Scholarly studies, both historical and sociological, occasionally attempt brief distillations conceming the NACA technical culture. Roland says that "the NACA by 1926 was committed to a rescarch philosophy that valued process over prescience, the tean over the individual, experiment over theory, engineering over science, incremental effinement

[^48]of the existing paradigm over revolutionary creation of new paradigms." He then distills his own summary to six words: "the trimmph of engineering over science," a variation of the thought that Hansen distills even further in his book title Enginefr in Charge, a phrase that McCurdy in turn has appropriated to name the NACA cultural tradition. The McCurdy distillation of the original NASA technical culture that Vaughan selects to quote is consistent with Roland's, Hansen's, and others' historical scholarship: it "consisted of a commitment to reseath, testing, and verification; to in-house technical capability; 10 handson activity; to the acceptance of risk and fature; to open commmications; to a belief that NASA was staffed with exceptional people; to attention to detail; and to a 'frontiers of flight' mentality." "T

The history of the NACA's handling of the transonic wind tunnel problem may contribute to revising or refining such distilations. When NASA's antecedent technical culture began taking shape around 1920, a new research problem had arisen: on aircraft with increasingly powerful congines, longer propeller blades were traveling through larger ares, their tips in some cases reaching sonic speed. Since a propeller is an airfoil, a complex, precise aerodynamic shape like a wing, this made transonic aerodymanis a practical acronautical research issue, even though transonic flight-and the word transonic, for that matter-were still some distance in the fume. So the NACA cffort that evenmally led to the slotted-wall transonic tunnel began. From the 1920s until the advent of NASA, this effort paralleled, reflected, and sometimes even partly constituted the development of the NACA itself. The effort's history suggests a few candidate modifications to distillations summarizing the NACA's technical culture: Its members conceived rescarch, researcher, and research lool as organically intercomected. With an extemally compelled applied-reseath focus, they sought what Stack came to call "physical understanding without mathematical weakness," but they kept in view the additional practical goal of fundamental scientific understanding. By continually entarging their comporate technical and scientific memory and by continually developing craftsmanship in the arts of aeronautical research, they learned to exercise technical intuition deftly, and to adapt flexibly to new problemsthough ustally no until doing so accorded with the prionities of industry or the military.

Wind Tunnels, Transonics, and the NACA of the 1920s

The NACAs job was to supply American industry and the military with information for designing better airplanes. This information mainly took the form of more than 16,000 fommal reports published and distributed during the reseach organization's forty-three years, an average of about one per day from 1915 to 1958 ." Much of the NACA's informa-tion-generating research addressed the centrally imporant topic of aerodynamics, which means predicting the complex interactions between airplane and air, which in turn means understanding the nearly constantly changing flow field-we pressure, density, temperature, and relative velocity"' at each point in the air affecting and affected by the airplane at each moment of tlight. This predicting can be very hard. Flow fields differ for every contemplated acrodynamic configuration, and change with each airbome maneuvet. Even at an aimplane's slowest, its flow-field velocities mateh the wind speeds of a robust hurricane The ideal fom of flow-field understanding, using the mathematical language of the science of fluid dynamics, is a reliable theory-a comprehensive, systematized conceptual
 Cianh lorision, p. 209 guotes p. 302 in MCCurdy, "The Decay of NASA's Fechnial (inhure."
38. Noded Revarh, I xiii and $2: 556$.
39. John D. Anderson, Jr., calls these the "fome fundamental quantities in the language of aemotyam-

model applicable to the task of making comect performance predictions about possible airplane and airplane-compenent designs. Lnformately, this level of understanding is hard to attain, espectally for a masonic speeds. It is possible, though, to get empirical information applicable to design problems by conducting wind tumed tests or flight tests that replicate, or at least approximate, flow fields of interest. By 1920, the NACA had begon conducting both kinds.

A wind tumel test replicates a flow fiefl by moving air across a test subject instrumented for data-gathering, usually a scale model but sometimes an actual airplane of a full-scale componemt of one. The method is functionally equivalent to flight, for as Leonardo da Vinci pointed out, "what an object does against the motionless air, the same does the air moving against the object at rest." "Of course, da Vinci never tried establishing this functional equivatency in wind tumel airflow near the speed of somed. A flight test, on the other hand, generates data by moving an instrumented test subject through the air. In 1919 the NACA began relatively low-speed fight experiments with ordinary biplanes. But to cite the more varied flightesting examples from the NACA's 1940 secra efforts in transonics, a llightetes subject could be a piloted research airplane like the X-1, or it could be a scale-model aipplane or wing shot skyward on a rocket, dropped from an airplane at high altitude, or fastened to the upper surface of, say, a P-5l Mustang's wing, where airflow could accelerate to sonic speed during steep subsonic power dives.

Both wind tumel and fight tests generate useful infomation, but as the postwat NACA transonics effort illustrated, flight tests often require more time, effort, and resources, with eadi datum precionsly won. A arefully catied model dropped from altituele or launched on a rocket required an elaborate tracking system on the gromed, had limited capacity to accommodate measuring and data-transmitting devices, and was expended in a single brief use. For wing-mounted models, the host airplane's own flow field often spoiled the smaller localized flow ficld under study. Transonic reseateh airplanes, besides being expensive and requiring extensive support, also endangered their pilots: the NACA's Howard Lilly, third human to exceed the speed of sound, died in a May 1948 cash of the $0-558-1$ Skystreak, an airctati comparable to the X-1. Although flight tests did contribute substantially in the mideentury attack on transonic aerodynamics, the postwar transonic-reseach-tool development goal was always to achieve the flexible, convenient, productive, and safe laboratory conditions of the wind tumel. As the NACA had recognized even before 1920, in a tumels casily accessible test section, experiment setups are endessly and comparatively cheaply reconfigurable, and results are comparatively easily observable and measuable. Of course, even if easily obtained, data from a tumel's artificial conditions must still meet a verisimilitude criterion: they must correspond somehow with the actual flight conditions being replicated, either directly or by the application of reliable mathematical correction factors. Meeting this verisimilitude requirement was the central challenge of NACA wind tumel history, and the NACA's best-known success in meeting it was the slotted-wall transonic tumnel.

Long before the 1951 Collier Trophy for that success, and long before there was an NACA, aeronatutical researchers recognized the wind tumel's advantages. The efforts of Orville and Wilbur Wright to engineer the first airplane included methodical studies of small aerodynamic shapes in artificial flow fields inside a six-foot-long wooden box with a fan at one end. By 1920, when the NACA began operating its first wind tumel at Langley, several tumels were in use in the United States, but the world standard was being set at Ludwig Prandtl's aeronatuical laboratory in Götingen, Gemany, where the closed-circuit,

[^49]return-llow tumel had been invented and redinced. Its airstram cyeled repeatedly, with power-sating efficiency, atond its remurn circuit and through its lest section. Years bater at langley, the precise platement of carefully calculated ventilation shots in the test-section walls of two high-spered wesions of such tumbels made them the first capable of tamsonic testing. But in Jume lygo at langley, mo wodd standad was sel, or even med, by the NiAC when its firs wind tumel stated operating. Iacking a remon circuit, it was "obsolete when it was built," according to Wimd Tummels of NASL amthor Bats."

However, in that same year of 1090 the NACA, through its execotive committer ehaitman Joseph S. Ames, did at least take steps boleam more about wind tumels wont wide. In
 nemt figures in Anerican acronatutes to ask for help ounlining "a program of tests to be made in the wind tumels of this comme and of Enrope with a view be secming what one might call standatization, that is, infomation which would enable one to coment the data pethlished, as obtained in these different wind bmomels." The immediate motivation was adibation. Analyang the divergence of results from research tools carrying out identical experiments can improve interperetion of the results; by calibrating tomels agamst each wher, researchers cond better extapolate likely fow-feld behavion atof from antilicial flowfield behavior on the gromad. W. F. Dmand of Stanford laversity, for decades a mation

 with Amess cross-ablibaton testing program begm, the NAC is ammal report ineluded a section called "Intemational Standardiation of Wind-Timone Resmbts." The vomeg leseateh
 ing, which had started at langley in 1919 at least party for hamet-ompanison phopeses." Though the immediate motivation for all of this crosscomparison work was calibration to shapen understanding of research results, the effort most also have calibaterl and shatpr ened the NACAS moterstanding of its need for better tesemeh toons.

Already in loge that need had begun to extend to the hansomic, as seen when Ames's lefter elicited an expression of concern about wind umbel results for the high-sperd range that was mot even vet called by that name. Elishat N. Fales ol the Amy's acromatiod babeRatory at Mo Cook Field near Dayton, Oho-mow Wright-Patterson Air Force Base-bepled
 ate attaned which involve density changes." Fates was bringing up the fumdamental probs

lem of compressibility, a phenomenon already known in the field of fluid dynamies and begiming to requite attention in the sublield of aerodynamies. Fven at slow speeds, a flying objeet slightly compresses some of the air that it meets, raising that airs density and thos altering a key flow-field characteristic. At speeds approaching that of sound-that is, at transonic speeds much higher than those of the airplanes of loy 0 , but equal to these of some propeller tips of the day-this compressibility becomes significant and stants to degate the performance of airfoils. For propellers, compressibility effects degrade the production of propulsive thost. For airplanes themselves, compressibility effects can become distuptive and even dangerons, as indeed happened when airplanes began attaining much higher speeds in the late 1930 s. Under Nach anspices, Fales in 1920 co-wrote "Wind Tumel Studies in Aerodynamic Phenomena at High Speeds," a report on work that Stack later called "the earlies experimental investigation of anfoil chatarteristics as affected by compressibility," and that Becker says introduced two important compressibility terms: critieal speed and buthere At critioal speed, some of the airflow accelerating actoss the airfoil surface reaches the sperel of sound, weating a llow-field-disrupting compressibility butble, a discontimuty in the flow.

When Fales raised this high-speed researeh issue in answering Ames, little had yet been learned about how to study tansonic phenomena. Becker notes, for instance, that Fakes and report comuthor F. W. Galdwell did not even mention the centally important ratio of flow-fied speed to the local speed of somed-Mach mumber, as Swiss high-speed reseacher Jakoh Ackere in 1999 proposed calling the ratio-even though the concept itself had been known to fluid dynamicists for decades." Of course, much was still to be learned aboun how to study aeronatical questions in general. Researeh tools were often quite rudimentary and unsophisticated. The Propeller Research Timnel at Langley, for example, originally had plain commercial platom scales for acrodynamic measurements. With air flowing around an engine-and-propeller configuration mounted on a framework atop the sales, researchers simply weighed the thrust and drag."

Research tools were also rudimentary for the tamsonics studies the NACA at first contrated out during the 1920s, as future NACA research director Hugh Dryden leamed firsthand. Becker says that with the high-speed work of Caldwell and Fales the "seeds of interest had been sown" in both the NACA and the National Burean of Standards, another govermant agency with acronatotios interests. Accordingly, new high-speed studies began under NACA auspices. The work involved NBS aerodynamics section head Dryden. a 1919 Johns Hopkins Ph.D, in physios and mathematios whom Ames, in his capacity as a Johms Hopkins physies professor, had originally recommended to NBS. Ames once described Dryden as "the brightest young man . . . without exception" that he ever encomatered. Like the transonic wind tume effort itself, Dryden was to contribute substantially over the years to defining the NACA technical culture. In 1947, after sewing since 1931 on the NACAs arodynamis committee, he joined the NACA staff to replace aging reseath director George Lewis just when slotted walls were being developed at Langley. Thereatier, in momerons aticles in both the professional and popular press,

 Fromier, ple :

 the 10 rm in 1935 at the Volta high-speed conference in Itah.
 ness of early NaCA reacanch."

Dryden articulated the NACA's outlook on all aspects of aeronatical research. From 1958 until his death in 1965, he helped link the old NACA and the new NASA by serving as NASA's deputy administrator, bringing with him "the loyalty of the NACA's 8,000" employees, according to Richard K. Smith. It was Dryden's transonics experimentation of the 1920s that began these decades of contributions to the NACA and NASA technical cultural traditions. And that work involved rudimentary research tools, as Dryden recalled in an ilhustrative anecdote in at 1953 National Geographic anticle celebrating the research aspects of flight's first half-century:

> As long ago as 1923 I was experimenting with propeller tip sections in a somic-speed jet of air at General Electric's Lynm, Massachusetts, plant. Afterward when my colleagues and I walked out into the streets, we noticed that passers-ty sepmed whusually interestad in our group. We later walized aw had been umomsciomsly talling in very loud tomes to compensate for the temporary deafness crased by wowing for several hours with our heads a frow inches from a I2-inch somic jet."

Dryden, Army Lt. Col. G. F. Hull, and Dryden’s NBS colleague Lyman J. Briggs-a recipient of Ames's 1920 cumel-standardization proposal letter, and years later the NACA's watime vice-chairman-had gone to Lym to use Gencral Electric's huge centrifugal compressor, which, in Becker's words, "provided them in effect with a ready-made-free-jet wind tunnel." "It could eject a jet of air at transonic speed from a circular nowele just over a foot in diameter. The rescarchers took with them six three-inch-wide sted models, each representing the acrodynamic shape of a standard Anmy propeller blade, and each over seventeen inches long so as to completely span the high-speed jet of air, extending beyond its boundaries. So important was the precise construction of such models that langley, developing its own acronautical research craftsmanship, later bought the machining equipment that these particular models' Massachusetts maker also used for fashioning test subjects for the twenty-atmosphere pressure of Langley's Variable-Density Tumel. The experimenters also took a specially constructed wind tunnel balance, an instrment with which they could hold a model airfoil in the airstream, incrementally change the airfoils angle with respect to the airstream, and measure the resulting lift and drag forces. Their 1925 NACA paper "Aerodynamic Characteristics of Airfoils at High Speeds" reports that the investigation, carried out to obtain propellet-design information, showed that "the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency." Becker believes this work confirmed and extended that of Caldwell and Fales, offered the first useful attempt at explaining compressibility phenomena, and provided "the first statement of the relation between the critical speed and the known low-speed velocity distribution about the airfoil"-a piece of fundamental understanding "resurrected and exploited" a decade later in Langley's efforts to improve high-speed airfoils by designing them to have higher critical speed and thus a delayed compressibility burble."

[^50]Still, the methods and tools were rudimentary. For example, the experimenters made some unquantified, purely qualitative observations based on airflow pattems that appeared in oil they had placed on the model airfoils to keep them from rusting in bad weather-an apparently serendipitous ad hoc technique in the wind tumel art of flow visualization. More significantly, expert observers later noted several limitations in the open jet of air," some of which the experimenters themselves addressed in a section of their report called "Precision of Results":

> The large power comsumption of the compressor (5000 horsefower at high speeds) and the high cost of operation have made it impossible to referat observatioms at will. In the interest of economy, many of the measurements were mader white the (compressor equipment was] being put through shop lests. During suth tests, the speed of the air stream wers not under our control, and would often zary befowe a complete set of observations could be made. The noise of the air stream was so great that it was difficult for observers to communicate with eath other while the compressor weas ruming, so that modification of the program to mevt changing conditions weras difficult.

Besides these bothersome impediments to proper scientific procedure, the jer of air also imposed an important fundamental limitation-a version, in fact, of the problem that Wright, Stack, and their associates overcame years later at Langley: jet boundery efferts, or, more simply, wall interference. An enclosed test section's walls can diston the artificial flow field and thereby also the test resuls, particularty at tansonic speeds. Similarly, even though an open jet hats no solid walls to degrade flow-field verisimilitude, distortions comparable to those in a closed test section nonetheless arise because of the de facto boundary between the open jet and the surrounding air it hurtles through. An open jet does not constrict its attificial flow field within actual walls, but it still introduces measturment-distorting boundary effects.

So complex are bomedary effects in the transonic range, wrote Bemhard Goethert in Trunsonic Wind Tunnel Testing in 1961, that the late-1940s effort to invent sloted walls could not have succeeded based on experimentation alone, but required an "orientation of theoretical calculations." This motion too-like Fales's introduction of the compressibility issue-arose conceming tumels in genetal in Ames's 1920 tunnel-standardization discussion. American wind tumel pioneer Alber F. Kahm, replying to Ames's letter, suggested begiming the coosscalibration project by having "the ablest theoretical aerodenamicists," such as Prandtl, "discuss the mathematical theory of the flow in a wind tumel." Witheout "adequate theory, fumished before hand," wrote \%ahm, "it seems improbable that all the observations and precautions would be taken that are necessaty to make wind tumel data strictly comparable." In contrasting the gathering of empirical information with the larger issue of erecting a comprehensive theoretical framework into which it can fit, Zahm raised a question that engaged members of the NACA technical culture throughou the forty-three years the agency existed. The question has also engaged observers, critics, and historians both during and after those years-especially llansen, no only in the essay that opens this volume, but in other works including his NACA Langley history Engineer in Change Ustally

 of 1935 version), p1, 319-348.
 folder "R.A.s-Standardivalion of Wind Tummels IO20-1926," I.IIA. It mus be noted that Berker was that Rat Wright "agrec|d|" in a 197π inkervew that sstematic experiments might aloo hate worked: see high spert fromlian p. 100 .
the question is seen in terms of the science and engineering of arcraft themselves, but as Zahm's letter shows, and as the NACA's transonic wind tumel achievement highlights, it also applies to the science and engineering of the primary research tools of acronatios. Fhud dynamics is as fundamental for wind tumels as it is for airplanes. Thus it was that Ray Wright, a physicist and applied mathematician among NACA engineers, evemtually used what Zahm in 1920 called "the mathematical theory of the flow in a wind tumel" to provide for the accuate replication of tansonic flow fields.

A tension between empiricism and theory existed from the start in the NACA. The agency's first annual report in 1915 lamented a general "distrust of mathematical formulate" and "a natural tendency on the patt of designers and constructors to assume that mathematical theories are of use only to those who are mathematically inclined." Such distrust seems to have been more common in American aeronatics than in European. Theodore von Káman, a longtime leader in American aeronatics tained by Prandel at Gottingen, reminisced in the 1960 about the contast of "the practical inventor vs. the theoretical mathematician" he had found "chatacteristic of American scientific life in the twenties," and about the need, as he had long seen it. "to draw mathematies and engineering closer together" in this country. "The NACAs Max M. Munk, the former Prandtl student who proposed the Variable-Density Timnel in the carly 1920 s, worried that those desiring efficient mathematical condensing of empirical experience would encomen not only a distoust of mathematical fommate but an even deeper antipathy to theoretioal approaches and understanding in general. In an influential 1922 paper on airfoil design theory, Munk revealed acute defensiveness conceming the place of theory in aeronatuics: "Is it really necessary to plead for the usefulness of theoretical work: This is nothing but sstematical thinking and is not useless as sometimes supposed, but the difficulty of theoretical investigation makes many people dislike it." Ironically, the new theoretical icleas in Munk's paper led in the 1930s at langley to Theodore Theodorsen's further theoretical work, and then to the theory-based, wind-tumnel-refmed wing-design successes of Eastman Jacols and others, including Stack-work that produced low-drag NACA laminar-flow airloils, contributed to NACA advances in shaping ain foils for delaving to higher speed the onset of compressibility effects, and illustrated the utilitatian NACA's evepresent pratical interest in colarging fundamental understanding. Walter Vincemi has observed that complexity preduded experimenthased success in this wing-design work, just as Goethert has observed it did in the invention of slonted walls: both efforts required that orientation of theoretical catculations. By the late 1930s, the VAC Commonly incorporated such an

[^51]orientation in much of its research. Like other NACA work, NACA transonics efforts came to rely on empirical approaches manly, but as Zahm had recommended for sub)sonic tumels back in 1920, not exclusively.

Nonetheless, forceful criticisms of the NACA's general focus on applied reseatch rather than on deeper scientific questions have appeared from time to time, and bear on the history of NACA tamsonics. For the carly NACA, perhaps the best-known general statement of the charge came in 1930, when Amo Digest accused the agency of being far too narrowly and myopically empitical, never seeking to apply test results "to any logical system, 10 digest them, and to interpret their general significance in the sum of general knowledge.": Among historians, perhaps the best-known leveling of this charge comes from Edward W. Constant in The Origins of the Turbejet Revolution, a 1980 analysis of the pre-World War II convergence of technological developments, comprehensive scientific understanding, and combined scientific and technological imagination that resulted in the first jet aircrafi-in Britain and Germany, but notably not in the United States. Constant says that before World War II the U.S. aeronautical research establishment, including the NACA, "had no interest in fundamental aerodynamic science," as shown in part by the "umimaginative" George Lewis's lack of interest in Theodore von Kármán's recommendation that a large supersonic tunnel be built. Constants overall formatation of the charge, however, specifies more thatn the mere malfeasance of dwelling on the production of engineering data for neatterm application, and more than the mere nonfeasance of failing to seek comprehensive theoretical understanding. Beyond these sins of commission and omission, Constant believes, was a more fundamental failure, a utilitarianism so narrowly focused on existing technology and so mimaginative as to constitute a sort of tragic flaw in the chatacter of American-and therefore NACA-science and technology. Unlike the British and the Germans, the fundanentally thawed prewar Anerican aeronautical research establishment could not even see, and therefore could not act upon, the synthesis possibilities that had gradually become implicit for acropropulsion in the areas of turbomachinery, aerodynamics, and aircraft streamlining and structures. Like von Káman, Constant sees differing "national pattems in the pussit and utilization of acrodynamic science," and he observes that they "may reflect fimdamentally differentiated cultural traditions. No later than 1900 Germany certainly had an mequalled tradition of mathematical and theoretical excellence in science and also had developed a deliberately close relationship between science and industry. Britain shared a similar if more empirical and less mathematically rigorous tradition in science. In contrast, the United States still was possessed of a scientific tradition extreme in its empiricism and utilitarianism." ${ }^{\text {is }}$

Whatever the validity of such criticisms, the early NAC A did not employ its empiricism and utilitarianism unaware. In 1915, future NACA chaiman (1941-1956) Jerome C. Hunsaker noted that experiments designed to answer current practical questions could also, over time, supply answers to deeper scientific questions, much as George Lewis believed. In Modet hesearch, Roland says this principle became de facto NACA researeh policy by the late 1920s. In Emginer in Charge. Itansen shows how the principle applied in the matter of the cowling: the NACA first provided a quick practical solution and won the Collier Trophy, bu in the longer tem also worked for and achieved a gemuine depth of theoretical understanding. In 1923, Joseph Ames used a courtroom simile to describe the principle: when the NACA conducted its patacioll tests, said Ames, it was "also doing fun-

[^52]damental scientific work continuously, exactly as a justice of a high court expresses his deepest thoughts as obiter dicla."* ${ }^{\text {. }}$

Certainly Ames's obiter dicta principle applied in the evolution of the NACA's understanding of the fluid dynamies of wind tumnels-the scientific component that supplemented engineering experience and technical craftsmanship in the overall wind tumel expertise that began to grow in the NACA from about the time of Ames's 1920 initiative. The epistemological task of isolating and identifying this scientific component belongs to followers of Walter Vincenti, who has engaged similar questions aboun American aeronatical history. That such a componemt was indeed present, however, can be seen in Goethert's firsthand observation that the slotted-wall invention required an orientation of theoretical calculations. Possibly the scientific component was still small in 1922, when the NACA's ammal report listed five technical papers on wind tumels, one of them a Prandt ranslation. Possibly it was small in 1925, when Joseph Ames told the NACA executive committee that Munk had developed a theory of tumel wall interference. Possibly it was still small in 1930, when the available body of formal wind tunnel knowledge had grown large enough that an NACA report about conecting test data for subsonic open-jet boundary effects could cite four NACA and three European works on wind tumel technology, along with one American and four European works on related aerodynamics topics-with only one source predating the 1920 s. And certainly the scientific component was overated in the NACAS 1934 annual report, which clamed that with the appearance of an NACA subsonic study called "Experimental Verilication of the Theory of Wind-Timet Boundary Interference," the problem of findamentally understanding wall interference could "for all practical purposes be considered solved." The problem had been solved "for all types of wind tumels," the amnat repont said, even though the technical report in question arefilly noted that only "conventional" and "ordinary" tumels had been involved"-as well it should have noted, given that in that same vear of 1934 Langley built its second small high-speed tunnel in part to investigate the far-from-conventional, far-from-ordinary transonic boundary effects that had been revealed in its first one, built in 1928.

That first high-speed tumed had indeed raised lots of questions. The NACA built it to begin conducting "in-house" the kinds of studies Dryden and others had been conducting under NACA auspices elsewhere. In resembled a pipelike metal chimney, as for an open circular fireplace, with an eleven-inchediameter test section about where such a chimney would have a flue damper: Compressed air powered it, tapped from an ideal reservoir at twenty amospheres of pressure: the much larger Variable-Density Tunnel, which had to be depressmined occasionally anyay. The small vertical tumel used the induction-jet prine $i-$ ple, suggested by George lewis based on a cursory contemporary Langley sudy of thrust angmentation, an antecedent of jet propulsion. In a rush lasting just long conough to yield some test data, piped-in air entered the tumel just above the test section from an opening that ringed the pipe's circumference. This motion entrained a more massive flow of air

 mimmphed ewer science in the NACA: Roland, reporting disagreement with his omb interpetation in Madel

 Knight and Thomas : Hartis, Report 361 , "Experimental Determination of Jet Bomadary Corrections for Airloil

upward from the room, generating a high-speed flow field around a small model facing downward in the test section. Both closed and open test sections were tried, giving Langley engineers a sense of the contrast between a walled-in jet of high-speed air and an open one. Despite some open-jet advantages, an enclosed test section was chosen for permanent use. This comparatively modest research tool, called the II-Inch High-Speed Tumnel, began operation in mid-1928, about when John Stack completed his aeronautical engineering degree at Massachusetts Institute of Technology and, in Becker's words, arrived in Virginia "to dominate Langley high-speed aeroclynamics for the next 30 years."."

A Measured Pace in the 1930s

"It is gratifying," the NACA modestly proposed in opening its 1933 annual report to Congress, "to report that the past year was notable as winnessing the greatest advance in airplane performance and efficiency accomplished in any single year since the Great War. This is largely the cumulative result of years of organized scientific research conducted by this Committee and of the practical application of the results by the Army, the Navy, and the aircraft industry." Apparently this expansive claim had substantial legitimacy. Richard K. Smith has written that between 1928 and 1938 "no other institution in the world contributed more to the definition of the modern aipplane" than the NACA. Smith's atero-

 (NASA phom NACA $33 / 1$ and NACA //ft3)
 Sections," 1933; Becker, High-Speral Immber, p. 13.

 (ourtesy John V: Beckry) Right: Research learder Sack after World War II, when-iw collougue John Becker's words-he was

matical history colleagues Hallion, Hansen, and Roland, as well as physics historian Daniel J. Kevles, have made similar assessments. Even Constant, in Thobojel Rooblution, mildly prases the interwar NACA for its subsonic work. Contimuing the anmual report's self-congratulation, however, the NACA entered a realm where gaining later endorsements for its work in the 1930 s has been hard, but incurring criticism has been easy: speed. Calling speed "the most important single factor" for improving airplanes, the report proclaimed that "primarily as a direct result of the Committee's researches there have been great increases in speed and efficiency during the past year, which have opened a new era in the development of both military and commercial aircraft.".

Of conse, with no serious thought yet given in American acronamics to jets, the Nat A merely meant that propellerdriven aiplame speed would continue to be developed

 sense." adding that athough he was "one of the very best men in the acromatical fiedd" it was "ohsiots" he" should mot lecomme asseriate directom of lamgley.

in this "new era." So a better term for the NACA's 1930 s now appears to be phetean, as used by NACA and NASA aconational congineer Latrence K. Loftin, Jr., in Quest for Performance: The tuolution of Modern Aircrafl. Aipplane development, he wrote in 1985, "has been characterized by a series of technologioal levels, or plateats, hat extend over a period of years. Each level has been exemplified by an aimaft configutation type that is graduatly improved by a series of relatively smadt refincments, withour any major conceptual change." The mid-1930s forermner of the P-47 Thunderboll highter, for instance-with stressed-skin metal constmetion, Iow cantilever wing with trailing-edge landing flaps, fully cowled radial engine with controllable-pitch propeller and geared single-speed supercharger, enclosed coekpit, and retractable landing gear with wheed brakes-represented, along with the DC-3 and the B-17, "the definitive and final configutation of the propellesdriven aircraft concept." Room remained, of course, for additional smaller refinements, like improvements in propeller-blade design. The NACA contributed substantially to reaching this platean, but a new ema, loftin wrote, would actually require a "revolutionary breakthrough or new concept.".

For American acronathical researchers as opposed to cerain imaginative technotogists in Europe, then, the idea of a "new era" in aviation speed in the 1930s suggested differing sets of research questions: those for propeller planes and those for jets. And since the research question gencrally dictates the need for the research tool, this difference was reflected in the NACAS high-speed wind tumed development during the 1930s. Marching in time with conventional technolog, and a few but not too many steps ahead, it proceeded at a conservative, measured pace

Long before 1933, in fact, some European technologists had begun considering the possibilities for breakthroughs leading to very high-specdaircraft, and the possibilities for corresponding high-sperd wind tumels as well. Constant, aker to instances of foresight concerning radical techology change, closes Turbojet Rowohtion by alluding to a 1922 discussion among French and English engineers conceming the possibility of flying "with incredible speed in the stratosphere.". In 1924 in France, E. Huguenards paper on high-speed wind tumels predicted airplane speeds bevond 500 miles per hour, and conjectured that although speeds up to almost 750 miles per hour had formerly seemed "Fabulous. . . as in Jules Verne," they now appeared "realizable, not in a remote fumue, but immediately." This nearly quartercentury-early conjecture of almost sonic flight speed may suggest why Becker calls Huguenard "overly sanguine." Whatever the excesses of Huguenard's enthusiasm, though, it is plain that in 1924 he squarely addressed a future that actually started arriving in the late 1930 -and that by 1925 his paper and its ideas were noted in the Enited States. The NACA published a ranslation that year, well before the agency used versions of two preexisting tumet-technology ideas that Huguenand discussed: a compressed-air reservoir for driving a high-speed tumel, and, for observing high-speed phenomena, an optical technique based on the way light behaves in ait of changing density. Also in 1925, Scientific American favorably summarized Huguenard, reporting his prediction of 500-mile-per-hour speeds, his spectation about the need for
some form of reaction propulsion, and his emphasis on the coming importance of wind tumnels for high-speed flight. "*

For any NACA high-speed researchers inclined to consider the possibilities Huguenard had proposed, however, the late 1920 s and early 1930 s, with their official focus on propellertip studies, would have presented a certain tension. A 1929 report of an NACA-sponsored study of tiny airfoil models in an open, two-inch-wide transonic jet of air provides a typical example of the focus: "If a propeller is mounted directly on the shaft of a modern highspeed airplane engine," wrote Lyman Briggs and Hugh Dryden, explaining the practical engineering design question motivating their study, "the outer airfoil sections of the propeller travel at speeds approaching the speed of sound. It is possible by the use of gearing and a somewhat larger propeller to reduce the speed of the propeller sections, but only at the expense of additional weight and some frictional loss of power. In order to determine whether gearing is desirable, it is necessary to know the loss of efficiency due to high tip speeds and to compare this loss with that due to gearing." In other words, in their tests at speeds involving compressibility, they merely sought airfoil performance data to use in determining the optimum tradeoff, or balance, between competing design choices. The report mentions nothing about applications of the work to wings for very high-speed flight." ${ }^{\text {F }}$

Even in the mid-1930)s, in fact, a forward-looking NACA angincer would have been aware that the NACA officially believed the trend to higher flight speeds would level off not too far above 500 miles per hour. Among I Luguenard's enthusiasms, on the other hand, had been a willingness to project continuation of the upward trend. Observing that aircraft speeds had regulaty doubled meaty wice per decade, Huguenard criticized those who always found "fommulas" to show that "cach new performance" in this trend would be the last. He even gave these doubters a name that fit the official NACA: pessimistic calculators. For the NACA, research director George Lewis seems to have exemplified this restraned outook, at least in his public statements. In 1932 he predicted that the impressive upwatd trend in flight speeds would end for "airplanes as they are now constructed" at about 500 miles per hour. "At that speed," Lewis added, "the resistance of the air against the plane becomes so great that it would be physically impossible to obtain an engine giving enough added horsepower to pull the plane through the air at a greater speed." Although I ewis did note, by way of qualification, that "no one knows what the airplane of the future will resemble," his 1932 emphasis corresponded entirely with Loftin's 1985 concept of the platean. John Becker arrived at Langley in 1936; when asked in 1996 if Lewis and Stack in those days might have harbored some hidden belief in a sonic future, he responded with conficlence that he believed they had not.'"

[^53]In any case it would be difficult to establish that in the 1930s the NACA could have pushed high-speed research or high-speed tunnel technology much faster than it did, even if it had wanted to. Industry and military energies compelled its focus on the technology of today and tomomow but not the day after. Becker states flatly that even as late as 1940 , the research-agenda-setuing aircraft industry considered Mach 0.8 -roughly 600 miles per hour-"a rather optimistic upper limit for the future." He also says that most "NACA veterans believe that it would have been quite impossible in the prewar period to have obtained any major support from the military, industry, or Congress for research and development aimed at such radical concepts as the turbojet, the rocket engine, or transonic and supersonic aircraft." One such veteran, who helped build Langley's 24-Inch High-Speed Tunnel in the mid-1930s, believed it "certain that if the NACA had had the foresight to do research on the turbine engine in the decade before World War II, the agency would have met with such technical ridicule and criticism about wasting the taxpayers' money that it would either have had to drop it or have been eliminated." And indeed the prewar NACA did face political perils difficult enough to negotiate without the agencys also seeking to venture too boldly beyond or above the technology platean of the day." ${ }^{\text {" }}$

It is worth noting, moreover, that the prewar NACA in many ways did plan for the future, within the limits of a political reality in which tend-lease had eventually to be concocted to help the British hatt the Nazi onslaught. In the mid-1930s, for instance, the NACAadvancing at the steady, measured pace of the times in American aeronatics-built not only the twenty-four-inch tunnel but the 500 -mile-per-hour X-Foot High-Speed Tumed, later repowered for still more speed. This strategic resource was to become in 1950 the first large facility to operate with slotted walls. In the late 1930s the NACA began planning Langley's 16-Foot High-Speed Tumel, the other large facility later converted. Alamed years in advance about war's likelihood-in part thanks to George Iewis's visits to Europe-the NAC A also sought to build new research laboratories, and indeed had managed to get funding to start a pair by the time of Pearl Harbor. For two years in the late 1930s "after learning of the frantic pace of aeronautical rescarch in Europe, especially in Gemany," wrote Alex Roland, "the NACA was unable to convince the Congress or the Bureau of the Budget that a crisis was in the making, a crisis requiring a crash program in acronatical research." Yet the postwat Mead committee charged that the prewar NACA knew "of the need for increased persomel and facilities to carry on its research work" but "did not request sufficient funds from Congress." However, more than three years before Pearl Harbor the NACA did include in its annual repont to Congress a frank plea for expansion-a plea highlighted, analyzed, and endorsed by a January 1939 editorial in the Now York Times. ${ }^{\text {² }}$ Thus for the prewar NACA and the country, an apt analogy might be that of the so-called next-quarter syndrome, in which a corporation's stockholders compel a shortsightedness that its critics contrast with the foreign competition's supposerl longer view. It is true that the prewar American aeronatical estah)lishment failed to invent jets and guided missiles. But it is also probable that the failue originated at a cultural level deeper than that of the scientific and technological choices atually available to American aeronatical researchers and their managers-as even one of the ir main critics, Constant himself, all but proposed in conjecturing about those "fundamontally differentiated cultural traditions" of Europe and America.

[^54]Therefore it is also worth noting, conocoming reseancher Stack and manager Lewis, that in the 1940s Stack sometimes implied or even clamed that Lewis and the NACA had actually shown substantial foresight carly on conceming flight at very high speeds. A 1948 newspaper story quoted Stack claming that the "NACA's supersonic fight project really [went| back 90 vears" to when Lewis, "with his long nose for the future, put in the first high-speed wind tumnel." ${ }^{* / 1}$ But if a supersonic-flight motivation for buitding the I I-Inch High-Speed Tumel really did exist in 1928. it was apparenty completely hidden. In 1945. Stack clamed in his formal paper for the prestigions Wright Brothers l coture of 1944 that in the 1920s, when "a few foresighted acronamtical scientists" had plamed ahead for very high-speed flight, Lewis had shown "great foresight" in sponsoring langley's brief, cursory jet propulsion study. Maybe such clams only represent what Constant has called the NACA's "habitual but mythic retrospective aturbution of foresight to itself." Certainly Stack understood the NACA public relations juggernaut and could often be part of it; Roland savs that by the 1950s he became too much a part of it. In any case, a draft of the Wright Brothers paper shows that Stack also considered claming that "probably the first practical application of jet propulion in acronantical work" was Langlevs, and longnosed lewis's adaptation of the cursory jet studys induction-jet principle for the eleveninch tumel. By permanenty deleting that daim, Stack avoided its justifying any "long nowe" descriptions of himself-not for prescience, but for exaggeration."

By the time of the NACAS 1933 beasting about speed. Stack himsell was calculating at least somewhat optimistically about future propellor-driven high-speed thigh, but there is evidence he felt constrained from pressing even that topic too far. The tension shows in a pair of historically significant papers he wrote, early contributions in his substantial compressibility rescatch output during the years before he wose high in management. One, published as an article in the January 1934 Jomonal of the Aemomatioal Sciences, reflected mainly his own outook. The other, published officially as NACA Report No. 463, reflect ed manly the organization's outlook. The joumal atide described a possible high-speed airplane and addressed its high-speed-flight potential. The NACA report described the 11-Inch High-Speed Tumel and comphasized its usefulness in propeller-tip studies.

The journal article, "Effects of Compressibility on High-Speed Flight," prescouted perfomance predictions Stack had computed for a highly actodynamically refined propelleredriven airplane that he called "hypothetical" but "not beyond the limits of possibility." Stack's computations showed that speeds moch higher "than those so far attained" were "possible and likely," in part by using wings of a compressibility-effects-delaying shape derived from experiments in the eleven-inch tumel. Some of this new design information, Stack wrote, was "already available to designers." With compressibility ignored, Stack's computations predicted a top sped of 566 miles per hour for the hypothetical aiplane.
71. "Intuition Bronght Supervonic Fligha," Wiahington /omf, Decomber 2l, I94k.

 stpersonice fanmels" operated at I angley in the latte lasts.

 tion is on p. 9 of the teped deaft (comesponding to p. las in the article version). Stack collection foder "Wright
 redatoms patiocs is mandy bevond the soope of the present work as it evolued, but is also the principal desiderat fum it gene ated. ©ne example: the episode of the Ammbar Thansonic Tumbel, which the newly secmity-minded

With compressibility comsidered, that would fall to 524, but the new wing shape, Stack computed, could raise the top speed to. 544 miles per hour "due to the delayed compressibility buble." At one poin the joumal antick conthused about long-standing NACA foresight and leadership in high-speed-llight studies, but eited as evidence only the 1925) report of Briggs, Hull, and Dryden-which solety addressed propellers, thongh its analusis could be transfered and applied also to wings and then to Statks optimistic subject. And he calculated even more optimistically in an cally handwitten draft, where a line he ultimately did mot publish went so far as to sav-as I Inguenad did say back in l924. and as the NBCA did not say motil the posisar wotd was upon it - that it was "dangerous to prediel a maximum speed beyond which increases may be impossible."."

In NACA Report No. 163. "The NA.C.A. High-Speed Wind Timnel and Teste of Six Propeller Sections," Stack addressed high-speed technology with an entirely differem stam, conservatively emphasizing propeller tips and no the airplane isself. "Specds common to moss aircrate" were low compared to the sperel of somed. the introduction admitted, but knowledge of compressibility was nonetheless "essemtial" because propeller tip speeds commonly did reach the "neighbothood" of sonic speed. The introduction mentioned that racing aipplanes had been attaining speeds "as high as half the speed of somen," and that "even at ordinaty aiplane speeds, the effects of compressibility should mon be distegarded if accuate measumements ate desired." But the report did not spately address compreso ibility's owe all future implications for the entire aimplane-b very subject of Stack's roughly concurent jounal atick-mutil near its end, where the statement appars that compressibility "is of considerable importance in the structual design of fast-dising airplames," affecting distribution of loads. One of the reports conclusions also made the qualitative prediction that "emons may be expected in the estimated design loads for ainplanes which attain specds such as these atainer by diving bombers when in a dive if the cflects of compersibility on the wing moment coefficient ate neglected." Nohhing in the report's title, its lengthy opening summary, or its introdution suggested the presence of this kind of infomation. Ye that kind of infomation was to becone very important at abou the time of Pearl I latbor, when Stack and others at Langley helped solve serions, sometimes fatal, structual problems compressibility was cansing in waplanes.

But the shapp combast between this pessimistically calculating official report and Stacks optimistically calculating jommat aticle, though it illustrates the NACA's conservative early1930s rescarch priorities, shows only one of the ways in which the report is significant in the multidecade evolution of the tamsonic wind tumbel. There are others. In focusing far more on the reseach tool than on the data obtained with it, the repont introduced w the ater nautical world the NACAS fist high-speed wind tumel, including the early test-scotiondevelopment work that becker says strongly influenced stoted-wall development yars later: The repont catled for a lager wind tumel, and then served throughout the 1930 as as the standard reference to cite for describing how experiments were performed not only in the cleven-inch tumel, but in the lager twenty-fou-inch apparatus that inded did ensue and that was operated in the same way. And the repoet correlated high-speed wiod tumel data with results fiom full-sate propellers operated at high tip speeds in the low-speed andow of the Propeller Research Timmel-a notable instance of technical cross-pollination between the NACA's subsonic and tansonic researeh efforts.

In ye three more wass, thee particulary important ones, Stacks 1933 report illuminates transonic wind tumel evolution and is NACA technical cultural implications. First, it definerd the engineering science of NACA transonics-"physical understanding without

 whe folder, mot its tab).
mathematical weakness," to borrow a distillation track would use in 1942-by addressing the difficulties of ataining theoretical understanding of compressible flow, by chaiming comprehensive accommodation of what litte theoretical understanding was already available, and by showing Stack's acute detemination to respect and use theory but not to let "mathematical complications" impede attainment of the physical kind of understanding an engineer often wants to visualize. Second, the report generally identifed the vexing transonic tumel issues that Langley later won the Collier Trophy for solving: "the effect of the tumel walls," the test-data-skewing "constriction effect at the test section due to the presence of the model," the relation between model size and test-section size, and the question of a mathematical "constriction correction" to make tansonic test results for artificial, ground-bound flow fields correspond with physical reality aloft. Third, as an approach for confronting these issues, it introduced as potentially useful what Gocthert. looking back in 1961, called the indispensable "orientation of theoretical calculations." The report suggested conducting "a theoretical analysis of the flow in the tumnel with a view to detemming the constriction correction," and added that the "analysis should include an examination of the effects of compressibility"-an important stipulation, the report sad but one that "becanse of the mathematical difficulty involved" seemed "improbable" in 1933. In 1944, however-when transonics had becone a top rescarch priority, thes making theoretical study of transonic tumed flow a priority too-NACA research engineers H. Julian Allen and Walter Vincenti conducted just such a theoretical analysis at the new Ames Laboratory in California. Their report's tite echoed Stack's 1933 language: "Wall Interterence in a Two-Dimensional Flow Wind Tumel, with Consideration of the Effect of Compressibility." ${ }^{* i}$ But what they showed was that in fact there could be no correcting of test data for the worst conditions of transonic flow within solid-boundary tumels. Although their report apparenty did not directly intuence Ray Wright's scarch for a way to circument any need for comections, Stack's idea of addressing the transonic wind tumel problem via theory obviously did. If the awaders of the 1951 Collier were right in their original intention to credit Stack alone, if they perhaps really just meant to take the longest view of stack's overall contributions to transonic wind tunnel development, the justification might well start with "The N.A.C.A. High-Speed Wind Tunnel and Tests of Six Propeller Sections" of 1933.

In 1933 Langley Field's runways were not yet paved. The tem sound barier was not yel sensationalized; that happened in 1935 following a casual remark to a joumalist from British high-speed researcher W. F. Hilton. In 1933, the NACA's newly updated compilattion of standard aeronautical nomenclature still included lons of biplane terms, but not compressibility, Mach, or any word with the sulfix somic: Nonetheless, the NACA's highspeed research program, at its measured pace, continued adsancing in sophistication during the mid-1930s, led by Eastman Jacobs and Slack.

Stack's papers tace the progress. In 1934, he and Albert E. von Doenhoff published an NACA report on airfoil research in the eleven-inch tumel. The stated focus was still propellers, but wings and high-speed flight were now slightly more visible within the official field of view. According to Hitoon's 1951 book High-Speed Aerodynamics, this was "Stack's classic paper, which exerted great inlluence by vittue of its early publication." But Stack and von Docuhof had relied on experimental parameter variation, the systematic empirical method that James Hansen emphasizes as centrally important in the NACA's
75. Report 763.
76. Langley's runways were not paved until 1937, according 1o Rohern 1. Curtis, john Mitchell, and Matin Copp, Langly Fïld: The Liarly Yars, 19/6-1946 (Langley Air Force Base, Virginia, 1977), p. 101. Hansen, Engmer in Charge, p. 253. discusses the sensatonalized remark. AR33 contains one of the periodic updates of the NiCWis report on standard nomenclature.
engineering science. The compressibility burble itself remaned mysterious. Stack's 1935 "epont "The Compressibility Burble" declared that although the eleven-inch tests had "yielded much valuable information for design problems," they had also shown the necessity of a "more fundamental investigation." "

The 1935 report itself described early stages of such an investigation, conducted "to determine the physical nature of the compressibility burble." The experiments took place in the new twenty-fou-inch tumel, where improved instrments could simultancously gather for correlation wo kinds of data about transonic air interacting with a test model's surfaces: pressures and photographic images of the accompanying compressibility shock patterns. A schlieren optical system generated the photographable images by exploiting the behavior of light passing through air that is changing abruptly and radically in density. The report overlapped substantially with the paper famously presented by Jacobs that year at the international Volta conference on high-speed aeronantios in Italy. Later, in 1938, Stack, W. F. Lindsey, and Robert E. Littell published a refined and extended version of Stack's 1935 report: "The Compressibility Buble and the Effect of Compressibility on Pressures and Forces Acting on an Airfoil." Becker says that together with Jacobs's Volta paper, "these publications proclamed the first major contribution of NACA in-house high-speed research-the fundamental understanding of the burble phenomena derived in large part from the revelations of the sehlieren photographs."*

The 1938 report's researh focus expressly included "future high-speed airctaft," and by this point in the prewar decade the rescareh-methods focus had also witened: though still primatily empirical, it now included substantial overlap with airfoil theory, as Stack's 1939 "Tests of Airfoils Designed to Delay the Compressibility Burbe" shows." The 1939, report's antecedents included work by Langley theorist Theodore Theodorsen, which itself built in part on Max Munk's 1922 airfoil theory paper-the one in which Munk lamented the general distaste for theory he perceived in others. The overlapped work notably included Jacobs's new computational method for designing drag-reducing lami-nar-flow airfoils, for the physics involved in sustaining laminar flow is similar to that involved in delaying the compressibility burble: both require shaping the airfoil to control the way pressure changes in air flowing across its surface. To devise his computational design method, Jacobs had inverted Theodorsen's theoretical approach. The work Stack reported in his 1939 paper incorporated closely related analysis.

But even with its sophistication in high-speed reseatch methods, Stacks 1939 report maintained the NACAS long-standing conservative outook on high-speed researeh purposes. Its introduction, after noting that "high-speed aircraft" themselves needed "serious consideration," added that it was "important to realize, however, that the propeller will continue to offer the most serious compressibility problems." Of course, with the world war starting, this technology prediction had gemuine merit within the context of continued refincments crucial for the conventional warplanes that would soon swarm from American factories. But overseas, jets were also in development. The NACAs high-speed reseach-and its high-speed reseach tools and methods-had advanced during the 1930s at a measured pace. Within a few years, Hugh Dryden and Curtis I.eMay would be calling for an urgent one.
 York, NY; I ،ombon, Fngland; Tomonos, Canada: Longmans, (reen and Co., 1951), p. KI; "The (ompressibility Burble," Techaical Note 543, Oetober l935.

 name of some German or Austrian scientist, but simply the German word for streaking or striation, which is descriptive of the medhod."
79. Technical Note 976 , Derember 1944, reprint of ACR of Jume 1934.

The Pace Hastens

Before Pearl Harbor some warplanes could already dive last enough to encounter dangerous compressibility effects-as roughly predicted by that brief, memphasized conclusion in Stack's official NACA report of 1933, when propeller tips constituted the
 explaned in a 1948 Physes Todeyaticle, "distorbances known as shock waves" arise. These "abrupt changes in pressure and temperature" can lead on "a violently fluctuating motion shaking or buffeting the wing, and il the wake of the wing strikes the tail, the tail structure may be subjected to loads varying with violent irregularity sufficiem to damage it."* Vulnemable airplanes during the war incluted the Bell P-39 Airacobra, the (urtiss P-40 Warhawk, and the Republic P-47 Thunderbols. ${ }^{2}$ At about the time of Pearl I Labler, when the problem had just arisen, Stack and others used Langleys twenty-fou-inch and eight foot high-speed tumeds in a rush effort to leam how to commeract the disturbances and sop the Amys new P-38 Lightning from occasionally breaking up and cashing. They quickly showed that a special under-the-wing flap could be developed to do the job. The $\mathrm{P}^{\mathrm{P}}-38$, of which over 10,000 were ultmately built, wem on to shoot down more Japanese
 sonic reseath problems during the 19月0s, and to iment researeh tools-including the slotted-wall tumel-for solving them.

By October 1948, when Dryden explained transonic research problems to a broad audience with the Physics Todey atticle and advertised a new transonic reseath tox) wa tiny audience with the Wrigh-Wand paper, the NACA's compessibility researeh lenus hat long since expanded. Maybe Stack had been prudent in 1933 to delete from his high-speed-aiplane jounal anticle the clam that it was "dangerons to predict a maximum speed berond whe hincreases may be impossible," but now the NACA itself officially gloried in secing no "definite limit to the speed that may be atainable." The late-1930s geal of refining ainfoil shapes to delay the onset of compressibility had been replaced: "Regatedess of how high the critical Mach number may be raised," asserted stack in his 1944 Wright brothers Lecture. "dlight at superctitical speeds must evemually be solved." Devising airfoils suitable not just for delaying the butble but for negotiating the entire tramsonic tange would only be patt of the solution. Effective tansonic aiteaft would also have to stay stable and controllable in an acrodynamicatly complex enviommem," Moreover, reseathers since the 1930s had been aware that separate high-speed tests of individual components-a cowling and a wing both meant for the same fuselage, for instance-could not always predict the componems performance in use togethere Therefore solving superctitical flight requited seefing the "integrated whole," as NACA main committee member Edvard P. Wamer called the principle of conceiving mansonic

[^55]aircraft in an organic rather than a modular way.* For example. jel engines needed to be integrated into airframes specifically designed for the task. Much bater the area mole, the transonic design principle described in chapter 5. grew out of NACA researeh engineen Richard Whitcombs integrated view of the whole airctaft, and was nurtured by his experiments in one of the original slotted-wall transonic wind tumels-a tumed he helped to commission and retine.

In 1948, however, NACA transonic researchers tools were mandy researeh airctaft. rocket- and airplane-borne models, and a few partly eflective, sometimes eren makeshift adaptations of high-speed tumnels. Some progress had been made in designing jetpropelled warplanes. Loftin sass that the P-80 (later F-80) Shooting Star climbed and flew faster than the firs U.S. jet, the P-59, thanks to "a careful synthesis of weight, size, and thrust parameters, as well as close attention to aterodvamic refincment." In April 1948. a swept-wing F-86 reached supersonic speed in a dive. Jet-propelled bombers were being developed." But judging by the summer 1948 rexponses of thiteen airctaft manufacturers, the Air Fores, and the Navy to an ugent NACA surver, these efforts only helped stimulate more desire for transonic data-as well as interest in the researeh tools with which the data would be obtained.

The NACA aerodynamiss committee's survey asked the agency's industrial and militany clients how the NAC could best use its research tools to aid transonic arcraft design. The answer: numerous practical-minded requests for empirical data on wing planforms, air foils. controls, and complete threedimensional-that is, integrated whole-models, with secondary interest in air inlets, buffeting efleets, pilon escape, bomb bays, and aircraft stabili1y. The Air Force and eleven of the thirteen companies also addressed research tools and methods. One comsensus recommendation called for incrating rockethome model tests by a factor of three. Another pleaded that "the NACA contime under as high a priority as possible the study, development, and procurement of test facilites for obtaining [tansonic datal in a manner equivalent to that followed in the best atalable low-speed wind tunnel testing"-that is, in comenient, versatile, relatively cheap, and completely safe laboratory conditions. Of the fiftern respondents, only three even mentioned theory; one of these few; Benedict Cohn of Boeing, urged that the NACA "obtain very fundamental data on the aerodynamics of tansonic flow rather than attempt solutions of small specific items." Although the strvey-sponsoring NACA aerodynamics committee formally agreed with the respondents. decidedly empirical majority view, it pointedly emphasized as well that the "NACA should also continue to give careful consideration to restuls of theoretical work."'m

Indeed the aircratt industry and the military in the pressure of 1948 may generally have had little interest in theory. Iryden apparently ganged the military that way conceming wind tumel theory, in any case. Even though Wright and Ward had translated theoretical ideas into a useful rescarch tool, Dryden's October 1948 letters tamsmituing their paper to military research atuthorities carefully cautioned against letting the "considerable amount of background theoretical material . . . obscure the patactical significance of the

[^56]work."" Nonetheless the postwar NACA itself, insofar as it could, sought to stay mindful of the benefits that improved rescarch tools would represent for aerodynanic theory in generalthe obiter dicta benefits, in Joseph Ames's 1923 courtrom simile-and in turn of theory's benctits for aeronautical engincering. Stack elucidated the NACA's wind-tumetrentered version of this awareness the following June. Studies of transonic flows with models sent skward on rockets or dropped from high altude, he wote, "have defined fundamental problems of fluid mechanics. Experimentation with standardized equipment, nonexpendable models, under closely controlled conditions permitting detailed measurements"-that is, in wind tumnels-"still appears to be a most important key to progress toward the attainment of the uhtimate goal, that is, successful complete calculation of such flows." ${ }^{\text {" }}$.

Not that Stack himself had never exhibited a decidedly empirical outlook. In 1942, soon after leading the somewhat dramatic applied-research solution of the P-38 problem, he taught a L'inversity of Virginia night school postgraduate course called "Compressibility Effects in Aeronautical Engineering," held for Langley staff only. Without the usual NACA public relations constraints, his opening lecture proclained that he would "exclude, insofar as possible, the mathematical exercises which though elegant are frequently so meaningless to the engineer," and that he would try instead "to adhere more closely to the discussion of physical concepts, introducing mathematical methods only as necessary to aid in understanding the physical concepts. . . I think that it is well if we realize in the beginning that in this fied the engineer is leading the mathemation scientist. The present state is such that the engineer is projecting himself perhaps to some extent blindly into difliculties, and by physical reasoning without mathematical weakness"-the phrase that distills Stack's approach to transonics-"ariving at the expedient solation of his difficultics." But the course syllabus some what belied this energetic introductory emphasis on empiricism, citing the objective of covering "the fundamentals of compressible flows, the status of present knowledge on the subject, and its application to engineering problems," and naming "summaty of significant theories" the subject of six of thity-two scheduled hours-three hours ath for the "subcritical range" and the "supercritical range." And indeed the opening lecture, once past the introductory remarks, did immediately invoke in some detail compressibility's fundamental fluid dynamios context." Two years later in Washington, Stack's 1944 Wrigh Brothers Lecture on compressibility mainly addressed experimentation, but it too rested distinctly within a scientific, theoretical context. Here is what we have done, that lecture said, in circumstances where litte prospect has existed for advancing theoretically. This leading NACA aeronatioal research engineer primarily sought neaterm physical understanding, but secondarily, and for practical ends in the longer tem, he wanted to see it attained by "physical reasoning withont mathematical weakness" within the fomal scientific realm of fundamental understanding.

In 1951, W. F. Hilton reemphasized the long-standing common belief that whatever theorys long-term potential, it hed litte nearterm prospet for advancing transonics." Hugh Dryden, however, manamed a fomally scientific outook about transonics in the

[^57]late 1940s anyway. As an employee of the National Bureau of Standards, he had served on and helped lead the NACA aerodynamics committee since 1931. During the war he managed a large guided-missile research and development project for the military." After the war he was deeply involved in NACA transonics as high-speed acrodynamics committee chairman. In September 1947 he joined the NACA staff and took over from George Iewis as director of aeronautical research, a title shortened in 1950 to director: ${ }^{\text {sh }}$ His scientific outlook on transonics was an extension of his general view that the "discovery of how to make better aircraft results from the discovery of rational theories firmly supported by experimental evidence. ${ }^{*}{ }^{*}$ At Langley in carly 1947, he chaired a conference on high-speed, aerodynamic theory attended by luminaries including Theodore von Kármán, who briefly summarized the state of compressible flow theory, and Tsien Hsue-shen, known for lated famonsly leaving the United States and leading China's development of missile technology. After the theory conference Dryden reported, apparently with some disappointment, that despite worthwhile exchanges between theorists and experimentalists, "the hoped-for result of a rather concrete definition of the direction which future theoretical researeh in the field should take was not achicved."." But this veteran of carly experiments with open transonic jets of air could also adopt the oulook of Stack and other practical-solutionsseeking NACA experimentalists and say that "progress in those aspects of aeronatios for which a rational theory has not yet been developed proceeds by the recognition of the common features of complex flow patterns., "m

Thus it was that in engineer Stack at Iangley and in physicist Dryden in Washington, the carly postwar NAC A had leatership well suited for fostering conception, development, and practical application of the sloted-wall transonic wind tumnel. Each had extensive personal experience in practical-solutions-oriented tamsonic experimentation, but each also understood and genuinely valued the fomal fluid dynamics context. From long membership, each knew and had confidence in the NACA technical culture with its accumulated technological and scientific understanding and its highly developed tradition of acronatiocal research craftsmanship. In such a setting Stack could follow his intuition concerning physicist and applied mathematician Ray Wright's theoretical ideas, and Wright, in the words of historian llansen, could benefit "from the collective knowledge and experience of the engineers working around him" and from his own "good intuitions." "un

Intuition was important. Hilton in 1951 called transonic areraft design "more a product of trained intuition than the restlt of applying exact scientific principles." "n Instances of similar intuition pervade NACA research history, according to historians of the three laboratories existing or begun by the time of Pearl Harbor. Such instances also pervade NACA transonic research history. Hansen makes intuitive techonological artistry the theme of "The Slotted Tumed and Area Rule," chapter 11 in his Langley history" Beeker

believes that what motivated "initiation of in-house NACA reseatch in high-speed aerodynamics" in the lirst place was intuition, not the "great foresight" Stack mentioned in his 1944 Wright Brothers Lecture. In that lecture Stack said that he and his colleagues devised the firs NiACa schlieren flow-visuatization appatus in carly 1933 when they "had in the airfoil experiments temporarily exhausted [heirl intuition as regards methods for improving acrodynamic shapes." Stack's 1952 Collier press release says that in large part his and his colleagues' "fath in the probability of a solution" in 1946 had rested in Wright's "subsonic high-speed theoretical studies,"" a statement about acting on scientifically franed intuitive fath that calls to mind Stack's 1942 classroom remark about an engineers "projecting himself perhaps to some extent blindly into difficulties, and by physical reasoning without mathematical weakness arriving at the expedient solution of his difficulties." In December 1948, following the award of the X-1 Collier to Stack, Bell, and Yeager, the opening lines of a Washington Post article set forth a version of Stack's philosophy on the relation between intuition and technological success:
"Intuitiow resparch" brought about successful supersonic flight many months ahrad of
whelule, states the man most respomsible. Johen Stack, designer of the first plane to fly
faster than somend, says that "belinving what you couldn't prove and trusting it" faid
off io sperding up normal scientific processes. He puts it this way: "You say to yourself.
if these things are true, then this must be true. You haven't an exact ansuif bui you do
haue an imhaitize answer. So if you wam to make a big step forvourd, you take a chamie
of falling flat on your fare and trust your intuition."",

Surely at that moment in bate 1948-two weeks after Bernhard Goethert's formal visit concerning Langley's modest initial proof of the slotted-wall principle-Stack must have had at least partly in mind the chance of falling flat on his face not with the X-1, already proven in the sky, but with the slonted wall, as yet proven only in miniature. He later said there had been "no tuming back" once a construction contact had been signed earlior in 1948 for installing a sloted wall in Langleys huge 16-Foot High-Speed Tumed. ${ }^{\text {min }}$ And surely a reason for trusting his intuition was the NACA itself, a techmical culture with broad gencoal experience buidding wind tumels and long-standing specific experience replicating high-speed flow ficted in some of them.

Precisely Defining the Transonic Tunncl Problem

Alfough the NiACA had been accumulating understanding of the difficulties of replicating transonic flow lields since the 1920s, the overall problem was apparently not comprehensively defined anywhere mat the mid-1940s. Even in 1947. the texthook Wind Tumed Testimg could only note somewhat vaguely that the "proper procedure for testing and correcting the results of high-speed tests has not been completely established" and that it "appears that the accentuated blocking and the shock-wave reflection off the cumel walls contribute to the uncertanty." ${ }^{\text {"n }}$ NACA translations of European papers partially addressing the difficulties had been available since the mid-1930s to augment Langleys own growing understanding. In 1935, for instance, Swiss supersonics

[^58]expert Jakob Ackeret discussed the blocking effects of test models on tumel capabilities near Mach 1, contrasted the near-sonic-speed perfomance of open jets of air with that of airstreams enclosed within solid tumel walls, and noted shock watve reflection in tests at low supersonic speed-problems addressed also in a 1938 paper by Italian acrodynamicist Antonio Ferri, whose own accumblated understanding about solving them was put to good use when the NACA managed to impont him at the end of the war. "ne In November 1943 the Army formally requested that the NACA define the overall problem. A preliminary report of special work in the 24 -Inch Iligh-Speed Tunnel ensued in shont order, for apparently the work had begun in advance; Stack had even discussed its main conclusions at an October meeting of the NACA aerodynamics committee in Washington. The Amy asked for copies of the preliminary report to send to aircraft manufacturers including Douglas Arcmaft Corporation, Curtiss-Wright Cotporation, General Motors, and Northrop. Langley's Robert W. Byrne completed a full technical report during 1944, "Experimental Constriction Effects in High-Speed Wind Tumels," studies to define the problems of replicating transonic flow fields in a tunnel, and the one Stack customarily cited retrospectively in later years.

One such study was that 1944 theoretical one at Ames Laboratory by Allen and Vincenti: "Wall Interference in a Two-Dimensional Flow Wind Tumnel, with Consideration of the Effect of Compressibility," the kind of analysis Stack first called for in his 1933 NACA report about the eleven-inch tumel. Allen and Vincenti may not have directly influenced Ray Wright, but fifty years later their report remained useful for technical study. "" For its comprehensive explanation of the fundamental problems of closed-wall wind tumel operation at transonic speeds, it also remained useful for historical study.

The paper begins-as Stack's 1933 report had begun-by alluding to two numerical indicators acrodynamicists use, among other purposes, to score the similarity of a wind tumel's flow field to an actual flow field aloft: "The need for reliable wind tumel data for the design of high-performance aircraft has led in recent years to attempts to make the conditions of tumnel tests conform more closely with the conditions prevailing in flight, especially with regad to the Reynolds and Mach numbers." Reynolds number combines measures of an aerodynamic object's size and of its flow field's density, speed, and viscosity into a simple ratio expressed as a whole number. Ideally in a test with a scale model. this score should be high enough to confom with that of the simulated full-size airplane or component in its actual flight conditions. But most wind tumel tests mismatch the fullsize value of the Reynolds number by using a model of considerably reduced scale. The
108. NACATeqhical Memomandum 808, "Ingh-speed Wind Tunnels," Nowember 1936 tamslation of a

 er, Stach (onlection, IIBA), p. 4, asserts that Stark "initiated action" that led wo the postwar importation of both
 also Hansen, fimeimer in (harge, pp. 318-20

 Shaks (Otober symopsis and the Jamary preliminary report directly echo Byme Advance Confidential Report 1.4107a, December led.

 Julian Allen and Walter (i. Vinmenti, NACA Report 7×2.
low-speed Variable-Density Tumel counteracted this mismatch by using pressurized air, which of course meant higher air density in the flow field, and therefore also a higher density term in the ratio-which in tum meant improved verisimilitude as indicated in the higher score. Another way to raise a test's Reynolds number is simply to diminish the mismateh by using a larger-scale model. In fact, in that way the old Propeller Research Tumel and the Full-Scale Tumnel simply canceled the mismatch: they were large enough for tests not at reduced scale, but at full size. The second verisimilitude indicator, Mach number-a shorthand term not yet used in 1933 by Stack, who still called it compressitility factorcompares flow speed with the speed of somen for the given conditions. It leads to a simple tatio too: for example, Mach 0.8 for a speed eight-tenths that of sound. In subsonic tumnels, the fundamental physics of Englishman Osborne Reynolds had long framed the problem of achieving flow smilaty; for tumel airflows involving compressibility, the physics of Austrian Ernst Mach now required attention as well."'

However, because of "practical limitations in size and power," Allen and Vincenti continued, "most existing wind tumels, whether high speed or low speed, are not capable of providing full-salle Reynolds mombers for all flight conditions." Their readers would not need reminding that to enlarge a tunnels airflow chamel size for larger models, and thus for higher Reynolds numbers, or to increase its anflow speed for higher Mach numbers, leads with exponential quickness to a prohibitively expensive power bill-assuming enough power is avalable at all. An obvious partial answer, the authors said, was to use as lange a moclel as possible in a given tunnel. But in the case of a high-subsonic-speed tumel, the larger the model, the more magnified the problems of testing it. As Mach number rises, there is a "tendency of the [compressible] flow patten if unestraned, to expand." But since the tumel walls indeed do restrain expansion of these streamlines of llowing air, the resulting test data need conecting-that is, need atificial adjustment by some formula or mathematical procedure-"if they are to be applied with confidence (1) the prediction of free-flight chatacteristics." This analysis led Allen and Vincenti to the contrally important isste of correcting results from solid-wall tumel tests at the still higher subsonic Mach mumbers where the complication known as choking arises- we problem that Aviation Werk later reported "had effectively bottenecked" transonic tumels until NACA reseathers "licked" it by inventing sloted walls."

Concerning choking, Allen and Vincenti's readers would recall a fundamental airflowphysics principle: subsonic air moves faster when its channel constricts, but a supersonic airstram must expand to go faster. A test model, by constricting the channel, creates in effect the mozle of a supersonic tunnel: a convergence of the flowing air followed by a divergence. The result is that "sonic velocity is reached at all points across a section of the tunne at the position of the model, and the flow in the diverging region downstream of this section becomes supersonic. When this occurs, increased power input to the tumet has no effect upon the velocity of the stream ahead of the model, the additional power serving merely to increase the extent of the supersonic region in the vicinity of the model. At this point the tumel is said to be choked and no further increase in the test Mach number can be obtained." That is, choking canot be overome by brute force, and for a

I11. I am gratemb to veteran NACA and NASA aeronathical engimer Abert I.. Braslow for suggestions
 of If Related Airfoils at High Speeds"-a "dassic paper which exerted great intuence" according to W. F. Iliton
 sperd of flow expressed in terms of the speed of wave propagation, or the speed of sound, in the fluid is an index

 Reynolds monber is an index of the eflects of viscosity."

given model and solid-wall tumnel, the choking Mach number is the speed limit. Moreover, the authors' theoretical analysis confirmed what had been long suspected, ${ }^{13}$ that "at the choking Mach number, the flow at the airfoil in the tumel cannot correspond to any flow in free air. It follows that, at choking, the influence of the tumel walls cannot be corrected for: Further, in the range of Mach numbers close to choking where the flow is influenced to any extent by the incipient choking restriction, any conection for wall interference may be of doubtful validity." In other words, once very neat or at choking speed in a solid-wall tumel, there is no translating the test data into usefulness, for these results do not correlate with actual flight conditions, not even in some hidden way.

In the end, the point was that only very small models-with very low Revuolds numbers. and thus with little verisimilitude-could be tested at near-sonic speeds in enclosed, solidwall tumnels. Bernhard Goethert once cited an illustrative case involving a complete threedimensional model rather than the tumel-spaming "two-dimensional" case Allen and Vincenti addressed. For test speeds up to Mach 0.95, the model could be large enough to block head-on only one-fifth of one percent of the tunnel's airtlow. This meant it could have "a maximum diameter of no more than 5.5 inche's in a 10 -foot-diameter wind tunnel"-at ret ative size like that of a softball inside a transport airplane fuselage. "It is apparent," (eocthent concluded, "that transonic testing in a closed wind tumel is very impractical.""

Ray Wright, Principal Agent of a Collective Solution

A 1994 NASA Langley techmical paper identifies the ultimate somere of the sloted-watl solution that NACA Langley devised for the tansonic tume problem in the late 1940s: "The first 30 years of wind tumed wall-interference research yielded an important fact for modern wind tumels; that is, theoretically and experimentally, solid-wall corrections are opposite in sigu from those of open-je lest sections. Thus, if a wall is partially open, an adjustment to the geometric openness should be possible to obtain a neat-2ero wall-interference correction and thereby allow a more realistic simulation of frecair conditions." ${ }^{12}$ In even plainer temens, ventiation openings placed in just the right way in a tunnel's walls can cause the complex data-polluting effects of open-wall and closed-wall interference to cancel eath other. The statement echoes similar ones by Becker, Stack, and Wright and Ward. It also echoes Goethert, who had served in the Natera Geman acronatical reseath estabishment, and whose 1961 book asserted that Gemany, Italy, and Japan "produced theoretical correctionfree slot arrangements" but failed attadly to build sloted tumels for high-speed compressible flows only "becatuse of the circumstances connected with and following Wortel War II." ${ }^{\text {I/ }}$. In different circumstances possibly the NACA could have found the solution earlier itself, whoug certainly there was no prewar call for it from industry or the military. In any case, Becker says that early experience with open jets in the eleven-inch tumel "more than any other single factor encouraged Stack and his cohonts 15 vears later to embark on the further developments which produced the tramsonic sotued tumels," and that "Stack often refered to this early work as the genesis of transonic facility development." ${ }^{17}$
113. Becker, High-Sfered Fomior, p. bif savs that the NACA by 1938 hadd begun to see that "there was me hope of "correcting' data taken in the choped condition."
114. Goethert Tanwor Hind Tunnel Tisting, p. \$9.
 Wind Lume Wall." p. 1.
116. Becker, High-Speced Frontier, pp. 38, 98. 100, 11t: Stack, "Fxperimemal Merhods for Transonit

117. Becker. /high-shed fomber, p. G5.

At war's end two tumeltechnology studies in particular helped motivate langley's tanslation of this open-closed idea into a specific proposal for longitudinally slotted walls: Antonio Ferri's high-speed tests in an Italian semi-opentumel, presented in a report he wrote upon amiving at Langley, and Coleman duP. Donaldson's comparisons of open and closed high-sulsonic-speed airflows, presented in a report Ray Wright wrote after Donaldson left for military service. Ferri investigated the performance of a rectangular test section of about sixteen inches by twenty-one inches, with solid side walls but no top or bottom to restrain the airstream. Becker calls the work "the first real demonstration that partly open arrangements could be used successfully" near Mach 1, and says it helped motivate the Donaldson study. Donaldson tested a postage-stamp-sized airfoil in both open and closed three-inch-wide jets of compressed ait, much as Dryden and others had done with small open jets in the 1920 s-only this time under genuine laboratory conditions, with good instrumentation for taking data. Donaldson's tests were intended generally "to show the nature of the jet-boundary interference" in both the open configuration up 10 Mach 1 and the closed configuration up to choking at just under Mach 0.8. Donaldson concluded that open jets "should be advantageous for tests at high Mach mumbers." Becker later wrote that this study helped spur I angley's conversion of a small highspeed tumel to the semi-open configuration. Stack later wrote that it served "to show, in principle, the possible difference in choking limitations for open- and closed-throat tunnels." Thus it was that Ray H. Wright, the man who committed Donaldson's study to paper, entered the year 1946 fully mindful of this crucial difference for the laboratory replication of compressible flow fields up to Mach $1 .{ }^{114}$

The question of what Ray Wright was mindful of in 1946 is important for two reasons. The less important one has to do with proportioning credit for the slotted-wall transonic tumel. The more important one has to do with assessing the effectiveness of the NACA technical culture.

Both Baals, in Wind Tumnels of NASA, and Hansen have portrayed Wright as having a solely subsonic and somewhat technically naive outook in proposing the longitudinally slotted wall that year: "Strictly speaking, Wright's analysis was applicable only to low-speed flows," Batals wrote, "but Langley aerodynamicists, led by John Stack, immediately recognized in this simple proposal the possibility of solving the serious problems they had been having with wind tumel testing near Mach l." This interpretation conflicts not only with the story as Becker tells it, but with the record of Wright's activities up to 1946. Becker portays Wright exercising both technological initiative and scientific imagination in an effort purposefully targeting the wind tumel replication of transonic flows. That Wright's theoretical work happened to be subsonic, Becker says, simply derived from the constraints of the available mathematical techniques. ""

But it is Wrights formative activities at Langley during the decade leading up to 1946 that really matter, for they show that Wright, like Stack, was a genuine product of the

 Domaldson, NACA Te hanical Note 1055, "Comparison of Two-Dimensiomal hir Flows About ath NACA dole
 Intertereme," May 1946 (but actually, and significamly for Ray Wrights education, completed in eaty fambaty, atcording top, 34). Berkes, /igh-Spert Fontiar, pp. 79 and 94, treats Donaldson as the latter's matn anthor, even though Whghts name appeared fist in the heading. Itomaldson descobed his and Wright's combibutions in an April 11,1996 , whephone interverw.
 Fromber, chap. III, tepecially pp. 90-[04; se p. Ito conceming the mathematics.

NACA technical culture, and in the case of the transonic wind tumnel, its important agent. Less importantly, these activities also demonstrate his entirely sophisticated awareness of his slotted-wall proposal's implications. In the late 1930s, he worked alongside 8-Foot HighSpeed Tunnel designer and veteran high-speed research engineer Russell G. Robinson on the airfoil design problem of delaying the compressibility burble, building on work geing back to the 1920 s . By the end of the wat he was working on wall interference in the eightfoot tumel, which was being repowered for sonic speed, and he helped establish a new, minimally flow-field-disrupting method for holding its test models in place-a system first used in 1946 tests of reseach airplane models including the X-1. By carly 1946 he had written up Donaldson's compatative investigation of tansonic open and closed boundary effects. which limked directly to what he was about to propose. Thus the pre-1946 activities of physicist and applied mathematician Ray H. Wright constitued something like an apprenticeship in the engincering at and science, such as they then stood, of transonic wind tumed testing. But by far the most revealing formative ativity of this soom-to-be agent of accumulated NACA understanding took place in August 1946, when he wrote a memorandum. ${ }^{12 n}$

Wright's lengthy, detailed memorandum to Langley's compressibility research chief advocated synthesizing what the NACA already knew about high-subsonic and near-sonic wind tumed research. "As a result of work on wind-mmel interference and of other experiences gained over the past several years," it began, "ideas and information have been accumulated for a number of useful report projects that could be carried out with a minimtm of time and effort." The point was to assess the organization's corporate store of technical and scientific knowledge about transonics up to Mach I, and to determine how to exploit it-at minimal expense, and with the practical goal of improved research capabilities. For each of sixteen possible report project topics, Wright wrote a paragraph-length synopsis drawing on his overall awareness of existing NACA work. The topics included "general consideration of the effect of compressibility on wind tumel interference," "wind tumel ime ference at Mach numbers greater than the critical," and "flow conditions and tumel-wall interference near choking." To be based on these three in particular, together with another closely related three, he projected among the sixteen prospective projects a "general report on wind tumel interference at high speeds," for which a "considerable amount of material [was] already in existence" that he said "should be compared, sifted, and collated."

In this transonics-focused memorandum Wright also suggested precisely the famous project in which he himself was apparently already engaged: "wind tumels with zero or negligible interference." For this one the accompanying synopsis is the memotandum's lengthiest, amounting to a prospectus for the theoretical and experimental work that would lead to slotted-wall tumnels. Thus it also amomed to a plan for finally realizing Langley engineers' long-held intuitions about an open-closed solution to the transonic tunnel problem. To circumvent the difficulties of high-speed wall interference, it said, "as well as to prevent choking, the wind tunnel may be so designed as to minimize the interference. If the interference can be entirely prevented, the obtaining of model data can be simplified by abolishing the necessity for making tumel-wall corrections." The tumnel would use "an attomatically compensating method" of "multiple-sided open-closed test sections." Mathematical techmiques, Wright wrote, were "available for investigating this problem," and if a "mathematical investigation indicated a probability of success," small-scale, principle-proving model wind tumels "incorporating the automatically compensating features should be designed and tested. The possible usefulness of such an investigation,"

[^59]added the techologically sophisticated, NACA-engineer-trained physicist, "suggests that it should be carried out as soon as persomnel can be spared. Only a bare start has been made on the calculations."

Stack's 1952 press release crediting the slotted-wall contributions of his nincteen associates begins by describing his "old written notes" from 1946 showing that "for some time" he and others had had a "faith in the probability" that a transonic unnel solution was in hand, that "a good part" of this fath "rested in the subsonic high-speed theoretical studies of Ray H. Wright," and that "in the late summer of 1946 " the arrangements began for the small proofof-principle pilot project that Vernon (3. Ward spearheaded. ${ }^{121}$ How or even whether these notes relate to Wright's August 1946 memorandum is not clear, but it is clear that Wright comprehensively understood the problems of replicating transonic flows up to Mach 1 , and that much of his ability to contribute importantly to their solution derived directly from a formative decade of immersion in the technical culture around him.

Relatively soon, NACA Langley developed slotted walls well enough to apply them in two national wind tunnel facilities, all under the general guidance and techmopolitical shepherding of Stack, who according to Becker "was adamant regarding schedules, at times ruthless in dealing with any interference, and atways able to inspire, to make quick decisions, and to give effective orders." The newly converted unnels were valuable; L.oftin says they "provided a new dimension in transonic testing." ${ }^{2}$ But like other useful rescatch tools, they were imperfect too. NACA advertising notwithstanding, difficulties persisted between Mach 0.98 and Mach 1.05, part of the tange from Mach 0.95 to Mach 1.2 that the NACA's 1948 survey participants had unanimously agreed was where "the real fundamemal lack of information occurs." The difficulties remained in sloned-wall transonic tumels even a halfcentury later. In the cight-foot tumel in 1950, langley engineers spent months making improvements to the initial slotted-wall instatation. For example, Richard Whitcomb remembers coordinating directly with Langley woodworkers to devise an apparatus at the downstream end of the test section to reintroduce the air that had gone through the slotsan efficient, focused, redtapeless way of working that he says became "totally verboten" before he retired. By 1953, Langley high-speed reseatchers had commissioned a new eight-foot lemmel, this time with slotted walls plamed from the outset, and with other improvements including pressurization at two atmospheres for higher Reynolds numbers, a test section designed for easier data-gathering, and modifiable slot shapes. ${ }^{124}$ Histony, or public relations, might momentarily have highlighted the origital two slotted-wall tunnels, but tansonic research questions contimued to arise, and NACA researchers like experimentalist Whitconb continued devising research tools for answering them.

Over the years, though, NACA researchers tended not to advertise their research tools, possibly contributing to the Collier Trophys tardiness in recognizing a wind unnel. Roland says that even though rescarch took were among the NACA's chief accomplishments from the time of the Variable-Density Tunnel, NACA research director George Lewis feared sharing infomation about them with the NACA's competitors. Possibly this secrecy has exacted a cost in the understanding not just of the research tools, but of the technical culture from which they derived. To explain the secrecy, Lewis once compared NACA research tools to Stadivarius violins. "Antonio Stradivari," he wrote, "made a success by making the world's timest violins, and not by writing articles on how others could construct such instrments." But Stradivari could only have learned to make such fine instruments where he did learn: among the Cremonese masters, a technical culture whose corporate technical memory, scientific understanding, and shated taditions of caftsmanship ${ }^{\text {sfi }}$ enabled its members to build devices that move air in just such a way as to produce beautiful masic. Much the same can be said for the technical culture of the NACA, where engineers-and engineering-minded physicists-learned to build devices that move air in just such a way as to produce useful knowledge.

123. Becker, High Sifed Fomter, p. 113; "Summary of Recommendations on Research Problems of Tamsonic Airctaft Design," p. 8 in "Repert of Spectal Subcommittee" section; p. 18. Fancis J. Capene, Lindats.

124. Richatd Whitoomb, Whephone intersiews, Apill and l9, 1996.
125. Roland. Modd Resarch, 1:246; Dawson. Lngimes and Innoruation, p. 32

 knowledge of mathematics and acoustical physics," who athained his skills in an instrumentmaking culture of "old masters" with a setence-thased "accumblation of craft techmique" in Chemoma, Italy.

Chapter 5

The Whitcomb Area Rule: NACA Aerodynamics Research and Innovation

by Lane E. Wallace

As the 1940 s came to a close, military airctaft mambacturess in the United States faced a distubing problem. The Bell X-I had broken the so-called "sound bartier," and both the Air Force and the Navy were looking for next generation aircraft that could operate at supersonic speeds. But preliminary tests of models indicated that even the best designs put forth by industry engineers were not going to be able to acheve that goal. A sharp increase in drag at speeds approaching Mach One was prowing too much for the limited-power jet engines of the day to overcome.

The solution to this frustrating impasse was found by Richard T. Whitcomb, a young aerodynamicist at the National Advisory Committer for Aeronatios (NACA) Langley Rescarch Center in Hampton, Virginia. His development of the "area rule" revolutionized how engineers looked at high-speed drag and impacted the design of virually every tansonic and supersonic aircraft eser buils. In recognition of its fatreaching impact, Whitcomb's area rule was awarded the 199.4 Collier Trophy.

Yet it is not just the significance of the concept that makes the rliscovery and application of the area rule interesting. The story of its development provides insights on how innowations are "discovered" and how, even at a time when research projects were growing bigger and more complex in scope, a single, creative individual could still play a critical role in the development of new techoology. In addition, while the area muke concept was appled almost thiversally to supersonic ainctalt designs, that "suceess" also illustrates some of the factors that molluctuce whether industry applies a given techoology, regadless of its inherent worth.

The Transonic Drag Problem and the Area Rule

Researchers in the Langley Research Center's wind tunnels had begun working with transonic airflows and the problem of transonic drag (at speeds approaching and surpassing the speed of somed) even before the end of World War II. In 1943, John Stack, head of Langley's EightFoot High-speed Timnel branch, obtained approval to increase the power in the tumed from 8,000 horsepower to 16,000 horsepower: The upgrade, completed in the spring of 1945, allowed researchers to produce relable aidlow data in the tumed for speeds up to Marh .95.'

One of the researchers working with Stack in the Eight-Foot High-Spered Timel was a young engineer maned Richad Whitcomb. Whitcomb had been fascinated with aitplanes and aerodynamics since he wats a voung boy, building and testing aimplane models

made out of balsa wood. He was hired by the Langley Research Center in 1943, after receiving an engineering degree from the Worcester Polytechnic Instinte. The Langley managers initially wanted him to work in the Flight Instrument Division, but Whitcomb stubbornly insisted that he wanted to work in acrodynamics. Fortunately, he was granted his preference and wats assigned to Stack in the 8 -foom wind tumel.

Initially, Whitcomb was assigned the task of performing test monitoring for other reseathers. But for an eager young engineer, the key to advancement was to "run the tests and keep your eyes open, your ears open," Whitcomb recalled. "I kept coming to (ene (Draley, Stack's replacement as head of the 8 -foot tumel) and saying maybe it ought io be done this way. Lecis try this. And somewhere along the way, Gene says 'OK, go try it,' and that's where I got started.".

By July 1948, Whitcomb had developed a reputation as "someone who had ideas" and was starting to pursue his own research experiments. He proposed a series of wind tumel tests in the repowered 8 -Foot High-Speed Tunnel for a variety of swept wing and fuselage combinations. He hoped the tests would uncover a configuration with significantly lower

[^60]3. Richard T. Whitcomb, telephone interview with author, May 2, 1995.
drag at transonic speeds. The tests were rum in late 1949 and 1950, but the results were both perplexing and discouraging. None of the combinations had much effect on reducing the drag of the models as they approached Mach One.' Clearly, the researchers needed to know more about the behavior of airflow in the transonic region in order to figure out what was causing such a stubborn drag problem. Unfortumately, this data was difficult to obtain. Even the upgraded eight-foot wind tunnel at Langley could only reach speeds of .95 Mach.

Becanse of the limitations of the available wind tumels, researchers in the mid-1940s had resorted to several "stopgap" methods to try to lean mone about transonic airflow. One series of experiments involved dropping instrumented test missiles from a $\mathrm{B}-29$ Superfortress. Test airfoils were also mounted on the wing of a P-5l Mustang fighter plane that was then put into a high-speed dive. With this contiguration, the airplane's speed remained subsonic but the aiflow over the portion of the wing holding the test airfoil surpassed the speed of sound. A third approach used rocket models launched from Wallops Island, a remote beach location across the bay from the Langley Research Center.

All three methods had their drawbacks, however. The falling-body and wing-flow techniques offered less precise data than that obtained in a wind tumel. The rockel tests produced more precise data, but they were " 100 times as expensive as a wind tumel test" and could only explore a single parameter at a time. Furthermore, the Schlieren photographs that illustated the shock wave pattems of high-speed airflow could only be obtained in a wind tumel.

Consequently, it wats not until Stack and his team of engineers, which included Whitcomb, developed a "slotted-throat" modification for the 8 -foot wind tumel in 1950 that transonic flows could be thoroughly explored." The slotted-throat modification prevented the choking that had limited the speeds in the test section of the tumnel and allowed the air to go through the speed of sound. For the first time, researchers had a tool to investigate precisely what airlow did in that speed range and what might be causing the puraling drag they had observed.

Actually, the slotted throat wind tumel was only one of the wools Whitcomb and his associates used to investigate transonic airflows. Bun once that was in place, they could then employ other existing research tools to look at what the airflow was doing. In late 1951, Whitcomb tested a swept-back wing-fuselage combination in the now-transonic Eight-Foot High-Speed Timmel. ${ }^{7}$ Tuft surveys, which used smatl pieces of yam taped onto airfoil and fuselage sections, were conducted to look at airflow disturbances. Coverings with pressure-sensitive openings were put on model sections to determine the velocity of the air over paticular areas, and Schlieren photographs were used to look at the shock wave chatacteristics of the model at transonic speeds."

1. Richati I: Whiteomb, "APoposal for a Suppt Wing Fuselage Combination with Small Shock I osses

 to avod the delat of going thomeg nommal dimmels.

The results, especially those revealed by the Schlieren photographs, showed that the shock waves created as the airflow approached the speed of sound were different and bigger than anticipated. Undoubtedly, it was the losses from these unexpected shock patterns that was causing the shapp increase in drag at transonic speeds. But the question of what was cansing the shockwaves still had to be answered before reseathers could try to find a way to combat the phenomenon.

Several weeks later, a world renowned German aerodynamicist named Di. Adolf Busemam, who had come to work at Langley after World War II, gave a technical sympositm on transonic aitlows. In a vivid amalogy, Busemam described the strean tubes of air flowing over an airctaft at transonic speeds as pipes, meaning that their diameter remained constant. At subsonic speeds, by comparison, the stream tubes of air flowing over a sumfer would change shape, become natrower as their speed increased. This phenomenon was the comverse, in a sense, of a well-known acrodynamic principhe called Bemoulli's theorem, which stated that as the area of an airflow was made namower, the speed of the air would increase. This principle wats behind the design of venturis." as well at the comigutation of langleys wind tumels, which were "necked down" in the test sections to generate higher speeds.'"

But at the speed of sound, Busemann explained, Bernoullis theorem did not apply. The size of the stream tubes remained constant. In working with this kind of flow therefore, the Langley engineers had to look at themselves as "pipefitters." Busemam's pipefiting metaphor caught the antention of Whitcomb, who was in the symposium andience. Som after that Whitcomb was, quite literally, sitting with his feet up on his desk one day, contemplating the umusuat shock waves he had encountered in the transonic wind mumel. He thonght of Busemam's analogy of pipes flowing over a wing-body shape and suddenty, as he described it later, a light went ons.

The shock waves were larger than anticjpated, he realized, because the stream tubes did not get natrower or change shape, meaning that any local increase in area or drag would affect the entire configuration in afl directions, and for a greater distance. More importantly, that meant that in trying to reduce the drag, he could not look at the wing and fuselage as sepatate emtites. Ite had to look at the contire cross-sectional atea of the design and try to keep it as smooth a curve as possible as it increased and decreased aromed the faselage, wing and tail. In an instant of darity and inspiration, he had discowered the area rule.

In practical terms, the area rule concept meant that something had to be done in onder to compensate for the dramatic increase in cross-sectional area where the wing joined the finselage. The simplest solution was to indent the fiselage in that area, creating what engineers of the time described as a "Coke bothe" or "Marilyn Monroe" shaped design. The indentation would need to be greatest at the point where the wing was the thichest, and could be gradually reduced as the wing became thimer toward its trailing edge. If nartowing the fuselage was impossible, as was the case in several designs that applied the area rule concept, the fuselage behind or in front of the wing needed to be expanded to make the change in eross-sectional area from the nose of the aircraft to its tail less dramatie."

[^61]
The Pieces of the Puzzle: Creative Innovation

Although the picces may have come together in a flash of insight, there were actually several important elements and processes that contributed to Whitcomb's discovery. Whitcomb had developed a reputation as something of a "Wunderkind" at Langley because of his unique combination of knowledge and intuition about airflows; a combination that undoubtedly contributed to his discovery of the area rule. ${ }^{12}$ The intuition may have been a gift, but his knowledge of airflow behavior was certainly enhanced by his seven years of experience working with Langley's 8 -foot wind tunnel.

The discovery of the area mule concept wats also dependen on the previous invention of the slotted-throat tumel design. Without that piece of technotogy, Whitcomb could not have gathered the information necessary to understand the caluses of transonic drag. In fact, the very existence of the wind tumels at Langley was a critical factor in allowing a new approach in design to surface and be tested. If the information had to be obtained through an elaborate, expensive flight test program, fewer ideas could have been investigated, and Whitcomb might not have had the opportunity to test his innovative theory.

 "amen mel". (NASA photo).
 I Iansen, Engimer in (\%hengr, p. 332.

In addition, the projects conducted at Langley were still fairly smatl, individual research efforts that allowed for experimentation. This kind of atmosphere, while not colicely unique among govemment-funded facilities in the early 1950s, was becoming more umusual. At one time, individual or smatl-group research efforts had characterized many research laboratories. But the exponential growth of technology and complex techmological research during World War II began to change that. The Manhattan Project, responsible for the development of the atom bomb, symbolized for many a significant shift in technological reseath from small, independent projects conducted by single laboratories to large, complex research programs involving many people, broad resources and finding, and multiple disciplines." ${ }^{\text {a }}$

In a bigger and more complex reseath enviromment, with approvals and decisions dependent on higher-level program managers, Whitomb might not have had the latitude or opportunity to develop and test the area me concept. But the NACA Langley enviromment offered a middle ground between a small, independent laboratory and a large research program. Whitcomb had expensive technological tools at his disposal, such as the sloted-throat wind tumel, but he still had the independence and flexibility to develop and test a radical new concept on his own."

Whitcomb wats also assisted by the infomal management enviroment and the onentation towade experimental reseath at the Langley Reseach Center, both of which were conducive to individual inmovation. As John Becker explained in his case histories of four NaCa programs,

> Management (at langly) assumed that research ideas aoudd emerge from an alert saff al all lezels. . . On a problem of major proportions such as transonic facilities, any sheme for research that survized peer discussions and gained section and division apponals ames likely to be implemented . . and very litte (paperwork) was required in the simple NACA sytem. Occasional chats with his division chief or department head, on a bive verbal report at the monthy defartment meting were about all that was required of the NACA project ongineer."

This kind of environment was particularly well-stited to an inorospective thinker like Whitcomb. Managers knew he was a talented acrodynamicist, and they were wise enough to keep his paperwork to a minimom and give him the space and freedom to think, experiment, and explore. ${ }^{\text {b }}$

Langley's oricutation toward hands-on, experimental research was a significant factor in Whitcomb's discovery, as well. As opposed to research centers that focused more on theoretical research, Langley encomaged exploratory experiments such as the wind tunnel tests Whitcomb devised to investigate wing-body combinations and airflow at transonic speeds. The breakthrongh on the tansonic wind tumel itself, in fact, was a result of a reseatcher asking himself, "I wonder what would happen if I tumed up the power" That simple question-"I wonder what would happen if . . ." instigated momerous experiments at Iangley that , in turn, led to significant discoveries. ${ }^{17}$
13. James 11. Capshew and Kamen A. Rader, "Big Science: Price to the Prestent" OSRSS End sernes 7
 XY: Penguin Books. 1989). pp. 44(1)-42.
 1) (: NASA SP-45. 198(1), pp. 117-18.
15. Ibid.
16. Hansen, Engener in Change, p. 341.
17. Whitcomb, intervew, May 2 , l905: infomation on tamomic wind lamel development also in Hansen, Anginer in Chage, p. 329; and in Ch. I of this book.

This curiosity-driven, experimental approad was especially significan in discomering the area rule, because there was no avalable theory to explain the unusual dag encomlered at transonic speeds. Rescatchers had to come up with a creative way of readhing beyond the known, and the exploratory experiments conducted by Whitcomb and others yielded the data that allowed him to understand the catese of the transonic drag and shoek wave phenomena. Conducting handson experiments with an airetaft model in a wind tumel also helper Whitcomb "see" the airllow behavior in a way mathematioal fonmulas would not have.

Still, these factors only provided the wools and emviromment that made Whitcombs discovery possible. The breakthrough still required the insight of a creative mind: a mind able to "see" the problem and able to step batk fiom accepted rules of design to contemplate a solution based on an entinely new appoach. The process by which Whitcomb was able to do that offers insight isself as to how setentific or techological imonation occurs.

Science and techology are often viewed as fields completely diverced from any of the arts. Common phases that distinguish something as "a science, not an ant" and describe "the scientific method" as a way to discem an massailable trub indicate our collective view of science as a rational, logical, linear, mathematical and precise process. Yet since almost the beginning of time, artistic vision has played a critical role in the advancement of technology and science. Endoubtedly, even the fiss ave dweller to invent the whed first had a picture in his or her mind of what the device would look like.

Albert Colquhoun, a British architect, asserted that even scientific laws are "constructs. of the human mind," valid only as long as events do not prove them wrong, and applied to a solution of a design problem only after a designer develops a vision of the solution in his head.'s This artistic vision becomes even more important when a scientist or engineer needs to go beyond the lading edge of knowledge, where existing theories cease to explain events. At this point, a designers imagination is critical in envisioning potential new solutions. As one analys of technological development satid, "The inventor needs the intuition of the metaphor maker, some of the insight of Newton, the imagination of the poet, and perhaps a touch of the irrational obsession of the schizophrenic." "

Whitcomb was not the only person to look at the problem of transonic dage. As carly as 1944, Geman acrodynamacist Dietrich Kuchemann had designed a tapered fuselagefighter plane that was dubbed the "Kuchemam Coke Botle" by American intelligence personnel. Kuchemann's design was not aimed at smoothing the curve of the cross sectional area to displace the air less violently, however. He had simply observed the direction of air flow over a swept-wing design and was trying to design a fuselage that would follow the contours of that flow. ${ }^{3 n}$

Whitcomb's area rule was also, in retrospect, sated to be implicit in a doctoral the sis on supersonic Ilow by Wallace D. Hayes, published in 1947. Bu the mathematical formulas employed by llayes, as well as several other researchers working on the general problem of transonic and supersonic air flows, did not lead their creators to the necessary flash of inspiation that crystallized the area rule for Whitcomb. Why didn't they see what Whitcomb did: The answer, in part, may lie in the precise fact that they were working with mathematical fommas, instead of vistal images. The answer may have been imbedded in the numbers in front of them, but they couldn't see it.

[^62]What led to Whitcomb's insight was his talent to see and work with visual metaphora skill described by Aristote as a "sign of genius" and an important tool for secing things from a fresh perspective, or discovering new truths about existing objects or ideas. ${ }^{.1}$ In his history of American technological progress. Thomas Hughes also stressed the importance of visual metaphors in developing innovative ideas, noting that "although they are articulated verbally, the metaphors of inventors have often been visual or spatial. Inventors, like many scientists, including Albert Einstein, Niels Bohr, and Werner Heisenberg, show thenselves adept at manipulating visual, or nonverbal, images."?

When Adolf Busemann used his "pipefitting" metaphor to describe the behavior of transonic air flow, Whitcomb painted a vivid picture in his mind of air "pipes" flowing over an aircraft. He then incorporated into that image the other information he had obtained through his experiments with transonic air flow. Suddenly, he "saw" what was causing the unusual shock waves and what could be done to combat the problem.

In order to see a solution that went beyond existing theory, however, Whitcomb also hat to be willing to break free from accepted rules, or paradigms, of aerodynamics." In the late nineteenh century, Emst Mach had shown that a bullet-shaped body produced less dagg in Hight than any other design. This accepted "paradigm" of arcradi design led to the basic fuselage shape employed by transports, World War Il fighter planes, and even the Bell X-I rocket plane. It was also still the accepted rule of thumb as engincers began to design the first unboje- -powered supersonic aircraft. The assumption that a bullet-shaped fuselage was the most efficient arodynamic shape, however, led reseathers to look elsewhere for clements that could be modified to reduce the drag of aircratt at transonic speeds. To see the soltaion that Whitcomb envisioned-indenting the fuselage in the area of the wing to reduce the dramatic changes in the aircraft's overall cross-sectional area from nose to tailrequired going against a "truth" that had worked and had been accepted for over fifty years.

The same paradign that had helped advance aireraft design for half a century became, ironically, one of the barriers that kept researchers fiom advancing aircraft design beyond subsonic flight. Why was Whitcomb able to step back and consider an approach that broke this accepted rule? For one thing, the circumstances required it. Kuhn noted that "the failure of existing rules is the prelade to a seath for new ones. ${ }^{-3}$ Gertainly, the stubborn problem of transonic drag presented Whitcomb with a situation where existing theories and rules were not working.

Secondly, Kuhn observed that "almost always, the men who achieve...fundamental inventions of a new paradigm have been either very young or very new to the field whose paradigm they change." When he came up with the area rule concept, Whitconb was only 30 yeas old. Possibly, the fact that he had not spent wenty years designing bulletshaped fiselages contributed to Whitombs ability to conceive of a different design. He was also something of an intospective thinker and individualistic researcher, which may have made him more able to contemplate a "fringe" idea that broke from his peer group's assmoptions. In any event. Whitcomb was willing to step back from accepted touths and
 Random Ifouse. 1954), p. 2.5.

 (hicago Press, 1970), po. 10-11, 24, 37.

9. Hidn.p. 90.
simply look at what his data was showing him; paint a vistal picture of in in his mind and see not what he expected to see, but what was really there.

While this may seem a simple and obvious solution to outsiders with forty years of hindsight, Whitcomb's ability to break fiee of the design doctrines that dominated aeronatics in his day was, in fact, a unicque and remarkable ability that truly set him apart from many others in his field. Once someone comes up with an answer, it often seems obvious. But the researchers struggling with tansonic drag were not aware they were caught in a paradigm that did not work. They were focused on tiving to cut a workable path through a dense forest they knew as real and immutable. Whitcomb's genius was his ability to see that the problem was not the path, but the forest itself.

From Idea to Application

When Whitcomb presented his concept of the areat me to some of his colleagues at Langley, he encountered skepticism. Ater atl, it was a radical approach to airctaft design. But division chief John Stack still allowed Whitcomb to present the idea at the next technical seminar. And listening to Whitcomb's presentation, this time, was Adolf Busemam, whose stature in the adrodynamies community was such that his opinion camied a great deal of weight. Busemann, whose visual pipefitting metaphor hat provided the catalyst to Whitcombs discovery, understood what Whitcomb had seen. He told the ohers present that Whitcomb's idea was "brilliant." The skepticism among some of the others, including Stack, remaned. But the support from Busemann was enough to get Whitcomb the goahead to test his theory. ${ }^{2}$

Throughout the first quarter of 1952 , Whitcomb conducted a series of experiments using various areatrule based wing-body configuations in Langley's X-Foon High-Speed Tumel. As he expected, indenting the fuselage in the area of the wing did, indeed, significantly reduce the amount of drag at tansonic speeds. In fact, Whitcomb found that "indenting the body reduced the drag-rise increments associated with the unswept and delta wings by approximately 60 percent near the speed of sound," virtually eliminating the drag rise created by having to put wings on a smooth, cylindrical shaped body. ${ }^{27}$

In a simple world, this validation of Whitcomb's theory would have been sufficient for the principle to be applied to all new industry designs. All that would have been necessany would have been to notify the airctatit matacturess that a better design approach had been developed. The world is not that simple, however, and the inherent woth of an innovation is rarely enough for it to be incorporated into commercial products. As Louis B.C. Fong, director of the Olfice of Technology Utilization at NASA (National Aeronatics and Space Administration) commented in 1963, "In this age of attomation, there is nothing aumomatic about the transfer of knowledge or the application of an idea or invention to practical use...there is resistance to new ideas and new techmologies; part psychological, part practical...and often economic.".se

[^63]VACA or NiSA engineers tend to measume the success of a new idea or technology strictly in temen of technical objectives met. Industry, on the other hand, measures immosative succes in terms of profit dollars generated within a specilied paback period. Consequently, a new approach or technology, esen if it is technically "better," may be rejected by industry if its use involves exta costs for the mambacturer These costs cati be in retooling for a new design, replacing machinery, or even in retraining employees or changing the traditional ideas and approaches of its engineers. All of these factors can produce resistance to a new idea or techoology within a compans, and overcoming that resistance can be a difficula process."

There ate a couple of stuations in which new technology maty be rapidly assimilated into commercial products. howeves. One is if it can be incorporated with minimat extra cost, and a second is if it solves a problem that a mannfaturer needs wowe. When Whitomb developed his area mee, there was a manufacturer in cath of these situations. and that hact plaved a significant role in the speed with which his imnotation began to impact the design of new airctaft.

White Whitcomb was conceiving and testing his area rule concept, the Consait Division of Gemeral Dyamics was developing what it hoped would be the companys first supersonic airctaft. The Convair F-102 "Delta Dagger" was designed to be a long-tange interceptor. with delta wings and the most powe ful turboje engine avalable at that time, the Prat \& Whimey J-57. Eaty test results of an F-i02 model in Langleys X-Foot High-Speed timmel, hewever, seemed to indicate that the design's tansonic drag might be too high for the aircrati to sumpass Math One.

The NiAC had immediately classified any information pertaining to the area nule as it had the reseath on the sloted thenat wind tumnel that allowed the area mule to be dewet oped. In 1959 , the Linted states was engaged in heated and high-stakes compertion for military superiority with the Sove Union, and NACA realized the importance of transonic reseach in developing superion militare amoth. Athough the chassilication was necessay, it made dissemination of infomation about the area rule more difficult. Formately, NaCis history of successful technology transfer efforts had been less a product of published writings than the various levels of infomal NACA-industry cooperation and researcher-1orogineer discossions. The area rule would prowe no execption.

In mid-August 1952, a group of Conatir engineers were at langley to obsene the perfomance of the F - 102 model in the Eight-Foot High-Speed Tunnel. Shown the disappointing test results, the congincers asked the Langley engineers if they had any suggestons. Whitombs first research memonandum on the area mule would not be published for another month, but he had completed his tests on the various wing-bedy combinations using indented fuselage shapes. He explaned his findings and the area rule concepe to the Comair team.

Intrigued, the Comair engineers worked with Whitcomb over the next few months to experiment with modifying the F - 102 design and building a model that incorporated the area rule concept. At the same time, however, the company continued work on the original F-102 prototye. The engineers may have been open to exploring a possible new

option, given the uncertainty produced by the wind fumed tests of the original F-102 model, but the company hat abeady marle a commitment to the Air Force to buik two protorypes of the original F-102. In addition to any mental and insitumional resistance Convair might have had to changing a design which it had touted so highly and had ahready made a commitment to build, the companys commitment also created an issue of cost.

By mid-1952, when Convair tested the F-102 model at Langles, the company had already begun setting up a production line at its Sam Dicgo, Catiforma, facility for manufacturing the atrctafi. To change the design wond mean not only delass and additional engineering cosis, but rexamping the proluction tine, as well. Consequenty, far from being receptive to a new design approad, Convair had a significant stake in proving that its new aircraft could perform just fine withou it."

Nevertheless, the company could no totally ignowe the dentof tul test results of its original design, so its engineers began working on a "Plan B" with Whitomb while production of the prototype F-102s continned. Stating in May 1953, the Comair engineers and whitcomb began testing models of a modilied, ara mole-based. F-102 design in Langley's wind tumel. By October 1953, they had developed a model that could mee the dir Fonce perfomance periffations. Convair noted the results but continued woming on the original F-102 prototye , which flew for the firs time on October e4, 1953."The first protolype was severely damaged on its maden flight, so test flights had to be postponed until Jamary 11,1954 , when the second prototye flew to the first time. The results of the light tests, however, proved w be largely the same as those predieded by the wind tumel lests of the F-102 model in 1052 . The airctatt perfoned below expectations and could not attain supersonic speeds in level flight."

Faen at that perins, Convair might have continued on perss for production of the design ats it was, given that the tooling and production line in its San Diego plam was already sed, except for one crucial factor: The Air Force officials working on the F-102 design were atate of Whitombs area rule and the lact that a modified f-102 model, based on that concept, had achieved supersonic speeds in wind tummel rests. Consequently, the dir Fonce realied that the F-102 was not the best that Convair could do. Whicomb's experiments had proven that a supersonic aitplame was possible, and the dir Fonce decided to settle for no less. The F-1og program manager at Wight Field in Ohio informed Convair that if the company did not modify the F-102 to achieve supersonic fligh, the contract for the fighte interceptor would be cancelled. *"
lncorporating Whitcomb's imotative design approach inwolved exta expense, but nothing compared to the cost of losing the entise F-IOE contract. Convair immediatels halted the F-102 production line and began working on the modified design Whiteomb and the company congineers had developed and tested. In only 117 working days, the company had built a new, area rule-based prototype, designated the F-102A. The F-102d flew for the first time on December 24. 1954, and supassed the speed of sound not ouly in level flight, but while it was still in its initial climb. The arearule had improved the epeed of the F-IO2 design by an estimated wenty-ive percent. ${ }^{\text {a }}$

[^64]While Convair was struggling with its F-102 design, the Grumman Aircraft Engineering Corporation was also working to develop its first supersonic carrier-based fighter, the FOF F-I IF Tiger. ${ }^{\text {it }}$ Although the area rule restarch was classified, the NACA released a confidential Researh Memorandum on the subject to appropriately cleared aircraft mambactures in September 1952 . Just wo weeks after receiving that memorandum, (m mman sent a group of its engincers to l angley to leam more about it. The information they brought back to Bethpage, New York, was immediately incorporated into the design, and in Febtatay 1953 , Whitcomb was flown in to review the tinal design plans before constmetion on the prototype was begun. On April 27,1953 , the Navy signed a letter of intent with Grumman for the fighter, based on the Whitcomb-approved design. On August 16, 1954, the Grumman F9F-9 Tiger "breezed" through the somed barrier in bevel fight without the use of the afterbumer on its Wight J-65 turbojet engine."

The enthusiastic incorporation of Whitcomb's immovation by Grumman stands in stark contrast to the qualified experimentation and resistance that characterized Convair's response. But the two companies were in different situations. Convair had already completed a design for the $\mathrm{F}-102$ and had begun constration of two prototypes and a production line. (immonan, on the other hand, was still working to design the FIDF Tiger when langley published its confidential report on Whitcombs area rule breakthrough. It was the perfect time to incorporate a better design idea, and involved few extra costs to the company. At the sance time, the Navy had not yed contracted for the lighter, and Gimmman may well have recognized that its chances of winning the contrate would be impored by incorporating any avalable new technology into its design; expecially something that might improve its speed.

In any event, Whitcomb's innovative idea was incorporated into two production military aircaft only wenty-fom months after he completed his initial wind tumel tests on the concept. This incredibly "successful" example of technology transfer was a resule of two important factors. First and foremost, there was a problem looking for a solution" that the area rule was able to solve. Transonic drag was a real and seemingIf unsumomatable obstade to stopersonic flight. Whitcombs area rule was not one of a mumber of potential solntions; it was the omb approach anyone had developed that had proven itself capable of overcoming that barrier. It also had the backing of a very powerful dustomer: the United States military. When the Air Fore decided to hold firm on its demand that Convair's aimaft fly supersonically in level flight, Gonvait could not simply sell its F-logs to another cusiomer. The Air Force was its ondy dient, just as lhe Navy was for Grumman.

But another important element, especially with regard to Convair, was the cooperation and individual relationships that existed between the langley researchers, including Whitcomb, and the industry enginecrs. The moditied F-102A model that proved to the Air Foree that a fighter could achieve supersonic flight was a cooperative effort between Whitcomb and Comatirenginecrs. Without that cooperation, or the informal discussions at Laggley that handed that work, the fate of the F-102 might have been different.
38. The prototype was designated first as the FOF-X, and then as the F9F-9, alohough the originat Grumman Fof-2 design was the staight-wing Panther jet, and the F9F-t; was the swept-wing Gomgar. The Tige was really an melated design, but the prototypes were still labeted as valiants of the F9F design. The preduction model Tigers, howerer, were alled FllFs.
 47-48; Gunston, Mhatrated Mistory of Hghem, p. 192; Hansen. Enging in (harge, Pp, 339-40.
40. Nomerous NaSA and industry engineers. including Whitomh himself (Whitcomb, interview, Math 97.1973), have used this phase (0) dese pibe the kind of stuation that tends what to guick acceptance ot a mew technologn:

The area rule undoubtedly would have been incorporated into aireraft designs eventually, regardless of the individuals involved. But that timeframe could have been different, which could have had an impact on the kind of air defenses the United States had at its disposal in the early days of the Cold War:

As it was, the success of the area rule-based F-102 and FllF was followed by the incorporation of the area rule in virtually every supersonic airctaft buill after that point. The Vought F8U "Crusader" fighter and the Convair B-58 "Huster" bomber, both of which were on the drawing board at the time the area rule was developed, were redesigned using Whitcomb's approach. The F-106, which was Convair's follow-on design to the F-102A, adhered even more to the area rule. It wats able to incomporate a much deeper indentation in the fuselage than its predecessor, because it was an entirely new aircraft, unencumbered by existing design elements.

The fuselage of the Republic F-105 "Thunderchief" fighter/bomber, which flew for the first time in 1955, incorporated the area rule in a slightly different manner. It could not be indented becanse of its complex engine inlets, so a bulge was added to the aft region of the fuselage to reduce the severity of the change in the cross sectional area at the trailing edge of the wing. The Rockwell B-1 bomber and the Boeing 747 commercial aiminer also used the addition of a cross-sectional area to reduce their drag at mansonic speeds. Both the $\mathrm{B}-1$ and the 747 have a vertical "bump" in the forward section of the fuselage ahead of the wing. It is perthaps more visible in the 747 , where it houses the airliner's characteristic second story, but both aidfame modifications were added to smooth the curve of the design's cross-sectional area."

The Collier Trophy

Whitcomb's Area Rule reseateh was classified until September 1955, so he did not receive any immediate accolades or press on his discovery. But two months after his work was made public, Whitcomb received the Natiomal Acronatic Association's Robert J. Collier Trophy in recognition of his adhevement the previous year, when the Grumman F9F-9 Tiger and the Comair F-102A prototypes demonstrated just how significant the area rule was. The Collier Trophy citation read, "For discovery and experimental verification of the area rule, a contribution to base knowledge yielding significantly higher airplane speed and greater tange with the same power."

Conclusion

Although an enginering design approach using fommas or algotithms does not lend itself to the kind of notoricty that a project like the X-1 generated, the development of the area rule was no less significant. The $\mathrm{X}-1$ proved the sound barrier could be broken. The area rule made that discovery practical by enabling production aircraft to operate at that speed.

The fact that the area rule was discovered by an engineer sitting with his feet up on his desk, contemplating a vision in his mind, also shows the importance of creativity and the individual in advancing technology. Postwar science and researeh projects may have been growing in complexity and size, but Whitcomb's discovery was a reminder that the

[^65]individual researcher was more than a cog in a scientific, process-driven wheed. Fxperimentation and the visions in the mind of an individual able to put avalable information together in a new way have led to many imovative "breakthroughs" in technology and knowledge.

The history of the area ruke research also illustrates that ceen a "breakthough" discovery does not always win immediate acoptance by those who might implement it. As opposed to projects that were wholly funded, developed and implemented by the NACA and its successor, the National Acmonatios and Space Administration (NASA), or other government agencies, Whitcomb's breakthrough was just an idea. It may have been developed at a NAC A taboratory, but it was not up to NACA to apply it. In ofder for the imor vation to have anv impact at all, industry had to agree to use it, which is not always as simple a process as it might seem. Whitcomb's area rule was the answer to a tremendons problem that industry needed to solve, but the enthusiasm with which it was received differed greatly between Convair and Grumman. The advantages offered by the imotation were the same; the costs of implementing it differed.

But even in the application of the area rule concept, individuals played an important role. An Air Force demand was the primary reason Convair incoppoted the area rule into the F-102, despite the added cost. But the Air Force might not have had the confidence to make that demand if it had not been for the model work performed by a small number of individuals at Langley and Convais: As scientific and engineering rescarch and projects became more expensive, complex, and systemsoriented, it was easy to lose sight of the individuals that made those systems work. Richard T. Whitcomb, in developing and helping to win acceptance for a concept that revolutionized high-perfomance aircraft design, was a reminder that the individual still mattered.

Chapter 6

The X-15 Hypersonic Flight Research Program: Politics and Permutations at NASA

Abstract

by W. D. Kay Despite the fact that it is one of the most celebrated experimental aircraft ever flown, most historical writings have always had a rather peculiar blind spot regarding the X-15 program.' The citation for the 1961 Collier Trophy, for example, noted that the vehicke had made "invaluable technological contributions to the advancement of flight." It also commends "the great skill and courage" of its test pilots." In his letter nominating the program for the award earlier that same year, NASA Depuly Administrator Hugh L.. Dryden struck the same general themes, albeit in greater detail:

To the X-15 Research Airphane Team, the sciemisss, engineers, techmicians, and pilots of the National Aeromautics and Space Administration; the Department of Defonse; and North American Aviation, Inorporated for the concoption, design, detelopment, construction, and /light operation of the X-15 msearch airplane, which comtributel valuable msearch information in the supersomic and hypersonic speed regime up to the fringes of space, and who have thereln made an mutstanding comaribution to A merican leadershit) in aerospace science and lechoology and in the oppration of manned space flight."

These two fatures-an outstanding piece of machinery, flown by exceptionally brave and proficient pilots-still stand as the primary legacy of the X-15.

Certainly, all of this fame is well-deserved. Considering its technical achievements, as well as its contribution to knowledge about the upper atmosphere, hypersonics, high-atitude piloted flight, and so on, the X- 15 clearty stands as one of the most successful research programs in the history of aviation. Similarly, the men who flew the craft into the fringes of space at six times the speed of somen proved themselves time and again to be extraordinary individuals. These elements of the progran have been recognized repeatedly, with the X15 and its members receiving sixteen awads in addition to the Collier Trophy.

1. Recanse it was designed to pentetate intu the lower fringes of what is commonly agreed to be where
 even "Americats first spaceship"). See Milton O. Thompson, At the tidge of Space: The X- 15 Might Mrogram

 atmosphere, this essay ustally will use the term "atrenaft,"

 Referme Collection, NASA Ifistory Oftice, NASA Ileadguaters. Washingom, DC. The award was officially presented to four pilots representing the program s major participants: Robere M. White of the Air Forere, Joseph is. Watker of NASA, A. Scote Crossfield of Nomb American Avation, and Fomesi N. Pelersen of the Nant:

The problem with the prevailing view of the $\mathrm{X}-15$ is not so much that it is wrong, but rather that it is incomplete. For more than three decades, the vehicle's technical design, its scientific accomplishments, contributions to aerospace engineering, its flight records, and even the personal stories of its pilots have been extolled repeatedly in books, articles, monographs, and lectures.' Very little, however, has been written about how the program was achully rom, and virtually nothing has ever been recorded about its overall management." Most historical accounts begin with the National Advisory Committee for Aeronatics (NACA) decision in the carly 1950 s to pussue development of a high-altitude research plane, describe the technical aspects behind the selection of the contractors, and then skip over to the October 1958 rollout of the first vehicle."

 into Sprace," Spareflight, Jume 1977, pp. 298-39; Thompson, A the Lige of Spert, MeDowell, "X-15 Spaceplame."

5 . The major exceptions here are [l.S. Ait Force, Ais Fonce Sysmons Command, The Romet Rowarh Phogam, $1946-1962$ (Retwards AFB, CA: AFSC: Historical Publications Series, 1962), pp. 62-110; and Robert S. I fouston, Richard P. Hallion, and Romald G; Boston, "Transiting from Air to Space: The North Amertoan X-I5,"

 which has ever bern published (boh ate amalable at the NASA Historical Reference Collection). The we is also a bief discussion of some aspects of the program's management in Richard P. Hation. On the fomtier: Fight Rewath al Dryden, 1946-1981 (Washington, DC: NASA SP-4303, 1984), pp. 10i-299.
6. Xot surprisingly, this is espectially true of U.S. govemment publications. See "Brief History of the X-15 Project," NASA nows release, Apill 13, 1962, NASA Historical Reference Collection; Stillwell, X-15 Resarch Rowds; "X-15 to Finter Smithsonian," NASA news release. Apmil 27, 1969, NASA Historial Refereme Colledion. Man discossions, homever, will briefly mention the problems with the vehiele's man engine.

Not only is this view largely incomplete, but it also tends to give the impression that the X-15 experience was completely smooth and trouble free. Even the program's most serious technical problems are seldom described in any detail, and some difficulties, such as the fact that the project ran significantly ower its budget, have never really been discussed at all. ${ }^{-}$

To take one example, which will be explored further below, the development of the vehicle's main XLR-99 rocket engine fell considerably behind schedule, at one point posing a significant threat to the entire program. Lltimately, after much wangling with the engine contractor, Air Force and NACA officials opted to conduct initial flight tests with two smaller XIR-1I engines. Most X-I5 histories, however, dispose of this affair in a couple of sentences, almost suggesting that is was nothing more than a brief amoyance. lindeed, in remarks made at the Collier Trophy Award ceremony in July 1962, Robert (. Scamans, Jr., portrays it as a routine decision, virtually planned in advance, rather than forced by necessity: "In January, 1958, the project management decided to contimue the development of the 57,000 -pound thrust engine, but to wse a small engine as the power plant for initial X-15 flights."

This accome of the X-15 is unfortumate for a mumber of reasons. To begin with, the histonical literature-latudatory as it has been-actually undersates the magnitude of the programs accomplishments. Technical malfunctions, delays, and cost overrmes are a mormat part of any "cutting edge" researh and development ($\mathrm{K} \& \mathrm{D}$) program, and those in charge of the vehicle's development and operation deserve even more credit than they have received for working around such difficulties. Their efforts are especially impressive in vew of the fact that the $\mathrm{X}-15$ represented the NAC (and later NASA (S) first effors at managing a large-scale project."

Secondly, because most discussions of the X-15 have been so idealized, curtent United States space policy, and pationtanly NASA itself, have sometimes suffered by comparison. For years, observers have combasted the cost, weliability, and performance of the X-15 with the ongoing problems of the space shutle fleet. ${ }^{\text {b }}$ Since the history of the shumbe's development has been explored rather thoroughly, the extent to which such comparisons are waranted can only be determined by examining the full history of the carlier program in greater detai!."

Finally, a fill understanding of the X-I5's administrative and managerial history can provide some important insights into the problems of the present dniterl states space program. Given that practically all that the vehicle is known for today is its superb design, it is hardly surprising that pilots and engineers who speak of the "lessons leamed" from the $\mathrm{X}-15$ experience confine themselves exclusively to techanical questions. ":

 the X-15 Projet $1 .{ }^{\prime \prime}$ p. 3.
 NASASP4406, 1989), p. : $]$

 417-94: W. D. Kat. "Demochacy and Super Lechatogies: The Politios of Hoc Space Shatle and Spate Station

As this chapter will show, the program still has a great deal to teach about the administration, and especially the politics, of large-scale and complex R\&D programs. After a brief overview of the facts about the X-15 that are already generally known, it will examine some of the less celebrated aspects of the project, and show what administrative and espectally political factors played a role in its great success.

Overview

The original mission of the X-15 was to explore the phenomena associated with hypersonic flight. Three of the rocketplanes were built by the North American Aviation Corporation. Each was constructed out of a newly-developed nickel alloy known as lnconel X, and measured fifteen meters long, with a wingspan of nearly seven meters. Missions took place within the specially constructed High Test Range, an aterodynamic coridor that stretched 780) kilometers (by 80 kilometers) from Liah across the Nevada and Califonia deserts to Edwards Air Force Base, complete with radar tacking stations and emergency landing sites. During a typical mission, the X-15 vehicle was carried to an altitude of 14 kilometers by a modified B-52 (of which two were buile) and released. The single pilot would ignite the XI R-99 engine, which would bum for approximately ninety seconds, accelerating to an average speed of Mach 5. After flying a patabolic trajectory into the upper atmosphere, the pilot would bring the catt in for a glide landing on the Rogers diy lake bed at Edwards.

The X- 15 mocket airflane, showing its major components. (NASA photo mo. 62.X152.22.
Serious planning for the X-15 began in the carly 1950 s , when the NACA began to consider the problems that were likely to be encommered in piloted space flight. ${ }^{13}$ By early 1954, the agency had identified four technical areas of concern: the materials and strucbures needed to resist the high temperatures of reentry, a better understanding of the aerodynamics operating at hypersonic speeds, systems to mamain vehicle stability and control, and the ability of pilots to work effectively in the space environment.

The NACA's Langley Aeronatutial Laboratory, Ames Aeronatical Laboratory, and the High-Speed Flight Station began studying the feasibility of developing a research airplane capable of exploring these critical issues. By the middle of the year, NACA engineers had settled upon the basic design configuations for a catt capable of speeds up 606,600 feet per second (Mach 6) and an altitude in excess of 250,000 feet.

The agency quickly realized that developing such a plane would be too large and expensive an undertaking for the NACA alone. Accordingly, in July 1954 officials met with representatives of the Air Fore and the Navy, both of which were considering developing similar vehicles and saw the NACA proposal as a reasonable compromise.

Thus, in December 1954, representatives from the NACA, the Air Force, and the Navy signed a Memomandum of Understanding (MOU) for the development and testing of a winged hypersonic vehicle. The MOU called for the NACA to have technical control over the project, and for the Air Fonce and Navy to fund the design and constuction phases, under Air Fore supervision. After contractor testing was completed, the vehicle would be tumed over to the NACA, which would conduct the actual flight tests." The Air Force

[^66]

would also oversee (and pay for) construction of the Itigh Test Range. The Navy was in charge of the simulation and tating portions of the program. "An interagency body, the Research Airplane Committer (known by participants as the "X-15 Committee"), consisting of one representative from each of the sponsoring organzations, was formatly in charge of supervising the project, although it appears to have played a largely symbolic role." On January 17, 1955, the plane was officially designated the X-15.

The Air Force sent out invitation-to-bid letters to twelve prospective contractors on December 30, 1954, and a bidder's conference was held at Wright-Paterson Air Force Base on January 18, 1955. Proposals were received from four companies on May 9. By August, the Air Force's Wright Air Development Center and the NACA had concluded What North American Aviation's proposal had the greatest merit. Negotiations with North American were stalled, however, by the companys concern over the proposed timeftame (it was at that time also building the F-107A and F-108 aircraft). Project managers agreed to extend the program fiom thirty to thirtyecight months, and in November (following price negotiations), the Air Materiel Command Director of Procuremen and Production issued the formal contract ledter to Noth American for the developmem and construction of three X -ta aircrath."

16. See halliom, on the fomtion p. toos.
17. A thomogh discussion of all contact megotiations asooriated with the X-IT eath be fomad in

Separate invitations-to-bid were issued to four potential engine contrators on February 4, 1955, and the final contract for the X-15 engine, the XIR-99, was issued to Reaction Motors on September 7, 1956. By mid-195x, when it became clear that the XIR99 would not be ready in time for the first round of test flights, Air Force project managers directed that two smaller XLR-II engines (also built by Reaction Motors) be used for the initial tests.

Construction on the first X-15) began in Scptember 1957. It was delivered (without the XLR-99 engine) to the Flight Test Center at Edwards on October 17, 1958." Scott Coossfield, an engincering test pilot for North American (who had cartier been a Navy pilot and NACA research engineer) flew the contractor demonstration flights, including the first captive flight on March 10, 1959, the first glide flight on June 8 , and the first powered flight (with the XLR-II engines) on September 17. The first govermment mission, with NASA pilot Joseph A. Walker, took place on March 25, 1960. Crossfield made the first flight with the XIR-99 engine on November 15, 1960.

By the end of 1961, the X-15 had achieved its design goal of Mach 6 and had achieved altitudes in excess of 200,000 feet. On Augusi 22, 1963, Walker achieved an altitude record for piloted aircraft, taking the X-15 to 354,000 feet (more than 67 miles). On October 3, 1967, Captain Willian J. "Pete" Knigh1 set a world speed record of 4,520 miles per hour (Mach 6.7), which would stand until the first mission of the space shutue Cohmbia in 1981."

In March 1962, the X-15 Committee approved an "X-15 Follow-on Program," a series of tlights in which the vehicle was converted into a testbed for use in a variety of scientific observations and technological development projects. These flights prot duced a wealth of scientific information in such areas as space science, solar spectrum measurements, micrometcorite rescarch, ultraviolet stellar photography, atmospheric density measurements, high-altitude mapping. The final flight of the X-15 program, the 199th, took place on October 24, 1968."

Most of those involved with the project had expected that work with the X-15 would lead directly to an even more ambitious craft, the X-20, or Dyna-Soar (short for "Dynamic Soaring" vehicle), which would actually fly to and from Earth orbit. That project, however, was canceled in the $1960 \mathrm{~s} .{ }^{21}$ It would not be until the Space Shutule program that NASA would turn to the use of winged vehicles for piloted space tlight.

Even an abbreviated listing of the X-15's accomplishments is truly impressive." As noted above, the program achieved, and in some cases sumpassed, all of its initial objectives. Its top speed of Mach 6.7 exceeded the original goal of Mach 6.0. Similarly, its record altitude flight was far above the intended 250,000 feet.

In the area of technology development, the X-15 saw the first use of a "man-rated," "throttleable" rocket engine, the XIR-99 (once again, the perfomance of this engine would only be surpassed by those of the shutte). It was the first vehicle to employ a reaction control sys-

[^67]tem for attitude control in space, a device that would be used by all the spacecraft that for lowed. The program saw the development of advanced bioastronautics instrumentation (including, for the first time, the ability to gather "real time" biomedical data) and an improved full-pressure suit. Finally, the X-15 provided an essential testing ground for adtances in areas such as themal protection, guidance, and navigation. All of these new techmologies were to be used later in development of the (emini, Apollo, and shutte programs. ${ }^{23}$

With regard to human factors, the project demonstrated that a pilot could function at hepersonic velocities, high altitudes, and during periods of weightlessness. In partictlar, it showed that it was possible for a pilot to dly a reentry path, that is, to cross the region between relatively arless space and the thicker lower atmosphere. The Navy's portion of the program-pilot training-marked the first extensive use of motion simulators, such as its hmatn centrifuge at the Naval Air Development Center in Johnsville, Pemsylvania.

Given the magnitude of its objectives, as well as the vehicle's sheer complexity, the total development time of five yeas from project approval to first powered flight (and two years from construction start) is quite impressive. The estimated costs of the program appear similarly modest, particulaty when compared to the space-related projects that followed. The program's total cost, including development and cight years of operations are usually estimated at $\$ 300$ million in 1969 dollats. Fach flight is estimated to have cost $\$ 600,000 .^{-2}$

By the time it became fully operational, the X-15 could be turned around in less than thirty days. Using all three craft. NASA was able to fly an average of four missions per month. More important, the program had an exceptionally low castalty rate. In November 1962, the landing gear on craft number two collapsed, flipping the vehicle over on its back and injuring pilot Jack Mckay (who recovered and was to fly the X-15 again). On November 15, 1967, pilot Mike Adams was killed in a crash that destroyed craft number 3 . These tragedies notwithstanding, for nearly 200 missions in a high-performance aircraft operating at the fastest speeds ever attaned in a region of the upper atmosphere about which linte was known, the $\mathrm{X}-15$'s record for safety and reliability was really quite extraodinary. Indeed, the most common reason for mission delays and aborts was weathor (which had to be clear along the entire High Test corridor)."

Finally, the program captured the popular imagination at a time when many Americans, and much of the world, believed that the United States had fallen behind in the space race with the Soviet Union. Public interest (and media coverage) of the initial tlights was quite high, although it dissipated quickly after the begimning of Project Mercury. Nevertheless, the success of the X-15 provided the first tangible evidence to the comntry after sputnik and Vanguard that American science and techmology were on a par with that of the Soviet Union.

Administrative Achievements; Technical Problems

Even under ideal conditions, a successful R\&D program of the scope of the X-I.5 represents an extraordinary managerial challenge. In addition to the sheer complexity of the techoology, project officials had to overcome a number of unique administrative difficulties:

As already noted, this was NASAs first foray into full-scale project management. As a program, the X-15 involved far more than the developonent and flying of the aircratt itself.

[^68]Managers also oversaw the preparation of the two B-52 bombers, the construction of an 800 kilometer-long lest range, and the design of the advanced full-pressure suit and the other new biomedical equipment. A completely new pilot training regime was developed and implemented. Indeed, in many respects the range of activities associated with the program (including dealing with intense media covetage) seem to foreshadow the practices and procedures the agency (as NASA) would employ in the Mercury, Gemini, Apollo, and shutule programs.

The X-15) is also notable for being a suressyul join progrom, bringing together the efforts of the NACA, NASA, the Air Foree and the Navy. The fact that this collaboration worked as well as it did is remarkable for a momber of reasons. To begin with, the later half of the 1950 generally was chatacterized by a high degree of interservice and interagency rivalry, particularly on matters related to space flight. ${ }^{\text {?6 }}$ Indeed, it is difficult to reconcile the military's solicitonsness in buidding and testing a multimillion dollar experimental air(raft (end a test range on which to fly it) only to hand it over to (what by then had become) NASA, while it was at the same time fighting with President Eisenhower over the transfer of most of its space facilities to the same agency. ${ }^{27}$ Certainly, the whole arrangement seems unimaginable today.

Joint program experiences of NASA and the Deparment of Defense (DOD) generally have proved disappointing. In fact, the project to which the X-15 is most often com-pared-the Space Shutle-is one of the more recent cases where NASA and DOD collaboration was less than successful. Critics of the program have charged that modifying the shutle orbiter to cary out military missions was one factor in that craft's largely monatisfactory performance. ex

Conventional wisdom holds that a joint project onght to have each participants roles clearly articulated. One of the more striking features of the X-15 MOL, however, is that the division of responsibility for the craft's design-6.g., that the NACA had "technical control" under the Air Force's "supervision"-does not seem to be all that well spelled out. Such ambiguity is almost always a potential source of trouble for any joint project, particularly in view of the fact that the Air Force was providing the bulk of the program's funding.

As was noted earlier, the interagency X-15 committee was fomally in charge of the project, but it does not appear that this body had much involvement in day-to-day decision-making, or in settling disputes among the participants. One observer has described its role as that of offering high-level sanction to lower-level decisions. ${ }^{24}$ There were exceptions: on one occasion, when the Air Force had started to protest over building the High Test Range only to hand it over to the NACA (like the X-15 craft itself), the committee's endorsement of the original agreement served to end the dispute. ${ }^{32}$ For most other areas of potential conflict, however, there is no evidence that the X-15 committee ever played any substantive role
26. See John M. Logselon, The Decision to ge to the Mom: Boject Apollo whd the National Intervat (Cambridge. MA MIT Press, 1970).
27. Robeqt I. Rosholt, An Admenthatiar History of NASA, $1958-1963$ (Wanhington, DC: NASA SP-410I, IG66); Bilstein, Oralers of Magnitude. Historical discussions of the X-IE program can sometimes become confusing dite to the fact that one of the principal participants changes its identity. Thus, it was the National Advisory Committer for Aeronatios that signed the MOD, but the National deronatics and Space Actministration that accepted the final delivery and conducted the test flights and later experimental missions. It will be the practice thooghout this chapter torefer to the weorganizations contemporameously, that is, to use "NACA" when relerring to events prion to 1958 , and "NASA" thereafter.

29. Hatlion. (On the fombie. p. 109

 komady Nist phom no. 62×20.

 fhoto no. 62-X-15-21).

The stuation was further complicated by the fact that responsibility for the development and manufacture of the X-15is systems was spread across an exceedingly large number of contractors and sub-contractors. These included not only North American Aviation and Reaction Motors, but also (Bencral Electic (which was responsible for the Auxiliary Power Units), David Clark Co. (developer of the pressurization stit), the Intermational Nickel Company (creator of the Inconel X nickel alloy for the fuselage), Bell Aircaft (supplier of the ballistic control rockes), Spery Gyoscope (developer of the in-flight electronic indicator swstems), and many, many others. In all, more than 300 priate firms participated in the project."

Fortmately-and surprisingly-the internal conflicts that did occur were minor, and appeat to have had no impact on the program ovecall. Eatly in the design process, for example, the NACAS request for a modification to allow for testing different types of "leading edges" was rejected by the Air Force." In late 1955, during the negotiations with Reaction Moors, the Naty's Bureau of deronautics made a bid wh take over responsibility for the development of the XIR-99. The Navy based this claim on the fact that it had been working with Reaction Motors for the past thee vears developing the XIR-30 rocket engine, the design of which was to seme as the basis of the X- 15 power plamt. The Air Fonce rejocted this argumem, citing (somewhat itonically) the need to keep management moponsibility within a single agency" Finally, as already noted, in 1950 the dir Force sought to retain control over the lligh Test Range.

Onc area of conflict, once again between the Air Fonce and the NACA, did prove to be wather serious, but in some respects maty atually have been somewhat beneficial. The problem involved the development of the XI. K-99, which proved be we most serions technical (and administative) obstacke in the emtire program." The NACA had already complained to the Air Force in late 1955 that the procurement process for the engine was taking too long, prompting the latter to write a letter of reassuance. Then, in April 1956, a representative of the lewis L aboratory who had visited the Reation Moters facility reported the companys efforts on the congine to be "inadequate" on several fionts. He felt that the development program was already behind schedule and that some of its time estimates were too optimistic by as much as a year.

Athough it is not clear what immediate impact this report had on the Air Force project managers, subsequent events were of bear out the NACAs concems. In August 1950, an . A F Fore representatise noted in a letter to Reaction Motoms that a test of the enginces theust chamber, which had been scheduled for April, had not yet taken place. By early 1957. North American had begun to complain about the pate of the engine development. The prime contractor fomed that not only was the program four months behind sehedule, but that the weight of the engine was increasing while its projected performance appeared to be declining.

The difficulties arising from divided authority an be illustated by the responses to North American's criticisms. la lebomany 1957, wo sets of meetings were held between Reaction Motors persomel and representatives of the Sir Fore (February 12 and 18) and the NACA and North American (February 19). For its part, the Air Force appeated to come out its meetings assured that "every effort |would be| expended to prevent further engine schedule slippages."
 Rederence (dollection.

 cossomen is batem.

As was the case the previous April, however, the NAC A was far mome pessimistic. Its repore of the Febmary 19 meeting expressed doubt that the mew sehechate could be met fationgen the agency agteed to accept a delay of fond months in delivery and a weight increase from 588 to 618 pombens . More significanty, this repor for the fist time mentioned the possibility of using ath interim engine in oteder to mathtan the X -lys thight test sehedule.

Once again, the NACA's gloomy assesment proved to be correct. In Joly 1957, Reacion Motors advised the Air Force that it would need a nine-month extemsion (it also reponted another weight gain, from 6i8 10836 pounds). The following December, it reported another six-month slippage. Needless to siv, there were substantial cost increases as well: by Januany 1958, costs for the engines development were almost double the amount estimated just six months earlier. At this point, Air Force projece managers serionsly considered canceling the Reaction Motors contract and bringing in a new firm, which would have delayed full-power flights until at least 1961 (and might even have resulted in the outhight ancedlation of the progame . By Februaty I9.58, however, the decision was mate to combinue with the current contractor, but to procture two smaller XIR-II engines for the intial test lights.

The timetable of the main engine development seems to have been the only area of disagreement among the project's participants inwolving a major subsystem on the X -lts, and even this was only a mater of timing, since all parties ultimately reached the same conchoson. It is also worth noting here that the NAC A's and the Air Foree's primary concens were with the engine's performance and compledion date. Staving within the original budget does not appear to have been a major consideration in the gomermments dealings with Reaction

All in atl, each of the principal organizations wotked very well togethers Rather that fall into competitive whangling (a common danger of joint progians, pationlaty when problems arise), each of the partmers prosided a measume of moblemeded redundancy and in-clepth checking.

In considering difficulties like those sumounding the XIR-99, it is inportant to remember that it was the mose sophisticated rocket engine built top to that time, in some respects even mone complex than the Saturn V. For there bo be significant delays and technical problems with stach a ststem is only to be expected. In fite the project teants eventual response to the XI R-99 issue demonstrates yet another of its impressive management features, mamely that it was able to absotb a momber of delays and still mamain something approathing an orderly test sehedule.

As it tumed ont, the mane engine was not ready for flight motil November 1900 , mote that two years after delivery of the first vehicke. The decision to substitute the two smatlerengines, bather than wat on the XI R-99, allowed at least pat of the initial flight tests to go forward; other airctaft systems could be checked out and the pilots could gate some familianity with the vehiche.

This robustness, the ability of the pregram to adapt to inevitable technical fabures, was seen time and again throtghout the life of the $\mathrm{X}-\mathrm{F}$. No dothot much of this was due to the exceptional technical skills of Nomb American and NASA engineers. Duming the first glide flight of ctaft number one on June 8 , 1959 , pilot Scon Cossfed experienced wild pitching motions just prion to landing: the ground tean quickly (and successfally; it never occured agatu) conected the problem, and Crossfield was able to make the first

 NASAI Intorical Refermer Collectiont.

powered flight (in craft number two) less than three monh later. On November 5, an engine lire broke out on X-15 craft mumber wo, forcing Crossficld to make an emergency landing, which, in tum, literally broke the cratis back; that paticular vehicle was gromeded for only 98 days.

One of the more serious incidents of the demonstration phase occurred during the first ground tests of the XLR-99 engine in June 1960. A stuck pressure regulator caused X-15 ctaft number three to explode. The airplane essentially disintegrated aft of its wing. Despite the fact that it needed to be rebuilt completely, craft number three was returned 10 NASA and made its first successful flight eighteen months later. The first use of the XL.R-99 in flight occured on November 15, 1960.

The X-15 experienced technical difficulties and malfunctions of varying degrees of severity for much of the remainder of the program, but these seldom affected its overall flight schedule. Problems with different components and subsystems were repaired or even completely replaced whenever necessary, and the vehicle returned to duty relatively quickly. As noted carlier, the engineering prowess of the flight tean deserves a great deal of credit, but it would also appeat that the X-15 operations crew benefitted from the same lack of ecor nomic constraints conoyed by Reaction Motors during the development of the main engine. NASA engineers at the Flight Research Center were routinely rejecting twenty-four to thirty percent of manfactured space parts as unusable. ${ }^{5}$ As was the case with the XIR-99, the primary emphasis was on reliability and perfomance, rather than staving within a budget.

Discussion

This last point suggests that, the extaod dinary perfomance of the X-15 project tean (managers as well as engineers) notwithstanding, the program benefited from a momber of external factors that wete not necessarily under any of the participants' direct control.

To begin with, it appears that the X-15 succeeded as a joint undertaking primarily because of the consensus on its specific objectives among all of the parties involved, a fortunate circunstance that cleaty could not have been dictated by any one member. Whenever an interagency project fails to meet its intended goals, it is usually because each organization has brought to it a different (and sometimes even contradictory) set of priorities.

This is essentially what occurred in the Space Shutte program. In attempting to design the shotle in a way that satisfied both its own objectives and those of the Deparment of Defense (as well as mecting the cost requirements imposed by the Office of Management and Budget and the Congress), NASA engineers were forced to make too many compromises in the spacectafis design, with severe consequences for the long-rum success of the program. Similar sorts of problems have plagued the space station as well."

The reference to OMB and Congress suggests another important difference between the X-15 and the shuttle (or, for that matter, the space station). The history of the earlier program shows vitually no involvement in the project (especially its design) on the part of outside political or budgetary agencies. Indeed, one major advantage that the X-15 program had over many later U.S. spate projects (and one which is seldom mentioned in any X-1:5 historic's) was the highly favorable political, economic, and social environment that surounded most of the period of its development and the early phases of its flight operation.

[^69]The X-15 was never forced through in-depth hearings before congressional commit tees or protracted negotiations with the Bureau of the Budget (as it was then known), let alone subjected to outside scrutiny each year of its existence. Although responsibility for the project was spead across a number of government agencies and private firms, these actors-the military, the NACA, the NASA, and the aerospace contractors-represented a fairly uniform set of concerns: all wished to build a high-altitude, hypersonic experimental aircraft, and there was substantial agreement on what specific design and performance criteria the vehicle was to meet. This ensured that the major design decisions on the project would be made primarily according to technical, wather than political or economic considerations.

This is most clearly evident with regard to the question of the program's original cost estimates and time frame. It is seldom acknowledged in the historical literature, but the X-15 program was a victim of what has become a fairly common occurrence in the U.S. space program, namely substantial delays and overums. Thee hundred million dollars does seem small in comparison to the cost of, say, Apollo or the shatle, but it is still more than seven times the original estimate of $\$ 42$ milion. "The final development costs of the engine alone were more than $\$ 68$ million (phas a $\$ 6$ million fee to Reaction Motors), a tenfold increase over what was expected when the project began. "In addition, the complete vehicle, including the large engine, was ready for flight more than wo years behind schedule. Despite all of this, development during the 1955-1957 period was never held up by a lack of funds, although in some years needed funding did not come through until the last minute.

After the lannch of Sputmik 1 in 1957, interest in the project on the part of the military, political leaders, and the public at large grew rapidly. As already noted, media coverage of the first flights was the most intense ever seen at Edwards, and even led to some public relations mix-ups between NASA and the Air Force."

Once the first Mercury flights got underway, public attention shifted to the events at Cape Canaveral. This might, however, have uhtimately worked to the program's benefit. A major contributor to the X-15's success over the long run was its emphasis on incremental development ind its use in highly specialized scientific and technical research. ${ }^{[2}$ As experience with many later space projects (including Apollo after Apolloll, the shotle, etc.) has shown, the gencral public tends to lose interest in such "routine" undertakings rather quickly. In short, it appears as though the X-15 got a needed boost of public fanfare at precisely the right point in its history- whe later development and early flight test stage-and then became regarded as a low-key effort worthy of only occasional interest just as it was emtering its less "flashy" research phase. These shifts in external perception probably could not have been planned any better.

The lack of external (i.e., ounside the aerospace commonity) scrutiny very likely conwibuted to one more important effect. As seen repeatedly in the case of the XLR-99, as well as in actual flight operations, project officials from both the Air Force and NASA were never hesitant to point out-and more important, work to correct-potemial (or actual) lechnical flaws, even when this resulted in increased costs. Recenty, critios of the shuthe program have accused NASA of ignoting-or even covering up-such problems for fear of the political ramifications."

[^70]To the extent that this claim has any validity, the latger question it aises is whe ther NASA officiats are simply more timid now than they were forty yats ago, or whether the prevailing politial and economic elimate creates conditions more conducive to error detection and recovery. This is a particularly important point since, the clams of some critics of curent U.S. space policy notwithstanding, one of the most interesting aspects of the $\mathrm{X}-15$ progran is that, far from being substantially different from later NASA enterprises, it is in many respects a familiar story: tampant cost increases, serions delays, technical failures, and even loss of life.

To be sme, the management of the $\mathrm{X}-15$ was superb, particularly given the difficulty of its mission. There was some degree of infighting, which usually was setted quickly. As expected on a project of this nature, technical difficulties arose, necessitating design compromises, additional costs, and schedule slippages. Because the program was surrounded by a suppotive political and coomomic environment, however, NASA officials and their comenterparts in the Air Fonce were able to face these problems squarely, and develop solutions. some of them quite imnovative.

Nevertheless, given all of the contoversy besetting the present U.S. space program, it is today a cause for wonder that an undertaking that had as many serious problems as the X-15 was not only toletated at the time, but is now touted as one of the great aerospace success stories. In this context, perhaps even more now than then, the X-15 deserved the Collier Trophy as the progran for the most oustanding aerospace achievement of its time.

Chapter 7

The Collier as Commemoration: The Project Mercury Astronauts and the Collier Trophy

Abstract

by Jannelle Warren-Findley On October 10, 1963, the seven astronauts of the National Aeronautics and Space Administration's (NASA) Project Mercury gathered in the Rose Carden of the White House in Washington, DC, to receive the Collier Trophy for 1962. In the brightness of that autumn morning, President John F. Kemedy relished the opportunity to award what the newspapers referred to as "one of the nation's highest space honors"' to la. Commander M. Scott Carpenter, United States Navy (USN); Capt. Leroy Gordon Cooper, Jr., United States Air Force (USAF); L.t. Col. John H. Glenn, Jr., United States Marine Corps (USMC); Capt. Virgil I. Grissom, USAF; Lt. Commander Walter M. Schirra, Jr., USN; Commander Alan B. Shepard, Jr., USN; and Capt. Donald K. Slayton, USAF. In addition to the astronants' wives, "picture-pretty" according to one newspaper account," 150 guests, including Vice President Lyndon B. Johnson, cabinet officers, and representatives from the aerospace industry heard Kemedy urge Americans to a "greater appreciation of the space program and its potential benefits to the United States and mankind."

Kennedy's remarks put Project Mercury in the context of spacefaring plans in 1963. The excitemem of launch and recovery, the tickertape parades and media coverage were behind them. The Presidem said the was particularly glad to be awarding the Collier Trophy to the Mercury astronauts, because "I hope this awated, which in effect closes out a particular phase of the program, will be a stimulus to them and to the other astronatus who will carry our flag to the moon and pertaps, some day, bevond."'

The Collier Trophy was awarded to the pitots of Project Mercury "for pioneering manned space flight in the United States." The 1962 awatd differed by definition from carlier Collier honors in several ways. For one. Project Mercury was the first American space mission to receive such kudos; this was the first time that the Collier Trophy could in fact be considered, as the newspapers clamed, one of the nation's highest space honors. It was, moreover, the first of several awards to NASA during the fortheoming decades." The award honored solo performance in space of the sont demonstated by airplane test pilots; after Project Mercury, space forays always utilized teams of astronats.'

 ()flice, NASA Headquaters, Wanhingtom, I)
2. IVid

4. New York limes. Olober II, 1963. ibid.
 Asociation (Washingonn, D(: Smithsonian Institution Press, 1993), Appendix A, p. ©33.

7. By August 1959. the New Projects Panel of the Space lask Group was recommending the development of a threeperson spatectafi for transpont lo and from at wace labomatory and cimembumatights. See Alan

 (he ('med Simes. NASI phow wo M-278. AsIRO 17).

In addition, unlike carlier practices, the Collier Trophy for 1962 honored the men tather than the machines. Collier awards in carlier years ustally went to designers, engineers and inventors of innovative aviation hardware rather than to those who flew the new machines." The 1962 award to the Project Mercury astronauts could have been presented for achievements in "big technology" if not in "big science," as more recent analysts have chatacterized twentieth century developments in lange-scale technological modertakings. Project Mercury counts as "big techmology" because of the vast mumbers of designers, engineers, managers, test pilots, and workers, both military and civilan, from government and indusiry who fabricated and llew the hadware. Project Mercury wats in fact bom of and flown by Pesident Fisenhower's wortisome military-industrial complex. "' Its story is a case study of the development, in the face of comoms time, politicat, and collective psychological pressures, of a specifically military-amospou complex. Project Mercury was, from this big technology perspective, the opening shot into a new world: and the award ceremony marked "the end of the beginning" of the space age.
8. Set Appendix A in Robie, for the (irfatey Achiotment.
4. See the discussion in James II. Gaphew and Karen A. Rader, "Big Science: Price to the Present,"
 Aheme plated at best a transitional role in the development of big science.
10. Fisenhower watned in his farewell address of the dangers of ecomemic and political conmentation in a miliary-imelustial complex. See reference in I. Keith Gamoan, The Birh of NASA, The Diary of T. Kaith

But, in the face of a compelling story of creative engineering and important technological and administrative developments, the 1962 Collier Trophy was in fact awarded to the test pilots who rode the Mercury capsules. If there is a real anomaly in the award of the Collier Trophy to the Mercury astronauts, it is that from the perspective within NASA, the Project Mercury astronatus appear to hase had relatively litue to do with the development of the progran and of the agency whose pateh they were. The collective space-age versions of "Lucky Lindy" and their wives and children were certainly the most public part of Project Mercury. Within an agency, and a federal government, in which competing visions of stategies for carying oun space underakings surfaced regulaty, politics and public relations dictated that the heroes serve ats a focus for the program and be celebrated accordingly.

The Collier Trophy had been awarded ammally since 1911 "for the greatest achievement in aviation in America, the value of which has beco thoroughly demonstrated by use during the preceding year" By 1963 , the trophy had leen presented nearly fifty times (ihe war years 1917-1920 had been skipped). The contrass between the early winners and the group of seven astronams limed up behind President Kennedy in the Rose Gatden in October 1963 symbolized profound changes in the ways that the United States thought of acronamios and awards for achievements in aviation. To understand the way the Mercury progran developed is to map (ats of the caly l960s) a series of changes in public administation and management; undertakings in science, engineering, and techology; revelopments in econonic organizations; and changes in popular culme that, spured by Wortd War II and the turmoil and tensions of the Cold Wan period, transfomed many elements of life in the Enited States.

Much has been written abou Project Mercury, fiom newspaper coverage to Iife magarine and other popular magazines during the period, w works like the monumental inhouse history of the undertaking, This Now Ocmen: A History of Projel Merouy (1966). To examine lowe Merony as a test case of the emergence of big technology in the space field in the mid-wentieth century, a large number of materials from a articty of disciplines and perspectives were examined. Three particular sens of questions emerged from this liteaty exploration, and they shape the following essay.

The first questions wlate to the time in which Project Mercury took place. How did the political, conomic, cultural, and diplomatic competition of the Cold War affed American technokgical developments, particulaty in the realm of military defense? In contast, how did that play out in the le dgling civilian space agency and Project Mercomy itself: The second set of questions concerns the ramsitions from the predecessor agencies and traditional practices in design, testing, preduction methods, and management lechniques: how were very different ways of organizing and interpreting data of various sorts melded into an agency and a program that relied for its sucess on a common approach and focus? The thiod set of questions focus on the Project Mereury astronatus. The lack of analyses of these caty adenturess from broad cultual, gendered, or social perspectives keave the reader with the impression of a group of mostly one-dimensional pilots with a collective death wish. Yeo they played a series of roles in American life and culure, and the award of the Collier Trophy to them certainly reflects some clement of that public presconce. What were those roles and how did the public persona of each astronatut play out during Project Mercury:

[^71]
The Context for Project Mercury: The Cold War

Project Mercury lasted four and a half years from initial announcement to the twentytworbit flight of Gordon Cooper in Faith 7 . The overall cost was estimated to be $\$ 384,131,000$, "of which thirty-seven percent went for the spacecraft, thirty-three percent for the tracking network, and twenty-four percent for launch vehicle procurement. Flight operations and 'R and D' costs made up the remainder." ${ }^{\text {" }}$ Those funds paid "a dozen prime contractors, some seventy-five major subcontractors, and about 7,200 third-tier sub-subcontractors and vendors, all of whom together employed at most about two million persons who at one time or another had a direct hand in the project." "With NASA employees, military and civilian comployees of the Department of Defense, and employees of other civilian institutions, including educational institutions, the number of people employed on the program probably peaked at just over two million. ${ }^{\text {b }}$

America's first human space flight program was anmounced by the new National Aeronautios and Space Administation administrator, T. Keith Glennam, on Wright Brothers Day, December 17, 1958. It was fifty-five years after the events at Kitty Hawk." A unit transferted to NASA from its predecessor agency, the National Advisory Committer for Aeronautios (NACA), headed by Robert R. (ihruth and physically located at Langley Memorial Acronantical Laboratory in Virginia, had done preliminary plaming for a human space flight project. The project involved suborbital flights using a Redstone rocket; longer suborbital flights using a Jupiter missile, which were later eliminated from the program; and orbital human flights using an Atas booster. ${ }^{17}$ ' The progran, reduced to a slide show in the period of plaming from September 1958 to January 1959, could be described in shorthand:

Objectives

1. Orbital flight and recovery
2. Man's capabilities in cnvionment

Basic Principles

1. Simplest and most reliable approach
2. Minimum of new developments
3. Progressive build-up of tests

Method

1. Drag vehicle
2. ICBM booster
3. Retrorocket
4. Parachute descent
5. Fiscape system ${ }^{14}$

The plan was refined as time passed, and changed or developed as necessary. But the basic strategy of buidting incrementally and using techniques and technologies already

[^72]available whenever possible continued for the life of Project Mercury. That approach clearly differentiated Project Mercury from the Manhattan Project-type approach of the later Apollo program.

The space program in the United States developed as it did because of the Cold War. World War II brought significant change to the NACA, to its mission, and to the spheres of aeronautics, science, and technology. New developments like atomic energy, radar, large rockets, jet engines, tadio telemetry and the computer all had the potential to reshape American life in the latter half of the twenticth century."

But the aftermath of the second world war did not bring peace and measured development of these new technologies. Rather, the rise of the Soviet Union and its spheres of influence and the fall of what Winston Churchill called "the Iron Curtain" across central Europe led to the international political and technological competition known as the Cold War. The American military played an active role and influenced directly or indirectly many Cold War developments. Indeed, as one study observes:
The essential feature of the mid-century military-political landscape was the Cold
War-a type of strife radically unlike any other in history. Weapons for the first time
were designed not to be used; they wemp sought for their preemptive value. Each combat-
ant had to contimually improve its arsemal, so as to deter the other from using its arms.
Fower and fower units of each successize weapon were made, but each was much move
technically sophisticated than the last. A process of institutiomalized innovation was set
in motion. The new form of warfare, atmospheric rather than ground or sea, radically
allewed both the conduct of war-making and the production complex that fashioned the
zeeapons and support equipment.".

Even where the military was only indirectly involved-and the NASA program, and Mercury as the first human space flight program, were self-consciously non-military under-takings-this new form of warfare shaped the whole notion of a "space race." And the "process of institutionalized innotation" shaped the space progran. The development of that process began with the amouncement of Poject Mercury.

World War II is recognized as the catalys for organized, national rocket development because the war effort demanded new weapons and Russia, the United States, and Germany began to develop missiles as weapons. The captured Geman rocketeers contimued their work with captured V-2s and parts which they had brought out of the Recieh, first at White Sands Proving (iround in New Mexico, and after 1950, al the U.S. Armys Redstone Arsenal in Alabama ${ }^{2}$

During the same period of development that would lead to Project Mercury, the Naval Research Laboratory began to work with sounding rockets, launching Viking I, built by the Glemn I.. Martin Company, from White Sands on May 3, 1949. The Army's Project Bumper joined a Jet Propulsion Labotatory-produced WAC Corporal missile to a V-2. The one
 Pruget, dralt mamescript history of the Cold Wat, 1992, in pexsession of the athore
 NY: Oxtord C niversity Press, 1990), p. 30.

29. I annius. $\mathrm{V}, \mathrm{S} 1, \mathrm{pp}, 33-34$.

fully successful tanch took place on Februaty 24, 1949." Duting the 1950s, the (eemans working for the ['.S. Amy and buidding on the V-2, doveloped the Redstone missle, first launched on August 20, 1953, from Cape Canaveral, Flowida. Redstone camied enomous importance, for Project Meroury, because in was utilized to lanch the fist Meromy astronatus." It was in fact the ICBM booster listed on the briefing stide in the original planning presentation mentioned abowe.

After the Korem War, the development of an intercontmental ballistic missile, or ICBM, took priority among the military services. The Army's Redstone was the nation's List operational ballistic missike, although its military importance proved to be nil. "Along whth the II-tomb," notes Alan J. Levine, "the ICBM was the critical weapons developenent of the Cold War era. And . . The principal lame he velaces of the space program in the 1960s and later (and even today) were products or bypordacts of the ICBM effori." Development was speeded up during the Eisenhower administration partly due to the recommendations of the Stategic Missiles Fvaluation Gomp, or the Tapot of von Nemmam Commitee The committer wanted that the Russians might be ahead in the development of such missiles and uged a chash program to give the lonited States operational weapons

[^73]in six to cight years." In January 1951 , Convair had receised a research contract to work on what became the Athas ICBM. By 1954, the Atlas was on the developmental fast-tate with 2.000 companies and 40,000 workers inwolved in its design and production.?

The military's push for ICBMs helped pave the way for civilian explotation of space, as did the development of recomatissance satellites in the mid-1950s. In contrast to military space weapons efforts, what would be the Eisenhower administration's civilian space program began in 1952 with the establishment, by the Intemational Council of Scientific Unions, of the International Ceophysical Year (iCi) from July 1, 1957, to December 31, 1958. The use of rockets with instrument packages to help study the scientific issues of the IG:Y was recommended in 1952; by 1954, the organization called for the orbiting of artificial satellites to help map the Eath's surface The National Security Comecil voted On May 26, 1955. to approve a plan to obbit a scicmitic satellite as patt of the IGY activities. President Eisenhower amounced in July that small, pilotess satellites would be lannched for those purposes. The Naval Researeh Laboratory and the Army's Redstome Arsenal went into immediate competition to develop the capacity to lanneh the satellite. The Navy's Project Vanguand was chosen in September 1955 and bunched the first Vanguard mission on December \& , 1956. But Vanguard was slow to develop and staved for fiunds. ${ }^{\text {"t }}$

As Roger Lamius points out, the United States in the mid-1950s thus had two sepatate space efforts underway. The high-priotity military program, to build ICBMs and to work on recomassance satellites, was kept under waps as much as possible. The IGY program, on the other hand, was public and focused on the need to encourage the free access to space of all spacefating nations. The Vanguard progatu was struggling toward orbit with limited financial support. The Fisenhower administanion, vitatly concerned with achieving the goal of free aceess to space, was willing to push the Vanguard program in order to accomplish the laturh of Earth's first artificial satellite even at the expense of the military plans."

Sputik 1, however, changed everything on October 4, 1957. The Earth's first artificial moon weighed 183 pounds and orbited the Eath every hour and a half in an elliptical orbit. The Eisenhower administration's reaction to this historic event was restraned; although the Russians were congratulated for their historic and scientific achevement. officials downplayed the stategic meaning of the laturch and successful orbit."

The American people, on the other hand, were shocked, horrified and frightened by the news. In contrast to the administration's facade of calmness and lack of concem, wrote Walter McDougall. "The public outcry after Spumik was car-spliting. No event since Peat Harbor sed off such repercussions in public life."\# The Russians confimed the ir ability on launch large objects and to carry biological passengers, in that case a dog, when they orbited Sputnik 2 on November 3.

```
Inevine, Missile amd Sfore Rate, P). 30-31.
27. /hid.
2K. Lammius, NLSA, pp, 21-29.
90. Hid.. pp. 2l-95.
30. L Ammims, Wid., pp, 23--24
31. Mid.. p. Y1
```


Basic Books, 1985), p. 142

Project Mercury and the Transition to Big Programs

The reations to Sputnik 1 and 2 fell into a number of categories. Some critics called for an immediate improvement in American scientific education despite the fact that the Sputniks were predominandy engineering feats." Senator L,yndon B. Johnson opened hearings in a subcommittee of the Senate Amed Services Committee in November, and the investigation found too litte being spent on space-related activities, and considerable diffusion of effort among the military services. As Johnson's ade, George Reedy pointed out, in a graphic description of how the perception of world power had changed, "The simple fact is that we can no longer consider the Russians to be behind us in technology. It took them four years to catch up to our atomic bomb and nine months to catch up to our hetregen bomb. Now we are trying to catch up to their satellite,":

In a now more urgent response to Russia's gauntet, the administration scheduled a test launch of a Project Vanguard booster on December 6, 1957. That test, televised nationally, was disastrous and embarassing when the rocket rose briefly and fell back to the pad, disintegrating in tlames. "Flopnik," the press called it; "Kaputnik." The second Vanguad lamely, in Februaty, was no mote sucessful: the recket got off the lameh pad but came apart at an altude of four miles.

Despite the earlier decision to allow the Navy to put the initial (I.S. satellite into orbit, the Administation turned to the Army program and the Cemans in Huntsville to prepare a backup launch. The Jet Propulsion Laboratory repackaged instruments from Vanguard, including a cosmic-ray experiment designed by James Van Allen of the Conversity of Iowa. On Janary 31, 1958, the Jupiter-C lannehed Explower I and soon after made arguably the first important scientific discovery of the Space Age by locating the Van Allen tadiation belts. In addition, the bringing of the Armys team of German rocket experts to the center of Americas space efforts represented an importan developmental shift for human space tlight programs like Poojet Mercury:

Pacsiden Eisenhowe continted to exhibit calm in the Lace of the Soviet trimmphs and American falures, and he continued to try to hold Federal spending down. Space policy, in both the military and civilian spheres, changed during 1957-58, however, and it seems clear in retrosped that the development of both programs were shaped by the Sputniks. Militany developments included the firming up of plans for nine squadrons of Alas missile's; the approval of plans for the Air Force's Minuteman, a missile which could be kept in a hardened missile silo and fired when necessary; the aceeleration of the reconnaissance satellite program, pointedly perhaps, maned Sentry. The go-ahead was given for work on the Amy's Pershing and the Nike-Zeus. The Stategic Air Command was futher strengthened and wook on Distant Fanly Warning (DEW) line constraction sped up. Development of the Navy's submatine-latuched Polatis was advanced three yeas, so that the missile would be ready for operations in 1960. In management developments, the Advanced Rescarch Projects Agency (ARPA) was established in the Pentagon in February 1958. URPAs role was to act as a ckearinghouse and evaluation center for ideas and efforts from all the sevices. In time, the agency was assumed to be slated to take owe military space undertakings, presumably including American piloted space efforts."

Changes in response to Spuntik which were more obvious to the general public occurred, as did the establishment of ARPA, in the organizational area. Senator Lyndon B. Johnson (D-Texas) convened hearings on the United States' space program, or lack

[^74]thereof, in November 1957. Johnson's goal was to push the administration to support the technological developments necessary to the new Space Age and to acknowledge the need for international power and recognition that a space program would entail. Johnson's congressional hearings found the curren American space program seriously wanting, and long-tem planning virtually useless. As a result, on February 6, 1958, the Sonate voted to establish the Special Committee on Space and Aeronatuties. Its task specitically would be to ctaft legislation to create a new national space agency. The House of Representatives soon followed suit."

While the Legislative branch delibetated, the administation also took steps to address the space crisis. In Nosember 1957, Eisenhower established the President's Science Advisory Committee (PSAC) and named James R. Killian his Science Advisor: In Fehmary 1998. Eisenhower asked the PSAC to create a plan for a new civilian space agency. The next month, Killian and his committee proposed that all nommilitary space activities be merged into an expanded National Advisory Comminter on Aeronautios (NACA), the Federal agency which had been responsible for basic research into aceonatical problems since 1915. On the basis of that advice, the administration drated legistation establishing the National Aeronautics and Space Administration. ${ }^{\text {se }}$ President Fisenhower signed it on 29 July, and NASA began to function on October 1, 1958."

Itoward Mccurdy argues that the cultures which various precursor agencies brought to NASA helped to shape the organizational culture within which Project Mercury developed. ${ }^{m}$ As the agency took shape during the carly phase, when Project Mercury was the prime human space light mission, it seems clear that the melding of diverse groups of engineers, sciemtists, and managers into one organization changed the way that all did business.

When the shift from the pre-World War II military arsenal system to the Air Force's contracting system is also factored into the developmental period of the space program, the changes not only within NASA's constituent groups but ouside are wide-ranging. The military arsenal system was established early in (1.S. history. Both the Army and the Navy developed. designed, and fabricated the weapons used by their troops in govermment facilites. The Redstone Assenal in Alabama, the site where the (erman rocket team was installed in 1950 , was one anong many such facilities, a fair mumber of which were established in the late 1930s or carly 1940 s for weapons production during World War II. The Navy Yard in Washington, DC, was one of the nation's oldest arsenals for Nam work.

That system served until the Air Force undertook in 1953 to develop, on an emergency basis, an ICBM capability for the United States. Using the Manhattan Project as a model of all-out development (a significant and perhaps flawed model which tums up repeatedly in the early days of space activity), the Air Fore "adopted a swstem of patadel contacting, whereby hondeds of privately owned companies simulaneonsh designed and fabricated program (omponents. The Air Foree even relied upon contractors to help cood dinate other contractors." "

The assmoption was that a "national" effort of this sot demanded different or differently adapted strategies for organizing, plaming, building. lamohing, and cyaluating activities. T. Keith Cleman, NASAs first administrator, decided to buidda program similar

[^75]to the Air Force's contracting program. This decision came partly from his support of the restrained Federal spending advocated by the Eisenhower administration. But Gleman, the president of Case Institute of Technology (later Case Western Reserve University) in Cleveland, came to the job of chief of the new organization understanding that more Federal spending and larger govermment staffs would be expected by old NACA hands. As he wrote:

> Having the conviction that our government operations wem growing too large, I determined to avoid excessive additions to the federal payroll. Since our organizational structure wat to be crocted on the NACA staff, and their operation had been conducted almost wholly 'in-house,' I knew I would face demands on the part of our technical staff to add to in-honse capmoty . . but I was convinced that the major portion of oner funds must be spemt with indusiry, education and other institutions."

When James E. Webb succeeded Gleman as administrator of NASA for John Kemedy's administation in January 1961, his intent was much the same, though his focus was not the size of govermment bureaucracy. Rather, Welbb had a grand vision of using NASA and its work to build science and technological education in the I nited States. He wanted, as his biographer pointed out, "to use NASA as a vehicle to move the whole nation to a 'new fromtier' of enhanced techoology-based educational and economic development." Space policy was to be integrated with economic and industrial policy. Webb's vision came too late for the Project Mercury program, however.*

In the begiming of the Project Mercury period, in fact, the system was barely developed and transitions of organizational culture undinisherl; much of what wats done relied on the carlier work and established organizational cultures of the various units transfered into NASA. The most important initial group transferred into NASA was the organization of the National Advisory Committee on Aeronatics. At least one historian of the period asserts that Hugh Dryden, then NACA director, actively campaigned for the role. The scholiar adds,

NACA was not an ineritable choice. A small applipd-research agency oriented mainly to work on aircraft, it had no experience in developing hardware or managing big programs. . . But it was already at least on the fringes of space with the X-15 ressarch craft, and its Pilotless Aircraft Division and the L rams Flight Laboratory anmer doing significamt research on space (the latler campaigned actively for spare activities)."

This new program was shaped against a complicated backdrop of technological developments, cultural change, and political imperatives that had come about in an exceedingly short period of time.

The Pilotless Airctaft Reseatch Division (PARD) at the Langley Research Center was renamed NASA's Space Task Group, and in 1962 relocated as the Manned Spacecraft Center in Houston. These engincers were charged with the responsibility of Project Mercury. Langley itself became a NASA field center and early activities, including the early traning of the seven Meroury astronats, took place in Virginia. Administrator Gomman described the beginnings of the undertaking later by pointing out that "the philosophy of the project was to use known technologies, extending the state of the art as little as neces-

[^76]sary, and relying on the unproven Atlas. As one looks back, it is clear that we did not know much about what we were doing. Yet the Mercury program was one of the best organized and managed of any I have been associated with.":

As the mucleus of NASA, the NACA employees brought with them elements of their former institutional culture. As Howard McCurdy describes it,
[NACA] employes believed thoroughly in the importance of ressanch and lesting. They
insisted on seeking technical solutions to space flight problems, with a minimum of out-
side interferpure. Assmiated as they were with the test pilnts of the astronaut copps, the
adopted the ethir of taking risks io pash porformano fromiers. In onty one respert did
The Space Task Groupl depart significantly from the Langloy research callure: it relied
significantly upon contrators for spacecraft fabrication and lechnical assistance.".

The NACA had never been part of the militarys arsenal system, although work that it had done for the military services before World War II may ultimately have ended ip in military fabrication shops. The NACA operated to some extent like an arsenal, however: it worked with its own machine shops and "hands-on" enginecring work was a thatemark of employment there. Thus this change had important implications for the ways that work was done in the new otganization.
"Hands-on" work was a tratition which NACA employees tried to transfer into their jobs as NASA engineers. Yars of research had prepared the Langley engineers to design space capsules that could safely carry their human cargo out of and back into Earths amosphere. Dr. Maxime A. Faget of the Langley team designed the Mercury spacectatt. and a contract to build it was awarded in late 1959. But the contract did not end the work of the Langley engineers with the spacectaft. McCurdy points out that they performed airdrop studies and tested escape rockets. They made blunt-body wind tumed studies. They examined landing techniques. "Tests like these," McCurdy concluded, "kept NiASA employees directly involved in the mechanics of space flight." Much of this testing could have been carried out and reguired of the contractor, but NASA engincers were determined to retain commol of as much of the enginerering process as possible.

The Army's Geman missile team at the Redstone arsenal, transfered to NASA in 1960 after much effore by NASA officiats," had developed the launcher. The seeds of considerableconflice within NASA were sown by attempting to link together the NACA engineers and the Gemman rocket team. As I loward McCurdy pointed ont, "although the wo groups shated many cultural noms, stoch as their belief in research and testing, they derived those noms in different ways." Former NACA employees hated from a proud tradition of American aircraft design and testing. The Germans reflected a similar deep pride in German approaches and rechmiques. Both groups worked hatd to retain control of their work, although the Germans proved to have little faith in American aerospace companies." The issue of control of the process and of the product shaped many conflicts between the forces within the youthful space agency, and between them and the ounside world.

The technical culture which both predecessor agencies brought into NASA worked well as long as the projects undertaken in common were limited in scope. When Project Meromy began, however, the multinational engineers of the new NASA faced a new umiverse of problems. "We now had to build something," I lowatd Me Curdy quoted one of


```
46. McCurdy, Imvide N1Si, p. I8.
47. Mmil.p. $4.
48. Glemman, Biwh N/NSL, p, 9-I2.
49. McCurds. Imside NaSt, pp. I8-19.
```

them as saying. "We now had to fly something that we built. We now had to interface with the contractors to get that done. We had to build an organization. We had to make things happen that we had not ever been associated with before." ${ }^{\text {an }}$

Project Mercury paled in comparison to placing Americans on the Moon and retuming them sately to Earth, but for the period $195 \mathrm{~K}-1961$ at least, the complexity offered by Project Mercury would stretch NASA's staff to its limits. NASA workers had to figure out what needed to be done, and instead of walking across the stree to the machine shop with a sketh in hand, they now wrote detailed specifications for its manufacture. Contactors bid on work using the specifications, and queries from outsiders had to be considered and answered. The entire contacting section of NASA had to be developed from scrath because its predecessor research agency had never needed such an organization. NASA staff had to work with the contactors, oversecing work as well as testing it when it came off the assembly line.

A final chatlenge to the old ways of researth and development came from the need, once Project Mercury got underway, to work directly with a network of aerospace conmactons and other govemment agencies to make the whole space flight process work. For Project Mercury, the capsule (designed in-house) came from McDonnell Aircraft Comportion and the Redstone rocket from the Armys Geman missile tem in Hunswille who had them fabricated by Chrsler Comporation. Later, Atlas lanchers were used, courtesy of the Air Force but
 facilities at Cape Canaveral, Forida. The Naty picked up the astromats. Thus, as Project Merctir developed, the sharing of responsibilities with competing organizations took considerable effort to organize: But the long-teme eflon led to the development of a technoctatic organization capable of carying off the Moon landing a decade later."

The wesarch and development phase of Project Mercury lasted ronghly from October of 1958 to April 1961 . In that time, the space capsule, designed by Max Faged and built primatily by the McDomell Comporation, was readied. The spacectaft, an example of which is on display at the Smithsomian's National Air and Space Musem in Washington, 1)(i. was designed to cary a lone astronan for on obital jouney of about a days duration. Integration of boosters and capsules began in 1960. Constuction of a complex worldwide communications ssstem, Hacking sestems. and a vastly expanded lameh complex at Cape Camaveral, Fhotida, acompanied the fabrication of the lame wehicle.

Project Mercury and the Human Dimension of Space Flight

In addition to developing in a context of Cold War urgency and facing the enomous task of integrating varied and formative work cultures from civilian and military engineering organations, Projed Meroury propelled NASA into human space fligh operations. The first seven American astronatus were introduced to the press on April 9,1959 . The Mercory astronatts, recipients of the 1962 Colliet Trophy, presmably stood. in the mind of the American public, for the agence the engineers and the contactors. Thus, the pat the took in the Mercury program and in American culture of the late l950s and 196 ofs deserses a close look.

The role that the astronatus played in the early histom of NASA, of American space fight, and in American culture depended to some extent on the meaning assigned to the

[^77]enterprise. If space exploration is seen entirely as a mechanical exercise (which was the perception of many engineers and sciemists involved with Project Meroury as well as the Fisenhower administration) then the astronatas mole is relatively minor: he goes along for the ride and to make minor adjustments to the equipmen. Testing human reactions is simply pat of the techological testing process.

But a second understanding of the meaning of Project Mercury was also possible. Beyond the sheer techmological basiss, a mome romantic notion, of individual chatlenge and courage in exploration of the miverse or defense of the homeland an be seen as the reason for making machines that will camy exploress. In the second case, the focus is decidedly different. NASA, with its staff of machine-makers from the old NACA and Peenemünde and administrators in a conservative Republican administration may have begun the project with the first, statightforwardly technical vision. NASA and the Kemedy administration, for political reasons in Congress and among the American people, helped Io shift the focus to the second. A memo written by Janes E. Welb, the second VASA administrator, to President John F. Kennedy, described the uncasy alliance:
The extent tw which we are leadexs in space science and lechnolegy will in lavge measuer deter-
mine the extent io which we, as a mation, pionering on an man fromtior, will be in a parition
to develop, the emeqging wowtd forces and make it the basis for new com cepts and applications
in education, communicatiom.s and monspartation, tooking townarl viable polificat, swiad,
and eromomir systems for matioms willing to work with us in the yens aheral."

All of the thetoric of the early years of space flight emphasized the techoological natume of the comperition in space between the Sovie L'nion and the I mited States. "The lamentheng of Spumik I had a 'Parl Larbor' effect on American public opinion. . ." wote NASN's chief historian. "The event created an illusion of a technological gap."." As the Sowiet l'nion achieved more space spectaculars, the fear grew in the United Slates that Russia's perceved techoolegical prowess had made the United States a secondthass nation. Womies amose that the nations of the non-aligned wortd wouk choose to follow the Sowiets because of their tedhnobogical superionty. Thus the American space program strowe to reestablish the preeminence of Ancrican science and technology in a word changed by Soviet scientifie and congineering challenges since World War II and the canly davs of the atomic age.

In that sense, as Mark F . Bernes pointed om, the compe lling images for the carty davs of space related to nationalism and the need for the Enited states to reassert inself as the most important world power. As he satd.

$$
\begin{aligned}
& \text { In is mast general form, nationalism has emphasizad that Amevira must be actior in }
\end{aligned}
$$

of a srong mational rapubility to operate in spare and to use space fully in the mationat
reve missions the national interst magy requir-be they for national pestige, military


```
    S1. Jamim, NSSt, p. 25
```



```
    iti. M/ri, 1, 7.
```

In this context, big science and big technology will mite to support and strengthen American power on the intemational scene.

If, on the other hand, the viewpoint through which the U.S. space program is studied stants with the notion that a new set of pioneers will ride NASA's technolegical wonders to the stars, a differen kind of narative comes into play. Added to the imperative of nationalism are various ways of secing the potential of the space program. The first is the space frontier as metaphor, the view expressed by scholars like Willian Goetamann and Stephen Pyne." In Pyne's clearest fommation of the role of the space frontier in word cultural development," he argued that the Imemational Geophysical Year (ICY) ith 1957 "amnomed a new epoch of exploration, a Third Greal Age of Discovery. Like its predecessors, the Third Age would clam special ralms of geography, interact with distinctive syndromes of thought, pose immense new problems of assimilation for politics, economics and scholarship, and demand a new moral drama to give it legitimacy."."

NASA itself early began to use the imagery of explotation and of the wonders and possibilities of a new western frontier for the Linted States. A number of authors, including Patricia Nelson limerick," examined the frontier imagery used by NASA. Limerick pointed out the perils of using historical analogies badly." Where Stepthen Pyot finds solace and indeed appeal in the interionexterion jouney produced tron the metding of modernism and explotation, Limerick tinds cautionary tales. Ruming away from home, she motes, is an "ineflicient way of leaving one's individual and collective problems behind." Settements dependent on one form of transpotation-seulers and raiboads, or space station astronatus and shutles-are likely to find themselves economically depressed and victimized by a sole soutce that has the ability to control their economic and personal age endas. Equal distribution of the fruits of colonization and semtement are rave; Limerick noted that,
> far mone often, the frontier comparisons shous, one persom's benefit means another person s lass. Angte-Amervicans acquired property, while Indians and Mispanies lost it; nimeternth antury minownes gol the profis, while lenal minew got limited ouges, considerable fhysical danger, frequent lagy/fs and liute imsurance or other protection. Just as clealy, the inferests of verions matuce-uses compretel:"

As Stephen Pye argues that the new age of discosery will bring differem challenges, Limerick makes the case that learming from the past may involve understanding a different set of stories.

Others have examined the methods and mythologies by which the space program was manketed by NASA and by its stpponters. Michael I.. Smith, in "Selling the Moon: The U.S. Manned Space Program and the Titumph of Commodity Scientism" examined the

 1: Uninersity of lowa Press, 1986).

59. Hid., p. 187.

69. $\quad 1$ interick, "Fonticolife,"p. 15.

rhetoric of program supporters and the packaging of the astronauts. Starting at more or less the same point as Pyne and Iimerick-with the explorer-scientist who mapped the West and filled museums with artifacts and images-Smith argued that by the 1950 s national advertising agencies in the United States had created three particularly significant patterns of technological display: dramatic unveiling of products; the transferring of the special attributes of the product to the customer ("transitivity") usually by using actors in ads; and establishing through those actors a chatacter type with which to identify. In Smith's view, a major 1950s image was "the helmsman, whose mastery over his environment through the products of technology provides a model for consumer aspiration." The helmsman and his machine-like Lindberg and "The Spirit of Saint Louis"-made a pair; the attributes of each entancing the abilities of the other. As Smith noted,

> Each of the helmsman's display qualities comveyed value to the produrt, which in hum appeared to reinforce precisely those qualities in its couner: formost among them was his masculinity: In a male-dominated soriely in which mechanization has been percerved alternately as a sourre of power and a threat to independence, adturetisers forged an alliance beturen technological and gender display. . . . Terchoological sophistication and sociully admired masculime trats were comveded each through styized tariations of the other:"

When Sputnik was launched in 1957, the ground was prepared to combine the advertising images of helmsmanship and techoology in a Cold War race for space.

The first group of astronauts, the helmsmen of Smith's advertising world, was introduced to the press and the American people on April 9, 1959. While the debate about their role or lack thereol in Project Mercury continued among the cngincers working to design a capsule and man-rate the rocket, the astronauts became the space program for most of their fellow citizens. As the official history of Project Mercury notes,
These frersmable pilods anere introduced in civilian dress; many people in their audirnce for-
got that they urer wohantere lest suljeres and mitiary officens. Their public comments did
not class them with an elite intelligentsia. Rather they were a romtingent of mature
Americams, average in milh amd visagr, family men all, wollege-ducated as enginems,
possessing excellent heallh, and professionally rommitted to flying adranced aircraft. ","

Others saw them somewhat differently. They had "the right stuff," observed writer Tom Wolfe, including the political sense in the case of one successful candidate, to recruit his estranged wife from their separation to the cause of his successful career as an astronaut." Alan J. Levine argued that the Project Mercury astronants were in fact presented in a way designed to make space tavel as mechanical and ordinary, as risk-free as possible. "NASA's publicity machine and the Time-Life empire, which gained the rights to the astronates stories," Levine commented, "contrived to show them, and to some extent, the Mercury project as a whole, in a misleading way." ${ }^{\prime \prime} \mathrm{NASA}$, in this view, wanted to minimize risk; Henry Luce, of THe-Life, on the other hand, worked to show them as "typical middleclass white" Protestants." Michael Smith's process of presentation fits the introfluction of the astronauts to the press.

[^78]Time-Life played a particular role in the presentation of the Project Mercury astronatus because the astronauts signed an exclusive contact with the company on August 5, 1959, for their "personal stories." The deal apparenty originated inside NASA. As the Project Mercury history comments,
partly because of . . . nathoral puthlic interest and partly because the civilian space agency had a statutory mandate to comduct educrational publicity, NA.SA Headquarters, affer investigation and derision, encouraged the astromauts to stay together and to accept the fringe benefits of a single private enterprise publishing offer arranged in oulline aven before their selectiom. This prectuded coventual compretilive bidding for imdividual story rights.""

The astronatus were to receive $\$ 500,000$, to be divided equally, without regard to who was to be the first American-and, in was hoped, the first human-in space. The stories, whe writen by Life staff, were to be presented under list-person bylines, and the astronats and their wives had final approval over the contents. Life's intention was to make the astomats and their families look good. The astronan's wives were full patmers in the deal and in the stories that were told. The arrangement was immediately and continuously controversial; as This Neu Ocean observes, "Few other peripheral policy decisions regarding Project Mercury were to become so controversial in the long tun." The contract, unthinkable in later gencrations, guatanteed a continuous flow of information about the new space pioncers and their lamilies throughout the 1960s. Life could not send its photographers into space aboard Frimdship 7 or Faith 7 so that its ability to tell the story as L iff saw it depended on the exclusive sharing of the stories and experiences of others.

The life contract and the unexpected worldwide interest in the astronats played into the cultual crisis set of by Russian space spectaculars. The Eisenhower administration took little public notice of Sputniks orbits oserhead but Members of Congress and the public reacted. Spumik represented unexpected prowess on the part of the U.S.S.R. and a measure of military might; but it also revealed, in the view of many, Americans as soft, flabbe, adrift in a sea of material goods. In the period during which the Space Aet was passed, NASA wats organized, and the 1960 election was held, the mation embarked on a search for national goals-a Presidential commission, a Special Studies Project funded by Rockefeller money, and Life magazine itself all devoted athemion to national renewal and disconered some version of a loss of a sense of purpose or of mission. The liming fir perFectly and, in Michael Smith's view, "from the outset, then, the architects of the space progam viewed it as a new somece of natiomal iconography." The iconography of science and explotation masked the political (at home) and diplomatic (abroad) importance of national prestige as the national need impelling plans for a space program forwad.:

Hedmsmen were needed for the great adventure, and the fighter pilot astronaut entrged as the figure most worthy of carying Anerica's banner to the stars. People were necessary to the program in order to achieve "projection of the national imagination into space," to stand in for others who could share the deam vicariously. "Machines alone will not suffice if men are able to follow," observed a journalist witing in The Nation. "The difference is |of'| that between admiting a woman's photegraph and marrying her.";


```
70. Ihid., p. 238
Smith, "Sclling the Soom," pp. Ity-ys.
lmil.
73. Sumed in imid., p. 19%!
```


In the carly days of space launchings, as they were then called, the Mercury astromats appeared to be superfluous; their "functional wole in the flight was not unlike that of a tather claborate hood omament. ${ }^{" 71}$ Yet Alan Shepard, Ges Grisom, and John Gem personified the rual farm youth or smatl-town white mate daredevil image necessary to popular myth. Later astronatuts in programs that followed Project Mercury, sharing their capsules with one or wo companions took on a different look; U.S. Nous and World Report observed that "A new breed of cosmic explorer has emerged. Gone is the carlier image of the rocket-riding daredevil, the supeman of the 'wild blue yonder.' The astronath now is seen as a dedicated
scientist concemed more with discovery than with setting orbiting records." ${ }^{\text {™ }}$ The fighterpilot was now transformed into an explorerscientist ready to convert the void into an American landscape (ironically, only one scientist, geologist Harrison Schmitt, set foot on the moon or worked in the early programs of the space age). But for Project Mercury, the helmsman as quintessential American hero was the job description, and NASA and the media worked to make the candidates fit the profile. ${ }^{7}$

There was, in fact, no formal job description for the first astronauts because nobody working with research and development expected there to be a job for the men. As a consequence, the roles they played in Project Mercury developed as the program developed. One of the key points which mark the transition from aviation to space flight resides in the role of the human being on boad. Joachim P. Kuetuner, one of the Geman rocket technicians brought to the United States after World War II, described the difference. "While it is admittedly an oversimplification," he wrote,
the differmae between the two lechologies may be stated in the following general terms. From an aviation standpoint, man is mot only the subject of transportation, and as such in uped of protection as a passenger; bat he is also a most important integral part of the machine over which he truly has romtrol. . .

In contrast, woket technology has been for tuenty years a missile techoology groverned by the requirements of targel accuracy and maximam range. As such, it had to develop automatic controls. Unlike a humain praload, a warhead has no use exopt on the larget. Once a missile fails, it may as zoell destroy itself during jlight.

The development of manned space flight is not just a matter of roplacing a werhead by a manned cabin. Suddenly a suitch is throwen between two parallet tracks, those of missile technology and those of rovation technology, and an attempt is made to moner the precious human payload from one track to the other. As in all last-minute switchings, one has to be careful to assum that no derailment takes place."

Although the naming of astronauts assured that the space race would involve human space llight, the role of that human being vis-a-vis the role of automatic controls of all aspects of spacecaft and launcher operations became a subject of some controversy. Many, including the astronauts' fellow lest pilots in the X-series tests at Edwards Air Force Base in California, considered the Mercury astronaut to be "Spam-in-a-can," a passive passenger in the space flight. Many of the engineers working on Project Mercury preferred that option, believing that automatic controls could protect human cargo more effectively than the human cargo could control the mission.

The astronauts, in contrast, had strong views abou what they thought they ought to be doing. Astronatu Deke Slayton spoke to the issue before the Society of Experimental Pilots, when he observed that "Objections to the pilot range from the engineer, who semiseriously notes that all problems of Mercury would be tremendonsly simplified if we didn't have to wory about the bloody astronaut, to the military man who wonders whether a col-lege-tatined chimpanze or the village diot might not do as well in space as an experienced test pilot. . ." Slayton argued that the human role wats vital: the astromat should be "not only a pilot, but a highly taned experimental test pilot is desirable . . . as in any

[^79]scientific endeavor the individual who can collect maximum valid data in minimum time under adverse circumstances is highly desimable.":

After Project Mercury had ended, Christopher C. Kraft, Jr., chief fligh director for the Space Task Group, described the shift in thinking that gave Project Mercury astronatus a larger role in spacecrat control, and tater astronatus a larger role still. "The real knowledge of Mercury," Kraft remembered, "lies in the change of the basic philosophy of the program. At the begiming, the capabilities of Man were not known, so the systems had to be designed to finction antomatically. But with the adelition of Man to the loop, this philosophy changed 180 degrees since primary success of the mission depended on man backing up automatic equipment that could fail. ${ }^{39}$ This shift in perspective was fundamentally an engincering decision, and did not at all mean that the astronats were being given a green light to drag race in space. Yet, as the official history of Project Meromy notes, it had implications for the way the space race and spacefaring activities undertaken by the Enited States were understood by the general public. "The field managers of Mercury hat ruefully disoovered," reports the history, "that people, or at least reponters, were more interested in people tham machines, so they allowed 'Shorty' Powers to skew publicity toward machine-rating the men tather than man-tating the machines." ${ }^{\text {se }}$

Like deep-sea divers, spacefarers had to take their ensiromment with them. In the case of the Mercury capsule, the emviroment was two-ticed: the suit, which was a miniembiroment within itself; and the capsule, sealed against all the stresses and extremes of lannch, orbit and reentry. The B. F. Goodrich Company was awaded the contact to design the spacesuit on July 22, 1959. Suit design went though momerous changes and modifications during 1959 and 1960 , until the moded finally met the apposal of astronauts and program manages in May 1960. The moded for the suit-coveralls, helmet and glovescame from outits already fabricated for those piloting high-flying aircraft. But even with fomal apporal of specilications for the model space suit, the design continued to crolve. It was, in fact, one of the elements of Proje Mercury that changed most often during the life of the unclertaking."

As designers prepared to emelop the pilots in their protective gath, onther engineers developed plans for what role the astronats would actually play in flight. At this point in project organization, the astronat began to resemble kess the passive "hood ornament" of earlier concepts, and more a physiologically conditioned integral element of the space flight system. This was by no means a move to a concept of "piloted flight"; but the amonnt of control that the pilots could assume of the cati, particularly in an emergency, expanded somewhat. A list of activities showed that the Mercury astronatu would be expected to "commonicate with gromed stations, make scientific observations, monitor ouboard equipment. control capsule attitude, navigate and fire retrorockets, intiate emergency procedures. activate the escape ssatem if necessary, and deploy the bunding parachute if requited."*:

Other underakings, which had origins in the test pilot programs of the miltary services, included lest pilot and astronam inspections of the equipment which would cary them into Earth orbit, and intensive taming for and simulation of in-flight experiences. Training was paticulaty complex because of prevously unfamilar conditions of space flight, such as weighlessuess. Athough initial concepts of astronaut training induded an extensive academic comse, most of the activities ended up as hands on-or homan being

80. Wid., p ! ! !

N゙ッ. Hid, ן. 234.
in-work in mechanical aids. Simulation of weightessness, disorientation, exposure to loud noises, acceleration patterns conditioned the astronats to a range of experiences. ${ }^{\text {a }}$ That the training was successful seemed to be verified when each astronaut went aloft and confimed that every planned-for sensation felt familiar. As Tom Wolfe observed of Al Shepard's sub-obbital flight, "he was introducing the era of precreated experience. His lannching was an utterly novel event in American history, and yet he could feel none of its novelty . . . he could only compare it to the hundreds of rides he had taken on the cenrifuge al Johnsville. . . . ${ }^{\mathrm{x}}$

As the astronatus trained in the summer and fall of 1960, however, Project Mercury's existence became increasingly doubtful because the boosters necessary to insert a capsule into orbit keep failing. And NASA's rocket failures were very public, particularly in a time of high political interest, as the 1900 campaign for the Presidency of the United States between John F. Kennedy and Richard M. Nixon intensified. The first Mercury-Atlas flight on July 29, 1960, took off as scheduled but, above a thick bank of clouds over the Cape Canaveral launch pad, it apparently disintegrated. The effect of this failure only intensified the next month, when the Russians launched a satellite with a biological cargo: "mutniks" Streika and Belka; rats; mice; Ilies; plants; fungi; and seeds. After 18 orbits, the Russians recovered the dogs and the ir tavelling partners. The next month, Soviet Premier Nikita Khushohev attended meetings at the United Nations and told the press that the Russians were ready to orbit a human."*

The next spring, they did. The Soviet Union orbited Major Yuri Alekseyevich Gagatin in Vostok 1 on April 12, 1961. Gagarim, thus, became the first human in space by making one full revolution of the Earth. ${ }^{\text {to }}$ Life magazine sent reporters to cover the victorious welcome of Gagarin back to Moscow. The capsule in which Gagarin rode weighed 10,417 pounds, ahost three times bigger than the Mercury capsule being readied for American astronats. Flight apogee was 203 miles and perigee, 112 miles. (Bagarin was weightess for 89 minutes of his 108 minutes of flight.

The pictures from Moscow taken by life magazine reponters differed profoundly from the photos taken around American space launchings. There were no views of rockets on launchers or hatedwate tracking the flight, none of observers searching the sky. Rather, these photos were clearly after the fact; Gagatin and most of his fellow Soviet officials were dressed in military uniforms or Polithoro winter wear and Gagarin was pictured walking down a vast red carpet to receive the congratulations of his countrys ruling group. Nothing in the phor tographs of the celebration indicated that a flight into outer space had occurred, that human space flight was now a reality, or that human history had been profoundly altered. ${ }^{\text {x }}$

Project Mercury had nonetheless been eclipsed by the Russian achievement. Still, as Astronatu John Gemn commented, "I an, natually, disappointed that we did not make the first flight to open this new era. The important goaks of Project Mercury, however; remain the same-ours is peacefill exploration of space. These first flights, whether Russian or American, will go a long way in detemining the direction of futme endeavors. There is certainly work for all to solve the tremendous problems involved."\$4

```
S3. Mid. pp. 23x-4א
N.t. Wolfe. The Right S/ef/, p. 250.
```



```
s7. \(\quad\) iff. Apil 21 . latil. coner amd interion photos.
```


Project Mercury Operations and the Astronauts

April 1961 brought the end of the pilotless test phase of the Project Mercury program, and fortunately, also the last major flight falure in Mercury." Delays plagued the program and the decision to fire one last attomated test in March 1961, rather than begin the piloted tests, gave the Russians the opportunity to launch Gagarin first.

The test of human space flight brought to frution all the various processes and perspectives that had characterized the astronauts and their programs since the ir intial naming on April 9, 1958. Whether they were to prove to be "Spam-intatan" as detractors saw the space pilot role, or active pilots of new kinds of craft would become clear in practice. Whether the agency view of their relative unimportance to the progran or the press' and public's view of their centrality would become the historical account of Project Mercury would now be tested as thoroughly as the hardware that they rode into space. Whether they would prove to be paper heroes or celebrated as the nation's finest would depend partly on how their test flights turned out.""

As a consequence, the first American piloted flight carried a good deal of symbolic weight, even though it was not the first human flight into space. The first American to be lobbed sub-orbitally was Nay Commander Alan Sheparl. Chosen from two other final-ists-Gus Grissom and John Glem-Shepard's historic flight was postponed three times before its final launch on May 5. A1 9:34 a.m., the Mercury-Redstone combination left the lannch pad while about forty-five million Americans watched on television and many more tuned in on the radio and held their collective breath." ${ }^{\text {p }}$

Shepard's flight in the capsule named Frofom 7 took fificen minutes and twenty-two seconds. Its altitude was 116.5 miles, its maximum speed was 5,180 mph, and it travelled 302 miles from Cape Canaveral. Freedom 7 was the last version of the apsule designed before the astro natuts began to shape the process of capsule design. It had only portholes instead of a window. and Shepard made his Earth observations through a periscope. He clearly distinguished between cloud masses and land masses and recognized various landmarks including Lake Okeechobee in Florida, and the islands of the Bahamas. Shepard took control of the spacecraft twice for brief periods; his flight plan called for him to manually position the capsule for retrofire, and he corrected a slight pitch problem on the positioning of the craft in one instance. In the second, he took control for a bief period during reentry of the capsule's attitude. Shepard withstool space flight conditions well, including five mimutes of weightessness and everything about the flight, from ignition to recovery and debriefing, went without a hitch.

Machine-rating the humans had begun. This initial foray proved to American engineers and technical designers that humans could function in space, even while weightess, thus bolstering the argument that the astronats should be part of the working systems of the spacecraft rather than passive passengers. Moreover, as an open news event, covered by the media throughout, the flight eamed cold War propatanda points by illustrating the openness of the American space program, in contrast to that of the Soviets. Although in strictly comparative terms, the first American in space did not come close to matching the feats of his Soviet comberpart, Shepard nonetheless became an immediate, full fledged American hero through his competent, laconic performance. President Kemedy awarcled him the Distinguished Service Medal on May X. ${ }^{\text {". }}$

[^80]The contrast between the accomplishments of Vosiok l and Foppdom 7 , however, demonstated that the Soviets had what looked like an overwhelming technological advantage; Shepards tlight had been in fact little more than a man shot oun of a camon on a very large scale. To address the feas and concems of the American public who perceived a real danger in American second-place status in the space race, Kemedy had ondered Vice President Lyndon B. Johnson to make an overall sumey of the possibilities for American space triumphs after Gagarin's intial flight in mid-April. After surveying the viewpoints of NASA staff, Congress, aerospace contactors, and experts in science and technology, Johnson produced recommendations for Kemedy on April 28 . Johnson argued that world leadership increasingly depended on "dramatic accomplishments in space"wh and that comtinual Soviet dominance in that realm would ultimately lead to their presumed dominance in other intemational arenas. Human exploration of the Moon, Johnson thought, would be an effort worth a great deal, and it was possible that the United States could get there first.

Following this memo, Johnson submitued another repot to Kemnedy, with NASA director James Webl and Secretary of Defense Robert Mc Namata's concurrence." That led, in turn, to a shift in the American govermments space poliey as Kemerly committed the nation to going to the Moon and back in the decade of the 196). Kemedy amounced his decision, and the new policy, in a major speech to a joint session of Congress on May 25. IG61, by saying, "I belice that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and retuming him safely to Earth. m ,

For Project Mercury, the policy change coming on the heels of its first successful human flight added urgency to immediate accomplishments and at the sane time, diverted the attention of NASA and its supporters and suppliess to larger goals and more complicated projects. The Eisenhowerera basis on which Project Mercury had been designed, to use the simplest and most reliable approach with a minimum of new developments and incremental steps was replaced by Kennedy Cold War "urgent national needs" and an explosion of congressional budgetary suppott. In moving to the Manhathan Project appreach to space eflots, Project Mercury becane part of a program lagee than itself. Just as Alan Shepard's flight wats eclipsed by Yuri Gagarins, so was Project Meromy, in some senses, edipsed by the opening of the race to the Moon.

America's original seven astronats may have been the only part of the NASA hie rachy that remained focussed almost solely on Project Mercury, but the American public remaned focussed on the astronatus. The second of seven planned suborbital tests anted Virgil I. "Gus" Grissom aloft in Liberty Bell 7 on July 21, 1961. Grissom prolited from kessons leanned on Shepadis flight and oher astronaut comments eaty in the capsule design process. Liberty Betl 7 had a central window instead of portholes. An improved attitude control system allowed for more astronatht piloing. A new hatch, amed with explosive bolts, was another improvement. Grissom flew for 15 mimues and 37 seconds, at speeds of as much as 5,300 miles an hour to an apogee of 18 miles. The tigh was vitually flathess until the reovery phase when, in a process that has never been fully explaned, the hatch bolts suddenly blew. Grissom found himself in the water, with the oxygen intet valve in his space suit open. He nearty drowned before the rescue belicopter picked him up, and the capsule Libery Bell 7 was lost.

[^81]Five more suborbital flights were plamed, but the Russians increased the pressure on NASA to launch an orbital flight when they sent Gheman Titov around the world 17 times in 24 hours in August. Three of those orbits were over the United States. As a result of this pressure and the more general pressure to work towated the more complex Apollo program, only one more subontital launch took place, to test the Mcroury-Atas combination, with a chimp named Enos aboard. After that success, on August 18 NASA announced that the Mercury-Redstone sub-obital program had achieved its objectives and was, thos, ended."

As a result of that cancellation, John Glemn, originatly scheduled to be only the third sub-orbital astronaut, instead became the first American to orbit the Earth. That fact was somewhat ironic, since Glemn had made no secret of his fury at being passed over for the initial suborbital space mission."" "First," he said, "is first." (Glem had worked hard to build a public persona and become the best-known of the astronats, but his ambition and straitlaced personal life contributed to a lack of populatity among the other seven space pioncers. Apparently, this lack of support played some role in his being chosen as backup pilot and his quasi-public complaints caused NASA higher-ups to suggest that he show some restraint lest he not fly at all."."

John Glenn's three orbits renewed the faith of Americans in their culture's scientific and technological know-how. But when his tum finally came, the assignment demanded a good deal of pationce. The first piloted orbital flight was postponed repeatedly in a period starting in December 1961 and only finally resulting in launch at $9: 47$ a.m. on February 20, 1962. Clem's five-hour space flight saw three sunsets and three sumrises; as a lafe magazine researcher estimated, he spent four Tuesdays and three Wednesdays in orbit."" Dust storms and clouds obscured much of Africa. When Cienn passed over Australia the first time, it was night and the citizens of Peath turned their house lights on. To Glemm, Perth looked from space like a small town seen from an aircraft. As the sun rose for the first time, Glenn noticed thousands of particles swarming around the capsule. "It is," he said, "as if I were walking backward through a field of fireflies." "(in

Although the flight began routinely, a number of problems cleveloped during the mission of Friendship 7 . An unexpectedly rough ride into orbit, caused partially by nearly empty Atlas fuel tanks, caused Glem to comment, "They really boot you off" as he entered orbit, free of the Atlas superstructure at last. ${ }^{\text {we }}$ More seriously, an attitude control problem developed in the first orbit, in which first one and then the second of two yaw-controlling autopilots stuck. Glemn, proving the efficacy of having humans on board to compensate for automatic system malfunction, took over the attitude control manually and controlled it for the remainder of the flight. Finally, ground controllers had received what turned out to be an erroneous signal that the landing bag on Priendship 7 had deployed in orbit. Such deployment would mean that the capsule's heat shield, crucial equipment to keep the capsule from burning up during reentry, could rip off during the reentry process. Ground controllers, in consultation with Maxime Faget, the capsule's designer, instructed Glem not to follow the regular procedures and jettison the retrorocket package that held the landing bag in place after retrorocket firing. These instructions turned out not to be necessary, since the signal received was erroneous, but Astronaut Glenn was not fully informed of the situation until just before he began the reentry process. He took great

[^82]

exception to being treated as a passenger ather than as a pilot, and ground controllers from that flight on were much more open with the astronatuts about the status of their capsules and flights while they were alof." ${ }^{\text {.t }}$

John Glenn's return to Farth was canse for emomons celebrations in the Enited States. President Kemedy tekphoned his congratulations to the astronant aboard the recovery ship Noa. Kemedy also made a statement to the Nation, in which he said

I know that I express the grat hatpiness and thanksyizing of all of us that Colonel Gilenn has completed his trip, and I know that this is partirularty fell by Mos. Gilenn and his tuen childron.

I also went to say a word for all of those who participated with Colomel Cilon" a Canateral. They faced many disappointments and delas: - the burdens upen them were great-but they kepn their heads and they made a judgment, and I think thair judgmont has been indicaled.

We have a long uney to go in this space race. But this is the newe ocean, and I belime the United Slates must sail on it and be in a posilion secomb to nome.".

Athough Glem got the bulk of the praise from the media, those of the techmical teams cance in for some note; one periodical praised the "leaders of this technical team who did their work on civil service pay and sold no serial rights to national magazines." ${ }^{\prime \prime}$.

Glemn and the other astronatus pataded past an estimated 250,000 people in Washington, on their way to a twenty-minute speed before a joint session of congress. New York City held a tickertape paade and prodaimed March I "John Glem Day" in the Big Apple. The headguarters of the United Nations held a reception in his honor. Glemn was greeted by 75,000 people who turned out in .Vew Concord, Ohio, his home town. ${ }^{\text {ln }}$, And, as the NASA historian noted, "NASA discovered in the process of this hoopla a powerful public relations tool that it has employed aver since." ${ }^{\text {wi }}$

Three more Mercury launches took place between February 1962 and May 1963. Malcolm Scott Carpenter was launched on May 24, 1962, in Aurom 7 for a theeeotbit mission. The lannch went perfecty, but mumerous problems developed during the flight becatuse Capenters tlight plan was too full and he was too interested in obsewing the Earth to calculate carefully the amount of fuel he was using. Still, wo three-orbit missions completed successfully indicated to NASA administators that the Project Mercury mission might be kengthened for the next flight. "Me

Walter Schirra was next, but in the meantime, the Russians orbited Vosioks 3 and + for six days in space, with a combined total of 112 orbits. Schirras flight in Sigme 7 , in comparison to the freewheeling onbits of Scou Capenter, was to be all test piloting with few additional scientific experiments. October 3, 1962, was the launch date for Schirra's flight, six orbits with a splashdown in the Pacific. Schima's mission produced very low fuel consumption and clear proof that a pilon could fly the Meromy spacectaft in an efficient, very accuate manner. "we

The final flight in the Project Mercury series was Faith Z, piloted by L.. Gordon Coper, Jr., who was latuched on May 15, 1963 . The last latuch of an Alas with a human aboard,

[^83]this mission lasted for 22 orbits. Cooper's ground observations and the surprising level of detail he reported being able to see had implications for security undertakings in space. The major difficulty in this last flight involved the loss of the automatic control system in the twenty-first orbit. Cooper had to position the capsule manually for reentry and fire the retrorockets mantally. He did so with great accuracy and showed once again that the human presence could save a mission with serious mechanical faihures. ${ }^{\text {"" }}$

Cooper's Project Mercury flight was truly "the end of the beginning"" of piloted space undertakings. Some discussion had already occurred within NASA as to the form that commemoration of these early days of space exploration might take. ${ }^{112}$ Almost a year before Cooper's flight, in September 1962, Webb decided to commission artists to capture each stage of the launch-and-retum process. As Webb commented at the time, "important events can be interpreted by artists to give a unique insight into significant aspects of our history-making advance into space." ${ }^{1 / 3}$

With more hyperbole, H. Lester Cooke, curator of paintings at the National Gatlery of Art who served as the first head of the program, said in 1963 that "not since the lungfish slithered out of the oolitic ocean have living creatures sought to change their basic environment, and it was felt that this epic step must be recorded in every way possible . . . what if Queen Isabella had sent along a top-flight artist with Columbus? or artists had been at Kitty Hawk? or at the White Sands Proving Grounds? And what a stroke of genius to send Winslow Homer to the Cavil War from!" And he added, "Perhaps this project will help to prove to future generations that the United States in the sixties produced not only engineers and scientists capable of shaping the destiny of our age but also artists worthy to keep them company.""

The lirst artists arrived at Cape Canaveral in May 1963 to cover Gordon Cooper's Mercury flight. Seven artists worked at the Cape itself; one flew out to the Pacific to cover the sphashdown. Peter Hurd's visual sense manifested itself from the airplane:

Activity on the Cape is continuous throughout the day and night and my impression from the air was of a vast and deceptively jestive displity. Whether by design, by chance, or from lechnical need, the scow or more of chomons grantry cranes, which seemed to stride in a great marching procession along the showe, were painted an intense and subtly beautiful shade of red. The cranes are of open steel wook, an interlaring maze of giriers and tubing, lavishly lighterl from inside and out, giving an unbelievable roalistic effect of incandescent filigree.

The routine devised for the artists began with a tour of the Cape. The lirst night was the last of relative quiet. At the Mercury Control Center, "moonlight ruled the stage, making pools of deep shadow from which emerged a long narrow scaffold of crisscrossed girders. This in turn was sumounted by a profusion of television antennae like fragile spangles of silver gleaming in lost-and-found pattern against the night sky. . ." A substantial portion of information about NASA was imparted during the tour induding a description of safety pror cedures and a recounting of the "shake test" in the White Room, where the Mercury capsule being assembled was shaken to reveal loose bolts, screws, filings and hairs."
110. Swenson, Grimwood, and Alexamder, This Nrw Ocena, pp. 48 , 501 .
111. Hid., p. 492.
 Reference Collection.
113. (Uoted in Robert Solnhman, "Space Art," Sfare Times, Nowember-December 1989, p, 5.
114. H. Lester Cooke, "Commanen at Canaveral", An in Amorica, Nos. 5. 1963, p. 60.
115. Hid. p. 62.

On May 15, the "Big Moming" as Hurd called it, the antists were driven to a roadside viewing area where they were surrounded by rescue crafi and news crews. At T minus 60 seconds. I Hurd stopped being able to write; as he explained later, "I pick up from memory the suspense of those last seconds-terrifying for us, for we were each of us in that capsule whether conscious of it or not." In trying to explain his feelings, he adeled, "Perhaps it was in witnessing a superme gathering of forces, the sight of so many individuals engaged in a wide range of techniques, all addressed to achieving one objective: the sucressful completion of another orbital flight. The thought kept occurring to me that a similar mass effort buit the great cathedrals; the same desire of man to attain to his ultimate capacity." ".

The artist captured the awe that most civilian observers folt for the seven daring test pilots of Project Mercury and the structures and sciemific and engineering feats that sem them aloft into that new ocem. James Webl was right to capture that in art as well as in photographs, and in what might be called big culture as well as in big seience and technology: The award of the Collier Trophy to the original astronats confirmed their importance to the engine ering fraternity in NASA and to American culture. Webb commented about the awate of the Collier Trophy that "The recognition of these outstanding Americans by the representatives of the National Acronatio Association is indeed a high honor, and ifeel that this honot will be one of the hightights of their careess and a highlight in the growth and development of the National Aeronatics and Space Administration."

The awat was undoubtedly a highlight for the National Acronatio Association as well, for the organzation honoted the pioncer pilots rather than the engineering hatdwate and joined the general celebtation of human effor in Project Mercury. Not quite hood omaments, not passive passengers, but not test pilots free to follow their own instincts either, the Mercury Seven were the last group of astronatus to solo in Earth obit. The transition group between airplane test pilots and astronatus of the later programs, they were honored for being the first-and in a real sense, for being the last. "x

[^84]
Chapter 8

Managing America to the Moon: A Coalition Analysis

by W. Henry Lambright

Without question, the lumat landing program-Project Apollo-was onc of the greatest examples of techological achievement in history. It was alse a great managerial feat. Finally, the fact that it sustaned political support long enough to implement the Kemerdy geat was also remarkable. Today it is difficult to maintain momentum for any govermmental program, it seems, beyond a single presidential election.

The Collier tophies have understandably gone in NASA's direction a number of times for extaodinary Apollo-related accomplishments. This essay explomes the story behind the following awards:

- I965, autard to James E. Whb, NASA Admimistraton; and IHagh Ioyden, Deputy Administrator, as mpresentatiogs of NASA rowking on a project that significantly adoancol the human experience in spate flight;
 at Hughes Limoafl Compamy, the fer Propulsion L.abomaton, and asseriated orgauizations thet put the ges and hands of the C'mited States one the Moen";
- 196 , muarl to Col Prank Borman, USAF; Ciph. James A. Ionvell, fi, USN; and It.
 for the successful exerction of the first manned lumar ontion mision in history;
- 196 , awad wo Neil A Armstong; Col. Bdum I: Aldrim, Jr, ISAI; Col. Michaet Collins, USAS, "For the rpir flight of Apollo 11 and the firs landing of man on the swface of the moon, juh 20,1969 "; and,
 1. Col. Alfod M. Worden, LSAE For demonsmating superb skill and commer and to Roberl Gibuth as repmentation of the engimerving gremins of the manned spuce flight team culminating in Apollo 15-man's mast prodenged and wientifically produrtizer luna mission.

The awards went for discrete acomplishments along the way, but they were patt and paree of a huge program that began in 1961 with the Kemedy goal before this decade is out, of landing a man on the moon and retuming him saftly to the Eath." This program, which extended to 1975, when the finat Apollo flight took place (Apollo-Soye) could have gatncred any momber of other awads for any number of oher achicvements.

It is somewhat arbitrary to single out any pationare event, since what is at issue is a program in which one decision built upon another. The Collier awards really ielentif particula feats that are representatie of the many. While they mention managers, or astronatus, or a govermentindustry team, what they are meally about is a latge group of individuals and organizations that combined for a relatively briel perioed of time to accomplish what in retospect seems extraordinary. What made the lumat landing progran possible: Who did what: How:

Approach

This chapter approaches the subject of Apollo as an achievement in program management. There is a great deal of academic and practical interest in this subject. ${ }^{1}$ In her introduction to this wolume. Pamela Matck raises the isste of "big science.". "Big science" stands as a symbol for billiondollar rescarch and development projects. Today, large-scale programs include the Space Station, the Genome Project, the Hubble Space Telescope, and the Earth Observation System. The Manhattan Project and Apollo are historical examples of "big science." For the most part, big science is a misnomer. What is entailed is technology, huge machines such as the Hubble Space Felescope. This is expecially true for Apollo, with its $\$ 24$ billion cost. Apollo was a large-scale technological program whose rationales were pride, prestige, and Cold War competition, not specifically science.

There are many ways such enterprises can be analyzed. Many sociologists have favored a "social constructionist" approach, in which societal forces shape seience and technology. John Law and Michel Callon, in contrast to other social constructionists, see society and technology as affecting one another: In studying particular big science programs, they have isolated certain "actors" who are protagonisis behind programs. In constructing programs. such actors build "local" and "global" networks.

Thomas Ilughes, an historian, has written of society and technology as "a seamess web, "' But he also finds that certain actors, pursuing order and control, become "sustem buiders" providing techological tajectories and momentum. These concepts have much in common with my own approach, rooted in political science, which focuses on the dyamics of lage-scale technology as a political process. That is, the progenitors build coalitions of support behind these programs, coatitons of internal ("local") and external ("global") actors. Coalitions can grow, change, be strengthened, weakened, or umavel. The shape, scale, and direction of the program depends on the coalition-its size, cohesion, and leadership. I eadership in particular matters greatly in coalition building, for leaders are the coatition builders. Their strategies make the big science program go.'
lange-scale programs take time to be implemented, often a decade or more. Along the way politicians in the White House and Congress change, the economy goes through cycks and international and domestic crises alter national priorities. What is possible for administative leaders at one time may be impossible at another.

This chapter looks at Apollo as a long-term, lange-scale program that had a beginning, midelle, and end. The Collier awards refled NASA achievements along the way as well as

[^85]

 significantly advanced human expriener in spoce flight. (NLSI phome).
the total achievement. This process had an internal dimension (getting the work done) and an external dimension (getting the resources and political support). Behind the rise and completion of this program was a coalition building process. Behind this process were NASA leaders.

Seen historically, Apollo marked the culmination of many trends. It entailed the NACA tradition, set long before World War II, which linked government with huge inhouse facilities and laboratories. It expanded upon trends set during and after the war by which government accomplished big science through contacts with industry and universities. It added the visual drama of real-time reporting of man-in-space though satellite-based television. More than any R\&D program before, Apollo merited the title of "national" endeavor, for the nation truly was involved and engaged, at least in the 1960s. There has been nothing similar since Apollo, for the conditions that made it possible have not repeated. The space program has continued, and built on some of Apollo's legacies, but it has never had the national prionty it enjoyed then. What is significant is that NASA took advantage of that priority, making the most of the historic confluence of political and technological circumstances.

The Apollo Decision and Its Impetus

The Apollo decision of May 1961 was a reaction to the large political forces then at play. The Soviet Union was clearly ahead of the United States in space, and Congress, media, and the public were deeply concemed. American pride and prestige were bent. President Kennedy, who won an election by promising to get the country moving again, was depressed. The space flight of Gagarin and the Bay of Pigs fiasco symbolized Kennedy's own frustration. He-and the country-needed something dramatic as an assertion of national will. NASA had conceptualized Apollo in its plans since the Eisenhower years. But there had been no match between what NASA wished to propose and what Eisenhower wished to receive. There was now such a match in the case of Apollo and Kennedy. Apollo solved the immediate need the President and the mation had for a bold action."

James Webb, NASA administrator, understood that he had to use the impetus of the decision to maximize NASA's administrative and political advantages for the long haul. Prior to Kemnedy's amouncement, he had told Vice President Lyndon Johnson that reaching the moon would require political support throughout the decade. Webb knew that this was the primary factor in success or failure. Some people spoke of a national "commitment," but not Webb. He regarded the decision as a beginning, one that gave him a bricf honeymoon period he could use to get Apollo off to a fast stari.?

Before 1961 was over, NASA had let many of its most important contracts: the three Satum rocket stages that would sequentially boost Apollo beyond Earth's gravity went respectively to Boeing, North American, and Douglas; the Apollo spacectaft to North American; and the Apollo guidance system to MIT. In addition, the decision was made 10 create a new Manned Spacecraft Center (MSC) and locate it in the area of Houston, Texas.

These decisions and others were all justifiable on technical grounds. However, they also had the effect of building a coalition of support for NASA in various regions of the country and among those legislators who represented them. Most notable was the decision to locate MSC: in the Honson area, home of the Chamman of the I Donse apper priations subcommitue responsible for NASA's budget, Representative Albert Thomas.

NASA leadership was indeed trying to accomplish multiple objectives, with coatition building being one of them. For example, NASA needed to werk with miversities on accomplish its objectives. Webb established a spectal program, Sustaining University Program (SLP), with broad goats. NASA had been acoused by critios of taking sciemtists and engineers from other mationally-mpotant endeavors. Webb reasoned that NASA would replenish the coffers through SUP, a program with a robust Ph.D. Cellowship component. In addition, this program helped link potential eritios in the nation's scientific community more closely to the space program. Wimming suppon and neutalizing opposition were key to managing big science. NASA was a relatively weak and insecure agency before the Presidents Apollo decision. It had to be technically and administatively bolstered intematly and externally afterwat for the hatar mission. To be stomg techmically and administatively, it had to be stomg politically."

[^86]
NASA's Managerial Coalition

The coalition concept was applicable to NASA's management, used at the very top of the agency and extending outward. At the apex of NASA wat a management "triad" of three men. First was Webb, whose background was law and administration. Ile had been Budget Director and Under Secretary of State in the Truman Administration. At NASA, Webb had overall responsibility, but particularly concontrated on external political relations: President and Congress. The Deputy Administrator, Hugh Dryden, was a long-time civil servant and leader of NASA's predecessor organization, the National Advisory Committee for Aeronatios (NACA). A physicist, Dryden was "Mi: Science" in the triad, and took special interest in NASA's international science activities. The third member was Robert Seamans, an engineer with both miversity and industry experience. He was Associate Administrator and "General Manager." There was thus a blending of skills at the top of NASA; the three men complemented one another and got along well. Webb was definitely the dominant personality, but he brought the other two into the most important decisions and used the triad to help his own credibility within the technical organization that was NASA. The three men presented a mited leadership on decisions, a stance particularly strengthening the position of Scamans."

Below the triad were the program managers. For Apollo, the key actor was the Director of the Office of Mamed Space Flight (OMSF) an office created by the 1961 reorganization when NASA was changed to beter math the Apollo priority. The OMSF Director had various subordinates. As OMSF developed, there were managers for the major manned projects: Mercury, Gemini, Apollo, and Apollo Applications (the plamed interim followeon to Apollo).

Then there came the centers-the huge operations that served as in-house laboratories and technical managers for most of the contacts. The thee OMSF centers were Manned Spacectaft Center, Marshall Space Flight Cemer, and what came to be called Kemedy Space Center: The Manned Spacectaft Conter focused on spacectaft development and astronaut training. Marshall on rocket development, with Kemedy Space Center being responsible for the actual launches.

This was the formal NASA organizational antangement. Informally, NASA was composed of different cultures: the National Advisory Committee for Aeronatutios culture, the Geman rocket culture led by Wernher von Braun, Director of Marshall, and the systems engineer culture which largely tan OMSF at headquaters. What mited the aeronantios and rocket cultures were their affinity for "hands-on" technical work. They liked to perform reseach and/or build hardware, and had to be prodded to become contact managers. The swtems engineers liked to pull men and machines together on a large scale. They were accustomed to contracting out and managing. NASA's systems enginecers were mainly drawn from industry and the Air Force, specifically to meet the administrative demands of Apollo. ${ }^{10}$

Under the first NASA Administrator, T. Keith Gleman, the decision had been made to contact out most of NASA's work to industry and universities. Webb continued this pattern, and often pointed out that 90-95 percent of NASA's Apollo work was spent outside government."
 (Beverly, MA: Memoirs Intimited. 1994).
 Prugram (Batimowe, MD) Johns Ifopkins l nisersity Press, 1993).
11. I. evince, Mamaging Nist in the Apellofore

Hence, the $N A S A$ organizational coalition included headquarters, centems, and contractots. It was diverse and compertive. What these elements had in common wats a goal-w get to the Moon. They also had a NASA administrator, Webb, who believed that a management system had whave hierachy, but also checks and balances. Thus, OMSF would have its own suppori contractors to give it technical strength to cope with centers and the major hardwate companies. The centers would be kept stoong institntionally as the techmical core of NASA so they could deal confidently with industry. Womied that an imbalance could exist between NASA in-house expertise and industrial contratoms in the electronics field, Webb established a new Electronics Researeh Center in Cambridge, Massachusetas. ${ }^{12}$

Webb stuplemented this vast system with personal consultants to himself, men he called "sconts," who would rove around the NASA-industry-miversity system and give him early leedback on problems. The infomal supplemented the fommal chain of command. At its height, the NASA system inchuded 400,000 governmental and mon-govemmental persomnel. held together by mutual dependencies and the lanar vision. ${ }^{13}$

Technological Choice and the President as Coalition Member

The President was the most important member of the NASA external coalition. Kennedy's Apollo decision made him as dependent on NASA as NASA was on him. NASA's success or failure redounded to his own prestige. The debate over how to get to the Moon illustates the relationship. It also shows how echoological, political, and athonintative factors converged in specitic decisions regarding Apollo.

There had been enough intemal studies for NASA to know that the lunar landing was within the reahm of scientific and engineering feasibility. Indeed, Apollo was much more an engineering than scientific enterprise, as scientific critios would contimually complain. However, the engineering of Apollo was technological development in the most dambing sense. There had to be substantial advances in rocketry, heat-resistant materials, and computers if NASA was to succeed. The mmanmed spacecraft NASA would send to photograph lomar landing sites and ultimately land on the hmar surface also pushed the state of technical art. This was techmology at the frontier of innumerable fields. Technical success was possible, but by no means assured, and the addition of man 10 the equation added a host of novel technical requirements and immense risk. Webls felt he had to shield his technical organization and contractors from political interference and financial instability 10 give them a fighting chance to succeed. In order to accomplish this, he needed the President on his side.

When Kemedy anmonnced the Apollo decision, NASA did not know precisely what approach it would use to get to the Moon. There were three options. One was called direct ascent, via a gigantic new rocket to be developed, named Nowa. A second, alled banth onbit rendeanous (EOR), entailed assembling equipment in the Earth's orbit to go to the Moon. The third, lumar obbit rendervous (IOR), also involved assembly, but in lamar orbit. Direct ascent was soon rejected because such a rocket would take too long to develop. The contest was between FOR and IOR. Webb allowed the clebate bo rage within his agency, ferling that this was the most critical techmical decision in Apollo and his agency
 SP-4104. 1966)
13. Lambrigh, Pouming Lpolle, Leonard Savies and Margaret Chander, Managing Lagry Syams: Ongatizatome for the Fidur. (New Yoot, NY: Haper and Row, 1971).
had to be united behind it. Eventually, the agency went with LOR because it promised the most savings in weight over the total mission without adding significant costs.

This decision was challenged by the President's Science Advisor, Jerome Wiesner, largely on risk grounds. It became an early test of who was in charge of Apollo. Webb's view was that NASA had to prevail on such an important technical decision. The confliet went to the President who backed Webb, and thus NASA."

In 1962-63, there were other disputes within NASA and between NASA and outsideforces. Perhaps the most important internal dispute was between Webb and D. Brainerd Holmes, the head of the Office of Maned Space Flight, an executive recruited to run Apollo. In 1962, Holmes feh Apollo was falling behind schedule and neerled a substantial infusion of funds. He asked Webl) to go to Congress for a supplement to the money already provided. Webb was anxious to show (Congress that when NASA presented a budget request, it was a credible number. Congress did not know much about the details of space; it had to trust that NASA was well-managed. Cacdible budgets were critical to the management image Webb wished to conver. Webb satid "no." Holmes then asked Webb to take the money from less important parts of the NASA program. Again, Webb declined. Holmes took his case to the media. The dispute escalated, reaching the President, who again backed his administrator. Holmes soon depatted NASA."

In gatuging the management factors critical to the sucess of Apollo, there is no moderestmating the important role kemedy played as a supportive member of NASA: implementation constituency. While Webb was not a member of Kemedy's imer circle (as was Rober Mc Namara, Secretary of Defense), he was a man Kemedy regaded highly for his accomplishments. Kemedy was anxious for NASA w suceed, and believed he had a good administrator in Webb. The NASA A Aministrator fold Kemnedy that if they worked together, NASA would succeed, but if they died not, he could not guatanter that would be the ase. Kemnedy chose to stick with Webb. However, Kemedy also hurt Apollo and Webb at one point in 1963 when he announced that instead of competing, the li.S. and I.S.S.R. might cooperate in space. This brought a negative reaction from NASA critics in Congress who were anxious to cul the agencys budger. Webh worked intensely and closely with Rep. Thomas to tum back this assault. NASAs budget went up over what it had been the year before, but the requested raise was reduced substantially. Meanwhile, the Kemmedy U.S.S.R. intiative did not go anywhere and the race to the Moon continued.

NASA and the Defense Department

Getling to the Moon required the cooperation of the Department of Defense (DOD)). and for the most part, NASt received the cooperation it songht. However, the Air Foree was a rival of NASA for space prograns and Delense Secretary Robert McNamata, while not a "space buff," saw space as a place where DOD had an ippropriate role, at least in regard to using near-Earth orbit for manned recomaisance.

Mc Namara wanted control of the (emini program, which could give D)OI) the capability he sought. (iemini had been fommated after the lunat decision to fill a wechologioal gap between Mercury and Apollo. Mercury ended in 1963 . Apollo flights were scheduled to commence in 1967. Gemini (which carried two men) would be mone complex than Mercuas (which cartied one man) and lead the way to Apollo (thee men). With the I OR decisiom. Gemini wats critical to NASA for leaming how to operate in space and developing docking

[^87]and rendervous techniques. Finally, Gemini was important in keeping the media and geneal public part of the NASA coalition. It would show activity in the critical middle years of the lunar program, between Mercury and Apollo flights, and keep NASA before the public eye.

Webb and McNamara met, with Webb determined to hold the line on control. Mc Namara, who had to fight various battes on other bureancratic fronts he accorded higher priority, backed off. Webb, for his part, compromised by permiting DOD experiments to be carried by (eemini. This agreement symbolized the basic relationship on space where NASA and DOD were concerned: NASA was the senior partmer, even though DOD) was the more powerful agency. DOD was subtly enlisted in the NASA coalition, largely on Webb's tems, and gave NASA important logistic support. It also supplied a mumber of key managers to Apollo after Holmes left in 1963, including Air Force General Sam Phillips Phillips was appointed director of Apollo, reporting to George Mueller, head of the Office of Manned Space Flight.

President Johnson as Coalition Member

After Kennedy was assassinated and Lyndon Johnson became President in November 1963 , NASA continued to have an ally in the White IIouse. As Vice President, Johnson had been a strong advocate of NASA's going to the moon. This support continued through his presidency.

However, Johnson also wanted to build a Great Society and Apollo seemed far afield from this new national prionity. Not so, said Webb, who argued that the space program was fully part of the Great Socicty, indeed embodying its deeper meaning. Webb's rhetoric soared as he described the Sustaining University Program as showing how investments in space could pay off in enhanced technological spinoff on Earth, how regional economic development and educational advancements could transform domestic America into a "Space Age Ameria." ${ }^{36}$ Johnson was clated and had other agencies look to NASA as a model for linking technology, education, and economic developmem through universi-ty-based science centers throughout the country. ${ }^{17}$ Going to the Moon and creating a Gicat Society were linked rhetorically and strategically by Webb for I.BJ.

Johnson also wanted to use the space program to project his image as a man of peace. He sent astronatus to foreign commes as ambassadors of good will. Johnson increasingly looked for wats to impoove his peacemaking image. Vietmam, a relatively modest confrontation when fohnson came into office, was escalating steadily by 1965. He hoped his association with civilian space would coumter some of the negative publicity Vietham brought him.

Catching Up to the Soviet Union

What really helped NASA with Johnson, Congress, and the American people was the step-by-step, highly visible success of Apollo. The first Collier award for the lunar landing program came in 1965 when Cemini (firmly identified as a NASA program) was achieving one spectacular flight after another. Felevision was now capable of entancing the space program through images tansmitted from space to each American's living room. The
 Batsic Baoks, 1985)
 1X: ('niversity of Texas Perse, 1985).

American people participated as space techoology advanced and men and machines seemingly worked to perfection. The coatition behind the lumar landing program extended to the media and general public.

Gemini was intended to be a technological bridge between Mercury and Apollo, and that it was. Major lessons were leaned and transmitted by Gemini about rendezous and docking in space, about human beings operating outside of their ctaft ("extor-vehicular activity"). NASA learned that men could live up to two weeks in space and how astronates could work with operators "on the ground, in the control reom, around the tracking network, and in industry." (xemini advanced technology in propulsion, "fuel cells, environmental comtrol systems, space navigation, spacesuits, and other equipment. In the development stage of Apollo, the bank of knowledge from Gemini paid off in hundreds of subte ways. The bridge had been built." ${ }^{19}$

Gemini, of course, was not without mishaps, but NASA seemed capable of tuming problems into opportunities. ${ }^{2 \prime}$ All this contributed to an image of computer-guided managerial efficiency. Webb had been using the rhetoric of management imovation and calling NASA the best managed agency in Washington. Many observers believed Webb. For Weblb, the words were not mere theloric. They were gospel, and he invited management sholars to come into NASA and observe for themselves.

Many, including Johnson, also believed that the LiS. was catching up to the Soviet Union, maybe even surpassing the rival. Something had gone wrong in the Soviet program in the mid-1960s. Its leading technological genius had died and there was no one immediately able to pull the factions of the Sovie spate enterprise together: The U.S.S.R. was no longer demonstrating a vitally active program. It seemed to be in trouble. In contrast, the U.S. lunar landing program was in full thrust. By 1966 , Gemini was proving to be everything its initiators hoped it would be: a great technical leaming experience, confidence buider, and public relations tool.

Also, in the same year, NASA semt its first surveyor spacecraft to "soff land" on the Moon. The Ranger program was providing photographs of the Moon. Surveyor built on this and engaged in televised digging into the lunar surface. There had been some scientidic speculation about the risks of a lunar landing by a relatively heavy manned spacectadi. Sumeyon was developed to precede astronatuts to the Moon. It utilized mique machineny and had to function almost perfectly to succeed. On June 2, 1966 , the first Surevor landed on the lunar surface. Surveyor was a probe able to show "that lunar soil was the consistency of wet sand, firm enough to support lanar landings by the lumar module." ${ }^{* 1}$ In 1967, the technical tean responsible for Surveyor was awarded a Collier Trophy for their efforts.

The only drawback to these successes was that the Apollo program appeared to be going so well the Americans were geting complacent. This complacency-reflected by the President and Congress-did not impact negatively on Apollof funding. However, it did affect NASA's drive to acepuire funds for long lead time items beyond landing on the Moon. Johnson, in particular, wanted to delay post-Apollo decisions. In late logio, the President finally conceded to a modest effor in "Apollo Applications" that constituted an interim program to keep a production line of Satum rockels and Apollo spacectaft going until a bigger decision (for a Mars trip or Space Station) was possible.
 NASASP-406. 1980), p. 78.
19. Ihid.

The Apollo Fire

Thoughts about post-Apollo were put on hold in January 1967, when the entire Apollo effort was threatened. ${ }^{22}$ A fire ignited in the Apollo spacecraft, while it sat on its platform at Kennedy Space Center, Florida. Three astronauts were killed. Under the NASA system of management this should not have happened. Indeed, there had been a waming about the fire danger issued to Joe Shea, Apollo spacecraft manager in Houston, by a technical support contractor: But the warning was not heeded. In the wake of the fire, a nationwide furor erupted. As the space program had become an icon because of its seeming perfection, it now was questioned umercifully by the national media. The coalition that had brought NASA to this point was in danger of umaveling.

No one was more cognizant of Apollo's political vulnerability than Administrator Webb. He detemmed that NASA had to find out what went wrong, fix the problem, and get back into space. All of this had to be accomplished in a manmer that kept the coalition of supporters together.

Johnson held firm to the coalition, granting Webb's request that NASA be allowed to insestigate itself. Congress agreed to hold off its investigation until the NASA inquiry was complete. Between January and April 1967 the NASA investigating tean did its work, completing a report that castigated NASA and the spacecraft's prime contractor, North American, for shoddy engineering and carelessness. The fire was most likely caused by an exposed wire. Once the fire started, it could not be stopped because the spacectaft was filled with highly combustible materials and an alloxygen atmosplere. Moreover, the door of the capsule opened from the outide. adding to the difficulties of escape. The media and Congress accepted the report's credibility, but questioned the Apollo time table and whe ther the haste to get to the Moon led to shortcuts and thas caused the deaths.

The subsequent congressional inguiny went beyond the NASA investigation, which was primarily technical, to probe the NASA-North American relationship. A "Phillips Report" from 1965 had surfaced in which NASA Apollo manager Sam Phillips had sharply criticized North American's work and left at least the implicit threat of going to another contractor if North American did non improve its performance. Congress wanted to know more about the Phillips Report and any other internal studies of NASA-contactor problems.

Webb himself had been unaware of the Phillips Report and blamed Seamans for not better alerting him to problems. Seamans had become Deputy Administator in 1965 after Dryden's death, while retaining his position as "General Manager." Excecdingly buss. Scamans redied on OMSF Director Mueller for information, and Mueller did not wan imerference from above. Mueller thought he had taken care of the North American issue in 1965-66 and that the work was back on tanget. As information had moved up the line from Phillips to Mueller, to Seamans, to Webb, the basic message of the Phillips Report had become increasingly sedated. Angry at both Seamans and Mueller, Webb was taking firm control now. He made "surgical" changes in NASA-replacing a few key people who had clearly made mistakes, most notably Shea with George Low, Deputy Director of the Manned Spacectaft Center. He also "supplemented" Seamans with Harold Finger, in topside management, and moved the individual who worked on bulgeting for Mueller mader his own wing. Webb's intent at this time of erisis was to manage Apollo much mone cosely and persomalls. Finally, he forced North American to rephace its principal space manager with another individtal, and ordered the President of North American to take greater persomat respomsibility for Apollo himself. To show he meam business, Webb brought Bocing

[^88]

Laurence A. Hyland received the Trophy in 1967 "representing the Simugor Pougram Team at Hughes Airraff Company, the Jet Proptlsion Labomatory, and assoriated organizations that put the ges and hamds of the Einited States on the Moom." Hylund and Vice President Humphrey are shown with a mordel of Survequa: (NASA phow).
aboard to supervise the integration of North American's work on the rocket and spacecraft with that of other contractors.

In the congressional hearings that followed the NASA investigation, however, Webl) was evasive about the Phillips Report and his actions in connection with North American. Webb did not want Congress to get involved in his negotiations with North American. He felt that NASA should manage Apollo, not Congress, and that there were those in Congress who were anxious to use this moment to assert control over the space program.

Congress was suspicious of how North American got the lucrative spacecraft contract in the first place. Was "politics" involved? What about the rumors of Bolbby Baker, Washington wheeler-dealer and one-time aide to Johnson, and his involvement in the deal? More and more, Webb became the target of the investigation, and long-time antagonists of Webb, including Senator Clinton Anderson, Chairman of the Senate Space Committee, looked for the smoking gun that would get Webb out of NASA.

No smoking gun could be found. Important clements of the NASA coalition held together. Frank Borman, speaking on behalf of the astronauts, said that they had confidence in NASA management. Webb's allies in Congress, especially the most influential Republican on the space committee, Senator Margaret Chase Smith, stuck with him. The congressional investigation petered out as the summer of 1967 came on, with NASA

 Laboratmy. and awociated organizations which put the sucessyul series of spuceraft on the Moen, and facilitated the sucios, in 1969. of the tpollo lunar lamding of hamans on another phant. Thas mork-up of the Surveyor spaceraft was taken in 196t. NASt phote no. to - H + tor).
promising to keep Congress better informed of emerging problems in the future. Webb did show Congress the Phillips Report and other internal documents-but on his terms, in closed session.

Of course, many legislators had already sean the report via leaks. A great deal of posturing and appeals to "principle" were involved. Webb interpreted his job as manager at this point to shield his agency and, if need be, even North American from excessive congressional strictures. He succeeded but at considerable cost to his own credibility with Congress and the media. He expended much of his political capital, and the coalition weakened-but it continued to finction. Then, in November 1967, just 10 months after the Apollo fire, the first Saturn moon-rocket was latuched. It was a great success, fenewing confidence in NASA among doubters, and proving the wisdom of what was termed the "all-up" decision. This was a decision Mueller had earlier made, and Webb backed, to save considerable time by testing various components of the Saturn system all at once, in the first launch, rather than incrementally, as von Bran's team preferred. NASA had taken a large risk, and it paid off. The Apollo progtam could now recoup lost time.

Success

The next two Collier awards went to Apollo 8 and Apollo 11. The former was the first circumlunar trip and the later the actual lunar landing flight. Leading up to Apollo 8 were a sequence of ummanned flights capped by the first manned flight, Apollo 7, in October 1968. Astronauts flew in a spacecraft that had been signilicantly redesigned to make safety changes in the wake of the Apollo fire. These included a new escape hatch, fireproof materials, and better distribution and protection of tlammable materials. The spacesuits were made virtually fireproof and changes were made in the spacecraft's atmosphere to enhance safety.

A moving force in redesigning Apollo 7 was George Low. ${ }^{23}$ Low had been Deputy Director of the Manned Spacecraft Center in Houston. He was persuaded to head the spacectaft development office in Houston with the mission of redeeming NASA's reputation following the Apollo fire. In 1968, while working on Apollo 7 , Low realized that the lumar landing module that was to be developed and tested on the scheduled Apollo 8 dight later that year would not be ready. This could mean delays and ultimately missing the Kennedy deadline, unless a flight scheduled after that was moved ahead. The more advanced circumlunar flight would have to become Apollo 8 . Flying men around the Moon was an extremely bold decision, not only technically, but psychologically. But Low believed the technical risks were acceptable since the rocket and basic spacecraft would be fully tested together in Apollo 7 . Robert Gilruth, Director of the Manned Spacecraft Center, and von Braun agreed with Low.

Moreover, there was strong evidence, much of it classified, that the Soviet space program had been revived, and was pushing ahead again. The sense of competition bumed deeply within NASA. The Soviet Union might well be gearing for a circumhanar flight and Low and others wanted to achieve this first.

What would Headquarters say? A key decision maker was Tom Paine, Deputy Administrator, replacement for Seamans, who had departed NASA at the beginning of the year, a casualty of the Apollo fire and deterionating relations with Webb. Paine supported a circumlunar decision. Webb, abroad at the time, was contacted by telephone, and at first inclined to say no. Chastened by the fire, he saw the stakes as the nation's suppont for

 photo wo. 69-1/-9/t.

Apollo if anything went wrong. Never before had an attempt been made to send men the vast distance from nea-Earth space to the Moon. On the other hand, he was aware that unless NASA took the risk, the Apollo goat might not be reached. Webb soon came around and gave a guarded decision to move ahead with the planning. Low had built a coalition within NASA for a major decision that was critical to NASA's Apollo schedule.

Apollo 7 proved successful and the stage was set for Apollo 8 . When the Apollo 8 flight took place, and astronats went around the Moon on Christmas Fve 1968, the effect on the count try was almost magical. This had been a dreadful year: Vietnam had taken a turn for the worse with the Tet Offensive; Martin Luther King and Robert Kennedy had been assassinated; there had been riots in Washington, DC; and I yndon Johnson had gone on tekevision to say he would not run for reelection. The country seemed to be coming apart. But on Christmas Eve, a quater million miles from Eath, three brave men wem around the Moon, and read from the book of Genesis. A divided comery came together, at least for a while.

Next came a seguence of manned flights, equipment testing, and maneuvers in Farth orbit (Apollo 9) and lunat orbit (Apollo 10). Finally, Apollo II was launched July 16, 1969. As Apollo 8 had united the comntry, Apollo $/ /$ brought the world together-one fifith of the planeis population reportedly witnessed the moment, four days later, when Neil Atmstrong took

A spectarular tione of the rising Earth which greeted the Apollo 8 avtronauls as they rame from behind the Moon afler the lumar odnt insertion bum. This virwe was also used for a United States postage stamp issued in 1969. Additiomally, the vinews of Earth taken by Apollos and subsequent astronauts are credted with giving visual stimulation to the emommmental movement
"one small step for [a] man, one giant leap for mankind. ${ }^{" 24}$ As the three astronauts splashed down safely in the Pacific four days later, Kemnedy's 1961 challenge was met.

At the helm of NASA at this point was Paine; Richard Nixon was in the White House. Webb left NASA the previous October, in part to give Paine a chance to show success in the remaining 1968 flights. Conscious of the distuption in momentum a presidential transition could cause, Webb wanted to keep as much of the NASA management team together after January as possible. He wished to enlist the new President in the Apollo coalition. Without Webb, that was more likely. The best way to get Johnson's successor aboard was to "depoliticize" the agency. Nixon inherited Paine and kept him as Administrator. The coalition behind Apollo-minus Webb and Johnson-carried out the remarkable feat of Apollo 11 .

Voyages to the Moon

The final lunar landing program Collier award came for Apollo 15, described as "man's most prolonged and scientifically productive lunar mission," culminating a series of voyages whose intent increasingly differed from Apollo 11. The Apollo program had focused on technology development up to 1969. After the first lunar landing, the mission of succeeding flights shifted increasingly to acquiring scientific data about the lunar surface. NASA was trying to get scientists and engineers within the agency and outside to work in closer harmony. This part of the NASA "working coalition" was difficult to assemble, but it was essential that scientists and engineers cooperate to make the most of the lunar voyages." The scientific

[^89]community had not been enthusiastic about Apollo, although a space science community had been built from the hundreds of millions of dollars NASA spent in universities in the name of Apollo in the 1960s. Now, however, NASA needed scientific support and help because scientists were in many ways users of the technological capability now in existence.

The voyages to the Moon lasted from 1969 to 1972 and were designed to learn more about the Moon. Apollo 12 essentially repeated the Apollo 11 journey but at a different lunar landing site. Apollo 13, launched April 11, 1970, was the flight that almost resulted in the first death in space when an oxygen tank ruptured, causing serious damage to the spacecraft. The trip to the moon was aborted and re-routed; the lunar module was used as a temporary "lifeboat." Through outstanding technical ingenuity on Earth and in space, the three astronauts made it safely back to Earth.

Apollo 14 lifted off January 31, 1971, and began more extensive scientific exploration of the Moon. A special cart was used to acquire rock samples and bring them back to Earth. Then came Apollo 15, launched July 26, 1971, which won the Collier award. Apollo 15 demonstrated the introduction of the lumar rover, an electric-powered, four-wheel drive vehicle, developed at a cost of $\$ 60$ million. Using the Rover, astronauts roamed far and wide beyond their immediate landing site, observing lunar features and collecting rock samples. They covered seventeen miles of lumar surface during their visit, taking photographs of the craters and ravines. Because of the Rover, they conserved their encrgy and doubled the amount of time astronauts were able to stay on the Moon.

 "\%. 6(-1/-1258)

In April 1972 came Apollo 66 and on December 7 Apollo 17 was lamehed, the last manned flight to the Moon. Both missions were scientifically productive, with Apollo 17 being a harbinger of the future in having a professional geologist, Harrison Somith, as a member of the crew

With the exception of Apollo 13 , the other flights did not have the dramatic impact of Apollo 1/. Americans had differem priorities now. (ireat social change had taken place over the yeas since the Apollo mission began. Neither goverment no techotogy were in faver. A conservative regime was in the White House, and an anti-techology counterculture in the universities. The Vietnam war somed everyhing. Hugely expensise programs like Apollos seemed to many an embartassing fith.

The space race was over: America had won. With no post-Apollo decision comparable to the Kemedy choice politically possible, Nixon in 1979 selected Space Shutte, his minimal manned space option, wo keep NASA going. The space program, whose budge had begun declining in 1966, had only one-thite the buying power in the 1970s it had in its heyday. The coalition behind Apollo had declined and was now disintegrating.

The last Apollo flight was the Apollo-hoye mission of 1975. As Cold War comperition had launched Apollo, so a thaw in the Cold War brought the worlds wo space powers together for a mecting in Eaths orbit. Apollo ended and moved into histonv.

Conclusion

The lunar landing program was one of the great technological successes in history. It garnered five Collier awards, all of which were well deserved. Recognized were Gemini, Surveyor, and Apollos 8, 11, and 15. While the awards cited specific individuals and achievements, they were really for an entire program and all those associated with it. This chapter has focused on the management of Apollo, specifically NASA. In the language of actor-network theory, NASA was the actor that established local and global networks (i.e., built and maintained both the working and political coalitions) to carry out the mission. Within NASA, the leaders of the agency did what actor-network theory suggests is essential for technical success, becoming an "obligatory point of passage" for decisions affecting the course of the program." ${ }^{2}$

What other factors were critical to success? How do these relate to central historical trends facing the agency, cited in this book's introduction, such as: (1) the growing web of bureaucratic and political obligations, (2) the increased complexity of R\&D and disconnection between technology developers and users; and (3) changing attitudes towards funding?

Apollo did not succeed because of a mystical national "commitment." Such a consensus lasted but a moment in time, but it gave NASA leaders a year or two to procure major contracts, reorganize, found the Houston center, hire key managers, and launch a massive team of organizations capable of taking America to the Moon. The commitment to an ongoing coalition building and maintaining process was NASA's. Webb and his associates created a "lunar landing coalition" across Congress, the Executive Branch, and interest group constituents. Combined with working arrangements involving government, industry and universities, these political and administrative alliances were key to Apollo's technological success.

Strategies to mobilize such a huge coalition began in 1961 with the critical center and contractor decisions: choices not only of "who," but "where." Such strategies included the Sustaining University Program, which sought in part to neutalize scientific critics and win their favor for the space program. They continued in the mid-1960s, when NASA's Cold War rhetoric was supplemented by the rhetoric of the Great Society. Throughout, NASA management stayed in charge of the countless bureancratic and political forces impinging on it, fending off challenges extemal and internal to its authority, thereby keeping an integrity to NASA decision-making and leadership in space policy. Webb created an "apolitical shield," using his political skills to insulate NASA's technical core from the political pressures of others. ${ }^{27}$ This was a relative autonomy that did not survive much beyond Apollo.

Apollo engaged 400,000 people from government, industry, and universities at its apogee. With the Apollo deadline as a discipline on all parties, NASA leaders stressed management excellence and backed rhetoric with clear-cut technological success, gradually overtaking the Soviet Union in space feats. The technological coalition had outstanding personnel who worked with zeal, insulated against political disruptions. Internal struggles over R\&D priorities among programs and Centers, and between engineering developers and scientific users, were minimized by the ummistakable primacy Apollo possessed.

Whatever else it was, Apollo was a giant technological development program. Developing the technology to go to the Moon took precedence over other aspects of the space program. Scientists might not have liked these priorities, but they knew what the priorities were and for a long time-until NASA reached the Moon-there was little ambiguity about NASA's mission. Having a clear goal was both a factor in success and a "connect" for the disparate parties of NASA's technical, political, and administrative system. Ranger

[^90]and Surveyor were science in support of the Apollo goal. The SDP provided additional funds for space science. These, however, were possible only because of the larger support Apollo had, and many academic scientists realized this reality.

Then came the brief scientific use in the carly 1970s of the technological capability that had been so arduously developed in the 1960s. The lumar voyages added enormously to the stock of scientific knowledge about the Moon, as users gained a measure of reward for their long wait. In succeeding years, however, the interests of developers and users would diverge sharply and eventually reveal outright competition.

NASA leaders were fortunate that they had moved quickly and adroitly enough to make visible progress toward the Moon by the mid-1960s. Gemini proved a political as well as technical link between Mercury and Apollo. There was thus an impetus in the latter 1960s to complete what had been stated in 1961. I lowever, the coalition supporting Apollo eroded steadily as the Great Society and then Vietnam changed national priorities and public attitudes toward funding large-scale science and technology. What was possible to launch at the outset of the decade was not possible at its conchusion as NASA learned when it sought to sell a post-Apollo program. This advocacy process wound up with the Space Shuttle decision in the early 1970s. Considerations of cost-bencfit were influential in the shutle decision, nonexistent when Kemedy decided to go to the Moon. It was a new era in terms of public and political attitudes toward funding R\&D. Reaching consensus within NASA and among NASA and external forces would become steadily more difficult.

Nevertheless, what NASA demonstrated through Apollo was that great achievement by government in alliance with the private sector is feasible where leadership is present and political and technological conditions are ripe. Occasions that make an Apollo possible are rare, perhaps singular. But other opportmities can arise. When they do, and individuats and organizations coalesce around a clear goal, a mation can rise 10 dwesome chatlenges.

Chapter 9

The Human Touch: The History of the Skylab Program

by Donald C. Elder

On February 8, 1974, astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogne, after an eighty-four-day mission in outer space aboard an orbital laboratory named Skylab, boarded an Apollo command module and returned to earth. Their splashdown marked the end of a venture involving three separate crews that had set twenty-five International Aeronatitical Federation world records and had managed to complete ninety major scientilic experiments.' It therefore surprised no one when two months later the Collier Committee announced that it had selected the Skylab program as the recipient of the 1973 Robert J. Collier Trophy. The official announcement of the award duly noted the importance of "the production of data of benefit to all the people on Earth," but had prefaced that praise by asserting that Skylab had proved "beyond question the value of man in future explorations of space."." The Skylab program, then, had a great immediate impact in aiding the expansion of scientific knowledge, but also offered the long-range benefit of demonstrating the importance of the continuance of the human component in the American space program.

This essay examines the history of Skylab. The story begins with the first suggestions for a laboratory in outer space, then tums to a discussion of how such an idea gained official acceptance from the National Aeronatics and Space Administration (NASA). Each of the missions will be considered, and the results they yielded will be assessed. Throughout the story, I will analyze how various groups competed with each other to control the design, timing, and function of the project. Although stressing the role technological innovation played in the eventual success of the Skydh program, I will demonstrate how the human element was crucial at every stage of this "exceedingly complex enterprise." Finally, I will suggest the ways in which the program resonated with, and still influences, the goals and objectives of $N A S A$.

The Promise of a New Day

The idea of placing a vessel with a homan crew into Eath orbit first appeared in 1869 when an American, Edward Everett Hale, wrote a shon story about launching a brick structure large conough to house a crew of thirty-seven into outer space. During the first half of the twentieth century individuals from the scientific community, including Konstantin Tsiolkovsky and Hermann Oberth, took up the subject. The possibility of placing such an object into orbit seemed remote at that time, however, due to the absence of a viable launch vehicle. ${ }^{\text {a }}$

[^91]
 The OWS solar pand on the left side was lost on launch day. NASA's Sklab program, with special rocognition to program divertor Willian C. Schneider and the Skyth astomants, recrived the Collier Truphy in 1973, for the produrtion of sciontific data

The prospects for an orbiting Space Station improved remarkably with the success of the German V-2 rocket program during the second World War. In the postwar years, the United States Army combined German technology with work done during the war by the Jet Propulsion Laboratory to create successively more powerful rockets. Aware of the progress in this area, individuals from a number of countries soon made detailed proposals to take advantage of the latuch capabilities rockets now offered. But in spite of the fact that launch vehicles by the mid-1950s had demonstrated great potential for lifting payloads into outer space, no government proved willing to commit itself to backing a venture to place an object into Earth orbit. A manned orbital laboratory therefore remained a distant goal.

But official interest in the concept of a Space Station soon came in the wake of the launching of Sputnik I in October 1957. To develop and guide a systematic American response to the Soviet accomplishment, in 1958 Congress passed a law which created a civilian space agency, the National Aeronatics and Space Administration. Shortly after NASA became operational, T. Keith Gleman, the agency's first administrator, amounced that the United States would launch a person into outer space as part of its program of operations.' Encouraged by this development, certain individuals at NASA soon began to explore the possibility of placing a Space Station and operations crew into Earth orbit.
5. For a full treatment of Project Mercury, see Loyd S. Swenson, Jr, Janes M. Girimwood, and Charles (. Alexander, This Now Octan: A Hivtory of Profat Merory (Washington, DC: NASA SP-420I, 1966).

This groundswell of interest soon found support from the higher echelons of the space agency. Appearing before the Senate Committee on Aeronantical and Space Sciences on February 20, 1959, NASA Deputy Achministrator Hugh L.. Dryden and Assistant to the Director of Space Flight Development DeMarquis Wyatt discussed the missions the agency eventually hoped to accomplish; a Space Station and an orbital manned laboratory figured prominently in their plans." Indeed. NASA would request two million dollars for fiscal year 1960 to conduct a feasibility study regarding the building of a space laboratory. By the spring of 1959, NASA had definitely cmbraced a concept which wo years earlier had seemed quite remote.

Other groups also began to express an interest in the idea. As part of a program to investigate the possibility of creang a military base on the moon, Wernher von Bram of the Army Ballistic Missile Agency, in Jume 1959, suggested that a necessary step in such a venture would involve first building an orbital Space Station. As a "quick fix" to accomplish this first step, won Bram proposed using the final stage of a lannch vehicle which had achieved orbit as the foundation upon which to build such a vessel. Although the Army would never implement such a program, von Brann's idea would figure prominently in shaping the thinking about the configuration of Skylab.;

One month after von Bratun submitted his proposal, a meeting took place a NASAS Langley Reseath Center to define the goals of the space agency for the orbital space laboratory that Dryden and Wyatt had testified about in April. At this conference, held on July 10,1959 , the participants agreed that such a venture should serve three purposes. Fitst, it should allow scientists to study "the psychological and physiological reaction" of a human being in outer space over a long period of time. Second, it would permit techmicians to antlyee how materials, power soures, and control mechanisms would function "in a true space environment." And thied, a space laboratory would provide a test of "commmication, orbit control, and rendezous" techniques, and would allow the evaluation of a person's ability to gather terrestrial and astronomical infomation while in obtit. ${ }^{\text {. }}$

The minutes of this conference cleaty indicate that by the end of 1959 NASA had taken significant steps towand creating a program to place a laboratory and erew in orbit. But the record also shows the agency recognized even at that early date that landing a person on the Moon might rank as a higher priority program in the American space program. Indeed, the participants at the July 10 meeting noted that they emvisioned the space latoratory "as one of the intial steps in the actual landing of a man on the moon in 10-15 years." This focus suggests that from the begiming the agency saw an orbital latoonatory as merely a component of a lager mission, rather than as a program which could stand on its own technical merit.

This exaluation of the potential priorities of the space agency seemed to be born out in the next three years. In 1960, NASA Achminttator T. Keith Gleman favored making a humar expedition the prionty of his agency after the completion of Project Mercum: in May 1961. President John F. Kennedy annomed his goal of placing a person on the Moon by the cod of the decate. Wernher von Batm and oblers argued for adopting a

[^92]mission configuration which would use an orbital vehicle as a staging base for a lunar mission; such a vessel, they reasoned, could also serve as a space laboratory between lunar missions." In Jome 1962, however, NASA officials opted for a plan involving a command module placed in orbit around the Moon. Such a scheme did not require a vessel and crew as a way station in Earth orbit, thus effectively shelving von Braun's concept for at least the duration of the lunar program (known as Apollo). ${ }^{\text {t }}$

Although disappointed by the decision, proponents of a permanent laboratory in space remained hopeful that NASA would eventually embrace that concept, and continued to plan for such an eventuality. On October 17, 1962, Joseph F. Shea, Deputy Director for Systems, Office of Manned Space Flight, asked the agency's centers to submit opinions on how NASA could use and benefit from an orbital vessel capable of sustaining a crew. The Manned Spacellight Center (MSC) quickly responded to Shea's request, puting together a proposal detailing the areas on which private contractors would have to do studies to determine the feasibility of such a venture. By Manch 4, 1963, work completed in this areat allowed Hugh Dryden to testify before Congress that a manned laboratory in Earth orbit had become an "obvious candidate" for a place in the space agency's program (named the Apollo Extension System) after the completion of Apsilo: ${ }^{\text {: }}$

Reflecting the optimism of the deputy administrator, the MSC in Junc 1963 engaged the Douglas Aircraft Company and the Boeing Company to do studies on possible configurations for such a vessel. Aclditional support for the concept of an orbital space laboratory cane in October 1963, when officials from the Deparment of Defense and NASA agreed to explore the possibility of jointly developing plans for such a vessel. Although nothing ever came of this proposal, it did aid NASA officials in more clearly defining their aspitations regarding such a program.

Up until this point, all of the work done on projects to succeed Apollo had a classification of "advanced study programs." But these feasibility studies and reports, suggesting the potential benefits from such efforts, soon began to change the perspective of the space agency. Moreover, the realization that without concrete plans in the very near future much of the Apollo workforce would be idle for a significant period of time prodded the NASA hierarchy to consider immediate steps to provide continted work for them. Accordingly, in August 1965 NASA officials decided to change the status of the post-Apollo program to that of "project definition." As part of this process, one month later the agency changed the name of the project to the Satum-Apollo Applications Program (AAP).

George E. Muedles, NASA Director of the Office of Mamed Space Flight (OMSF), had known for some time that the fiture of his Apollo workfore depended in large measure on the viability of the plans which would come out of this office. He also had seen the erosion of support in Congress for a continued space program on the scale of Apollo. Quickly recognizing that an orbital space laboratory repesconed the proposal of the AD with the best chance of caming congressional approval, he began to accele mate woth on finding an acceptable configuation for this idea."

[^93]Mueller considered a number of possibilities, but soon chose an idea suggested jointly by the Douglas Airctafi Company and the Marshall Space Flight Center (MSFC). Ironically, it involved embacing the idea, first suggested by Wernher won Branm, of making a laborat tory out of the final stage of a lannch vehicle that had expended its fuel and had gone into orbit. A second launch vehicle would take a crew of astronauts into outer space to rendervous with the spent stage; these individuals would then flush any residue out and put in the components of the laboratory. The concept, known as the "wet workshop," had technical merit, but also had an economical appeal as well. Mueller recognized that the rapid progress on the Apollo program meant that NASA would not need all the Saturn rockens it had originally ordered, therefore freeing him from the necessity of purchasing additional launch vehickes for the AAP. At a time when the financial demands of the Vietnam War had just started to compete with NASA's budgetary requests, such potential savings from AP had great appeal to the agency. NASA Associate Administrator Robert C. Seamans gave Mucller his approval for the proposal in March 1966, and in November Mueller made a formal presentation to NASA Administrator James F. Webb. Official backing came when Congress, acting upon Webb's recommendation, appropriated approximately $\$ 450$ million for the AAP in the 1968 Fiscal Year budget.

With initial funding secured, Mueller then turned to the task of deciding what scientific experiments to conduct aboard the orbital laboratory. NASA officials saw a potential for investigations to vield information in seven arcas: life sciences, solar physics, Earth observations, astrophysics, materials science and manufacturing, engineering and technology, and student experiments. "Muefler soon decided that one of the experiments should involve photographing solar activity. Originally NASA hatl intended to use a satellite called the Advanced Orbiting Solar Observatory for that purpose, but budgetary constraints had forced the cancellation of that project. Mueller felt that the crew of a space taboratory could complete those photographic tasks, and had directed AAP efforts to develop a teldscopic mount for such a purpose. After extensive work at a number of NASA Centers, on September 19, 1966, NASA's Maned Space Flight Experiments Board (MSFEB) accepted the plan to include such a device, known as the Apollo Telesope Mount (ATM), in the space laboratory program. ${ }^{17}$

While the idea of the ATM had moved steadily from proposal to approval, the selection of other experiments took much longer. Although those in the AAP knew of over 100 experiments being considered by individuals at the various space centers, a lack of funds and supporting manpower prevented many of these potential contributors from moving quickly to solidify plans for such endeavors. But energetic work involving visits to the various centers by Douglas L ord, head of the Advanced Manned Missions Office Experiments Division, spured interested individuals to complete their feasibility studies. By the end of 1966 the MSFEB had received and approved fifty-two such proposals. ${ }^{\text {is }}$

Individuals involved in preparations for a manned laboratory in Earth orbit felt quietly optimistic as 1967 began. They had seen the AAP receive formal approval from President Johnson, and knew that the program had become a line item of NASA's budget. Although some experts in the field questioned the timetable, the AAP team believed that

 Benson, I rieng and llarking in Spate. p, 38.
16. LeP 13. Summerlin, Chawom in Spare (Wanhington, D(i: NASA, 1977), pp, 11, 12.

 had given them "the best obserations exer obtaned from spate". Mid, p. 34t.
 Workshops. NASA Jistorital Refereme Collection.

NASA could place a space laboratory into orbit by the middle of 1968 . Understandably, then, George Mueller considered the time right to reveal his plans to the national media; at a press conference on January 26,1967 , he spoke publicly, for the first time, about the ambitious space laboratory program of the agency. But an event which occurred the very next day put the hopes of those involved with the project on hold, and came close to scutling the idea entirely.

Battling Back From Adversity

In the late afternoon of January 27, 1967, a disastrous fire swept through an Apollo, command module perched atop a Saturn launch vehicle at the Kennedy Space Center. The conflagration caused the deaths of astronauts Virgil "Gus" Grissom, Edward White, and Roger Chaffee, forcing NASA officials to reconsider many aspects of the Apollo program. This process of review meant that the agency would not move as quickly toward a lumar mission as originally planned, which caused the new director of the AAP, Charles W. Matthews, to recognize the impossibility of meeting the proposed orbital laboratory launch date. '"

Unfortunately, the impact of the fatal fire did not end with the postponement. Congress, concerned about the efficacy of NASA programs and recognizing the increasing financial burden of the Vietnam War, appropriated only $\$ 300$ million of the $\$ 457$ million asked by NASA for the AAP in fiscal year 1968. This reduction forced officials in the AAP to further postpone the orbital laboratory schedule, which would involve three separate missions, back into the 1970 calendar year.

These setbacks put hurdles in the path of the space laboratory program, but paled in comparison to the challenge soon offered within the agency itself. Robert C. Seamans, Jr., visiting space centers in June 1967 to monitor activities in the wake of the Apollo disaster, found that many people in the agency wanted to express their strong reservations about the AAP mission design. Individuals at the MSC: in particular believed that the idea of converting a spent booster stage into a laboratory in outer space posed too many potential difficulties. They asserted that building a workshop on Earth and then putting it into orbit offered a greater chance for success. Encouraged by the response of Seamans, personnel at the MSC decided to make a presentation on the subject at a conference to discuss plans for Earth-orbiting missions, scheduled for Nowember $18 .=1$

At the conference, both sides presented their views on the wet workshop proposal. George Mueller felt that the proponents sufficiently answered the objections to the AAP plans for an orbital laboratory, and reponted favorably on the concept to Robert Seamans. But the top echelon of NASA management still had reservations based on the concerns voiced during Seamans' summer tour, and therefore NASA Administrator James Webb felt compelled to call for a total AAP review, which he scheduled for December 6. At that meeting Webb found adequate reasons for placing the wet workshop proposal on hold until the agency could conduct a total review.

To examine all the possibilities for NASA in the post-Apollo era, including the concept of a manned space laboratory, Webb convened a special committee in carly 1968. This group, chaired by Langley Research Center Director Floyd L. Thompson, soon demonstrated agreement about the value of an orbital workshop. The members, however, recognized the limitations of the concept as then constituted. In March 1968. Thompson's group suggested that if the agency could not overcome the technical problems which beset the program it should consider "ground-assembling the workshop and launching it dry." ${ }^{2 /}$

This idea, which had circulated within the agency for some time, had great scientific merit. It would require the use of a powerful Saturn V launch vehicle, but would allow more flexibility in mission plamning. Unfortumately, by the time of the Thompson committere report it had become apparent that Congress, beset by the increasing financial burdens of

[^94]Whe Vietnam War, Great Society efforts, and the space program, would not appropriate finds for such a modification. Moreover, NASA Administrator Webl, who at one time had strongly supported AAP', had by this time become a lukewam proponent at best. Discussing AAP at a meeting with directors of the space Centers, Webb asserted that the program was merely "a surge tank for Apollo." Convinced that no other space agency program should demand funds which NASA could spend on Apollo, Webb authorized only those expenditures for the space laboratory regarded as absolutely necessary." Many wondered if NASA would launch the workshop in any configuration, much less agree to a dry workshop program.

Just as the prospects for AAP seemed to have reached the lowest point, however, a series of events transpired which revived the flagging program. First, NASA Administrator James Webl announced his retirement in the fall of 1968 . His successor, Deputy Director Thomas O. Paine, had demonstrated a much firmer commitment to the concept of a manned space laboratory, and would become a valuable asset to the project. Second, NASA successfully flew a manned Apollo mission in October 1968, restoning public confidence in the space program in general. Finally, the memorable December 1968 flight of Apollo 8 seemed to have made Congress more amenable to NASA budgetary requests; by April 1969 NASA officials knew that they would have at least $\$ 252$ million to spend on AAP. Thus reassured, they could plan for the space laboratory with confidence.

Revising the Configuration

With their hopes bolstered by the recent turn of events, NASA officials began to firm up plans for an orbital space laboratory. But as those involved in the project resumed their work, they noted a subtle change in the attitude of George Mucller. The man who had long championed the concept of a wet workshop now seemed determined to utilize the proposal of Floyd Thompson's committee as well. Indeed, at a conference on May 3 and 4, 1969. Mueller announced to those involved in the program his hope of developing a series of missions which would include both a wet and a dry workshop.

Mueller's plan struck many as impratical. Some pointed out the financial burdens of redesigning AAP missions, while others noted how addling a second type of workshop would delay the program. But it occurred to Leland F. Belew, the director of the Marshall Space Flight Center's Saturn-AAP Office, that NASA could save time and money by merely replacing the plan for a wet workshop with one for a dry workshop. Mueller immediately saw the logic of this suggestion, and called upon those involved in AAP to voice their opimions. Gradually, a consensus emerged in favor of launching a prefabricated laboratory on a Saturn V rocket as the sole AAP effort involving a manned space workshop. Thomas Paine made the decision complete when he gave his formal approval on July $18,1969$.

Public notice of this change had to wait, however, until NASA officials could officially authorize the use of a Satum V by AAP. James Webb had insisted upon a commitment of those launch vehicles exclusively to Apollo; until a successful landing on the Moon, therefore, NASA could not guarantee the availability of a Saturn V for any other purpose." But since the lumar module from Apollo $1 /$ would touch down on the lunar surface only two days after Paine's action, Mueller felt confident that such official notification would come
 ILopkins L miversity Press. 1995), pp. 193-196. While agrecing with Compton and Benson on Webbs attitude in 1968 towards AAP, Lambright disagrees with them about how Webb had telt about the program until that time. Compton and Benson assent that the NASA administrator "had never been an enthusiast for AAP," while Lambright maintions that Webb gave post-Apollo a high prionty through at least 1966. For the respertive argiments, see Compton and Benson, I.aing ard Working in Spare, p. 104, and Lambright, Poupring Afollo, p. 139.
23. Lambrigh. Powering Apollo, pp. 195-96
shortly. In fact, on July 22, 1969, those involved in AAP received the word to proceed with the dry workshop program. ${ }^{24}$ With the goal of the Apollo program successfully attained, NASA could devote more of its attention to planning for the future. An indication of this shift came in February 1970, when the agency chose a name for the dry workshop proposal. After considering over 100 possible suggestions, the NASA Project Designation Committee selected the title Skylab, submitted by U.S. Air Force Iicutenant Colonel Donald Steelman. But it soon turned out that not everyone shared the optimism of the agency regarding the future of the American space program. Thomas Paine had hoped to use the success of the Apollo program as a springboard for funding more ambitious projects; much to his frustration, however, he found in September 1970 that the Nixon Administration hoped to cut the NASA budget substantially. On the fifteenth of that month, Paine resigned.

His acting replacement, George M. Low, tried to salvage as much funding as possible from the Nixon Administration. He succeeded in minimizing the cuts to the Skylab project, but Low knew that this would still necessitate a readjustment of that progran's schedule. The Office of Manned Space Flight finally set the date for the first launch of Skylab for April 1973, and work on the program began in camest.

In its final configuration, Skylab would consist of five components: a command module (which would join the other components in orbit), a service module, a docking adapter, an airlock, and a workshop. The workshop would iself have two sepatate sections. The upper compartment would house the work station and equipment for experiments, the frozen food locker, water contaners, and film bins. The lower comparment would contain "the kitchen and dining room, bedrooms, an experimental work area, and the toilet." The workshop, forty-one feet long by twenty-wo feet wide, would provide 10,426 cubic feet of work space for the astronaut crews. Satisfied with the design, NASA officials finalized contracts with private contractors for the various components."?

By this time, the Skylab program had lost one champion, but had gained another. George Mueller, the person who had guided the idea of an orbital laboratory through troubled times, had resigned from NASA in 1969. While he would be missed, willian (. Schneider, who had become the director of the AAP in December 1968, had already demonstrated the same enthusiasm for the orbital workshop concept that Mueller had exhibited. Building on the foundation established by Mueller, Schneider worked steadily on ways to expedite the progress being mate on the project. The fomer Apollo mission director found the NASA system of reviews, implemented during the Apollo program, of great help in kecping the program on schedule. The procedure, which involved formal assessments at seven different stages of development, insured that program officials could quickly identify potential difficulties." By the end of 1970 , Schneider had approved the last of the modifications necessitated by the change to the dry workshop configuration, and had authorized the testing of the components for the project.

While the various contractors began the preparation of the materials to be used, NASA officials finalized their assessment of the habitability of Skylab. In the fall of 1969 , Schneider had already authorized a number of modifications in this regard; the orbital laboratory would now have a room for the astronauts to both sleep and dine in, and an observation window for the viewing pleasure of the astronauts. By late 1970, the only serious question remaining about living conditions involved food. The MSC wanted a more

[^95]elaborate system for storing and preparing meals than the Marshall Space Flight Center felt the laboratory could accommodate. In the end both sides compromised, and Schneider faced no further controversy involving the habitability of Skylab.

Confident that agency officials had designed a workable program, Schneider then turned his attention to the private companies supplying two major components for Skylab. He knew that in April 1969 workers at the McDonnell Douglas Corporation's Huntington Beach, California, facility had started the process of converting a Saturn IVB final stage into an orbital workshop. Schneider soon found that the work of the company had fallen behind schedule. The vast number of pieces, many supplied by other contractors, involved in assembling the craft proved especially daunting. But by utilizing more efficient management techmiques, McDomell Donglas proved able to increase the pace and improve the quality of its efforts. Incleed, in 510 hours of tests during the summer of 1972 company technicians found only minor technical flaws. Confident about the finished product, in a ceremony on September 7 of that year, McDomnell Douglas officially presented NASA administrators with the completed taboratory. ${ }^{27}$

One month later, NASA received the other major component of the Skylab vessel. Technicians at the space agency had designed a docking facility and airlock for inclusion in the project; these would allow a crew in an Apollo command module to rendezous with Skylab in outer space and enter the orbital laboratory. In the summer of 1970, the Martin Marietta Company had built a multiple docking adapter and had sent in to the St. I ouis facility of McDonnell Douglas where workers would connect it with the airlock they had constructed. On October 5, 1972, a NASA Sufer Guppy airplane flew this last component to the Kemedy Space Center (KSC).

As NASA technicians joined the various parts of Skyab together al KSC, agency officials finalized the process of preparing the astronats who would eventually live and work in it. Initially, the selection of these individuals had created a controversy within NASA. In 1965 and again in 1967, the space agency had recruited a number of scientists for the astromat program, and these individuals saw the skytab program as a logical venue in which NASA could utilize their talents. They hoped that NASA would include wo of their number on each mission. But Donald K. "Deke" Slayton, NASA Director of Flight Ciew Operations, had chosen to include only one scientist in each of the thee three-person crews. In spite of strong protests from the scientific community, Slayton held his ground, atguing that the missions might need two individuals tained primatrily in piloting. Backed by Rober Gilruth of the MSC. Slayon won his case, and NASA finalized the composition of the three crews. An all-Navy team of Captain Charles "Pete" Conrad, Jr:, Commander Joseph P. Kerwin, and Commander Patul. Weitz would fly the first mission. In September 1972 all the crews started a program of mission simulations, preparing for the schedule of launches. ${ }^{\text {ss }}$

Persomel at KSC began working longer hours in 1973, getting all systems ready for the long anticipated May lanch date. Inclement weather threatened to disrupt the schedule, but by May 14, 1973, conditions had improved sufficiently to warrant initiation of the countown sequence. At 1:30 p.m. the 334-foot Saturn V carrying . Whelab lifted off from its batuch pad, ending the years of planning and preparation. Now the question became whether the program could deliver on the promises its proponents had made for it.

Saving the Program

Telemetry received at the Johnson Space Center (JSC:) indicated that the powerful Saturn V had taken only ten minutes to place its cargo into orbit at a height of 270 statute miles. At that point various electrical systems aboard Skylab began to come to life. ${ }^{29}$ At first every indication suggested a nommal process, but soon Flight Director Donald Puddy noticed readings that gave him pause for concern. Atter a few hours of investigation, NASA officials determined that two things had indeed gone wrong with the mission. First, the two solar panels, which would provide power for the laboratory, had failed to deploy properly. And second, it appeared that a shield designed to both protect against micrometeorites and provide shade for Skylah had been lost. Both of these developments posed serious, perhaps even mission-threatening, challenges for NASA officials to ponder.

Analysis by engineers at the Marshall Space Flight Center revealed that the loss of the micrometeorite shield would canse the temperature inside the orbital laboratory to rise to 190 degrees fahrenheit when bathed in sunlight. This heat, they realized, could damage the photographic film and food aboard Skylah; more ominous still, it might melt plastic inside the laboratory, releasing toxic fumes. The mission control team could change the attitude of the orbital laboratory to reduce the angle at which the rays would hit it, thus reducing temperatures, but that adjustment would also limit the amount of sunlight reaching the solar cells of the ATM -Skylab's major remaining source of power. The attitude finally chosen by NASA lowered the temperature inside Skylat to 130 degrees and allowed the generation of 2800 watts of power, but NASA officials believed that they would have to arrange for some sort of sunscreen to protect Skylab if they hoped to save the mission."'

After NASA postponed the launch of the first crew of astronauts for ten days, individuals at the JSC and Marshall immediately began to explore possible methods for providing a sunscreen. After discarding a number of suggestions, NASA officials finally narrowed the range of options to three. One came from Jack Kinzler of the JSC's Technical Services Division, who suggested creating a collapsible parasol out of aluminum-coated mylar supplied by the G.I. Schjeldahl Company. Kinzler felt that the astronat crew could deploy such a device through the scientific airlock of Skylab after docking. A second suggestion involved having the astronauts affix a twenty-two-by-twenty-fou-foot sunscreen to the outside of the laboratory while standing in the hatch of their Apollo command module. Finally, a third idea envisioned attaching a "twin boom" frame to the ATM and then hoisting a sail between the two rods. While finally favoring the Kinzler recommendation, NASA officials decided to have Conrad, Kerwin, and Weit take all three devices with them aboard the Apollo command module."

NASA officials also hoped that the astronauts could salvage some power capacity from the solar panels. Data received from $S k y l a b$ indicated that one of the panels had remained attached to the laboratory, but had not deployed. If debris from the micrometeorite shield had trapped it, Conrad, Kerwin, and Weitz might have a chance to free the panel. To facilitate these repair efforts, the agency requisitioned specific tools from the A.B. Chance Company and included them in the cargo which the astronauts would take into outer space.

The astronauts lifted off on May 25, 1973. After achieving rendezvous with Skylah and
29. After the death of Lyndon Johnson in January 1973, the Senate passed a resolution in February to remame the Manned space Cemer atter the individuat who had been in many ways "the father of the space pros
 NASA SP-4307, 1993), p. 214
30. Belew, Sky/ah, pp. 41-57.
31. Intervew of Mr. Don Arabian, Manager, Program Operations Office, Johmson Space Cemer Jome 12, 1973, Pox 05, Skwh. Folder Skydab Oral History Interviews, NASA Histonical Reference Collection.
eating a meal, the crew began the planned repairs. Conrad took the Apollo command module away from the docking port and placed it next to the remaining solar panel which, as it turned out, had not deployed because of a strap from the micrometeorite shield which had become wrapped around it. Weitz attempted mightily to free the solar artay panel, but had no success. Finally abandoning that endeavor, Conrad decided to dock the command module for the crew's rest period. But this time when he attempted the procedure, Conad found that the lathes of the respective entry ports would not engage. He tried a number of other docking techmiques, but these too failed. As a last resort, the astronauts effected a manual modification of their craft's docking port, which allowed Conrad to finally couple the vessels. After a twenty-two-hour day, the crew went to sleep in the command module."

When the crew awakened, Weitz entered skylah to determine if the high temperatures had generated toxic fumes. Finding no such danger, the crew then entered the laboratory and prepared to deploy the parasol they had brought along. Working carefully, they managed to unfurl the device, and noticed an immediate cooling inside the laboratory. The temperature inside Skylab would soon stabilize at ninety degrees. The parasol did not cover as wide a surface area as originally hoped, but it would allow the crew to begin the schedule of experiments in relative comfort. Conrad, Kemwin, and Weite would waste no time in intiating these efforts.

The "Can Do" Spirit

The crew soon established a regular schedule which involved carrying out experiments, excrcising, eating, maintaining the vessel, and sleeping. They found no difficulty in adjusting to the sensation of living in outer space, experiencing no motion sickness, but found the pace of the tasks assigned to them very demanding. Within days Conrad suggested revising the time alloments for experiments and other duties, and his crew soon sethed into a comfortable routine." But the crew soon recognized that insufficient power levels might not allow the completion of a mumber of the proposed experiments. NASA officials concluded that the astromats would have to make another attempt to free the remaining solar pancl.

NASA officials had prepared Conad, Kerwin, and Weit, for their exta-vehicular repair effort by having them train in a rero-gravity newtal buoyancy smulator. Kerwin, however, had not fond the technique practiced on Earth any help to him in his first repair attempt. Therefore, NASA officials assigned a group headed by Russell "Rusty" Shweickat (the commander of the back-up crew for the first mission) to devise another method for deploying the solar panel. The team finally recommended using a twenty-fise foot long cable cutter to free the panel and a tether to mancuver it, once freed, into propar alignment. Ground control relayed instructions on the procedure to the crew, and on June 7 Kerwin and Comad left the workshop to make another attempt.

It becance immediately apparent to the two astronates that the actual repair efforts in outer space would differ signilicantly from those patacticed on Eath. To begin with, Kerwin found that he could not establish a fim foothold on the solar observatory antenna as Schweickat had done; cables prevented him from getting close enough to secure his fere Every time Kerwin attempted to position the cutter he simply drifted off until the
32. Belew, Skwh, pp. 61-6i3.
33. Complon and Bensen, Lining and Wioking in Stat, pp 2xi-94.

cord connecting him to the antenna restrained him. Moreover, when Conrad attempted to place the hooks of the tether into holes on the solar aray panel he found them smaller than those on the panel on which Schweickart's team had practiced. He managed to fit one hook onto the restrained device, but wondered whether he could exert sufficient force to free it with only one clasp. Kerwin then began to cut the strap, but after thirty mimutes of work the astronatut had not made any progress toward accomplishing his goal."

At that moment, however, Kerwin had an idea. He took the line connecting him to the antenna and shortened the length until he had secured his position. Having thus gained leverage, within ten minutes Kerwin proved able to cut the strap. The solar array panel then swung open at an angle of about twenty degrees. At that point, Kerwin and Conrad began to pull on the tether connected to the device, but with no success. Finally Conrad stood up and slung the tether over his shoulder, while Kerwin continued to pull. This technique worked almost too well-the recalcitrant hinge broke loose suddenly, sonding the astronats flying off into space. When the restraining cords stopped their motion, Kerwin and Conrad saw the panel almost fully deployed. Within days the astronauts could report that power levels had almost doubled.

Having lost a significant portion of the four week duration of the mission to repair efforts, NASA officials hoped to salvage as much of the experimental schedule as possible. Forced to prioritize the investigations, they decided to give the highest ranking to medical experiments. During the time remaining in orbit, Conrad, Kerwin, and Weitz managed to achieve nearly 100 percent of the projected goals that medical officials had set forth for the mission." ${ }^{45}$ Of particular interest to the medical community was the fact that weightlessiess allowed the skeletal structure of the astronauts to fully extend, increasing their height by an inch. It also balanced fluids within the body more evenly, thus making the faces of Conrad, Kerwin, and Weitz appear fuller. With a regular regimen of exercise the astronauts remained in outstanding physical condition throughout the duration of the mission, proving the adaptability of humans to living in outer space.

The crew also managed to accomplish a high percentage of the assigned tasks involving the observation of solar activity, eventually taking over 25,000 pictures of the sun. This endeavor proved a highly challenging one for the crew, given the complicated nature of the control equipment. Located in the docking adapter, these instruments activated the ATM telescopes. Kerwin later asserted that the pace of mission experiments kept him from ever completely mastering the control system.". He found the procedure for observing solar flares especially frustrating. NASA technicians had developed a sensor which would alert the crew to solar flare activity, but the radiation field over the eastern section of South America would frequently trigger the alarm system. After many false warnings, the crew despaired of ever observing a solar flare. But after deciding to spend the entire work day of Jume 15 in hopes of witnessing such an occurrence, their patience paid off. Weitz proved able to record a flare of impressive magnitude for over two minutes. Although the crew may have felt that their work involving the observation of solar activity had not met up to expectations, astronomers proved genuinely pleased with the results, which they considered to have met eighty percent of pre-mission expectations.

The scientific aspect which suffered the most from the compression of the mission schedule involved earth resources experiments. NASA officials had included cameras and other devices to provide a more detailed analysis of geological, meteorological, and agriculumal features thatn could otherwise be gathered by conventional methods. The equipment

[^96]

The Sun's hot outer atmosthere, or comoma, coler-coded to destinguish havts of hightmess, waches outuave for millions of miles. A coromagraph, one of Skylab's eight telescoppes, masked the Sun's disk, crating artificial eclipses. $1 /$ permilted $8-1 / 2$ months
 (Nasi phene no. $74-1 / .97$).
which these experiments utilized required a significant amount of power and, because of this, NASA officials had to postpone a vast number of them at the beginning of the mission. The first crew never fully caught up, but still managed to complete an estimated 60 percent of the planned eath resources experiments."

Ironically, the crew might not have done as many earth resource experiments as they did had the astronatuts not completed an in-flight repair of the power system. During the mission, the device which collected power from the ATM panels failed to function properly, causing concern at JSC: NASA technicians, remembering that they had overcome the same difficulty in ground tests by delivering a sharp blow to the device, recommended a similar procedure to the astronats. Conrad, wielding a hammer, soon had the power conditioner operating properly again, and mission experiments continued. ${ }^{\text {3* }}$

As the end of their mission drew near, the astronats began the ir preparations to depatt from $5 k y l a h$. On June 22 the crew boaded their command module to fly back to earth. After 404 orbits and twenty-eight days in space, the astronauts made a successful splashdown in the Pacific Ocean 800 miles west of San Diego. Picked up by the aircraft carrier Tizonderoga, the astronats soon received a hero's welcome when they reached the
37. Newkirk, Frutl, with Brooks, Sky/hb, p. 312.
38. Belew, Skytah, p. 89

 Iation natuork, and a muh daker fone them the central pertions af the disk. Siveral ative ngioms are wen on the patem side

United States. Encouraged by the success of the first mission, but concerned that further mechanical difficulties occurring with no crew aboard to rectify them might jeopardize the status of Skylah, NASA officials decided to advance the launch date of the second mission by three weeks. Attemtion would therefore turn again to KSC.

A Commitment to Excellence

As the second mission began on July 28, 1973, the crew-Naty Captain Alan L. Bean, Marine Major Jack R. Lousma, and civilian Owen K. Garriott-soon realized that their experience would differ in at least one respect from that of the first crew: Lousma reported nausea only one hour into the flight. The other wo soon experienced the same malady. The
crew attempted to work through their infirmities, but motion sickness slowed down the pace of activity during the first few days, prompting concem among medical oflicials at NASA. These officials, after reviewing the timing of the occurrences among the crew during the day, recommended that Bean, Lonsma, and Garriott eat six small meals rather than three larger ones each day. Whether because of this procedure or simply through an adjustment to space, within days the crew reported that they felt back to nommal."

This retum to geod health came just in time. In addition to assigned tasks involved in making Skylab operational, the crew also had the responsibility of deploying another sunscreen over the laboratory. NASA officials had chosen the parasol concept for the first crew to use because of the speed with which the astronauts could deploy it, but had recognized that ultraviolet rays would soon cause the fabric of that device to deteriorate. They therefore decided to have the second crew deploy another device considered for use by NASA during the original mission: the twin boom frame sunscreen. Bean, Lousma, and Garriot had practiced extensively on the necessary construction techniques in the neutral buoyancy tank at Houston, and with their health vastly improved they felt ready to begin the task on August 6 .

As frequently happened, this activity did not go exactly as planned. Garriott and Lousma soon recognized that the size of the components which they were using differed slightly from those they had practiced with on Earth, forcing them to make a series of adjustments while out of the vehicle. But patiently keeping at their task, the astronauts eventually managed to assemble the frame and raise the sunscreen shade. Lousma and Gariott then replaced film in the ATM, gathered data from previous experiments, and checked on a potentially threatening situation involving the rocket thrusters of the Apollo, module. After six hours and thirtyone minutes the two returned to Skylab, having established a record for the longest period of extra-vehicular activity in outer space."

Alter completing the necessary repair, the ctew resumed the regular experimental schedule. As with the first mission, the observation of solar phenomena had received a high priority. From August 10-20 in particular, the astronatuts devoted a significant portion of their work days to capturing solar activity on film. On August 21 the crew witnessed a gigantic bubble develop on one side of the Sum and watched it grow to a size nearly threequarters that of the Sun itself. In all, the second crew would spend over 300 hours engaged in solar-related activity; their effonts received unqualified pratse from the scientific community, and many had an oppotunity to speak to the crew directly from Houston.

This approbation did not go unoticed. Indeed, reportess covering the Stylad program asked NASA officials at a press conference on August 10 why the second crew seemed to find greater favor with the scientific community. Dr. Frmest Hindler of the High Altitude Observatory of Boulder, Colorado, asserted that the first crew had actually paved the way for the rapport with the second crew. By pointing out the flaws in the program, Conrad, Kerwin, and Weich had helped the second team avoid problems on their mission. But, he conceded, the second crew also seemed more amenable to an interactive dialogue with scientists at ground control than the first had."

While solar observations took much of the time of the astronauts during the first part of the mission, Earth resources observations also merited considerable attention. All three astronauts would participate simultancously in these efforts, with cach operating a particular piece of equipment-six major instrmments in all. NASA officials planned to utilize the first and last segments of the mission for Earth resources observation, knowing that atmospheric conditions would limit visibility during the middle period. In spite of certain

[^97]difficulties, the crew managed to take almost 16,000 photographs of Earth and load data onto 18 miles of magnetic tape. ${ }^{* 2}$

After the first period of earth resources activity ended, the crew then took up what NASA officials called "corollary experiments." These involved space technology, space physics, and observations of stars. Although the exploits of two spiders (named Arabella and Anita) overshadowed these experiments in the eyes of the American public, the crew in fact produced a wealth of important data. ${ }^{43}$

The endeavors of Arabella and Anita certainly certainly caught the fancy of the people on Earth, but the astronauts themselves proved able to capture their attention as well. Lousma provided amusing commentary about the mission on the twenty-four-hour-delay communication channel B, and Garriott conducted a number of experiments which gave vivid televised visual illustrations of scientific principles. But the crew's most famous exploit involved a mysterious voice. One day the ground control team at JSC, heard a female voice speaking to them from \$kylabover the public air-to-ground channel. Houston hesitantly responded, and the conversation with the unidentified person went on for a few minutes. Finally, Garriott aboard Skylab burst out in laughter; he had brought along a tape recording of his wife's voice for this bit of levity.

While these activities illustrate that the second crew certainly liked to have fun, they should not overshadow the fact that Lousma, Garriott, and Bean more than met the expectations set forth for them at the begiming of the mission. While illness and repair efforts had put them well behind schedule for the first ten days, the astronauts soon caught up and in lact began to ask for additional tasks. Indeed, Bean asked Houston to kengthen the mission by at least a week to give the crew more opportunities for meaningful research. JSC: declined this request, but the astronauts still proved able to supercede expectations by fifty percent during their mission. ${ }^{\text {H }}$

On September 25, 1973, after fifty-nine days in space, the crew boarded the command module and began their return to Earth. At 6:20 p.m. EIDT, the capsule splashed down in the Pacific Ocean 300 miles from San Diego. Picked up by the U.S.S. Now Orteans, less than forty-five minutes later, the astronatuts received accolades for their impressive accomplishments. Encouraged by their efforts, NASA officials eagerly began final preparations for the third, and last, Sky/ab mission.

A Series of Challenges

NASA officials had hoped to launch the third crew, consisting of Marine Lieutenant Colonel Gerald Carr, Air Force Lieutenant Colonel William Pogue, and civilian Edward Gibson, on November 11, 1973. Flaws in the launch vehicle temporarily postponed the mission, but on November 16 the Saturn IV blasted off, taking the crew to a rendervous with Shylab. After initial difficulties, Carr managed to dock the two crafts. Under orders from NASA, the crew would wat until after a rest period to begin the activation of the laboratory.

To minimize the chances of having the crew suffer from space sickness, NASA medical personnel had ordered the astronauts to take anti-nausea pills. Unfortuately, this precaution did not help Pogue, who soon became quite ill. Gibson and Carr pondered what to do about this incident; if they reported the full extent of Pogue's distress (which included vomiting), NASA officials might alter the schedule of the mission. They chose, therefore, to reveal to Houston only that Pogue had experienced some nausca, but would withhold any mention of the vomiting.

```
42. Newkirk, Ertel, with Brooks, Nky/ab, p. 334.
43. Belew, Sklab, pp. 11+15.
44. Newkirk. Ertel, with Brooks, Sky/al, pp. 333-35.
```

This information would not remain a secret for long, however. The crew had forgotten that NASA officials would hear their deliberations; an onboard taping device had recorded their discussion word for word, and when doing a routine review of the conversations ground control soon discovered the cover-up. Epset by the lack of candor displayed by the crew. NASA chief of astronauts Alan B. Shepard sternly wamed them not to repeat their mistake. The crew admitted their eror, and promised better behavior:

Individuals at ground control soon foumd another reason to criticize the crew. After begiming the process of activating Skylab, during which they made a number of mistakes, the astronauts complained about the pace of the activities planned for them. It seemed to some at NASA, however, that the astronauts simply did not want to work as hard as they should. In defense of the crew, it should be noted that none of the astronatuts had any space flight experience, thus making their adjustment to the mission more difficult. In addition, NASA officials had added a number of experiments to the mission in the period after the return of the second Skylab crew, which left little time for Pogue, Carr, and Gibson to leam the new procedures. Finally, the astronats often could not find gear aboard Swab where NASA officials had tod them to expect to tind it. In spite of these reasons, NASA flight plamers continued to regated the thitd crew as not working up to maximum capacity",

Matters came to a head on December 30. The crew initiated a frank discussion with capsule communicator Richard Truly, hoping to make NASA officials aware of their objections to the pace of activities set forth for them. Carr proved espectally critical of the fact that NASA mission plans had allocated virtually no free time for the astronaus directly before and after the sleep periods. Truly attempted to mollify the astronauts by praising their efforts to date, but subtly suggested that NASA felt that the crew could work at a faster pace during the last hatf of the mission. After almost an hour of discussion (punctuated by a 20 -minute break in the communications link) Thuly ended the conversation by telling the crew that he was "very happy with the way you're doing business." Both sides secmed satisfied that they had clarified their respective points of view, and in the days to follow, ground control noted a new sense of responsiveness on the part of the astronatits.

This incident illustrates an inherent tension that man theogh much of the histony of the space program. Begimning with the confontation between the original seven astionnawts and the designers of the Mercury apsule over the inclusion of a window the spacecraft, astronatus had repeatedly disagreed with positions taken by the sciemtific and engineering commmity regading the subject of space flight. To the crew of the third mission, it seemed as though flight plamers felt that every mission could be treated like a computer ready to be programmed. Pogue, Gibson, and Gar had asserted the astronatus view that flexibility had to be buill into a flight plan to provide for the diversity of each human put into outer space. In the wake of their conversation with Truly, the astronauts felt that they had regained their individuality.

Pleased with their now freedom, the astronats threw themselves back into the in work. Gibson in particulat demonstrated almost a compulson to recood a solat flate in its entivety, spending extra time maming the solar observation controls. Ilis diligence was rewarded on Janamy 21, 1974, when he winessed an impressive solar event." Conpled with the observations already done on the comet Kahoutek, the thiod crew could therefore take great pride in the ir contributions to the field of astronomy.

Not much time remained for the thiod erew in space. The asteonatus did a mumber of medical experiments in the davs after January 20 and conducted the ir final televised press conference, but they also devoled an increasing amome of time to preparations for the

[^98]eventual moment of deactivation. They experienced some difficulty in storing in the command module all the things they wanted to take back to Earth, but using ingenuity and a certain amount of force they succeeded in packing their craft. On February 8 the crew boarded the command module, but before disengaging from Skylat they used the thrusters of the Apollo spacecraft to lift the laboratory to a higher orbit. After accomplishing that task, Pogue, Carr, and Gilson headed for earth.

One linal bit of adventure awaited this crew. When Carr attempted to maneuver the command module prion to reentry, he found that neither the pitch nor the yaw controllers worked. Momentarily nonplussed, he nevertheless quickly shifted to another system and resumed the landing sequence. Later, the astronats revealed they had accidentally activated a set of circuit breakers, thus neutralizing the thrusters in question. Carr's rapid response had saved the day. As on the second mission, the Navy used the U.S.S. Nruy Orleans to conduct the recovery operation for the final crew, thus bringing to an end the 171 days, 13 hous, and 12 minutes of space flight comected with the Skylab program.

The Mission in Retrospect

The Febraay 8 splashdown marked the official termination of the skylab program. Scientists would need a great deal of time to fully amalyee all of the data that the three crews had gathered, but enough work in this regated had already been done to allow observers to appraise the value of the project. Of the seven types of experiments the nine astronats had conducted, they surpassed expectations in all except the area of engineering and technology investigations. ${ }^{\text {t }}$ Many scientists, hitherto skeptical of the allocation of financial resources to the Skylab program, spoke in glowing terms of its value. Ieo Goldberg, Director of the Kitt Peak National Observatory, wiced the views of his profession when he asserted that the astronats, "by their rigorous preparation and training and enthusiastic devotion to the scientific goals of the mission, . . . have proven the value of men in space as trte scientific parners in space science research." ${ }^{*}$

Goldberg's observation provides a liting epitaph for Skylab (which would disintegrate upon reentering the Earth's atmosphere in 1979). While the program unquestionably yielded valuable scientific information, its greatest value came from its demonstration of the imponance of the human element in the space program. As John Disher, NASA Director of Advanced Programs in the Office of Space Tramsportation Systems, would later note, Skybe "tumed around many people who thought men in space were a hindance rather than a help."" Echoing this sentime n, Progran Director William Schneider stated that Whlab had shown that, regarding the space program, "the limit is only our resolve, not the ability of men to work, and not our technical knowledge."
ln his statement. Schmeider sucinctly captured the essence of a contral debate reganding the American space program. Many individuals had argued that scientific inguiry in outer space did not depend on a human presence in that realm; in the words of Homer F . Newell in 1958, "all we need is a few thirty-pound satellites in Earth orbits $|t o|$ furnish enough observational data to keep our space scientists busy for decades to cone.": But the majority of the personnel at NASA had from the begiming believed that "the whimate ohjective [was) mamed tavel to and from the other planets," and often

[^99]

Rulph Geiger (laf) and Ralph Muphy cherk out equipment in the wast management and jood managrment rompartments.

focused planning efforts in this direction. ${ }^{*}$ The skylab program, therefore, provided crucial and timely evidence to support the predominant NASA position.

Fittingly, the Collier Trophy Committee decided to present the 1973 trophy of their organization to the director of the Skylab program. Athough the Committee noted the contributions of the over 26,000 individuals who had worked on the program, the members felt that William Schneider should receive the trophy on behalf of the three crews because of his leadership in the extraodinarily difficult venture. When Vice President Gerald Ford presented the award to Schneider on June 4, 1974, it provided an apt climax to an American space project which had proved without question the value of "the human touch" in space endeavors.
52. Howard E. Mc Curds. The Spare Sation Decision: Thopmontal Polition and Techologiad Chuire (Baluinome MD: Johns Hopkins L Enversity l'ress, 1990), p. K.

Chapter 10

LANDSAT and the Rise of Earth Resources Monitoring

by Pamela E. Mack

In 1974, Dr. John E. Clark, representing NASA, and Daniel J. Fink, representing Genemal Electric, received a Collier Trophy for the I andsat program, for "proving in 1974 the value of U.S. space technology in the management of the Earth's resources and enviromment for the benefit of all mankind." The Landsat program had proved its value in the eves of the selection committee in the two years since the launch of the first satellite in 1972, but proving its value to potential users and to the Office of Management and Burlget and to Congress tumed out to be substantially more difficult. Somewhat improved Landsat satellites are still flying in the mid 1990 s, back under government management after a failed effort at commercialization. But the project camoot be deemed a success; the United States maintains neither leadership in technology for civilian earth observation nor a robust operational program. Clearly the Collier Trophy award represented technical success and the hopes of the aerospace commmity for a new, more relevant mission to justify the space program. The lager story, however, lies in why a project which embodied such hopes cane to so little.

Landsat was not a large project by the standards of the program to put human beings in space, but it involved broader concerns for NASA and a large-project management style. Landsat gained public attention, and a Collier Trophy, because it symbolized a wish that the space program would bring more obvious benefits on earth. NASA leaders sought to respond to such concerns from Congress and the general public by playing up the idea that Earth resources satellites could sorve the public good, while at the same time promising quick commercialization." But this commitment lacked stamina; NASA leaders still saw space explotation as the core mission of the agency, and the agency tended to further define that mission as research and development only, not operational data collection or promoting use of the resulting data. Iandsat became a project intended to provide political or bureauctatio capital to NASA and its supporters, and those motivations further complicated the problem of halancing the needs of researchers and of potential operational users.

The project found itself repeatedly strangled in the budget process and by conflicts with the user agencies, even after it had (in the eyes of participants) "succeeded magnificently from a scientific and engineering sense." Most of the scientists and engineers involved at the working level committed themselves wholeheartedly to developing the possibilities for a civilian earthobservation satellite to serve the public good. But funding for the project and approval of subsequent steps was repeatedly caught up in conflicts both between NASA, the Office of Management and Budget, and Congress over funding and between NASA and the agencies that would use the data over the future of the project.
 Amoriation (Wathington, DC: Smithsonian Institution Press, 1993), p. 235.
2. For a passionate analysis of this contadiction ser John $\mathbf{1 1}$. Me Ehoy. "Preface" in Kathleen M.
 Scarecrow Press, 1995).
3. Mid., p, xi.

Disagreements among users made it difficult to design the satellite and resulted in only weak support from users when funding decisions were made.' These factors, plus a lack of strong leadership in the project after its carliest years, left it caught in limbo without sufficient funding to realize the potential it had demonstrated.

Building a Base of Support

In the early years of Landsat, advocates for Earth resources satellites built a complex web of political and bureauctatic support in order to make the project happen. Landsat developed in a period when NASA managers tried out the possibility of justifying the space program on the basis of its practical benefits, instead of simply appealing to the space race as a justification for popular and political support. Weather and communications satellites were already established on a firm footing by the mid-1960s; Landsat formed part of a new wave of interest in applications in the late 1960 s , as space enthusiasts tried to limit post-Apollo cutbacks." The trouble with practical applications, however, was that the benefits they brought inevitably fell within the responsibilities of some other agency or organization, and those agencies had theio own interests (and usually much lower levels of reseach and development finding than NASA).

The use of satellites to observe the Eath for classified reconaissance played a major role in the development of the U.S. space program, but civilian Eath observation satellites got off to a much slower start." (Beologists and geographers working in the classified recommaissance satellite program saw that satellite data had potential value to civilian users, but the managers of the classified program attached great importance to keeping secret not only technological designs but also the capability of satellites. Therefore they not only prohibited civilian use of classified technology but also discouraged the development of a civilian Eawh observation satellite program using unclassified techology. ${ }^{7}$ Howerer, pressure for a civilian program grew in the mid- 1960 as scientists saw pictures of the Farth taken by astronatus with hand-held cameras and as studies of other planees provided examples of the potential of remote sensing. ${ }^{*}$ In 1965 , NASA started exploratory research on remote sensing of Eath resoures with contracts to the U.S. Geological Survey (a branch of the Department of the Interior) and the Amy Corps of Engincers for rescarch using sensors flown in NASA airctaft."

The Department of the Interior, and to a lesser extent the Corps of Fugineers and the Deparment of Agriculture, quickly conduded that civilian Earth resources satellites had the potential to help them perform their assigned missions. However, cach agency hat different requirements and concems about the fiture matagement of a satellite program, and NaSA faced other needs and pressures as well. The Geological Survey wanted fairly fine resolution images that could easily be compated with maps and acrial photographis for studies of geology and matural resoumes (the Corps of Fugineers had similar needs). The Deparment of Agriculture needed spectat accuate: that is, agricultural seiemtists needed detailed information about the color of vegetation in ode to differentiate crops

 finginerimg and hrmote Somimg (1995): 689-720.
7. Mack, bame the Larth, pp. 33-191. For a paticulaty dear sammary of the woke of the melligene agencies writeon be a participant sece Motros, "Preface". p. x.
8. Mack, lowigg the Awht pp 39-12.

 Michigan, Amn Xibor, Michigan.
and detect disease." NASA initially studied possibilities for an elaborate satellite carrying a number of sensors to meet a variety of requirements. However, the Deparment of Interior in particular wanted a relatively simple operational satellite quickly rather than an claborate experimental program."

In 1966, the Department of the Interior pulled off a public relations stunt in an effort to accelerate NASA's plans. The leaders of the U.S. Geological Survey persuaded Secretary of the Interior Stewart I.. Ldall to announce in September 1966 that the Department of the Interior was initiating its own operational satellite program. They proposed a simple satellite carying just one kind of sensor to be launched in 1969.' The Department of the Interior did not have the necessary expertise (or a partneragency with the necessary expertise) to start its own satellite program. ${ }^{13}$ But even though the announcement did not reflect a realistic plan, it worked as a strategy. In the resulting controversy, NASA retained responsibility for experimental Earth resources satellites, but the space agency's leaders found themselves under pressure from the press and Congress to develop a satellite quickly." NASA initiated a project initially called Earth Resources Technology Satellite (ERTS), then changed the name to Landsat in 1975.

Even with this pressure for a quicker and less ambitions experimental program, NASA planners and engineers sought to design a satellite more elaborate than the simple experiment proposed by the Department of the Interior. This decision reflected both the assumption of NASA program managers that their goal was to collect data of the maximum possible scientific sophistication and their interest in balancing the influence of the Department of the Interior by seeking to identify and satisfy the requirements of other users besides Interior. NASA had funded development of a multispectral scanner that could provide data more useful to agricultual scientists than the television-type camera (return beam vidicon) the Department of the Interior wanted. However, scanners had not yet been tested in space, and some engineers doubted that the sensor was ready for flight. The decision to include the scamer on Landsat resulted both fiom pressure from researchers at the Department of Agriculture and from the interest of NASA leaders in inwolving that department more fully in the project. NASA saw that support from the Department of Agriculture could provide a larger constituency for Landsat and could balance Interior's pressure for a quick transition to an operational program controlled by Interior tather than NASA."

[^100]This plan sounded good in theory, but lack of clarity about user needs. Mcanwhile tensions between NASA and the user agencies made it almost impossible to build a base of support for the project. Different pants of the user commmity had different needs, and it was often not clear how satellite data could best serve agency missions. Users tended at first to exped the new technology to directly replace various older technologies. The agencies' own perceptions of their needs changed as they saw what the technology could do for them and as NASA sought to persuade them that data from a compromise satellite would have value to them even if it did not casily fit existing systems. Specific problems with requirements included a Department of the Interior expectation of map-like accuracy that required special correction of the data from cither sensor. The Department of Agriculture, on the other hand, tended to expect the satellite data to directly replace aerial photographs, and therefore wanted fine resolution and frequent coverage of large areas, as well as spectral accuracy. In the fall of 1970 , NASA project scientist William Nordberg described data specifications from the Deparment of Agriculture as "grossly overstated" and those from the Deparment of the Interior as "a bomb shell." "Limited by restrictions on resolution intended to prevent conclusions from being drawn about the capability of classified satellites, NASA had to persuade the users that data that did not meet these unrealistic requirements could still be usefal. ${ }^{1}$ Perhaps if funding had been plentiful project engineers could have designed a system more optimized for different users rather than trying to force compromises before users had time to leam from experience with satellite data. But in a bight funding sittation, such disagreements simply became a justification for further cubbacks, and the project did not have an adequate chance to prove itself.

The Bureat of the Budget (later the Office of Management and Budget) opposed the project both becanse it did not appear that NASA and the users had their act together and for reasons entirely external to Landsat. The Budget Bureau refused approval for Landsat in late 1967, only to be overtumed on appeal, and then in 1968 proposed cancellation of the project (and its replacement with an aircraft program). This carly lack of support probably reflected most strongly opposition to Landsat from those involved in the classified reconnaissance satellite program. It also involved a general tendency for budget-makers to cut other parts of the NASA budget at a time when Apollo costs were high and policy-makers had moved on to other priorities, including the escalating cost of the war in Vietnam. In 1969, the Bureau of the Budget cut the Landsat budget from $\$ 41.5$ to $\$ 10$ million dollars, and climinated funding for the Data Center proposed by the Department of the Interior, though NASA funding and minimal funds for the Data Center were restored on appeal. ${ }^{\text {N }}$ By this point, cost-bencfit analysis and lack of uniform enthusiasm from the users had become a key issue. The Burcau of the Budget required a whole series of cost-benefit studies, in which NASA had to justify Landsat not on the gromeds of new benefits that would result but on the gromads of how the satellite project would save the government money by replacing old wats of doing things."

[^101]Though NASA had to maintain the appeatance of a united front within the Executive Branch, the agency sought to counter Bureat of the Budget opposition by trying to get stronger suppont from the user agencies and by playing to congressional interest in practical applications of the space program. Joseph E. Karth, chair of the House Subcommittee on Space Science and Applications, gave particularly strong support; he wanted to see the project move ahead and complained about the repeated cost-benefir studies that the Budget Burean required for Landsat. He summed up his criticism of Executive Branch opposition to Landsat in 1969: "In looking at the history of ERS [Earth Resources Surveys), I cone w the inescapable conclusion that there is a preponderance of evidence of footdagging, setting up of strawmen, and the assignment of unique and unusual and, I might sav, ridiculous vardsticks, and so on and so forth. ${ }^{* 2}$ In 1969. Congress actually restored funding to the Federal budget for the Landsat data processing system that had been requested by the Department of the Interion; but opposed by the Bureau of the Budget. and therefore not included in the budget that the President sent to Congress. However, the Bureau of the Budget refused to release the appropriated funds."

While NASA did win enough finding to build and launch Landsat, the unending battles weakened the project. Even in 1971, just a year before the launch of the first satellite, the Budget Bureau proposed cancellation of the backup satellite." Iack of funding and political support dramatically reduced NASA leaders' ability to respond to user needs, particularly as project managers sought increasingly to seme both experimental and operational needs. In addition, under pressure from the Bureat of the Budget, NASA had agreed to a conceptualization very different from weather stellites: "the program was pernanently molded as a govemment R\&D) program that, once feasibility was demonstrated, would give way to a new commercial venture.".

Technology Development

Landsat showed both the strengths and the weakness of NASA's process for managing technological imowation. The project lacked strong leadership, but by the late 1960) NASA had a fairly standatd pattem for research and development of satellite technology, and the Landsat satellite system fit into that pattern with few surprises. Managemem problems arose mostly in cooperation with the user agencies, an area in which NASA managers had less expericnce. The Landsat system involved a new combination of existing technologies; not significant technological imowation, though there were challenges in the data processing system and in development of applications. With more attempe to advance the state of the ant, Landsat might have represented the kind of incremental development that had been successful at the NACA. However, an incremental approach did not work as well without a comminment to a long-term program and funding for continued improvements.

Landsat did mot have consistent leadership or a strong institutional base even inside NASA. The first head of the Earth Resources Program Office, Peter Badgley, had been an earlv advocate for an Eath resources satellite, but he left NASA in 1968 and his successon left in early 1970. $=-1$ In 1967. NASA leaders assigned Landsat development to the Goddard Space Flight Center, a Center with more expertise in space science than space applications. The team for the project ame in significant part from a group that was finishing tp)
20. loweph F. Kanth, "Earth Resomes Simves-An Outhok on the Futme, presenter at an IEEF meer-

 Washinglori, D. (.
?1. Mack, Vowning the Eath, pp. Kt.
(Gommitue on Eanth Studies. Eath Obernathom fom Spare, p. 113.
23. MrElios, "Preface"p. xi.
-1. Mack. lmang thr farth, p. 95
work on the Orbiting Geophysial Observatory satellite project. A reorganization of NASA management in 1972 introduced another level of complexity by establishing an Eath Resources Survey Program Office at the Johnson Space Center (abolished in 1977). NASA Headquarters assigned some of its coordination and evaluation duties to this office, which also strengthened the role of the Johnson Space Genter in applications development and techoology transfer for Landsat. ${ }^{\text {. }}$

A series of interagency commituces provided coordination between NASA and the user agencies, with some success on the working level but limited support from higher levels. In 1968, an Earth Resouces Survey Program Review Committec was formed to make policy for Landsat but it met only every few months and tended to provide mostly approval of decisions already mate by NASA.s. This committee did play a major role in the batte over Landsat specifications discussed above, but not in as much detail as the users would have liked. A cartographer at the Department of the Interior complaned: "Specifications which vitally effect [sic] the users are being made without the users being properly informed. It is believed that this situation, if allowed to continue, will result in a satellite being flown the data from which cannot properly be utilized by the users. ${ }^{2-7}$ That prediction was too dire but certainly the users did not get everything they thought they needed. In 1972, the Program Review Committee was replaced with an Interagency Coordinating Committee: Earth Resources Survey Program, but NASA kept contol of the new committee.

Landsat managers and engineers found that their task was not to develop new technology for Iandsat, but only to decide between alternative approaches for the use of existing technology. When the Goddard group initiated a concept study for Landsat in 1967, they received unsolicited proposals from a number of aerospace companies for Earth resources satellites using technology that those companies hat already developed (both for classified programs and for planetary probes). The (oddand group decided on a relatively small satellite using existing satellite technology; only the sensors required significant development and even they represented modifications of existing designs. ${ }^{2 / 4}$ NASA selected General Electric as the satellite's contractor, with a plan to use the satellite bus (structure and common systems, such as power supply) already developed for the Nimbus experimental weather satellite. The program followed a standard NASA management system, called Phased Project Planning, and suffered only minor stags in coordinating contractors.

The data processing system provided more of a challenge, but again the research and development took place almost entirely in industry. The Burean of the Budged wanted to keep the Landsat experiment as small as possible, and particularly did not want to see a de facto operational satellite created under the cover of an experiment. Therefore, the Budget Bureau repeatedly cut funding for the data distribution system to be provided by the Deparment of the Interior, and restricted the data processing system developed by NASA to the minimm size necessary to meet the requirements of a small number of scientidic investigations. ${ }^{2=}$ Landsat data processing represented a new combination of chatlenges for NASA. The plane tary program had provided agency engineers with experience with high resolution image data, which involved very large amomes of data for each image, but with Landsat that large data rate would be sustained for years (instead of for a

[^102]few weeks at a time, as had been the case with planetary probes) and the data was much more useful if it was avalable quickly. In addition, project managers had to make decisions about the data processing system at a time when a new approach, digital image processing, was clearly the wave of the future but had not yet been proven for large-scale use. Given tight budgets and requirements that Landsat be designed only as a shorterm experiment, Landsat managers decided to stick to the older techmology (analog processing). The resulting data processing system was outdated before it was built and inadequate to meet user expectations. Planning for a major upgrade to a digital system began as early as a year after the launch of the first satellite in 1972, though lack of funding delayed the installation of an improved system until 1980. ${ }^{3 n}$ In this case project leaders clearly chose (or were forced to chose) to use wellestablished technology rather than undertake research and development to meet a new challenge.

NASA took some role in the development of applications for Landsat data, but in most cases it simply provided finding to scientists and user agencies. NASA's largest in-house project was an effort to develop agricultual uses for landsat data, conducted at the Johnson Space Center in partnership with the Department of Agriculture and the National Oceanic and Atmospheric Administation from 1974 to 1978. NASA engineers (some of whom had previously worked on Apollo) took a large-scale, brute force approach, setting up a computer system to measure the area planted in vatious crops and monitor and predict from weather data how well they were growing. The Department of Agriculture did not put the resulting system into use, in fact the Foreign Agricultural Service instead developed its own system using a different approach. Instead of calculating areas planted each year, the Foreign Agricultual Service system compared Landsat images from year to year, and analyzed only at the area where it detected differences. "Overall, NASA had some successes in developing applications for Landsat data, but potential users were often reluctant to consider applications developed by NASA because they assumed that any technology developed by the space agency would be too expensive and too sophisticated for everyday, practical use by resource managers. ${ }^{2}$

For a project like Landsat, NASA did almost none of the kind of original research and development that had characterized the NACA. The job of the space agency had become funding and managing research and development by industry, and in the case of a project with tight funding and important public relations implications like landsat the space agency prefered to minimize technological risk. Landsat did not represent research that could only be done by the Federal government, and it only marginally fit the definition of a project too risky or too long-term for private investment. Landsat was a govermment cnterprise because NASA leaders thought it would benelit the space program to show more practical results, and political issues such as the proper use of data collected over other comeries made the govemment nervous of allowing private enterprise to get into the business in the eatly years." An aternate model-that the govemment might provide Eath resources satellite data as a public good like weather satellite data-never gained official acceptance.

[^103]

 photo no. 72-II-1065).

Success and Failure

Landsat data proved its value to many users after the launch of the first satellite on July 23, 1972. However, success did not end the political travails of the project. In particular two problems resulted in continuing uncertainties about the future of the project. First, actual operational use of the data did not live up to the predictions that had been made by project supporters when they had campaigned for support of the project in the years before launch. Second, further developmem of satellites for civilian Earth observation became stalled in a fight over how an operational program should be conducted. In both cases difficulties arose from conlicting interests between NASA and the users. These were complicated by tensions about the proper relationship between research and practical applications and the proper role of the government as a technology moved along that spectum.

In technical temns the project proved almost completely successful. The satellite functioned as planned and delivered the promised data, which provided information of value to scientists studying agriculture, geology, land use, and in many other fields. The sensor that had secmed more of a risk during development, the Multispectral Scamer, proved particularly valuable because the data from different spectral bands (in effect different colors) could be compared accurately. Satellite data proved most dramatically beneficial to developing comntrics; in many cases Landsat images provided the first adequate maps of remote regions." Scientists found much useful information, however, even for well mapped areas. Landsat data could indeed provide information on everything from urban growth to ice cover in shipping lanes to the health of vegetation. The awarding of the Collier Trophy in 1974, wo years after launch, reflected at least in part a large number of successful scientific experiments demonstrating that useful infomation of many different types could be extracted from Landsat data. (Given the continuing lack of political support for Landsat its cominuing success was hardly assured in 1974, but the project had met its initial goals.

In 1974, supporters of Landsat would probably have recognized that the project was not ready for commercialization and hoped for a relatively quick transition to a govern-ment-controlled operational remote sensing system on the model of the weather satedite swstem, housed cither in NASA or in the Department of the Interior. They would have expected an operational system to involve improvements in the satellites and the data processing sssem (particulaty to deliver data more quickly after the satellite collected it), more user involvemen, and, most important, a commitment to data continuty (that is, to launching another satellite before or quickly after the operating satedite failed). Initially, opponents of that vision atgued that the satellite, while successful in the narrow sense, had not proved useful enough to establish the need for an operational system.

Indeed, operational use of Landsat data grew much more slowly than its proponents had predicted." Partly this resulted from owerly optimistic predictions. A 1985 study summed up landsat's problem: "Large but unverifable estimates of benedits from space remote sensing were used to 'sell' the program, within NASA and within the administration.

[^104]

Unfortumately, some of the carly flamboyant and unealizable projections of benefits later came back to ham the program." In addition, selling a new system for domestic operational needs proved difficult because of user resistance to changing existing swstems. Potential users often found only marginal benefits from replacing existing data sources with data from Landsat, and the old ways of doing things often had strong reinforcement from constituencies. "More benefis came from using the new data in new ways, and NASA prowided some funding and a lot of free data wo researehers who studied more inmona-
37. Commite on Pratioal Applications of Remote Sensing from Space, Space Applations Berand.
 Academy Press, 1985).
38. Mack, Vimeme the Larth, pe. 141-15.151-5.5. For example, the Department of Agricultare realized it
 conduct agriculamal sumers.

live applications that made betler use of the real advantages of Landsat data. Two NASA scientists summed up their view of the results in 1985: "The examples and the capability discussed here clearly illustrate the overall success of the program. Landsat data have resulted in totally new methodologies for resource inventory and covirommental assessment for a worldwide community of users and as such have served an important role in bringing resource managers into the computer age." However, the Burean of the Budget had insisted that Landsat prove itself by replacing existing systems, and NASA leaders did not fully understand the difficulty of persuading users to adope new tedhniques that supplanted. or greatly modified, existing systems."
39. P. K. (omer and D. W. Moomeyhan, "Practical Applications of Landsa Data," In Abraham Shmapt, ed.,
 Aeronatics vol. 97 (New York, NY: American Institute of Aemonatics and Astromatics, 1985), p. 391
to. Mack, Vizuing the Liarth, pp. 193-99, 159-70. NASA struggled with only limited success wo develop
 Evaluation of the Ihismination System (New York, NY: Praeger Publishers, 1971), amb (iratille W. Hough, Technolog Inffusion: Ferleral Programs and Prowedures (Mt. Airy, MD): Iombard Books. 1975).

 (NASA fohoto mo. 72-/1-1(1-44).

The continuing definition of the project as experimental also provided a major barrier to effective operational use. The Bureau of the Budget defined the project as strictly experimental: the Bureau "placed stringent limits on the throughout capability of the ground data processing system" and refused to fund a system that could process data quickly-"as a result, any exploratory use of Landsat data that required rapid access to processed data was precluded at the outset."" The Landsat data processing system could not meet all of the demands of operational use, and in any case potential users hesitated to invest in expensive new systems to use Landsat data while the project was still experimental and data continuity not guaranteed. In um, the Office of Management and Budget would not approve the transformation of Landsat into an operational system until widespread use proved its value. ${ }^{* 2}$ Without any separation between an experimental and an operational program, operational needs squeezed out imovation. ${ }^{3}$ As delays in an

[^105]operational decision mounted, Landsat became increasingly out of date; in 1986, France launched an Earth resources satellite named SPOT (Systeme Probatoire d'Observation de la Terre) carrying more technologically-advanced sensors providing finer resolution.

The creation of an operational Earth resources satellite program in the United States became snagged not only in questions about effective use of the system but also in political interests, in particular a new emphasis on privatization. President Jimmy Carter made a priority of reducing the size of the Federal government, and his staff identified Earth resources satellites as one of the best candidates for tansfer of a government function to private industry. Landsat appeared to be a perfect case because commercial success had been one of the promises of the carly cost-benefit sudies: "the original approval for Landsat was predicated on private markets growing to the point of having the capability to fully fund all system cost." " In October 1978, President Carter officially requested that NASA and the Department of Commerce investigate ways to encourage private industry participation in civilian remote sensing (including Landsat, weather satellites, and ocean observation satellites). "However, the disappointing demand for data gave private industry doubts about the profitability of Landsat. It quickly became clear that privatizing the project would not be an easy task."

44. Committer (an Earth Studies, Earth Ohstrations from Sfatio p. 110.
15. Also in October, Semator Harisom Shmidt intmoduced a bill calling for the ereation of an Earth Resonces Intomation Satellite Corporation modeled on Comsat. No ation was taken on the bill Science Policy Rescath Divison, Congressional Research Scrvice, "United States Givilian Space Programs. Volume II: Applications Satellites," Prepared for the Subcommitter on Space Science and Applications of the Committee on Stance and Techoologe, U'.S. House of Representatives, May 1983, pp. 249-50.
46. "Prinate Sector Involvement in Civil Space Remote Sensing," prepared by an Interagency lask Force consisting of NASA. Dept. of Commerce/NOAA, Depl. of the Interior, Depi. of Agriculture, Dept. of Defense. Emvirommental Protection Agency, L.S. Army (omps of Fingineers, and the Deph. of State, Dratt, fune 4, 1979.

Meanwhile, Landsat was stuck in place until the President made a decision on an operational system. NASA launched additional satellites that tested relatively minor improvements in technology and provided the data users needed, but the space agency had authorization neither for an ambitious reseach program to develop new gencrations of sensors nor for an operational program that would meet the needs of users for an assured supply of data. In addition, the wide range of users complicated the decision on an operational system: other user agencies did not want the Department of the Interior to take responsibility for an operational system because they feared that Interior would not serve their interests. ${ }^{7}$ Faced with these conshraints, Carter chose a short-term solution in November 1979. He gave the National Oceanic and Amospheric Administration (NOAA) temporary responsibility for managing an operational L andsat system and asked it and its parent agency, the Deparment of Commerce, lo study ways to encourage industry participation with the long-1erm goal of eventual operation by the private sector: ${ }^{\text {an }}$

President Reagan attached an even higher value to privatization than Carter, and in March 1983 he amounced a decision to transfer Landsat, weather satellites, and future ocean observation satellites to private industry." Congress strongly rejected the idea of privatizing weather satellites, but the Department of Commerce proceeded with a request for proposals from private industry to take over Landsat." Congress passed a bill setting the terms for transfer, and the Earth Observation Satellite Company (a joint venture of Hughes and R(A) won the competition and took over the program. ${ }^{5}$ The new company started out in a weak position; the Federal govemment provided only a small subsidy for the transition period and no guaranteed Federal data purhases, yet Congress continued oversight by holding hearings (in some cases leading to amendments to the original law) about the future of Landsat and the concerns of govermment agencies that used landsat data. ${ }^{\text {F }}$ By 1985, one Landsat supporter had concluded that "There seems to be litule doubt that the present market camot sustain the operating costs of a land observing system, to say nothing of the capital costs.";
47. Mack. liewing the Earth pp. 201-07.
48. "Enited States (ivilian Space Programs. Volume II: Applications Satellites," pp. 238-42. For issues relating to the transition to an operatomal sytem se Richard D. Lamm to (erorge S. Benton, NOAA, Apil 30, 1980, with atached "Recommendatons of the National Govemor's Association, National Conference of State Legislatures. Intergovernmental Science, Engineering and Terhoology Advisory Panel, National Rewouces and Finvionment Task Force, for the Final Transition Plan for the National Gail Operating Remote Sensing Program (first draft April
 of the Earth fom Spure: A /hryrom in (Vrisis (Washington, D(: National Acalemy Press, 1985).
49. "Statement by Difohn V. Byme, Administrator, National Ocemic and Amospheric Administation, U.S. Department of Commerce," March 8,1983 . The presumption was that one company might take om all thee prograns, reflecting a proposal from Comsat to take over weather and carth resources satellites together beatuse weather satellites were expected to be more profitable in the short term. Commmications Sate elite Corporation News
 detailed survey of the debate oner commercialifation see Fisenbeis, Imationg Genmement momation, ch. I.
 Meteomogical Satellites," Comgrownal Recam, November 14, 1983, if 9812-9kew. Sce Hill p. bo. Depe of Commere. "Request for Propowats for Tansfer of the Linited Sates Land Remote Sensing Progran to the Priate Sertor;"Jamary 3, 108.
51. Public Law 9x-365, July 17, 1984.
52. Wisenbeis, Privatiame tinemment Suformation, pp. 49-52.
53. John H. Meklroy. "Eathview-Remote Sensing of the Farth from Space," in Schath, ed., Momithring Earth' Germ, Land, and Ammophore, p. 39. McFlroy had been involved in the project in a mumber of different positions, but at that point was working at the National Oceanic and Atmosplecric Administration. In the parat graphs following the quote he proposes an economic justitication for a federally funded landsat program to serve the public geod.

The attempt at privatization failed in 1992 . Because the corpotate owner had never had signilicant new resources to invest in the system, little had been accomplished during the pritatization period. The Land Remote Sensing Policy Act of 1992 ended "the experiment' which had so negatively affected the research use of remote sensing data acquired from the Landsat satellites." The new law repealed the commercialization act of 1984 and transfered responsibility for Landsat from the Department of Commerce to NASA and the Department of Defense, which had found the broad coverage of Landsat data useful during Desert Stom." After disagreements over funding the Department of Defense withdrew in 1994, and NASA resumed sole responsibility for Landsat, with plans to launch one more satellite. Failure of Landsat 6 in October 1993 , frequent changes in NASA's overall remote sensing plans, and increasing competition from other countries and possibly from private industry, left the fiture of the progrann uncertain. ${ }^{\circ 7}$.

While Landsat commercialization had failed, interest in commercial remote sensing contimued to grow. " Private industry could almost certainly sustain an Earth resources satellite that provided data similar to landsat (though probably lacking some of the features scientists wat) if the govermment would geananter a significant purchase of data cach year, or if the owner could offer commercial users exclusive use of certain data for a higher price. However, such a satellite would most likely not provide data of as much seientific value as that provided by Landsat. A private company would probably only collect data as ordered, rather than providing comprehensive coverage to build up a historical archive of data for later compatison, and would probably not invest as much in the precision of the sensors, since such precision is needed for only a few uses, mostly scientific.

The proper roles of the government and private industry became less and less clear as technology advanced. Landsat became less danntingly "big technology," new innovations in the lo90s made it possible to design a much smaller and less expensive satellite with similar capabilities. Such a satellite was no longer too expensive for private companies to undertakewithou Federal subsidy.

Landsat was a relatively smatl project by NASA standards, but because of its practical goals it shows particulaty cleaty the problems of building a constituency for big science and technology projects and the complexities involved in determining the proper role of the govermment in the spectrum between research and practical applications. While the NACA had successfully served industry needs by providing background rescarch rather than building whole new systems, NASA leaders found big projects with practical benefits much more problematic than projects oriented towards scientific research or exploration. NASA could justify a certain amount of basic science as worth doing for its own sake, but once a project was justified on the basis of its practical benefits then why was the govermment doing it rather than leaving it to private industry who presumably could make a profit by selling such beneficial data: At least for NASA, the public good has become increasingly difficult to define and use as a justification. One long-time participant in the program wrote in frustration: "One of the great conundrums of the Federal programs of the space age is that the more likely something is to be useful the more difficult it will be to sustain it.":

[^106]
Chapter 11

Voyager: The Grand Tour of Big Science

by Andrew J. Butrica

Of all the NASA missions, none has visited as many planets, rings, and satellites, nor has provided as many fresh insights into the outer planets, as Voyager, which was launched in 1977. On 19 May 1981, the National Aeronatic Association awarded its Collier Trophy to the "Voyager Mission Team, represented by its chief scientist Dr. Edward C. Stone, for the spectacular flyby of Saturn and the return of basic new knowledge of the solar system."' The awarding of the Collier Trophy was a fitting tribute to the science carried out by the Voyager spacecraft, which also received twice, in 1980 and 1981 , respectively, the Dr. Robert H. Goddard Memorial Trophy, an aerospace industry prize awarded anmally since 1958 by the National Space Club to recognize achievement in astronautics, for the Voyager encounters with Jupiter and Saturn."

Neither the Goddard nor the Collier Trophy recognized completely the science accomplished by Voyager, for after flying by Uranus (1986) and Neptune (1989), it left the solar system to explore interstellar space intil around 2020, when the spacecraft will lack sufficient power to operate the scientific instruments on board and to return data to Earth. By then, the two Voyager spacecratt will have operated longer, and returned data from greater distances, than any previous probe.

Voyager is planetary exploration on a grand scate. First conceived as a "Grand Tour" of the solar system from Jupiter to Pluto, then scaled back to a more modest mission called Mariner Jupiter-Saturn until its incarnation on the eve of launch as Voyager, the mission has been, and will remain well into the future, NASA's biggest planetary expedition. The two Voyagers have explored more plancts (four), have discovered more moons (29), and have returned more photographic images, than any other space flight." The original price tag of nearly a billion dollars made it the secomd most expensive planetary voyage, exceeded only by Viking, which landed on Mars in 1976.' Each Voyager spaceraft weighed more than any Survevor or Ranger sent to the Moon and more than any Mariner or Pioneer probe (except for Pioneer Venus), though less than the combined weight of the Viking lander and orbiter:"

Its scientific, budgetary, and techological immensity makes Voyager archetypical big science. Born of what President Dwight D. Fisenhower called the military-industrial complex, and what historian Stant Leslie more recently has called the military-industrial-

[^107]

 Norember lowo p.E151 photo wo. s(o-t-360).
atademic complex, big science quickly came to chatacterize the civilian enterprise to explone space, that is, what one might call the NASA-industrial-academic complex. Since its creation in 1958, the National Aeronatutics and Space Administration has shaped American science to an extaomedinary degree, namely by providing the financial and instithtional aegis for the tansformation of American planetary astronomy into big science, yet NASAS primary objective was (and whose budgetary bulk paid for) the designing, buikling, and launching of vessels for the explotation of the solar system.

Athough the Voyager mission is inescapably an example of NASA big science, the admal secentific experiments were carred out by scientists employed by NASA Field Centers or by individual scientists who more appopriately fit the categery of little science. The latter Voyager acientists worked individually or in small collaborative groups, often with graduate assistants, in university laboratorics with relatively small budgets and limited laboratory equipment. In the ase of Vovager, the management of decision making and the orgamization of seientists, just as much as the creation and uilization of monumental technology and mammoth techoological networks. delineated big seience.

Planctary astronomy has had a long existence as simulaneonsly both linte seience (astronomers working individuatly or in small groups) and big science (lange expensive telescopes and obseratories) that dates back to the sixteenth-century istand observatory of Tyche Brabe. The monler, sophistication, and expense of instrments have escalated over

the centuries, particularly in the past 100 years. The interplanetary spacectafi has become the new observatory, carrying scientific instruments on tajectories independent of the Earth's course through space. Planetary astronomy's very dependence on instrument technology necessarily and incsapably has driven it in the direction of big science.

The Voyager mission, and NASA planetary missions in general, illustrate the amphibious life of planetary astronomy as boh little science and big science. The Voyager project transformed geographically-dispersed individual scientists drawn from a spectrum of scientifie disciplines and subdisciplines into members of a centralized, multidisciplinary big science team. As each Voyager spacectaft approached one of its target planets, the members of the mission's scientific teans arrived in Pasadena, the home of the Jet Propulsion Laboratory, to take up residence for the period of closest approach. The mission provided those scientists a set of instruments and a spacecrafi observatory. Their role wats not limited to using the spacecraft instruments, however; hose scientists also played a critical role in shaping the mission even before it was funded principally through the Space Science Boand and its summer studies. Conflict between the scientific community and the NASA Field Centers, in particular, served as the catalyst that brought about the demise of Voyager's predecessor, Gand Tour: This chapter examines the roke of scientists in the shaping of Voyage before launch and their transfomation into a big science project team though the ir participation in the Voyager mission, then considers the critical role of techoology in the conduct and success of that mission's science, as well as the relationship between big science and little science and the role of techoology in that relationship.

Voyager can be said to have begun in 1965 as Gand Tour, an extensive, if not grandiose, planetary mission planned in the midst of shrinking NASA and Federal budgets, at a time when NASA sought to define its mission in the post-Apollo era. The Apollo lunar program in 1905 was reaching its funding peak: NASA's ammal overall budget declined from $\$ 5.2$ billion in 1965 to slighty over $\$ 3$ billion in 1972, in response to social and political pressure on the Federal budget stemming langely from the Great Sociely programs and the Vietnam Wan, as well as the conservative liscal policy of the Nixon administation.

In the smmer of 1965, in order to define post-Apollo NASA missions, the National Academy of Sciences' Space Science Board held a summer study of scientists at Weods Hole, Massachusetts. The scientists urged NASA on shift interest from the Moon w the plancts, giving primary emphasis to Mars and Venns, more so than to the onter planets. As for the outer planets, the summer study recommended wo directions: either recomatissance flyby missions to each of the outer planets or an intensive study of Jupiter using obbiters and atmospheric entry probes." These two exploration strategies dominated discussions of outer plane exploraton over the following years. The 196.5 Woods Itoke summer study thas demonstated that the congeries of scientists who made up the planetany scientific community already had ideas about how NASA ought to set about exploring the outer planets.

Most members of the planetary science commmity prefered smaller, tested spacectati flying shon missions owe lange, expensive, complex and lengthy projects. They feared that the govermment might cancel their smaller projects in tintes of tight budgets in favor of a few expensive high-profile missions. Moreower, with small inexpensive spacectafi launched an rela-

 in real dollats therefore, was much more dramatio

 for sembing as its watchergy.

tively short intervals, scientists could more easily follow up on new discoveries than they could with one large complicated spacecraft that took many years of preparation. Major missions to a large degree tended to solidify research into a specific line of investigation for a long time. ${ }^{\text {." }}$

Into the gelling consensus that emerged from the Woods Hole study came the idea for Grand Tour. The Grand Tour would take advantage of a once-very-175-year planetary alignment to send several spacecraft to all five of the outer planets, from Jupiter to Pluto. Launch windows were available relatively soon, between 1976 and $1980 .{ }^{\prime \prime}$ Despite its subsequent reputation as an exorbitant expenditure of public finds, a pair of Grand Tour spacecraft actually would have been far more economical than the several individual probes to the outer plancts proposed by scientists at Woods Hole in 1965. Grand Tour could reduce costs further by surveying the outer planets in less time-in eight to thirteen years, depending on the trajectory, compared to thirty years for a direct flight to Neptune alone-by employing a maneuver called gravity assist, ${ }^{12}$ in which the spacecraft exploited a planct's gravitational field to increase its velocity and alter its trajectory, thereby reducing both launch power requirements and flight time." Grand Tour thus was intrinsically a moneysaving concept.

Appearing to save money was critical to selling a large-scale project, even during the days of big NASA budgets, as illustrated by the recollection of Donald P. Hearth, NASA Planetary Programs Office director, when he learned about Grand Tour for the first time: ${ }^{11}$
Su've got to member selling a wow start is a bitch. Eiven then-it's rem woms today,
but menn then. It's almost as hard to sell a humdred million dollar projert as it is a bil-
lion dollar project. And a hell of a lot mow wotk to sell boo $\$ 100$-million projerts than
one $\$ 200$-milliom projed.

Before NASA Headquarters considered Grand Tour, though, the Jet Propulsion Laboratory ${ }^{\text {li }}$ started promoting it, begiming with a December 1966 article penned by
 (980). pp. 405-407

12. The ongins of the gravity assist manewer are losi in the many and conflicting attempts to determine those origins.
 Flight lime to the Outer Solat System," pp. 12-23 in JPl, Sfate Program, Summery No. $37-35$, Whame IV, fon the bemad lugust 1. 1965 to Sytomber 30, 1965 (Pasadena, CA: JPL, October 31, 196.5): Gaty A. Flandro, "Fast Recombaissance Missions to the Outer Solar System Ltiliang Energy Derived from the (Eravitational Field
 of Ballistir Imerylametary Thaferfories muder the Influence of Multiple Planflary Abractions. Technical Rejont No. $32-464$

 December 15, 1965).

 mpublished manuscriph. NASA Ilistorical Reference Collection, pp. 6-7.
15. JPL was unigue among NASA Fiefd Centers. It existed long before the creation of NASA in lats,
 et Eestarch. A Presidential order of December 1958 tansferred JPI. Io NASA, but developing an effective relat tionship between NASA and]PI took time. The labomatory groumds, buildings, and equipment belonged to the Government, while the haboratory persomel originally came from Caltech. Durimg the 1960 NASA mamagement trequenty debated the question of the NASA-JPL relationship: Should JPI be regarded as another NASA Field Center (an insider) or treated as a contractor (an outsider)? JPL was proud of its academic comection, despite the lemous and often disregarded nature of that comection, and Cattech accorded the laboratory a good measure of independence to plan and execute its own research program. Clayton R. Koppes, JPI, awd the
 Pp, ix, 4-5, 10-17, 20, 38, 45 amb 65; Newell, Bromil the Atmosphere, pp 258-63.

This reconstruction of part of the northern hemisphere of Ganymede was made from pirtures taken by Vowager at a mange of 313,0\%O kilometers (194,001 miles). The sene is approximately 1.30% kilometers (SO6 miles across. It shous pate of a dark, densely cratered hork which is bound on the south ty lighter and less coatered, grouted torain. The dark blocks are heliaved to be the oldest parts of Canymede's surfare. Namemas craters are wable, many with rentral peaks. The lange bright cirular fer-

 (NASA photo no. 7ati-393).

Homer Joe Stewart, head of JPL's advanced mission planning. In 1967, JPL used the project as a lure in its employe recruitment literature." In short, although other NASA Field Conters competed, especially the Ames Research Center, JPL, put forth a tremendous effort to make Grand Tour a JPL project.

The NASA Office of Space Science and Applications faced the task of establishing priorities among the various proposed missions to the outer planets. The agency called on its own scientific community to formulate outer planet exploration approaches and created the Outer Plancts Working Group in 1969. Its creation was part of a larger agency reorganization initiated by IIomer Newell, NASA associate administrator, in order tofocus

 pp. 5and $31-32$ copy at NASA Historical Reference Collection.
on the development of long-ange plans, as opposed to the emphasis in preceding years on the budget year or on neartem plans. The reorganization resulted in the creation of twelve planning panels and six special study groups covering the gamut of NASA activities, with a Planning Steering Group chaired and coordinated by Newell himself.?

The Outer Planets Working Group consisted of two representatives (a scientist and an advanced mission planner) from each of the NASA Field Centers interested in Grand Tour and other outer planet missions (JPL, Ames, Goddard, and Marshall) and from the Illinois Institute of Technology Research Institute's Astro Sciences Center, a NASA think tank of sonts which had initiated a fupiter mission study in the fall of 1968 . The Working Group thus limited the decision-making process to NASA Field Centers that were vying to design spacecraft; the external scientific community was not part of that process.

Rather than favoring a single Grand Tour to the outer planets, the Working Group condorsed the concept of multiplanet flyby missions, preferably two three-planet voyages (Jupiter-Saturn-Pluto in 1977 and Jupiter-Uramus-Neptune in 1979), on the grounds that these would reduce the mission time from thitteen or more years to only seven and a half. ${ }^{1 x}$ From June 1969, officials in the NASA Planctary Programs Office began to associate the phase "Grand Tour" primatily with a pair of three-planet missions, rather than the original single tour concept."

The Outer Plane Working Group also recommended that: "A new Marinetelass outer planets spacecraft appears adeguate for accomplishing the more urgent scientific objectives." Although NASA ultimately followed that recommendation by building Mariner Jupiter-Saturn, the space agency did not heed the advice until Grand Tour's demise. One of the chief activities of the NASA Field Centers was the design and construction of spacecraft. Not surprisingly, then, the Working Groups advice also called for the designing and building of a large number of spacectaft.

NASA next put the question of outer planet exploration to the iwenty-three scientists of the Space Science Board summer study that met in June 1969. Those scientists recommended a specific schedule of five outer planet missions: one to Jupiter, one to Jupiter and the Sm, one to Jupiter and Lrames, and the wo Grand Tour missions outlined by the Outer Planets Working Group (Jupiter-Satum-Pluto in 1977 and Jupiter-Uranus-Neptune in 1979). The recommendations artfully combined Jupiter-intensive exploration and sepadate missions to the transjovian planets, that is, what the scientific community originally set out at Woods Hole in 1965, with the Gand Tour motion issung from NASA's Jet Propulsion I aboratory. NASA headquarters planetary programs oflicials interpreted the findings of the 1969 summer studies as support from the scientific community for Grand Tour.:" NASA now intended to request Grand Tour funding for fiscal 1971.

Although the opinions of scientists and NASA Field Center experts had played the greatest wole in shaping outer planet exploration up to this point, a new, and ultimately mote powerful, player took the stage: the recenty elected Nixon administraton. The Burean of Budget under Nixon consistently reduced NASA's budget allocation. No longer
17. Arthur I.. I evinc, Thr Fumar of the (:s, Spar Program (New York, N: Patare Publinhers, 1975). pp).

 Mistorical Refornce collection.

 Historical Referonce (©ollection.

was space exploration a tool for competing with the Soviet Union. Nixon perceived the Apollo program in partisan terms, as a Kennedy program. Thus, for example, in December 1969, the Nixon administration quickly moned to shut down the only NASA laboratory ever closed, the Electronics Research Center in Cambridge, Massachusetts. which Nixon was said to have perceived as a Kemedy pork project.? ${ }^{\text {? }}$

The Nixon budget cuts hit NASAS fiscal 1971 budget, in which the space agency requested funding for two three-planet "mini" Grand Tours scheduled for launch in 1977 and 1979. At the same time, NASA faced the cost overruns of the Viking orbiter and lander, whose dramatically escalating overall cost was earning Viking the itle of NASA's most costly project after Apollo (rising from $\$ 364.1$ million in March to $\$ 606$ million in August 1969). The Nixon administration cut NASA's budget, which translated into a loss of $\$ 75$ million to the $\$ 413.9$ million budget for NASA's Office of Space Science and Applications, the budget portion that fed Grand Tour. The "pain" of NASA's fiscal 1971 budget was not confined to Grand Tour, though, and included suspending production of Saturn V launch vehicles, stretching out Apollo lunar missions to six-month intervals, and delaying the launch of Viking from 1973 to 1975.," This first postponement of Crand Tour thus did not
 Hawthome. New York, Septomber 20, 1993. For the creaton and demise of the NASA FRC, see Ken Herhlew,
 Gowernmen Printing (Office, 1980), pp. 219-31.
23. Attachonent. Acting Associate Administrator for Arvanced Reseatch and Fechoology to Asoctiate Administater for Space Science and Applications, Nowember 17, I!日69, and "Office of Spare Science and
 Collection; Rubashkin, "Who Killed fand Tour?," p. 16; Watf, "Ihe Struggle," p. 48; Waft, "The Next Mission," pr. FO (62.

GRAVITY-ASSIST SWING-BY

AIDS MANY MISSIONS
DEFLECTS
OUT OF ECLIPTIC PROBES

ACCELERATES
other Planet
SOLAR SYSTEM ESCAPE

oecelerates

SOLAR PROBES
COMET RENDEZVOUS
asteroid rendezvous
 photo no. 6 9.-1.1521).
arise from any perception that the mission was too costly per se, but from a White House attempt to reduce NASA's, as well as the overall Federal, budget.

The severe and unprecedented reduction of NASA's Office of Space Science and Applications budget led Philip Handler, president of the National Academy of Sciences, to suggest to NASA administrator Thomas Paine in November 1969 that a Space Science Board panel evaluate and rank the disciplines supported by NASA, such as planetary and lunar explotation, astronomy, and Earth environmental sciences. Paine agreed. Subsequently, a summer study, involving nearly ninety scientists, took place at Woods Hole, Massathusetts, from July 26 to August 15, 1970. In addition, a fourteen-member executive committee. chaired by Space Science Board member Iterbert Friedmatn of the Naval Rescarch Laboratory, had the daunting task of combining the proposals of the working groups into an overall priority system.

What emerged was an ominous schism between the advice of the scientists of the Woods Hole Planctary Exploration Working Group and that of Friedman's executive committee. The Working Group urged that Grand Tour not be missed: it was a unique opportunity. The executive committee, on the other hand, favered Jupiter-intensive missions. The difference partly arose from concerns about the technological demands of the two types of missions. Jupiter-intensive missions required development of spacecraft lasting only five years; the real design challenge was in the probes, which had to withstand entry into the Jovian atmosphere. In contrast, while Grand Tour would not be entering any planetary amospheres, it demanded spacecraft capable of enduring a much longer time periocl. In both
cases, spacecraft design was intrinsically linked to mission cost. Even some Gand Tour advor cates complained that JPL had not made any effor to design a more modest spacecraft with an estimated cost that would be more in line with the prevailing budgetary climate. ${ }^{21}$

The planetary scientists opposing Gand Tour fell into two camps. One camp preferred smaller, less costly, and shorter duration missions; the second feared that support of Grand Tour would divert funds from the building of a large space telescope. It was at this point that the perception that Grand Tours price tag was too high emerged. Friedman led the contingent of astronomers who advocated building a large space telescope; they successfutly placed the large space telescope in the highest priority category of the study. Friedman placed a higher priority on a large 4o-inch orbiting telescope than on Grand Tour for reason of both its lower cost and its perceived higher scientific promise. Already, Grand Tour bore an estimated price lag of $\$ 700$ million, and funding it, Friedman and others feared, would have a serious impact on other highly desirable scientific missions. The high cost of Grand Tour was being compared to Viking, which had become so cosily that in eauly December 1969 an ad hoc Viking Review Panel set up by the Space Science Board almost recommended terminating the project.e The collision of opposing views among sciemists that the Woods Hole summer study brought to light was to resound throughout the space exploration community and to have an impad on Grand Tout: By December 1970, members of the Space Science Boad were rasing questions about Grand Tours Elsewhere, in negotiations with the Office of Management and Budget (OMB) in December 1970, George M. Low, NASA Acting Administrator, suggested replacing Grand Tour with a mission to Jupiter-Ltanus-Neptune in 1979 and a possible additional mission to Jupiter-Saturn-Pluto in 1977 or 1978, but which would require additional funding. ${ }^{27}$

In January 1971, months before the publication of the Friedman report on March 9, 1971, Friedman's report was leaked to the IIouse Subcommittee on NASA Oversight, as well as to the Washington press. John Laman, a reporter for the Washingtom Eivening Siar, made public Friedman's anti-Grand Tour views, and a Science News article reported the opposing views of some of the Working Group members. The contention over the funding of Grand Tour now spilled over from the space and astronomical communities to the public at large and even beyond the nation's borders."

[^108]At the heart of the contention was the JPL Grand Tour spacecraft called TOPS. Grand Four consisted of four launches, wo to Jupiter-Saturn-Pluto in 1976 and 1977, and two to Jupiter-Utanus-Neptume in 1979 . NASA estimated the cost of the four missions to range from $\$ 750$ to 900 million phes $\$ 106$ million for launch vehicles. One substantial portion of the cost of Grand Tour was development of a self-est and repair computer (STAR) that would operate for over ten vears at a great distance from Earth. Another significant portion of the price tag represented development of the so-called Thermoelectric Outer Planets Spacecraft (TOPS) by JPI.. The long lifetime of the TOPS spacecraft was to be achieved at the expense of increased vehicle weight and higher coss."

Grand Tour TOPS and STAR development programs potentially represented a considerable fountain of paid employment for JPL employees, contractors, and subcontractors, as well as laboratory owerhead, in the post-Apollo cra. Contractor lobbying of the White llouse and Congress on behalf of the large space telescope helped to win congressional approval for it. Without that lobbying, historian Robert W. Smith has agued. Congress would not have approved funding the telescope. But ultimately the bid to develop TOPS reduced potential political support for (Gand Tours other options."

Funther complicating matters was Semator Clinton P. Anderson (D)-NM), champion of the Los Alamos nuclear weapons labotatories and an enthusiast, until his retirement in 1973, of the development of a nuelear rocket engine called NERVA. As chair of both the Sonate Aeronatutal and Space Sciences Committee and the Joint Atomic Energy Committece. Anderson provided NASA and the Atomic Energy Commission over $\$ 1.4$ bitlion, about $\$ 50$ million of which was spent in Los Alamos, for the development of the NERVA engine, which, Anderson held, was ideally suited for explomation of the outer planets as well as for more advanced missions. Anderson worted that NASA and the OMB were shifting money from NERVA to fund Gand Tour. When the NASA budget came before Anderson's Acromatioal and Space Sciences Committer on May 12, 1971, his committer voted five to two to reduce Gand Tou's budget, while an amendment to increase NERVA funding passed. Werner von Bram worted that adent congressional interest in NERV A would force a loss of Grand Tour in favor of a NERVA that had "no place to go.""

Meanwhile. NASA was rying to inchade (hand Tour as a new stant in its l972 fiscal budges. The Friedman report moved the Office of Management and Burget (OMB), in Marth 1971, to ask NASA on study simpley, less costly spacecraft altermatives to TOPS. The OMB also altempted to delay the Gand Tour stat-tip to fiscal 1973."

 Rubanhkin, "Whw killed Giand Jome"," ppr. 17-lk.

OMB and congressional pressure to cancel TOPS and to cut NASA's budget, combined with the debate induced by the Friedman repont, leti NASA management in a quandary. In order to energize support for Grand Tour, and to answer general questions about outer planet exploration, NASA administrators again turned to the scientific commonity at a Space Science Board summer study held at Woods Hole, August 8-14, 1971. Wnlike previous summer studies, this one concerned itself solely with outer planet exploration.

This latest summer study concluded that both (rand Tour (four TOPS probes) and the intensive study of both Jupiter and Saturn ought to be supported. Although the summer study scientists supported Grand Tour by a vote of 12-1, they cautioned that if NASA funding levels fell too low, Grand Tour ought to be abandoned in favor of a Mariner spacecraft mission to Jupiter and Saturn." The Maniner proposal was a return to the original 1965 Woods Hole idea of exploring the outer planets in piecemeal fashion.

As NASA prepared its fiscal 1973 budget, rumors sprad that the "budget pinch" was going to affect planetary programs deeply and that the reduction of the Grand Tour payload from 205 to 130 pounds was "a likely fact of life." Furthermore, Grand Tour now began to compete for funding with the latest NASA human program: the Space Shuttle. The fiscal 1973 budget request NASA submitted to the OMB on September 30, 1971 included both Grand Tour and the Space Shutle. Throughout the atumm of 1971 , several press reports presciently reported Grand Tour's vulnerability to a possible elimination or reduction." On December 11, 1971, James Fleteher, NASA administrator since April 27. 1971, learned from White I Iouse officials that Nixon was prepared to approve the shutthe program and that Nixon would not let NASA simultaneously fund the shotle and the full TOPS Grand Tour in the 1973 budget or in subsequent fiscal years. Fletcher had to decide which was more important: Grand Tou or human tigho.

By December 16, 1971, Fletcher had agreed to delete the TOPS version of Gand Tour from its fiscal 1973 budget request and to replate it with a pair of less expensive Mariner spacectaft to be known as Matiner Jupiter-Satum to be launched in 1977." The decision to kill Grand Tour was not made public immediately, and it was terrible Chrismas Fve news at JPL. " Nixon, in his budget message of January 5, 1979, amounced the develop ment of the Space Shuttle, as well as the demise of TOPS Grand Tour and the substitution of the more modest Mariner Jupiter-Saturn mission.

Who killed Gand Tour? The demise of Gand Tour was less a simple case of its expernsive price tag than its competition with other high-cost new stants (the shutte and the space telescope) and Viking in a shmeng Federal and NASA budget. The smatler the budge became, and the mone that costly prengams competed for those shanking funds,

[^109]the more expensive each program appeared. To some extent, too, Grand Tour was a victim of the NASA preference for human space thight over scientific probes. The Space Shutule was essential to continuing the l.S. human space llight program as Apollo wound down. The schism between how the planetary scientific community defined onter planet exploration-small, piecemeal ventures-and how JPL defined outer planet explorationa large, expensive project to exploit a rare planetary aligmment, and the public airing of that shism, certainly contributed to the pressure on NASA administrator James Fletcher to cancel Grand Tour. Thus, at NASA's fiscal 1973 budget briefing on January 92,1972 , NASA administator Fletcher explaned that Gand Tour was eliminated because of a "less than embusiastic response from certain elements of the scientific community particularly, and to some extent, Congress." "

But was Crand Conn really dead? Even before the public annomement of hand Tour's demise, planning had begun for Mariner Jupiter-Saturn, the reduced-cost, twoplanet altemative to Grand Tour recommended by the most recent Woods Hole summer study. In December 1971, when NASA and the OMB agreed to delete fiscal 1973 funds for the TOPS (r and Four, NASA informed the OMB that the JPL TOPS development group would be "retained and redirected into planning a new progran to explore Jupiter and possibly Saturn with a three-axis stabilized Mariner-class spacecraft.": (Siabilization along three axes was a requisite for onboard cancras.)

NASA administrators next turned to the scientific commonity in the guise of the Space Science Board. The Board met February 8-9, 1972, and "umanimously and wamly endorsed" Mariner Jupiter-Saturn. The Space Science Board, through its chair Charles II. Townes, expressed the hope that the spacecraft would remain operational beyond Saturn "and retum very significant data on cosmic particles and fields.":

Congress greeted with approval the replacement of the TOPS GMand Four with Mariner Jupiter-Satum and anthorized fonds for Mariner jupiter-Satum for fiscal 1973. The Mariner Jupiter-Saturn price tag, $\$ 360$ million versus $\$ 1$ billion for TOPS Grand Tour, conkd tit into a scaled back NASA budget that also financed development of the Space Shutte. Alhough wotk on Mariner Jupiter-Saturn started at JPL as early as Jamary 1972, the new project was not officially approved by NASA until the Contractual Task Order was signed on May $18,1979 .{ }^{14}$

In order to reduce costs and overheads, NASA decided to leave design and construction of the Mariner fupiter-Satum spacecraft to JPL, wher than to Boeing, (iencral Electric, Iughes, Martin Marietta, and North American Rockwell, all of which had some level of preparation for a Gand Tour proposal. The largest aerospace firms lobbied NASA Headquarters and Congress lor the contracts. In order for expensive projects to pass congressional scoutiny as part of the NASA budget, they often had to include an intention to contrate out much of the work. Thas, for example, Mageltan, the malar imaging mission to Vents, althongh initially intended as a JPl in-honse project for cost reasons, was lel out to Martin Marietta (spacecraft contract) and Itughes (the radar combact). The decision to go with JPL versus an inclustrial contractor was viewed at NASA Headquarters by John E. Nangle, Associate Adminishator for Space Science, as a "many laceted problem" whone

[^110]resolution was "of patamount importance to the fiture of NASA's Planctary Program as well as to the future of JPI.." In short, JPL needed the contract to mainain employment levels in the labomaty, and NASA Headquaters needed it omaintain the vitality of its planetary program. Therefore, he explained, "all of the vations factors mose be given careful and thoughtul consideration."'"

Despite the limited aim of the Mariner Jupiter-Satum, the mission had the Grand Tour lanch window, that rave planetary alignment, and the engineers at JPI, still had every intention of building a spacectaft that would last long enough to visit Urames and Neptune. This intention was not emphasized; however, it was stated that a Mariner JupiterSaturn spacecralt might continue to Lrams if its mission at Satum proved successful. The scientists working on the project knew that Mariner Jupiter-Satum was going to go to Uramus and Neptume, too. As Bradford Smith, Leader of the Imaging Team, explained: "We understood at the time the enomous petemtial of this mission-that it could wery well be one of the truly outstanding if not the most outstanding mission in the whole planetary exploration program."; ${ }^{2}$

Grand Tour would rise from its own "death" as piecemeal additions to Mariner Jupiter-Saturn. As S. IChtiaque Rasool, Deputy Director of Planetary Programs, Office of Space Science, reflected: "The lesson to be learned from Gand Tour cancellation was that you never fund such a big. longrem project at once. So we kept on adding piecemeal. And it's interesting that they always come out big. When you have less money, you can even do better sometimes." " The Mariner design and experience were used whenever possible and were supplemented with subsystems designed for the Viking orbiter to provide the required perfomance and reliability. NASA instructed the Alomic Energy Commission to upgrade the plutomium batteries so they might last more than ten years, enough time for Mariner Jupiter-Saturn to encounter Liants and Neptume." Despite the reliance on extant technology, some money was set aside to develop new technology. Congress and the OMB approved an additional $\$ 7$ million to the Mariner Jupiter-Satum appropriation for scientific and technological enhancements. Part of that appropiation went to develop a reprogrammable onboard computer, ${ }^{\text {s }}$ which proved vital to maintaining Voyager 2 as a functioning observatory in space. Withoul properly functioning hardware, no science could be conducted.

Just as scientists played a key role in shaping Voyager before it was funded, they collaborated actively with NASA in defining the mission's scientific objectives within orga-

4i. John E. Nangle to William 13 . Pickering, Aprit 13 , 1972, and Memomandmm, John F. Namgle to
 compagned for Gand Tour in 1969 , but never gave cost reduction as ateason. Moreover, the reasons the gate for selecting JPL for Gmand Tom did mon compare JPl to imdundy commacoms, but with other NASA remers, specifically Marshall and (ioddat. I). B. Hearth. "Reasems for SL, Recommendation of JPl, for Gand Four,"
 example, hate a contrate with TRW moder which TRW invesigated the feasibility of conducting firand four with

 Programs oo distribution, July 7 , 196\%, and Memonandum, Director of Plametary Programs, Office of Space Science and Applications, to distribution, May 13,1969 , and attachments, record mo. Oo5l48, NASA IIstorical Reference Collection.
47. "Interview: Bradford Smith," Space World nv. (November 1985): 5, record no. 00558t6, NASA
 ([niversity Press, 1991), pp. I and 2.

4X. S. Ichtiaque Rasool, interview with athom, Paris, Decomber [2. 1494.
4!. Davies, "Brief listory," p. 3x; Rubashkin, "Who Killed Gmand Toure" p. 27.
50. Murray "Jommey into Space," p. 174.
nizational frameworks established by NASA. On October 15, 1971, although (r rand Tour had not yet been authonized, the space agency issued an "Invitation for Participation in Mission Definition for Gand Tour Missions to the Outer Solar System" to specify its scientific objectives, that is, typical payloads and scientific instruments requiring a long lead-time to develop. Among those primary objectives of Grand Tour (and Mariner Jupiter-satum) were: 1. physical properties, dynamics, and compositions of atmospheres; 2. geological features; 3. thermal regimes and energy balances; 4. charged particles and electromagnetic enviromments; 5 . periods of rotation, radii, figures, and other body properties; and 6. gravitational fields. While travelling between planets, both missions would study variations of the solar wind plasma and magnetic field, solar energetic particles, galactic cosmic rays, and interplanetary dust. Once the spacecraft left the solar system, they could make measurements of galactic cosmic rays ummodulated by the solar plasma."

Regardless of which objectives or instruments the scientific community recommended, JPL insisted on including video cametas. At JPL, Harris M. "Bud" Schurmeier, JPL’s Grand Tour and Mariner Jupiter-Saturn project manager, understood both the non-scientific and the scientific importance of imaging the planets and their satellites. In 1964, Ranger lunarimpact probes radioed back the first close-up pictures of the Moon, thanks to hardware designed at JPL, under his guidance. Subsequently, in 1969, Schumeier led the work on Mariners 6 and 7 that achieved a hundredfold gain over tiny Mariner 4 in the return of pictures from Mars, and in 1971. Mariner 9 pictures of Mars, after waiting out a gargantuan dust storm. In addition to the imaging team, Matiner Jupiter-Saturn would have a Radio Science Team to exploit the scientific use of the spacecratis radio systems. ${ }^{22}$ In selecting members of the scientific teams, the first members chosen were those of the imaging and radio science teams, the teams using the video and radio equipment that JPL intended to put on board, regardless of whatever scientific instruments migh be selected As the NASA Field Center in charge of the mission, JPL thas could exert a detemining influence on the science to be conducted.

NASA, in April 1972, extended a fomal request for experiment proposals and received over 200 replies. From those the space agency selected ninety scientists, mainly from the United States, but from France, Sweden, West Germany, and Great Britain, as well. ${ }^{\text {.t }}$ The selection process favored researchers in large institutional settings, but did not filter out little scientists entirely. NASA policy was to select scientists based on the merit of their research, as well as the "reputation and interest of the instimaion." The stated reason for this selection standard was to insure "scientific depth and breadth, and the availability of the resources to support the insestigation." NASA assumed that selected scientists would be affiliated with an accredited academic institution, a private corporation "with sufficient contactual resources to provide the required scientific, technical, and
51. "Invitation Lor Paticipation in Mission Definition for Grand Fone Missions w the onter Solat

 1972, weond no. 005566, NASA Ilistorical Reference Collection.
54. Memorandim, Milton A. Miz to Bradtord A. Smith, December 4, 1972, record no. 005j60, N110);
 Joseph P. Neten to Robert Griffin. Jume 23, 1977, record no. 005566, NASA Historical Reference Collection. Fon a disumsion of the origins and evolution of this selection process, see John E. Naugle, firat Among figuhs.

administrative resoures and support" (e.g.. TRW or The Rand Corpomation), or a NASA or other government center or laboratory.

Illastrating how the scientist selection peocess favored those in large institutional settings, such as NASA Ficld Centers, was the dominance of NASA's Godelard Space Flight Center scientists on the infared spectroscopy and radionetry and the magnetic fiedels science teams. Eight of the cleven members of the first tean were from Goddard, while seven investigators, only one of which came from ontside Goddard (at Geman researcher) constituted the magnetic fields leam. ${ }^{\text {b }}$

Coniversity planetary scientists populated most of the other science teams, abhough those scientists often commed on NASA funding for meir resoarh. NASA grants to miniversity funding and NASA's use of miversity scientists drew them into the larger scientific enterprise of the NASA-industrial-acadennic complex, thereby weaving little science into the fabric of large-scale, big-burged science, ${ }^{2}$ Such was the case of the radio science tean. which was a mix of Stanford Universily and JPL researchers.

The Stanford investigators, Von R. Eshlemam, Thomas A. Coft, and G. Ieonard lyler, came from that institution's Center for Radar Astmomomy. Founded in l969, initially in collaboration with SRI persomed, and umdenwriten by NASA, the Center for Radar Astronomy sought to conduct planetary atmospheric, ionospheric, and surface sudies asing the radio equipment ordinarily (and mecessarily) induded on each spatedaft. although special hardware often was developed to perform experiments. The Center was small, however, in tems of budget and personnelio The remaining science team membbers, John D. Anderson, Gimmat Fjedlbo (now Lindal), Gerald S. Levy, and Cordon E. Wood were all JPL staff engineers and scientists. Fieldbo, moneover, prevously had been with the Stanford Center for Radar Astronomy."

Stiff competition, and at times persomality conflicts, reigned among the scientists submitting proposals. ${ }^{\text {an }}$ Among other factors, the selection or rejection of instrment proposals hinged not as much on the gualifications of scientises or the ir researeh, but on the

 NASA Histomical Reference Collection

54. Livagr to /ufiner and Satum. Ppe. 53-55. Cooft was an SRI stalf member.
60. For example one group of scientists attempted womton the process of selecting the magnelonte-
 are dealing with problems arising from the personalities of some of the beading individuals in this ficlel," he

trajectory of the spacecraft and the discoveries of earlicr missions. The assessment of the dangers of the asteroids, Satum's rings, and Jupiter's electromagnetic environment was placed on a firmer foundation by the results beamed back by Pioneer 10 and 11 , launched in 1972 and 1973 , respectively. Although the asteroid hazard appeared less threatening, Piomer 10 encountered far more damaging radiation than had been expected. Pioner 11 reached Jupiter a year later (December 1974), then went on to Saturn, where the spacecraft passed within $21,000 \mathrm{~km}$ of Saturn's cloud tops in September 1979 and certified the safety of the namow zone between Satum and its rings." These Piomeer 10 and 11 results led to the dropping and adding of Mariner Jupiter-Satum science experiments.

Once bionere 10 discovered that the levels of madiation at Jupiter were a thousand times more intense then expected, NASA dropped an ultaviolet photopolarimeter experiment that had been selected on a provisional basis. In the place of that instrument, and at the urging of the concemed scientific community. S. Ichtiaque Rasool, NASA Office of Space Science, included on Mariner Jupiter-Satum a plasma wave experiment which had been proposed but not selected until then." On the other hand, other science experiments were selected or excluded on the basis of cost and spacectaft parameters. When drawing up the final list of investigators and instruments in September 1973, NASA dropped the micrometcorites experiment because of its development risk and cost, as well as the difficulty of integrating it into the spacecraft design."

Perhaps the most untstal Voyager scientific experiment was that with no real Principal Investigator and essentially with no NASA budget for instrument construction or data analysis; it was the recording entitled "Sounds of Earth." On the chance that Voyager might encomber intelligent extaterrestrial life, NASA approved placement of a phonograph record on cach of the wo Voyager spaceotit. Recorded on a 12 -inch copper disk, "Sounds of Earh" ran for nearly wo hours. Its contents, assembled by a group of prominent sements and educators led by Carl Sagan, who had placed extraterestrial plaque messages on Pioners 10 amd $1 /$, consisted of greetings fiom Larth in 60 languages, samples of music from differon culures and eas, and natural someds of surf, wind, thonder. birds, whales, and other animals, as well as 115 photographs and diagrams in analog fom, depicting human beings, the solar system, DNA, and various fundamental concepts from mathematies, chemistry, geology, and biology, and greetings from President Jimmy Cater and the Secretary General of the United Nations."

The Voyager instrments and scientists selected, NASA then organized the scientists. into twelve (later reduced to cleven) science teams. Except for the imaging and radio science teams, for which the project fumished the instrmemation, the individual scence groups were responsible for designing and building the instroments associated with the in

 Gollection Amone those members of Sigatis commitere and others who plated a majom mole in devising the

investigation areas. The eleven investigation areas were: imaging, radio science, infrated and ultraviolet spectroscopy, magnetometry, charged particles, cosmic rays, photopolarimetry, planetary radio astronomy, plasma, and particulate matter. Specific scientific objectives included the study of the physical properties, suface features, periods of rotation, energy balances, and thermal regimes of the planets and moons and investigation of electromagnetic and gravitational fields throughout the mission. Items of special scientific interest included Jupiter's giant red spot and Satum's rings and moons, Lapatus, Titan, and Rhea. ${ }^{\text {b }}$

Each science team had a leader, called a principal investigator, though the heads of the imaging and radio science gromps were designated team leaders. The design and construction of the scientific instrments were the responsibility of the principal investigators, who either could have them built in their own laboratory or could contract for their construction. The team leaders and principal investigators formed the Science Steering Group, which had overall responsibility for advising NASA in the area of Matriner Jupiter-Saturn science. By the end of 1972, Fd Stome, a magnetospheric physicist from Califomia Institute of Technology who had stated on Geand Tour in 1970. during the preplanning stage, was appointed Project Scientist." The Project Scientist stood at the interface between scientific needs and engineering and budgetary constraints, between the Science Stecring Group and NASA, the public, the scientific community, and the press. In Stone's own words, the Project Scientist served "an impedance matching function between the engineering requirements and constraints and the science requirements and constraints to try to find a way to achieve the optimum match between these two different sets of requirements and desirements." In short, the management of science and decision making were centralized in the Project Scientist.

Management of science included assuring that scientists' insomments were built on time and within budget and that they fit spacecraft parameters, especially payload weight, power requirements, physical and functional interface conditions, exposure to radiation, and the telemetry budget, that is, the allocation of down-link data bits without which data did not return to Earth." The Project Scientist also was the ultimate arbiter in deciding which experiments and which observations would or would not be done. At times, the scientists lacked agreement on which observations to make, and the Project Scientist had to decide which of two equally good observations would be made. Rather than vote on the issue, Stone made the decision himself. "It tums out," Stone reflected, "that's a much more critical role than I had thought ahead of time, and that's because ultimately what science is all about is making discoveries. By deciding to make this observation tather than that one, you're effectively deciding that that group of scientists gets to make a discovery and this group doesn't."

The most visible of the Project Scientists activities as the interface between the Voyager scientists and NASA, the public, and the media was the press conference. The

[^111]press conference was a keystone activity of the Project Scientist in his role as mediator anong Voyager scientists. Press comberences, not scientific publications or conferences, were the vemues where discoveries were tirst announced. Dealing with the media and the scientific process of discovery was the Project Scientist's major concern during the week around each encounter. Every day, working with the scientists of each investigation group, the Project Scientist had to determine what had been discovered, which discoveries were ready for release, and how they would be released in the press conferences.

The annomement of discoveries almost as they occurred, as well as the very aggregation of scientists into working groups, raised the fuestion of intellectual property rights and prionity of discovery. Ordinatrily, scientists would hold their own data as proprictary, not sharing with any other scientist, so as to assure prionity of discovery. However, not shamg data, Stone believed, "would have inhibited the total development of the scientific program."

The ideat of everyone sharing findings came to Stone from the need to communicate those findings to the media. He attended the press conference of Pioner $I 0$ when it encomented Jupiter. Stone, who previonsly had worked only on Earth orbiting missions, was impressed by the scene: "Here was a room full of reporters wanting to know what the scientists had discovered. I mean, to me that was incredible. Nomally there just isn't that interest in what you're doing ats a scientist. And here they were day after day saying, 'Tell us what you've discovered. Tell us what you've discovered.' I realized that with Voyager we had both the opportunity and the obligation to commmonale what we were discovering. Fo help the media tell the story. But we had to do it in a scientifically credible way."

Having all Voyager scientists share the ir data made the scientists act less as individuals. and more as members of a group, as they would on a typical big science project. The initial publication of results, too, followed this big science gromp approach. Nll of the initial publications resulting from a given encounter were published in the same issue of a given jounal, such as Science, Nature, of the Joumal of Geophysical Researh All scientists, therefore, published at the same time, but as a group, that is, one paper represented the discoveries of an entire science teant. There was no question of priority, Stome explaned, "everybody had equal priority, becanse everybody was there at the same time." ${ }^{2}$

The Marmer fupiter-Satum mission mane persisted until March 1977, only a few months before latnch. Many withon the project and within NASA felt that the Mariner Jupter-Satmon saceraft depaned conomgh from the Maniner family that a new mame would be appropriate. As ealy as 1971 . William II. Pickering, director of JPL, had suggested the name Navigator for the spacecraft pair. NASA organized a mame comperition fo choose the new name, and the winning nomination, "Voyager," was approved on
70. Fdwand $:$: Stonc, interview with athtor, JPI., November 293, 1991.
71. Mid.
 rights, despite a memorable appaten exception, walled the "Morabito incident," reported by fric Clatissom.

 (inllection.

March 4, 1977. The name change, however, coming so close to launch date, gave rise to a certain amount of confusion. References to Mainers $I I$ and $I 2$ and even Veyogers $I I$ and 12 are a legacy of this last change of name. ${ }^{\text {id }}$

Despite the name change, Voyager remaned in many ways the Grand Tour concept, though certainly not the Grand Tour (TOPS) spacecraft. Vigager 2 was launched on August 20, 1977, followed by Voyager 1 on September 5, 1977. The decision to reverse the order of launch had to do with keeping open the possibility of carrying out the Grand Tour mission to Uanus, Neptume, and beyond. Voyager 2, if boosted by the maximum performance from the Titan-Centaur, could just barely catch the old Grand Tour trajectory and encounter Utanus. Two weeks later, Voyager I would leave on an easier and much faster tajectory, visiting Jupiter and Saturn only. Voyager I would arrive at Jupiter four months ahead of Voyager 2, then arrive at Saturn nine months carlier. Hence, the second spacecraft launched was Voyger 1 , not Voyager 2. The two Voyagers would arrive at Saturn nine months apart, so that if Voyager $/$ failed to achieve its Saturn objectives, for whatever reason, Voyager 2 still could be retargeted to achieve them, though at the expense of any subsequent Uranus or Neptune encounter.

The taking of such precautions was nomal for a venture where a certain number of spacecraft hardware breakdowns, called "anomalies" by NASA, are considered to be nomal. Most are minor and have no impact on the ability of the spacectaft to carry out its scientific mission, such as the glitch that occurred during the launch of Vovager 2. Nonetheless, these anomaties emphasize the critical role that technology plays in the gathering of scientific measurements from a space-based observatory. Without that techonology, no science is possible. The performance of the Voyager science mission from the moment of launch is a lesson in the critical role played by technology in the conduct of big science.

One serious anomaly that actually did limit the amount of Voyager science conducted was that of the scan platform. On February 23, 1978, before Voyager / reached Jupiter, its scan platform became "stuck" during an azimuth scan. The platform turned on three axes in order to am the cameras, spectrometers, and photopolarimeter in a scientifically useful direction. The platform jam thus threatened to compromise critical scientific observations. Luckily, command sequences transmitted to the spacectaft succeeded in moving the san platom; the crisis subsided."

As Voyuger 2 began to leave Satum, and most of the scientific observations had been made on the planet, its $22($-pound scan platform became stuck. The spacecraft cameras were sending back images of black space. The heavy worklod during encounter, combined with an ineffective lubricant, likely caused the rouble, as engineers demonstrated on Eath-bound duplicate equipment. To help alleviate the platom problem at Dranus, the spacectaft was rolled when possible to perform large aximuth changes. The sean platfom was moved only for smaller changes, and then only a slower speeds. ${ }^{\text {a }}$

The san platform jam at Saturn occured after most of the seientific observations had been made. Nonetheless, some science was lost. Whether one considered that science critial depended on one's interests. Certain projed scientists wanted to play down the situation, and this annoyed those scientists who suffered real losses. The loss of two images of the moon Enceladus at a resolution of 1.6 km was perhaps not as great as the loss of the six

[^112]images of Tethys at 1.7 km , because the best pictures available of that moon had a resolttion of no better than 5 km . The loss of coverage was serious in the case of both moons, however, for now neither of them could be measured all the way around with the precision that scientists would have liked, or mapped as comprehensively as the mission cartographers had expected. Other lost science included imaging the dark side of Saturn's rings, and non-imaging lost data inchuded a further occulation experiment using the star Beta Tauri; infraved measurements of the ring material as it entered the planet's shatow: ultaviolet spectroscopy of ring material by observations of the Sun through the rings, as well as a field and particle manewer. In the judgement of Ed Stone: "We were fortmate that the platform didn't stop at few hours carlier.":i

The other major hardware falure was in the radio systems of Voyager 2. Voyager 2, which encomered more planets and moons than its clouble, seemed to suffer the greater number of serious hardware failures. No science was lost in this instance, athough the potential was present, and an attempt to repair the situation raised the possibility of ereating a spinoff ground facility for use in radio astronomy and ionospheric rescarch.

In late Nowember 1977, while the two Voyagers were still on route to Jupiter, one of Vogager 2's two duplicate radio transmitters began to degrade. It was switched to low-power mode to nuse it along. Something was wrong, but there was no way to know exactly what. Months lates, in April 1978, the Voyager team discovered that Voyager 2's backup receiver had failed to detect signals sent from Earth because of a shotted capacitor: The primary radio receiver suddenly failed completely, as well. Voyager 2 was silent. Continuing to Uamus and Neptune was no longer possible, unkess a way could be found to commonicate with the backup receiver. Moreover, the failure of the Voyager 2 primary radio system had potential repercussions beyond the Voyager project. Its radio equipment was very similat 10 that on lioncer Vemus, which was latuched the following month, in May 1978.*

Nomally, the radio receiver antomatically compensated for the Doppler shift of signals transmitted from Earth. The changing velocity and direction of the spacecraft relative wo Earth caused this Doppler shift. Without the ability to compensate for the Doppler shift, the Vonager 2 radio system could not detect any signals sent to it. The solution to Voyager 2 's radio problems came from NASA Deep Space Network engineers. They prepared computer tapes that slowly varied the frequency of the radio signals transmitted from Earth in order to compensate for the expected Doppler shift. The Deep Space Network station outside Madrid transmitted the first test signals on April 13, 1978. Fifty-hhee minutes later, Vonager 2's acknowledgement returned. The trick worked. As a backup measure, in October 1978, Linager 2's memory banks were loaded to the brim with commands that would provide

[^113]for a bareminimum science encomoter at both Jupiter and Satum, should madio contate once again be lost. The same procedure was followed for subsequent encounters at Uranus and Neptone.

The radio and scan platform breakdowns were not the only hardware failures that threatened or curtailed Voyager science. Some of the scientific instruments themselves experienced intermittent malfunctions and even complete breakdowns. The high radiation levels at Jupiter catsed difficulties in transmitting commands, and the photopolarimeter instrument suffered radiation damage. Moreover, in November 1980, as Voyager I was leaving Saturn, its plasmat instrument stopped transmitting usable data. A similar fault had disabled the instrument for three months eatier in the year, as well as batek in February 1978.4

In spite of the hardware problems that constantly thratened to diminish the mission's scientific retums, Voyager encomenter Jupiter and Saturn, then continued on to Lamus and Neptune, following the Grand Tour moute. Piece by piece, the diand Tour itinerary came together: The comtintation of Voyager fo lianus and beyond was made possible by reprogramming the onbord computers, creating new software, and building new ground facilities, new technologies and technigues without which the science could not be conducted. The expansion of Voyager into an even larger scientilic enterprise also had spinoffs of value to the litule science conducted on Earth. But first, finding the extension to Llamus had to be approved.

In 1975, the Space Science Board recommended a Mariner Jupiter-Lramus mission to be launched in November 1979, fly by Jupiter in April 1981 , and proceed to Uranus arriving in mid-1985. Mariner Jupiter-U anus was not the only mission under consideration by NASA. The space agency still was attempting to cobble together a program of exploration of the onter planets in the face of declining budgets. Other proposals included a Mariner Jupiter Orbiter (later developed into project (alileo) and Pioneer missions carrying atmospheric entry probes either directly to Saturn or to Lranus via Jupiter. ${ }^{*}$

Mariner Jupiter- lranus was plamed for NASA's liscal 1977 budget and bore a price tag of $\$ 177$ million, but it was in serious question becatuse of the Administration's anmounced lederal budget squecze. In May 1975, NASA issued an amouncement of opportmity for scientists to participate in Mariner Jupiter-Lianus. Facing budget restric-
 20. Deep Spate Network engineces were not atwats suresstal at first. A shghe change in temperature ol the Wyagr 2 madio receise (hardly mome than one-tenth of a degree contigtade) was sufficient to wreck the imper

 trical comsumption whithen the spaceraft.

An alternate solation to bisage 2 - ratio prohlem considered by NASA was to send commands through one of the seience instmments, namely the planetary radio istronomy receiver. Jests conducted during September 1978 using the Stantord radio telesope indiated less recerved signal strength than had been anticipated. and the approwh required both magor changes in the onboard emputer programs and the comstretion of a suitable ground tramsmitter facilis: Implemembation would cost an estimated $\$ 00$ million ($\$ 7.5$ million facility $\$ 2.5$ million project) and would wequice abom memb-tome monthe to derelop. Realizing that it the capability were never used, NASA would be open to criticism for having buil an monecessary facility, the Voware Program Office decided dgamst the planetary rado antomomy soluton A. Gisiafermo to Associate

 Eshkeman, intervew with atahor, Stanford I niversity. Man 9. IMOI. |PI Archives.
 Histomical Reference Collection.
81. Bugess, Far Fmouner, pp. I and 2: Davies, p. 39.
tions, still, NASA Headquarters dropped the project from its fiscal 1977 budget request, Cansing a severe manpower problem at JPL..*2 Adding Urants to the Voyager project, on the other hand, bore a price tag far kess than that for Mariner Jupiter-U tanus, about $\$ 100$ million over five years, and it would bring money to JPL. Approval of the mission extension was received in November 1980 and was based on Vovager 1 achieving adequate Titan and Satum ring science and the health of Voyager 2. JPL had a long lead-time, five years, to prepare for Uranus: Vopager 2 would not reach Uramus until Jantary 1986."

The extension of the mission to Uranus and beyond required re-engincering the spacecraft, which was already far from Earth, and upgrading Earth communication facilities. These changes were compelled by the vast distances over which the Deep Space Network had to communicate with Voyager, and by the dearth of sunlight needed for imaging and certain scientific experiments. The Sum at Uranus is only one fourth as bright as at Satum and provides less than one four hundredths of its carthly illumination. Television expostres needed to be longer; cancra shutter speeds reduced.

In upgrading the Mariner Io camera to image Mercury, JPL engineers developed a new electronic technigue that read out the image signal three times more slowly when desired. When the Voyager cameras were operated in this slow mode, the lower radio transmission tate was adequate for real-time commonications from Saturn, because the video signals could still flow directly from the camera to the radio transmituer and on to an attentive Earth. While Voyager would use the same slow camera mode and transmission rates at Lramus, additional techniques, namely compression and improved encorling, were demanded.

Part of the $\$ 7$ million of additional appropriation granted Mariner Jupiter-Satum in fiscal 1973 for technical improvements went toward design of an electronic means for trasmitting error-free data to Earth, what is known as Reed-Solomon coding in honor of its inventors. Only basic coding hadware had been incorporated into Voyager's computer when it was lannched. For the LTanus encounter, JPL engineers developed a special Reed-Solomon coding, which the Deep Space Network transmitted to Voyager's computer. The improved encoding worked, but it required more work on the ground.

Voyager engincers also used a technique called compression to obtain images from beyond Satum. Nomally, the full lightintensity talue of each pixel of every image is transmitted back to Eath. Compression consists of sending back only the difference in light intensity between adjacent pixels on each line of each image. The technique reduced the commumications rate needed by a factor of two and a half. But, in order to exploit compression, the spacectaft's computers hat to be assigned new tasks, and that involved a certain risk. If a problem arose with the primaty flight data computer, white the backup computer was tied up executing compression commands, key scientific observations, or even the entire mission, might be lost.*"

Following the Grand Tour road to Dtanus and Neptune also required revamping gromod-based communication facilities. The distance to Utanus was over a billion kilometers. Signal stength was about one-fouth the level of the Satum tly by in 1981, when Voager was transmitting from a distance of 605 million kilometers. Existing gromod-based Deep Space Network facilities were unable to adequately commonicate with

[^114]Voyager at those great distances. The solution was to array antemas together, a technique commonly used in radio astronomy. At the Deep Space Network site outside Canberra, Australia, two 34 -meter and one 64 -meter dish antemas were arrayed together. In addition, through an international agreemen, NASA linked its Deep Space Network Camberra dish antennas with the 210 -foot Parkes radio astronomy telescope located 200 km away via a microwave connection. Of the three Deep Space Network locations, that in Australia would have the best view of Uramus during Voyger 2 's ring plane crossing and closest encounter with the planet.":

A similar arrangement was put together at the Deep Space Network site at Goldstone, Califormia, for the Voyager encounter with Neptunc. Because Neptune is three times farther away from Earth than Saturn is, the Voyager X-band radio signal would be less than one-tenth as strong as during the Jupiter encounter in 1979 and less than onc-half as strong as during the Uranus encounter in 1986. Part of the Voyager upgrade of the Goldstone 64-meter antema involved enlarging the dish diameter 70 meters, increasing the surface accuracy, and improving the receiving system, as well as the installation of 34 -meter antennas, to be used in an atray formation, at the Goldstone and Cambera Deep Space Network sites. ${ }^{\text {ex }}$

NASA approached the management of the Very Large Anay (VLA), a radio telescope located in New Mexico, about participating in the fomation of an antenna array with the Deep Space Network dishes at Goldstone, in order for NASA to commumicate with Voyager at Neptune. The space agency installed low-noise X-band receivers on each of the 27 VLA antemas. Through the radio astronomy technique of araying, and the installation of low-noise receivers on each V1A dish at NASAs expense, the echoes received from the VLA were combined with those received at the Goldstone 70 -meter and 34 -meter dishes to provide a data rate more than double that which would have been available with Goldstone's antennas alone. Just as with the Parkes radio telescope, a microwave link permitted NASA to array the VIA and Deep Space Network dishes at Coldstone. ${ }^{-1}$

The Voyager upgrade of the VIA inadvertently created a state-of-the-att facility for planetary radar astronomy, a scientific activity hat was, and remains, little science in terms of manpower, instruments, budget, and publications, but which took root within the interstices of big science, ${ }^{\text {sx }}$ When radar astronomers linked the Goldstone radar and the VLA in a bistatic mode, that is, with Goldstone transmitting and the VI A receiving, they created a radar with an extraordinary capacity for exploring the solar system. Duane O. Muhleman, Califomia Institute of Technology, his gradtate students Bryan Buter and Arie Grossman, and Martin A. Slade of JPL have used the Goldstone-VLA facility 10 explore Titan, Venus, Mars, and Mercury. Their exploration has led to a number of major discoveries, including the presence of polar ice on Mercory.s"

[^115]As Voyager travelled from one planet to another, from one spectacular and unexpected discovery to the next, scientists and the public marvelled at the outcome of this scientific expedition. In the words of Project Scientist Ed Stone: "There's one lesson we learned from Voyager: Nature is much more inventive than our imaginations."" The Voyager mission truly deserved the honor of the 1980 Collier Trophy. Moreover, its subsequent accomplishments bevond Satum in the face of hardware and budgetary hindrances have merited further recognition.

The crucial role played by technology in the success of the Voyager scientific mission allows us to draw some conclusions about the nature of big science. Obviously, Voyage science was entirely dependent on the availability of the spacecraft and its assemblage of scientific instruments. Hardware fahmes theatened the loss of science. That science depended, too, on the availability and proper functioning of an extensive network of telecommmication facilities on Earth. A similar dependence on technology is found in ground-based planetary astronomy.

The technologically driven nature of Voyager science raises questions about the epistemology of space-based science. In an Earth ohservatory, an astronomer can look through the lenses of a telescope and see the object of study. I'sing a space-based observat tory, such as the Voyager spacecraft, scientists do not experience nature as directly as through a telescope. Instead, a scientific instrment makes the observation, then electronic circuity aboard the space-based observatory converts the observation into strings of digital bits and transmits those bits to Eath, where a Deep Space Network facility acquires them. Through various signal-processing stages, which require extensive manipulation by lange computers, the strings of digital bits transmute into data, which scientists then study. It is this data that scientists study and from which they draw conclusions about the phenomend that interacted with the scientific instrument in space. Data, rather than direct observation, has become the object of research, and that change has required inclusion of certan assumptions about the relationship between phenomena and the data. Thus, the instrument of scientific research is no longer just the spectrometer or the telescope (to use an Eath-bound analogy), but the observatory and the totality of electronic operations (both telecommunications and computing) required to tum the observation of the instrument into data. Historians of science need to explore how computers, signal processing, and other electomic techniques have come to mediate between the observer and the observed and to determine to what extent this tanstomation has been precipitated by the advent and growth of big science. Clearly, though, it is large-scale techoology and techniques that make possible the science.

The Vovager project was an example of big science as measured by a number of yardsticks, such as the number of planets, satellites, and rings studied, mission longevity, and cost. At the same time, little science wat an integral pant of the project. The creation of the Goldstone-VLA atay to receive Voyager images from Neptume also furnished radar astronomy's little science with a facility. More directly, university based scientists became patt of Voyager big science through their organization into science leams and theough the centralization of science and other decision making in the Projeet Scientist. The literame holds additional examples of big science as the centadization and managemen of litte science.

James Watson, fomer head of the Human (enome Initiative, daims the project utilized a "litte science approach" partly because only its management, and not the work, was centralized. In her study of fusion, Joan Lisa Bromberg argues that centralizing the reseach decision-making process, ather than centralized facilities, defined the institutional boundaries of big science James II. Capshew and Karen A. Rader, furthermore,
contend that activities that are broad in scope, scientific exploation being a specific example they cite, are big in the sense that they requive coordination among geographically dispersed investigators or facilities. Consequemly, the hathark of such Big Science is horizontal integration and a reliance on extensive communication networks and centralized work processes." The history of Voyager shows that yet another example of big science as horizontal integration of science management is the organization of the geographically dispersed Voyager scientists into teams and the concentration of decision-making in a single individual, the Project Scientist.

Within the NASA-industrial-academic complex, litte science and big science do not always dovetail. The discussions of outer planet explotation within Space Science Board summer studies leading up to the decision to terminate Gand Tour illustrate this point. Planetary scientists wanted Jupiter-intensise studies and separate missions to the individual outer planets, while NASA (espectally JPL) wanted to send numerons spacecraft to the outer planets, but cach one taking advantage of the rate Gand Tour launch window. The division between JPL and the planetany science community stemmed largely from the ir divergent interests. The primaty activity of JPL and NASA was the designing, building, and launching of vessels for the (preferably manned) exploration of the solat system. The planetary science commonity, on the other hand, wanted to doscience, rather than build spacecraft.

Despite this division, NASA and the planctary science commonity had much in common. As Joseph Tatarewic\% has shown, NASA has transfomed American ground-based planctary astronomy into big science through its fitancing of the scientific enterprise." By funding the consmuction and launching of spacectaft laden with scientific instrments, NASA also has positioned itself as the patron of space-based big science. NASA funding of both space-based and carth-bound planetary setence is not the only way in which NASA has incorporated little science into big science. The organization of scientists into investigation areas and the centralization of the managemen of science into the Science Steering Goup and the Project Scientist on the Voyager mission was another way in which NASA weaves little science into the larger fabric of big science.

This brief overview of Voyager stressed the critical mole of properly functioning technology in the success of the scientific mission. The dependence of science on instrumentation for observation and the need for science funding is at the core of the relationship between big science and lithe science. Critical, too, is the inescapable fact that planetary science is based on observation. Without the Voyager observatory and its payload of instrments, planetary scientists would have been without data, without observations. NASA funding also paid for the scientists to participate in the project. To what extent could planetary science be conducted without NASA and the mappings of big science?

And by any estimation the planctary science condacted by Voyager was impressise. Just a partial list would include the following and fully justify the recognition the mission has received:

- Discovery of the Lranian and Neptumian magnetospheres, both of them highly inclined and offee from the planets' rotational axes, suggesting their sources are significantly different from other magnetospheres.
- The Voyagers found twenty-two new sate llites: three at Jupiter, three at Satum, teriat Crans, and six at Neptune.
- Io was found to have active volcanism, the only solar system bocly other than the Eath to be wo confimed.

[^116]- Triton was found to have active gevser-like structures and an atmosphere.
- Auromal zones were discowered at Jupiter, Satum, and Neptune.
- Jupiter was found to have rings. Saturn's rings were found to contain spokes in the B-ring and a braided structure in the F-ring. Two new rings were discovered at Uramus and Neptune's rings, originally thought to be only ring ares, were found to be complete, albeit composed of fine material.
- At Neptune, originally thought to be too cold to support such atmospheric disturbances, large-scale storms (notably the Great Dark Spot) were discovered.

As big science becane the dominant way of doing science in the latter half of the twentieth century, what we call little science has become a necessary and integral part of Big Science. In the case of Voyager, spinoff facilities, summer studies, and, above all, the organization of scientists into the Science Steering Group, integrated little science into the overall big science undertaking. Many Earth observatories continue the tradition of blending litte and big science. Individual scientists from universities request time on a large telescope, usually funded by public money, in order to make observations. The scientist might have funding from the National Science Foundation or NASA. There is no longer a distinction between big science and little science, but a single scientific enterprise in which the two are woven together in a set of interdependent relationships, cach part of the same fabric.

Chapter 12

The Space Shuttle's First Flight: STS-1

by Henry C. Dethloff

The first mission of the space transport system (STS-1) or Space Shutle, flew on April 12, 1981, ending a long hiatus in American space flight. The last Apollo lunar mission flew in December 1972, and the joint American Russian Apollo-Soyuz Farth orbital mission closed in July 1975. The National Aeronatuics and Space Administration (NASA) intended that the shutte make that permanent link between Earth and space, and that it should become part of "a total transportation system" including "vehicles, ground facilities, a communications net, trained crews, established freight rates and flight schedulesand the prospect of numerons important and exciting tasks to be done." It was to be "one element in a grand design that included a Space Station, mmanned planetary missions, and a mamed flight to Mars."'

Awarded the Collier Trophy (in a tradition that began in 1911), the flight of STS-1 represented the greatest achevement in aviation for 1981. NASA, Rockwell Intemational, Martin Marieta, Thiokol, and the entire government/industrial tean responsible for the design, construction, and flight of the spacecraft, as well as the crew of the shutle, John Young, Robert Crippen, Joe Engle, and Richard Truly, were all recipients of that award. Since 1962, NASA aerospace projects, including Mercury, Gemini, Apollo, Landsat, and Skylab, had received ten of the wenty Collier awards. Now, the eleventh in twenty years went to a NASA team that had designed and flown something remarkably different from those previous crati. For the Space Shuttle was a true aerospace catio a reusable vehicle that could take off from the Earth, enter and operate in space, and return to an Earth landing. N. Wayne Hate, a missions flight director for the shutule, likened it to a batteship, which while it may have only a few aboard, nevertheless had a crew of thousmets stationed around the word and linked by Mission Control. Owen Morris, the Engincering and Systems Integration Division head for the shutte Progam Office, described the shutte as a particularly complex, integrated machine and an enormons engincering chatlenge.

Although it flew its maden woyge only in 1981 , NASA's shmtle program began many years earlier and predated Apollo. In the late 1950s, as human space flight began to be seriously considered and plamed, most scientists and engineers projected that if space flight became a reality it would build upon logical building blocks. First, a human would be lofted into space as a passenger in a capsule (project Mercury). Second, the passengers would actuire some contmo ower the space vehicke (project Gemini). Third, a reusable space vehicle would be developed that would take humans into Earth orbit and return them. Next, a permanent Space Station would be constructed in a near-Eath orbit through the utilization of the rensable space vehicle. Finally, planetary and luma flights would be launched from the Space Station using relatively low-thrust and reusable (and thus lower cost) space vehicles. The perception of what became the shotle as that reusable space vehicle associated with an orbiting space station held fast well into the vehicle`s developmental stages.

[^117]One of the known quantities in space flight was that the velocity required for a vehicle to escape earth's gravitational pull was only 1.41 times the velocity required to achieve earth orbit. The great costs associated with space flight included the cost of fuel used to achieve orbit, the cost of the expendable boosters and fuel tanks used to drive a space vehicle into ofbit or into space, and the effective loss of the inhabited capsule or vehicle which, while it returned, could not be reused. Space quickly came to be an expensive business, and as it developed, the shutte, more so than previous projects, was cost-driven, both in its incentives and in its construction. But because the nation's mission in space came to be to put an American on the Moon within the decade of the sixties, NASA's Apollo lunar program preempted both the Space Station and the shuttle. And, when the shuttle appeared without a Space Station to build and service, it appeared emasculated and detached from its intended purpose-to some extent an aerospace plane without a space mission.

When did the Space Shuttle begin? At what Point was it Created?

It could have been in March 1960, when a NASA plaming team developed a statement of work for a "Reusable Ground Launch Vehicle Concept and Development Planning Study." Or it could have been at an Apollo applications conference held at the Manned Spacecraft Center (later the Lyndon B. Johnson Space Center) in Houston on October 27, 1966, when leaders of the Marshall Space Flight Center and the Manned Spacecraft Center agreed to pursuc independent studies of a shuttle system along the lines of a March 1966 statement of work. Or most certainly a point of inception would be January 23, 1969, when George E. Mueller, NASA's Associate Administrator for Manned Space Flight, approved contract negotiations for initial shutle design work." Or it could have been even much carlier:

Under the authority of House Resolution 496, approved March 5, 1958, the House Committee on Science and Astronatios, chaired by Senator Overton Brooks, Democrat of Lonisiana, convened hearings designed 10 provide direction and guidance for the creation of a new Federal agency that would head America's space program. During those hearings many "experts" described the development of space stations and "controlled space flight" as the prerequisites for expeditions to the Moon and beyond. Brigadier General A.H. Boushey, Air Force Director of Advanced Technology listed the development of spacecraft, piloted by humans, as "the most important" of the goals which must receive attention before there could be true exploration of space:

> By piloted spacerraft, I refer to a vehicle wherein a pilot ofperales controls and directs the vehicte. This is quite a differont concept from the so-cialled man-in-space proposal which meroly takes a haman 'along for the ride' of permit observation of his reations and assess his capabilities.'

Boushey believed that by the end of the decade of the 1960s, a large Space Station could be assembled by piloted "space tugs," that would remain in orbit throughout the ir useful life and operate only ouside the atmosphere. "In addition to the 'tugs,' manned
3. Memoramdum, Max Akridge (IDD-RV), Space Shatale History, Jamoary 8 , 1970, MSFC: Reperts Subseries, JSC I Iistory Office Houston, TX.
4. Statf Report of the Select Committer on Astronatios and Space Fxploration, The Next Ton Yenary int Spare, 1959-1969, K6th Cong., lst Sess., House Doc. No. 115 (Washington, DC: Govermment Printing Office, 1459). Pp. $\mathrm{K}-4$.
resupply and maintenance spacecraft will shutle from the Earth's equator to the orbiting satellites." Subsequently, a piloted spacectaft that would refued at the Space Station in Earth orbit, "will land on the Moon.",
T.F. Morrow, vice president of Chrvaler Coporation, thought that space stations on platforms might come in later decades, but that by 1969 one could expect "space trips encircling the Earth and the Moon." Dr. Walter R. Domberger, rocket expert for Bell Airctaft, expected to see "manned and antomatic space astronomical observatories; manned space labomories; manned and antomatic filling, somage, supply and assembly space facilities; mamed space maintenance and supply and rescue shipsall climaxed by the first manned flight to the Moon."."

Roy K. Knotson, Chamman, Comporate Space Committer for North American Aviation, offered a much more exact definition for a "winged" space vehicle. While a piloted capsule (such as Mercury) would take a person into space and provide important physiological data, "Llimately . . consideration must be given to the problem of reentering the Eath's atmosphere from orbit in a winged vehicle capable of landing at a designated spot under control of a pilot.": Ite viewed Noth American Aviation's X-IS (then under development) as a forcrmmer of an acoopace craft, and believed solving the reenty problem would be the most crucial engineering task associated with developing a reusable shmule. He offered, in 1958, a remarkably clear description of what would one day become the shutte:
A large mocket booster reould be used to boos the whicle to high allitudes. Then a rock-
et engine instralled in the ship itwelf would be igroited to provide further accelerwtion to
the 25.000 miles per how required for orbitimg. In a low trajectory, the wehicle would
pass halfuny around the Earth in 55 minues. A retrorockel would start the shipo out of
atmosphere, the nowe and edges of the wing and tait will glow like irm in a blacksmith's
forge. The structure will be buill to withstand this extrome comdilion, hourzer, and the
pilot glide doum to a dead stick landing.*

If not a point of inception, there was at least in 1958 a sense of direction for the development of a reusable aerospace craft.

Even earlier, before the lame of the Soviet Sputnik satellite, scientists and engineers serionsly discussed the construction and operation of space arati. Katft A. Eriche, for example, presented "Galculations on a Manned Nuclear Propelled Space Vehicle" to the American Rocke Society in September 1957. In Jantaty 1957, NACA engineers on the staff of the Ames Aeronatical Labotatory at Moffell Fiete, Califomia, hiled a secree report On their "Preliminary Investigation of a New Reseam Aippane for Fxploring the Problems of lifficient Hypersonic Flight." It was to be an aircaft conside mably exceeding the performance levels of the X- 15 with "a rocket boost . . . W Mach mombers of the order of 10 and altitudes of the order of 140,000 feet."'

[^118]With the insight and diection provided by Congress, the experiences of National Advisory Committee for Aeronatics (NACA), and the American (and Canadian) aircraft industry, NASA set about after its inception in 1958 to provide the United States leadership in space explomation, space science, and spate technology." But American successes in space seemed painfully gained, and slowly realized.

Not only had the Soviet Union launched the first satellite into orbin on October 4, 1957, but in 1959 Soviet rocket scientists launched thee successful interplanetary craft into space. The second, Lum II impacted on the Moon in September; Lam III Ilew behind the Moon in October 1959. On April 12, 1961, Major Yuri Gagarin became the lirst person to "leave this planet, enter the void of space, and retum." By 1961, with the enconagenem of the Democratic Party campaign for the presidency. Americans had begun agonizing over the "missile gap." After the elections and the inatuguation, on May 25, 1961, President John F. Kemnedy and Congress set a new course for NASA, precmpting existing developmental programs and schedules. The United States, before the decade is out, should land "a man on the Moon" and retum him safely to Eath."

The Apollo program became the leading effort. An orbital Space Station and Earth-tombit spacecati, while they might contribute to a continuing presence in space and provide a platom for further huar or planetary explomation, did not contribute to the shont tem goal of an Anerican lumar landing within the decade. NASA readjused its shedules and priorities to accommodate Apollo. The Space Station and the reusable acrospace craft remaned viable, but future, options. Marshall Space Fligh Center (MSFC(), in paticular, continued to study the reusable vehicle concept and as early as jamany 1963 , developed a statement of work for a fully reusable rocket-powered whide that could canty civilian passengers, and a sizable paybad. Marshall awarded independent contacts to Lockheed Aircyatt and North American Aviation for design and development studies. But the NASA focus continued to be on Mercury, Gemini. and Apollo. By the end of 1963 , the Mercury programended. The last Gemini mission flew on Nowember 11, 1966, NASA scheduled the first Apollo flight for December 5, 1965. An Apollo with a Satumbooster, which was to send A pollo on its hanar woyges, flew an mpiloted test on Febmary 26, 1966.: It appeared likely though most of 1966 that the Apollo-Satum lumar program was on schedule. Should NASA complete its mission to land a man on the Moon within the decade, what would happen next?

NASA began to address that issue by establishing an Apollo Applications Office, in 1996t, that would devise programs to utilize Apollo techmology in non-lumar programs. In October 1966, the ammal meeting of the American Institute of Aeronamtios and Astronantios focused on the question. "After Apollo, What Nexte" And, in 196G, just as the Apollo-Satum progran seemed on the verge of success, Congress and the American publie began to divert attention and public funds from space and NASA to the more urgen business of a growing war in Vietnam. The war, and money, began, even in the midst of Apollo, to tum NASA's attention to the "more practical" approach to space." More practical meant more eflicient, less costly, more conomic. Discussion of an orbital space platform or station, and a rensable-Earth-tororbit supply vehicle resived.

[^119]Thus, in March 1966, a special NASA phaming team developed a statement of work for a rensable ground launch whide, and in October Manshall Space Flight Genter and whe Manned Spacecraft Center agreed to pursue independent study and research on such a spacecrafi. NASA budgets, however, were becoming increasingly constraned, and at a January conference at NASA Headquaters administators reluctantly agreed that there should be no new lannch vehicle development in order to reduce the budget problems. The vear, 1967, passed without any real progress in the development of a rensable spacectaft, but financial pressures became greater tather han less. In Janary 1968, George Mucller rekindled sentiments for work on a reusable spacectali as potentially a cost-siving measure:

Where we stand now is the feasibility grenerally has bern established for rousabitity. And ue hawe much data on many romepths. We herve am wurevain market demand and operational requirments. The REll casts for fully rensable sysfoms, including incremental

 dollars to drophop paytoads and materes (dollars are samer)."

Nevertheless, NASA put a decision for the development of a reusable vehicle on hold.
Meanwhile, in collaborative sessions with the Air Force, which was independently studying orbiting labomories and arospace planes, NASA and Air Force congineers agreed on the need to develop a logistios space vehicle with a paybad range of 5,000 to 50,000 pounds for use with a Space Station. Marshall and Manned Spacectaft administrators again conferred in October, and agreed to issue a request to NASA Headquaters for a joint Phase A (concept detintion) study for a logistics space vehicle. Headquarters tentatively agreed to awated a study contract. but withheld approval pending the results of the Apollo stlight.:

Apollo 8 was the lirst Apollo flight carrying "human cargo" powered by the Sattom rocket. Its original flight plan was to go into Earth orbit, but again MSFC and MSC combined to convince leaders at NASA Headquaters that Apollo δ should be a circumbmar llight. Athough perceived to be a "high risk" effort, Apollo 8 , launched on December 28 , 1968, put astronauts Fank Boman, James A. Lovell, Jo and Willian A. Anders into ten onbits about the Moon, and returned them safely to Eath. That thight provided greater assuance of the probability of completing a lunar landing within the decade, and acedcated the need to commit to a post-Apollo program. On Jantary 23, 1969, George Mueller approved contract negotiations for design work on what would become the Space Shutule." Touchdown by dpollo $/ 1$ on the Moon's surface in July 1969 brought work on the shuttle into shaper focus. The question, "After Apollo, What Next"" needed to be answered soon.

President Richard M. Nixon appointed a Space Task Goup to study the problem and offer options. Internal NASA studies complemented the work of the task group. On January 29, NASA awarded Phase A study contracts for elements of an "integral launch and reentry vehicle" (LLRV). Lockheed Missile \& Space Company sudied clastered of modular reusable flyback stages. General Dymanes/Comair examined expendable fuel tanks and solid propulsion stages. Both contacts were administered by Mashatl. The Manned Spacecraft Center in Houston directed a study by North American Rockwell for expendable tank configuations coupled with a reusable spacectaft. McDonnell Douglas.

[^120]working under Langley Reseath Center supervision, examined tank, booster, and spaceGaft ("triamese") configuations. Matin Marietta conducted an independent design study also submitted to NASA. ${ }^{17}$ Concurrently, a joim DOD/NASA study began on space transpotation which would also go to the President's Space Task Group.

In October 1969, Congressman Olin E.. Teague, Chaiman of the Honse Committee on Science and Astronatic's subcommittee for NASA oversight, asked the Director of each NASA Center involved directly in the manned space fight program to review various "Ievels of effor" as they might affect future programs when measured against the Space Fask Goup recommendations. He requested an evaluation of the Space Task Gromp's preliminaty recommendations that NASA locus on a reusable space craft and a permanemt space station. And he requested personal leters from Dale D. Myers (Associate Administrator for Manned Space Flight). Robert R. Gilruth (Director of the Manned Spaccoaft Cemer), Kurt H. Debus (Director of Kemedy Space Center), Eberhard Rees (Director of Mashall Space Flight Center), and Wernher von Brame (Deputy Associate Administrator), "setting forth their views on the importance of moving forward with the Manned Space Flight Program at this time.". ${ }^{\text {M }}$

Date Myers described the changing foous of the mission in space from the single purpese pursued in the Apollo program, to a broader effort to use space technology for the benefit of man. "In eath orbit, a space station supplied by the reusable shutle will provide additional coonomic gains and practical benefits." They would facilitate a considerable expansion in space activities and increase the number of visitors into space."

Robert R. (ibituh, Diector of the Mamed Spacectaft Center, responded that he firmIn believed "that the reusable Space Shumbe and the large Space Station are vital elements which must be developed." He described the "cath-to-orbin shutle" as "He keystone to our pent-ipollo activities." Kur Debus described the broad technology advances required for the development of a shutte and Space Station, and noted that one camot always identify the total utility of an imovation. Throughou history, he noted, innovations have been made without identifying all the uses and applications-he named the whed, the telephone, the car, and the airplane as good examples. He advised proceeding now with the development of a fully reusable Space Shutle, and the initiation of Phase B studies. Eberthatd Rees wrote that the answer to the high costs of space transportation is to develop a system "which operates much like the cango and passonger airlines, mamely a Space Shutle System."3

Wemher von Bram reviewed the acomplishments of the past decarle, noting that the space program thus far "brought renewed strength in matomal leadership. in security, in cducation, and in science and tedmology, and in the will of Ameria to suceed."
the kes to our juture acomplishments in spare will be willingness to umdertake the developments that will advance this nation to none plateaus of opratiomal flexibitity and will give us the technolagical adrances needed to assure romomical operations in space. No ome wenld question the justification for a jet aircraft that can be flown oner and over again insteced of just onter. With the Space Shutle and the Space Station wer zill have the space age equivalent of the fet limer. ${ }^{21}$

 Aprllo Applications Fill- $072-4+45$, JsC Histor Office

?!. Imul.
II. Hid

Pasible configurations comsidered for the Siace Shutle as of 1970. (NASA photo).

Robert F. Thompson, who became the Manned Spacecraft Center's Space Shutte Program Director in April 1970, explained that the emphasis in the initial Phase A and DOD studies was to develop a fully reusable system, which he perceived at the time as the most cost-effective configuration, because of anticipated lower operating costs. However, as early as May 1969, the costs of developing fully reusable systems became ominous. By the end of the year NASA Headquarters shifted the Phase A studies to an emphasis on a combination of expendable and recoverable boosters coupled with reusable spacecraft. The Phase A reports were received in November 1969, and the DOD/NASA joint studies were completed in December 1970. Both the NASA internal studies and the DOD/NASA study contimued to support a fully rensable spacectaft."?

In May 1970, NASA awarded Phase B contracts to a Nonth American Rockwell and General Dynamics team and to a McDomell Douglas and Martin Marietta team for definition studies of a fully reusable shuttle. But in June, contracts were awarded to the Grumman Aerospace and Boeing patmers for studies of various expendable and reusable booster and fuel tank designs, to Lookheed to examine an expendable fuel tank for the orbiter, and to Chrysler for design study of a single stage reusable orbiter. There were other contracts to study various assemblies through the remainder of 1970 .2 The year ended without a decision as to the design of the shatte, but with a number of interesting options.

But the estimated costs of developing a fully rensable shutle were rising, and costs soon became the decisive clement, not only in the shutle design, but in detemining future NASA programs.

The development of a fully reusable shutle was conservatively estimated to "require more than a doubling of NASA's budget, unrealistic at any time and particularly so in the light of increasing military expenditures in Southeast Asia." During congressional hearings on the FY 1971 NASA budget, NASA Comptroller Bill Lilly responded o guestioning that if choices had to be made, the shottle had to precede the Space Station because, "if they could not be developed concumenty, the shattle in extended sortic, could act as a surrogate Station and the long tem future of space flight lay in reducing the cost of all operations, but foremost in the cost of delivery to low Earth orbit. ${ }^{24}$ As will be seen, funding was tentous throughout the development program. The decision on a fully, or even a partially, reusable shottle apparatus was still pernding.

Finally, on April 1, 1971, NASA directed that the Phase B contracts shift the emphasis from "fully reusable" to consider an "orbiter" with external expendable hydrogen tanks. James C. Fletcher, who had replaced NASA Administator Thomas O. Paine in April, believed that whatever the technical merits of a fully reusable space vehicle might be, the $\$ 10.5$ billion price tag currently assigned shutle development simply would "not fly" with Congress. In June 1971, Max Faget, who headed MSC's Advanced Missions Program Office, presented an alternate condiguration, that is, a wo-stage shutle with a drop tank orbiter: Administrator Fletcher accepted the configumation as NASA's choice, and on June 16, 1971, sent Congress a letter of decision. Sudies of the new configuration with a fully reusable orbiter, and expendable or reusable extemal booster rockets and tanks, subsequently lowcred estimated R\&D costs to about $\$ 5$ billion, or one-half that of the fully reusable wehicle.${ }^{\text {. }}$.

The new partially reusable configuration involved the lowest development cosis, but also cuhanced the aerodynamios of the shotte's orbiter, and safety. An internal tank
 Whuth livary pp 49-9x

 Histan Office.

Shuthr Desigm Finolution 1972-197.
design required heavy insulation of the spaceoraft, much heavier launch weights, and flight difficulties resulting from tank torsion and "slosh." The very high pressure required in the fuel tanks also created higher risks and engineering and maintenance problems.". Refinement of the proposed new configuation took yet another two years. For the time, the solution seemed the best in terms of costs and technical development.

Despite NASA's June 1971 commitment to a reusable orbiter latuched by an expendable or partially reusable propulsion system, there was no specific congressional funding for shutle R\&D. Shutte funding ame from general NASA spaceflight operations programs through FY 1973. Moreover, shutte program expenditures had risen from \$19.5 million in 1970 to $\$ 78.5$ million in $1971 .{ }^{: 7}$ Clearly, fommal approval had to be secured or study on the shuttle project had to be teminated.

In June 1971, NASAS Associate Administrator for Manned Space Flight, Dale D). Myers, who had managed North American Rockwells shumle development work before he replaced George Mueller at NASA headquaters, assigned Marshall responsibility for development of the shottle man engine and boosters, and the Manned Spacectaft Center responsibility for developing the orbiter. Throughout 1971 and into 1972, NASA extended the Phase B commacts, and awarded new ones to examine varionsly the use of existing Titan and Saturn rockets as shute lameh vehicles, the feasibility of using liquid or solid propulsion boosters, and methods of recovering boosters and external tanks. In Jamuary 1972, Marshall Space Flight Center atwaded contacts to Aerojet-Gencral, I ockheed Propulsion Company, Thiokol Chemical, and United Technology Center to study the possibilities of using
26. Hid. p. 292.

existing 120 -inch and 150 -inch solid rocket motors as part of the shuttle booster system. ${ }^{2 x}$ Preliminary and final reports confinned the lower costs of the new shutle configuation.

On January 5, 1972, Administrator Fletcher and Deputy Administrator George I ow med with President Nixon and his staff assistant, John Erlichman, for a review of the shutle program. Nixon approved the revised and less costly shutle program, and wanted to stress boob the civilian and the international aspects of shmete development and funture missions.-s

Nixen's suppont for the shutle, howerer, became hoisted on the petard of the growing difficulties in Vietman, the proposed Air Force supersonic transport plane (SST) annelled by Congress the previous year, and party politics. On January 7, Senator Edmund Muskie (D)-ME). a Democtatic candidate for the presidency, old Florida andiences while campaigning there that the Space Shutle was an extavagance and should be shelved. Reflecting the sentiments of many Americans, the greater prionities of the nation, he sad, were "hongry chithen, inadequate housing, decaying cites, and insecure old age." Ite accused President Nixon of practicing "pork bared politics" by supporting the $\$ 5.5$ billion space program. "

Senator Walter Mondale (D-MN), another aspirant for president, called the Space Shutte program "ridiculous" on a mationally televised debate. "At the present and known levels of space activity, to produce the Space Shuttle would be like buying a flece of goldplated Cadillacs to go on and repair the tie of a Pinto. . . It is not a new explotation weapon. It is simply a touck-a very expensive track that is not woth the money."

Senator Willian Proxmire (D)-WI), who sucessfully led the fight against the SSI in 1971, called Nixon's decision to go athead with what he estimated to be the " $\$ 15.5$ " billion shuthe project, "an omageons distortion of budgetary priorities." The Presideme. Proxmine said, had chosen the Space Shutle over schools, public healah, housing, mass tansit, open space, enviromental needs and other vital programs. ${ }^{* 2}$ The space program also had powertil adrocates in Congress, including Texas Congressman Olin E. Teague (and the entire Texas delegation), Mississippi Semator John C. Stemis, and Semator Stuart Symington of Missomi, among others. Nevertheless, the administative decision to proceed with shutte development rested upon Congressional approval and budgets. The fiture of the Space Shutte seemed particularly tenusus in 1972 as Congress began the budget debates near the end of fanuaty.

Meanwhile, NASA increased its allocation for shathe spending from $\$ 78$ million in 1971 to $\$ 100$ million for 1972 from its intemal operations fiunds. In March 1972, Myers assigned the Manned Spacecraft Center in Ilouston "lead center" authority for overall Space Shutle Progran Development management and contool. Robert F. Thompson, a member of the original Space Task Group at Langley Research Center (which became the nucleus of the Manned Spacecratt Comer in Houston, Texas) continued as manager for the NASA-wide Shuttle Program Office. Thompson previously headed the Manned Spacectaft Center's Apollo Applications Program Office, concerned with post-Apollo planning."

During 1971 and 1972, the Manned Spacectafi Center and Marshall Space Flight Center began to fold persomel from Apollo offices into the shutle program. Under the duress of budget cutbacks, and temure, and with the successtul close of the Apollo program, many NASA administrators and engineers began to leave NASA. Wemher von Bram relin-

U8. Ibrd., p. 4 N .
29. George Lom. "Meeting with the Pesident on Jantary 5. I972," memo for the record, Jambary 12, 1972,

30. Miami forald, banamy 7 , 1972 ; Typed memonandum, political roundup, fanuary $7, ~ 1979$, Shutle Papers, 007-2. J. Jic: History Office.

32. IInusmin Fmo. Jambaty 9, 1972.
 43, JSC: History Oflice
quished the post of Director of Marshall Space Flight Center to Eberhard Rees in 1970. Robert Gilruth stepped down as Director of the Manned Spacectaft Center in January 1972. Chris Kraft, formerly head of Apollo flight operations, replaced him. ${ }^{34}$ At the very height of Apollo successes, NASA seemed to be imploding, while at the same time it redirected persomel and funds into the shattle program. There were concurrent reductions in force and organizational realignments among NASA's acrospace contractors.

Although NASA had some 14 years of space flight expericnce behind it by 1972 , the shuttle was something very new and very different from what had gone before. As Aaron Cohen, manager of the Obbiter Project Office in Houston explatined, we "orbiter, athough similar to Apollo in that it goes into space, is very differem." The shute orbiter (which is ustally identified in the public mind as the shutle) is not simply a spacectaft, but a latuch vehicle, a spacecraft, and an airplane combined. The eransition from Apollo to shutte, Cohen said, represented a transition of technology spanning ten years. There were major technological advances over Apollo in temms of materials, electronics, propulsion, and software. The launch configuration of the Space Shuttle was also different than hat ever flown before. With Apollo the thrust was through the center of gravity, but with the shotle the thrust was throngh the orbiter with an offset external tank. That configuration raised enomous problems with the structural dyamics of the assembly. In addition, whereas Apollo, Gemini, and Mercury launched from series bums, the shutue utilized a parallel engine burn.* Most significantly, perhaps, the shute engines, unlike the Satum or Titan engines, were "throttable," having a controlled engine bum.

Cohen stressed that certain technical elements of the shutte were so advanced they were "outside the existing state of the art." The controlled bum and the high pressures and temperattures at which the engines operated were an engineering challenge. Even to test the apparatus required imovative testing equipment and procedures. The themat protection system involved the development of a heat-resistant tile that had never previously existed. Each individual tilefitted on the onbiter nose and underbody had to be individually designed and tested. * One of the most highly sophisticated and advanced systems was the avionios (guidance, navigation, and control) system which fised electronics with avation (hence avionies) and made the guidance and control systems responsive and complementary to human direction.
"The avionios system synchronized four centralized compoters and had a single computer independent of the other four." The fifth computer was on standby to step in should there be a software problem in one of the oher computers. The four synchronized computers, the "heart and brains" of the shotle, "communicated with each other 440 times per second." One computer was the lead computer, the other there "voted" on the input and output of cath other: "Should the three other computers disagree with the lead computer, it was voted out of the system." Air data, microwave sensors, gyros, accelerometers, star trackers, and inputs from ground based laboratorics all fed into the avionics system." The shutte avionics system represented revolutionary advances in electronics, computer technology, and guidance and control in the few shor years since Apollo. Similarly, Apollo commmications systems (using a unified S band) were inadequate to support shate missions.

Shutte arionics systems were so advanced that special labomatores were required to design and develop them. NASA constructed a $\$ 630$ million Shuttle Avionics Integration laboratory (SAIL) at Johnson Space Center for the job. A special Shutle Mission Simulator (SMS) tained crews to use the shatle and fly missions in what is now poputar-

[^121]ly termed a "virtual reality" setting. Astronats retuming from shutte missions reported that the simulations were so accurate they felt they had flown the mission many times. ${ }^{3 \times}$ Despite the advanced technologies used by the shuttle as compared to Apollo, Cohen believed that a permanent presence in space, that is the establishment of a Space Station, would require yet again major advances in new technologies.

New technologies were expensive. Research and development costs (R\&D) grew rapidly. Inflation, which peaked at almost 13 percent in 1973, diminished appropriated funds and budgets propotionately. NASA and other government agencies were particularly affected by inflation because appropriations were approved in a previous year at fixed dollar levels. NASA found itself spending dollars that bought much less than anticipated. Congressional appropriations for NASA R\&D declined by ahmost $\$ 450$ million (15 percent) in 1971 , and were reduced again in 1972 by another $\$ 40$ million. R\&D) appropriations improved by about $\$ 80$ million in 1973 , but collapsed by over $\$ 400$ million in 1974. During the most critical veats of shutte development, from 1971 through 1977. R\&D appropriations remained remarkably stable. But the value of the dollars appropriated declined by about 50 percent in those five years. Budget stresses cansed "slippage" and delays in development and production, and those in tum, raised the final costs of developing the shutle.

Table I, below, provides an overview of total NASA R\&D) funding and designated shutle finding during the developmental stage of the shatle."

Table I

NASA Appropriations, 1969-1978 (int thousands of dollars)

Fiscal Year	 Development	Space Shutle Funding
1969	$\$ 3,530,200$	$\$-0-0$
1970	$2,991,600$	9,000
1971	$2,630,400$	160,000
1972	$2,623,200$	115,000
1973	$2,541,400$	200,000
1974	$2,421,600$	475,000
1975	$2,420,400$	805,000
1976	$2,748,800$	$1,206,000$
1977	$2,980,700$	$1,288,100$
1978	$2,988,700$	$1,348,800$
1979	$3,138,800$	$1,637,600$
1980	$3,701,400$	$1,870,300$
1981	$4,223,000$	$1,994,700$

the shutle was finded as part of the spacellight operations progtan through FY 1973.
"for a space station only.
for shutce and station; $\$ 6$ million requested for station definition.
[Source: NASA Pocket Statistios (January 1994), and for shutle funding,
1960-1977, see I inda Neuman Ezell, ed., NASA /Iistoncal Itata Brok, 3:69.|

```
38. Whid; and we Dethloff, "Suddmly Tumomon" (ame . . ", pp, 243, 947-51.
30. Frall. NLS:1 Histomimal bata Bowk, 3:19, 69.
```

That funding should be viewed in light of NASA's overall budget which, based on the value of 1992 dollass, dropped sharply from the FY 1965 peak in excess of $\$ 22$ billion, to a 1974-1979 average of only $\$ 9$ billion, as adjusted for inflation using 1994 constant dollars.

Although shutle-specific fimeling by Congress did not begin until 1974, in 1972 and 1973 NASA began to move from the planning and study stage of shate development to the design and production stage. One of the great achievements of shatle development had to do with the production (and business) management of complex disparate systems and integrating those systems or machines into one wholly integrated greater machine. There were many (in fact all) of the NASA centers involved in the creation of the Space Shutte. There were far more, literally hundreds, of independent private manufacturers involved in its development. NASA, in effect, was the management team assembled for the production of a single machine by hundreds of diverse private manufacturers. NASA did not build the shutle, private industry did. Thus, the Space Shume continued the peacetime mobilization of American science, enginecring, and industry, begun at the inception of NASA and America's entry into the space age-albeit, pertaps, at a lower level.

The general NASA management structure was, of course, inherited from the Apollo and earlier programs, but there were important refinements. In 1971, NASA Headquarters assigned Marshall Space Flight Center responsibility for developing the booster stages and the shutte main engines. Marstatl, of course, had basic propulsion (engine) responsibilities from the begimning. Fngine testing was assigned to Stemis Space Center, which had begun as Mashall's testing laboratory for the Apollo-Satum engines. The Manned Spacecraft Center had responsibility for developing the orbiter, or piloted vehicle. Such had been Houston's basic responsibility since its establishment in 1961. Kennedy Space Center, fomerly the Cape Canaveral Iannch Operations Directorate under Marshall, had responsibility for latuch and recovery of shoule llightsas it had theoughout the program. The technical, developmental work on the shotele at all the NASA centers was coordinated through the shutte Program Office located at MSC. in Honston. (Under the Apollo program, many collaborative management decisions were reached informally between the Maned Sparectaft Center and Mashallo of were cootdinated or passed through the Manned Space Flight Office in Washington.) The Shutte Program Office, in turn, reported to the Office of Manmed Space Flight an NASA Headquarters in Washington."

The command and control management structure resembled the Apollo management systems, but there were some important differences. Production management was more decentralized than before, but control (integration) was more centralized. The shutte program did rely (even more heavily) on Apollo-type Integration Panels which coordinated design and construction projects so that the pieces literally fit together and worked together: Integration was the critical element in shutle production-which, as Owen Morris noted, was a so much more complex machine than Apollo. The Integration Panels reported to the Systems Integration Office in the Shutte Program Office at the Manned Spacecrafi Center and the Systems Integration Office reported to a Policy Review Control Board chaired by NASA Headquarters."

Shuttle management became a "state-of-the-at" system for very large-sale industrial production. There were, of course, impertant precedents, such as the construction of the Panana Camal, a battleship, hypersonic aircraft, and Apollo. None of those systems, how-

[^122]ever, involved the complexity of machinery, electronics, computers, and materials as entered into shatile construction.

Within the three basic management levels for shutte development technical engincering and management decisions flowed from the bottom up. The "bottom" consisted of the Level III project offices, such as the Orbiter Office at the Manned Spacectaft Center and the Booster Office al Marshall Space Flight Center. The I evel III offices managed the production contracts. Level III offices maintained a Resident Office (or engineer) at the primary contractors production site, and often co-located a manager with the appropriate I.evel II division. The Level II office was the Shuttle Program Office. It had responsibility for systems engincering and integration, configuration, and overall design and development, or as Date Myers stated: "program management responsibility for program control, overall systems engineering and system integration, and overall responsibility and authority for definition of those elements of the total system which interact with other elements." The level II office established "lead center" authority for engineering and development management. Headquarters, or level I, in tum had overall program responsibility and primary responsibility for the assignment of duties, basic performance requirements, the allocation of funds to the Centers, and control of major milestones. ${ }^{2}$

The management structure created a very decentralized, independent production system-very compatible, if not necessary, to the very diverse and antonomous private entities that made up the manufacturing or production base of the NASA program. Gne of the great achevements of the space program, contrary to the tendency in large scale bureaucratic enterprises, was to hamess the basic strengths of American industry through decentralized management and production.

Athough it wats not designated "I evel IV", the real production base of the shutue program was private industry. The basic management tool was the NASA contract, and effectively, competition for the contract. It was the contract (and the primary contrator's subcontracts) that mobilized American industry in support of the space program.

The preliminary study, design, and feasibility contracts (Phases A \& B), mentioned carlier, with in-house stody and tests produced the technical parameters for issuing an RFP or Request for Proposal. NASA began issuing RFP's for shamle procurment in the spring of 1971 . Aerojet Liquid Rocket Company, Patt \& Whitney, and Rocketdyne were invited to submit proposals for the development of the shutte main engines. Soon after. the Manned Spacecraft Conter issued an RFP for a shuttle themal protection system, to protect the orbiter and its occupants during the critical reentry phase. In July 1971, MSFC: selected Rocketdyne as the primary contractor for the production of thirty-five shattle main engines. Pratt \& Whitney challenged the Rocketdyne award and during a GAO (General Accounting Office) review, Rocketdyne was given an interim contract. In March 1972, MSC issued an RFP for the development of contaneriaed shuttle payload systems, and NASA issued an RFP for the development of the shattle, with the design due in May"

Nonth Amerioan Rockwell (later Rockwell Intemational), McDonnell Donglas. Gomman, and lockheed submitted proposals for the shutte. NASA approved an interim lefter contatet with Rockwell in August 1979, and issued a final contract on April 16 . 1973. Rockwell, in tum, subcontacted major components of the shutle orbiter to other acrospace firms. Fairchitd Republic Division of Fairchild Industries constructed the vertical tail unit: Grumman, the delta wings; General Dynamies' Convair Aerospace Division suboontaded for the mid-fuselage section, and McDonnell Douglas had responsibility for
ti. Sec note above; Catalog of Comer Role (Washington, DC: NASA, December 1976), pp. 1-30, Loftus Subseries, JSC: History Office.
13. Ezell. Nis I Itstorial Datr Bord, 3:122.

The Simer Shulte Missiom Pofile (NASA fonsto).
the orbital manewering system." The contractor and subcontractors, in tum, had subcontracts and suppliers from the very broad gamut of American industry. Flectronics, ceramies, metal fabrications, plastics, and chemicals were all heavy contributors to the shutte. The shutlle was to be a composite creation of American industry, techoology, and labor.

The shutte grew and changed even as it came into being. New problems, new concems, and new technologies altered the configuration and the engineering as the shutule took shape. Each new alteration, in turn, often affected the design, performance, and configuration of other systems. The shutle offers a classic study of "systems engineering." For example, the decision to uilier a "remmable" external fuel tank rather than build the tank as part of a fully integrated reusable vehicle, did not solve the fuel tank problem. Similarly, although NASA opted for a fully reusable orbiter, the decision as to how to build or equip the orbiter to resist the extreme reentry temperatures came later. And while the major function of the shutte was to carry "payloads" into space, the design of the payload bay continted to change. Changing payloads altered flight characteristios and changed tlight plats. Building an acrospace craft unlike anything buile before, and one that could never be "test" flown in an ummanned version (minlike Apollo), placed engineering and design work on the creative edge.

Robert F. Thompson, the Space Shutte Program Manager from 1970 through 1981 , credits "the decision to abandon the "fully reusable" ground rule and employ expendable tankage for the orbiter main rocket engines propellant was pertaps the single most important configuration decision made in the shatle program." And it occurred late in the definition stage of shme development. Though most of 1972, NASA intended to lannch the shutele into orbit with two solid rocke boosters fueled by an external propellant tank, which package would then be deorbited using smaller solid rocket motors, retrieved, and reused. On June 5, 1972. Howard W. (Bill) Tindall, John Mayer's deputy and data coordination chief for Apollo mission planning, flagged a critical problem in retuming the fued tank from orbit. "It's becoming increasingly evident that a probable major problem area and operations cost driver will be the IIO tank separation and retrofire." It appeared, he satd, that a very expensive, complex, and expendable attitude control sysm would be required for the tank to return it from orbit. The problem, he suggested, should be given high priority. ${ }^{4 t}$ was.

The problem was directed to a tean from the Advanced Mission Design Branch of the Mission Planning aud Analysis Division in the office of the Director of Fligh Operations at the Manned Spacecrafi Center. The tean reported in August that the fuel tank could be "staged" (dropped) prior to orbit. That would solve the expensive and difficult tank reentry problem. The idea was rejected, however, because for the orbiter to achieve orbit, it would need to do so with its own engines, and that would require additional intemal liquid oxygen/liquid hydrogen fuel tanks. That would mean a heavier lifting body, higher risks, and redesign of the entire shutte configmation. The Advanced Mission Design Branch restudied the problem and discovered that the existing orbital mancuvering swstem could accelerate the orbiter into orbital velocity after separation of the extemat tank."

Thompson rejected the idea because the orbital maneuvering system would require more fuel and larger tanks. This was September. In December, new studies and a "resizing exercise," revealed that orbital mancosers could be accomplished on less fuel than originally planed-meaning that additional fuel would be available for the use of the onbital mancuvering svstem to achieve obbital velocity. The Advanced Mission Design Branch passed this information on in their Weekly Activity Repont (Jannary 29, 1973) and in March the Advanced Mission Design Branch team planed a launch to include suborbital staging of the external propellant tank with a recovery in the Indian Ocean. It also became apparent that not only could the subobital staging work, but it would give the orbiter an additional 5,000 pound paybad capacity. NASA elected, however, to tetain the previous 32.000 pound payload requirement, and use the savings to reduce the thrust of the solid rocket boosters, and substantally lower flight costs. NASA subsequently estimated total program savings of $\$ 2.38$ million. "Costs remaned a compelling ingredient in shuthe design.

At almost every step design and development options constantly appared. Thompson pointed out that NASA selected the more advanced, higher performance main liquid rocket engine over lower pressure but less costly engine as used in the upper stages of the Apollo program. Despite its higher developmental costs, the higher pressme engine could drive a larger orbiter, created maximum lanch acceleration, and improved abon capabilities, and in total seemed to offer better capabilities at reasonable costs. Once the expendable tank design was accepted, NASA restacked the lamel, enabling the use of the high

 Space Shatale-Gome Ker Program Derisions."

47. Shid., pp.2-3; Members of the Aclvanced Missions Design Bramelo who developed the sulborbital staging

performance orbiter engines throughout the lannch phase, and gained the protective margin of orbiter engine stat and thrust verification before the main booster ignited. Another "developmental" decision had to do with attempting a crewless test flight. The guidance, navigation and control systems on the shutle, however, were constructed for human control. Such a shume flight, if it could be accomplished, would not truly test the shuttle flight controls. The first flight of the shutte then, would be a piloted flight. ${ }^{\text {an }}$

One problem that seemed to defy a wholly satisfactory solution had on do with insulating the orbiter adequately for its retum into the atmosphere, a journey that generated temperatures on its outer body of $3,000^{\circ} \mathrm{F}\left(1,650^{\circ}\right.$ (). Designers recognized two basic approaches to the problem. One was to use conventional aircraft materials such as aluminum, titanium, and composites for the body and then insulate over the external skin with silicate materials. Another was to build a "hot structure" of metals that could withstand the high temperatures and absorb) and disperse the temperatures throughout the external skin. This entailed the development of new metals. NASA chose the more known quantities-that is building the shuttle of basic aircraft metals, and overlaying the leading edges with thermal protective coatings."

There were, however, no thermal protective materials in use that could adequately insulate against the high temperatures. Those had to be developed. A task group of NASA engineers, working with Lockheed, McDonnell Douglas, Battelle/Columbus laboratories and university scientists and engincers, developed a silicone type tile (high purity foamed silica coated with borosilicate glass) that could withstand the temperatures. But once developed, the tile created new problems. For one, it was extremely fragile. The tile was tested by simply firing missiles (such as a . 22 slug) at the material to simulate an impact by a meteorite. The prototype tile crumbled. The tiles were then thickened and redesigned with a ludox (silicon-boron) base. That seemed to work. Then, the next problem involved attaching the tiles to the leading edges of the orbiter. That required the creation of new glues, several of them in fact, before a suitable adhesive could be found. Finally, 31,000 tiles, each independently cast to fit the appropriate location on the shuttle. had to be hand glued to the leading edges. The job required 670,000 hours of labor (or 335 person-years). ${ }^{30}$ While tile development might euphemistically be called "leading edge" technology, the work did reflect the fact that building a Space Shutte required invention and new technology ranging from flush toilets that would work in the environment of space and the development of adhesives and insulating materiaks, to the creation of intricate life support, avionics, and computer systems. One of the important and enduring elements of shutle clevelopment relates to the inception of new technology and the application of that technology to other areas. Conventional airplane construction, air safety, navigation, and flight control have been rich recipients of NASA shutte technology, as have human medicine, computers, plastics and metallurgy. The shutte and space flight have had a much more pervasive and profound influence on Americans than is evidenced by the construction of the vehicle, or by its flights into space. Its greatest impact has been on Earth, rather than in space.

The significance of the Space Shutte lay not in its flight per se, but in its payload, that is the freight, cargo, laboratory, or experiments delivered from the earth into space, and returned safely to earth. Shumbe payloads became one of NASA's most complex problems, as much in the social and political context as in the technical realm. Because of the chang-

[^123]ing payloads to be carried by the shuthe, cach flight involved mique techmical preparations and refitting. But the social and organizational structuring required for payload delivery proved most troublesome.

A special Ad Hoc Shuttle Payload Activities Tean, headed by Charles J. Donlon, manager of the Shuttle Program Office, concluded that what would be needed in NASA would be "a radical change in thinking . . . to mee the vastly differen "ferris wheel" mode of operation . . required in the shmule operational period." NASA must disassociate the transportation system from the hadware. Auhorization for shumle paybods within and without NASA must be carefully defined. The authority of the pavoad project manager and the transportation operator must be catefully delincated, and the flight people must be out of the "payload approval loop," Science payloads camoor be given lower priority than commercial payloads. I cad times for the development of payloads and the boarding of payloads need to be short in order to make the system work. And the committee particularly (and repeatedly) wamed of the problem of competition among NASA Centers for control over payload operations and decisions. There was considerable skepticism that NASA could ever touly become a service organitation, which would be required for effective shuttle operations, as opposed to its traditional mode of operation as a research and development agency." Thus, the effort to build and launch the first shutle involved some very basic social and philosophical re-evaluations, as well as technological imovation.

Despite the problems, and continuing financial constaints, NASA anticipated the first shutule flight could ocour in 1978. But budget pressures and technical problems continued to cause "slippages." As catly as 197 , Dale Myers bedieved that cost ovemuns being experienced in the Skylab program would delay shatle development and possibly anse it to be cancelleed: "The Shutte Program will live of die based on our capability to keep it reasomably on schedule, and this first sehedule impact caused by funding limitations will cause an increase of cost at completion which cannot now be estimated." Delays did increase costs, and technical problems as with the tiles, the tanks, and the rocket motors did so as well."

For example, Rockwell engineers working on the Orbiter's Thermal Protection System (the insulating tiles) complained that finding shotages aused work on the thermal protection system to be performed out of sequence and later than plamed. Budged constraints often led to deferring quality testing. Problems were identified much later than they should have been. More work had to be done (at additional costs) simply to try to minimize the impact of performing tasks out of sequence. Design work on the thermal protection system originally required 18.750 drawings-ly 1981 the required engineering drawings had increased to 25,456 (a 35 percont increase) because of delays and changes. Rockwell sought a "Program Adjusiment," that is more money to compensate for the additional costs."

Wayne Young, whose job was mangement integration in the Shumle Program Office at the Johnson Space comer, explamed that the shatle came into being in "an atstere budget enviromment." NASA had to first look at the budget, and theol decide what could be done within that financial framework. Decisions sometimes had to be made on the basis of costs, tather than on the basis of engineering. As costs rose, soheduling and integration became even mowe critical.
 llintory Office

 July 18.1990.

In 1977 the fuselage of orbiter 101, designated the Emterperse (which would not be the liest shutle to be launched), had been completed and the Columbia neared completion. Congress authorized, before the end of the decade, the construction of fise shutles (including the Challenger, Disomery, and Athantis) estimated at a cost of $\$ 550$ to $\$ 600$ million each. Each linally exceeded $\$ 1$ billion. Duming the vear. NASA conducted five umpowered glicle tests by dropping the coaft fiom a Boeing 747. Rockwells Rocketdyne Division began testing the Space Shutle main ongine at the Natomal Space lesting Laboratory (formerly the Mississippi Fest Facility, and soon to be Stemnis Space (enter) in March. Fests on the engine terminated after 70 seconds when a fire ermpted in the engine causing damage to the A-I test stand. Rockwell and NASA engineers conducted over 6.50 test finings between 1977 and 1980 before the first shattle flight in 1981 . The problems most often encomtered had to do with the use of comentional values and fitings in a very uncomentional 6.5 million pound thass hydrogen-oxygen engine.

Bo the time the Columbinfired its engines on the laneh pad at Kennedy Space Center in Forida, on April 12. 1981, the Space Shmole already had experienced a long and difli-

cult history. Simply being there, on the launch pad, was something of a triumph. The greater achievement lay ahead. The three main shutte engines fired in rapid sequence. Then the win solid rocket boosters, each generating 2.65 million pounds of thrust, ignited. Columbia lifted off. Just short of leaving the Earth's gravitational pull, the solid rocket boosters burned out, separated from the orbiter, and parachuted into the Atlantic where they were retrieved. The shutte main engines continued to burn, taking fitel from the external tank. The main shutte engine cut off, and the external tank detached and disintegrated as it reentered the atmosphere. The Cohmbin then fired its two orbital mancuvering system engines. The first bum put it into orbit, a second burn stabilized the circular orbit about the earth. Twelve minutes had elapsed since launch. ${ }^{\text {si }}$

The shutle camied mission commander John W. Young, a Georgia Tech ateronatical engineer and a space veteran who made his first space flight aboard Cemini 3, and then was command module pilot for Apollo 10 and commander of the Apollo 16 flight. Robert L. Crippin, a native of Beatmont, Texas, and graduate of the University of Texas, had come into the astronatu training program by way of an aborted Air Fore Manned Orbiting Labomatory Program. During the launch his heartbeat wose from 60 to 130 per minute. He described it as "one fantastic ride?","

The Columbia changed orbits, and for most of the flight flew in a tail-forward upsidedown position, relative to the Earth, giving the crew a betler view of Earth and its horizon. Young and Crippin checked all systems, the computers, navigational jet thrusters, and huge cargo bay doors. The ship began the return at $12: 22$ EST on April 14. Young and Crippin fired the orbital mancuvering rockets for two minutes and twenty-seven seconds to reduce their speed to less than the orbital velocity of 17,500 miles per hour. Gravity would do the rest. They began an hour-long descent. They fired their attitude control thousters to turn Cohembia right side up and nose forward. Thensters were fired again to keep the nose up so that the themal protective tiles could absorb the heat of recnury. The Columbia loss speed as its altitude dropped, and over Rogers Dry Lake in the Mojave Desert, Crippen and Young banked the ship sharply, looped back into a landing pattem, and touched clown at a speed of 215 miles per hour, about wice that of a commercial airliner. "The touchdown marked the successful conclusion of STS-1, 2 days, six hours, wenty minutes and tifty-two seconds after liftoff from Florida." President Ronald Reagan greeted the retuming crewmen, "Today our friends and adversaries are reminded that we are a free people capable of great deeds. We are a free people in search of progress for mankind." "w That search for progress, in the form of a reusable spacectaft, involved not only NASA, and the industries and astronats who were identified as the recipients of the 1981 Collier Trophy, but reflected more fully the past and present energies, initiatives, technologies, aspirations, and capital investments of the American people.
 1988). pp. 201-29; NASA, Mission Report, MR-001
57. NASi, Mission Report, MR-mol.
ix. lhid.

Chapter 13

"More Favored than the Birds": The Manned Maneuvering Unit in Space

by Anne Millbrooke

In 1984 a Manned Manewering Unit (MMU) enabled a few astronauts to maneuver in outer space, outside of spacecraft, and free of tether lines. This manned maneuvering unit and its predecessors are, as the name implies, maneuvering devices. Flight is the function of the spacecraft. Life support is the function of the space suit. Maneuvering is an extravehicular activity independent of the protective and supportive space suit, yet integrated with the suit and even the spacecraft. The spacecraft and space suit are prerequisites to extravehicular activity, the craft to transport the astronaut into outer space, and the suit to protect and support life. The maneuvering unit is an optional aid. The maneuvering unit, spacecraft, and space suit are complementary components of the human space flight program. Whereas all such space flights have involved spacecraft and space suits, only a few have utilized manned maneuvering units.

Outer space is a micro- or zero-gravity enviromment that requires special techniques for moving inside the spacecraft as well as out. Based upon experience aboard the Space Shutles Columbia and Discovery, astronaut Joseph P. Allen described the experience inside a spacecraft:

> During the first few days in spare, the act of simply moving from here to there looks so easy, yet is so challenging. The veteran of zero gravity moves effortessly and unth total control, pushing off from one location and arviving at his destination atmoss the flight deck, his body in the proper position to insert his fept into Velro toe loops and to grasp simultaneousty the comvenient handhold, all without missing a beat in his tight work schedule. In contrast, the rookies sail across the same path, usually too fast, tying to suppress the instinct to glide headfirst and with vague swimming motions. They stop by bumping into the far wall in precisely the wrong position to reath either the top toops or the handholds.'

Space writer Harry L. Shipman expressed this more directly: "Velcro takes the place of gravity" inside the spacecraft." Outside the spacecraft, there is no Velcro and no enclosing walls Civilian and military engineers thus explored various mechanism to aid astronauts outside the spacecraft. These aids included foot restraints, hand grips, tether lines, and selfpropelled maneuvering units, yet few space missions required the technology and capability of manned mancuvering units.

Floating in space was a lesson learned by experience gained gradually during the Mercury, Gemini, Apollo, Skylab, and Space Shuttle missions. In fact, the Mercury,

[^124]

Gemini, and Apollo spacectaft were too small to allow astronatus much mobility within the caft. Project Gemini included the construction of two types of mane wering units and the training of astronauts in their use. In 1905 gemini astronatu Edward H. White made the first American spacewalk. Lsing a hand-hek manewering unit, and wearing a space suit for life support, he spent twenty minutes outside of (iemini 4. He was terhered to the space capsule for safety. Project Gemini thus provided the first American experience with extravehicular activity in space; a Soviet cosmonatu had acheved the first exteavehicular activity months before White ventured out of the Gemini capsule. Later Gemini astronatus abso completed extravehicular activities in the harsh enviromment of outer space.

Apollo and later Skylab added to NASA's research and development experience with the concept and technology of mancusering in space, though not with the operation of any manenvering ads in free llight in outer space. Apollo's objective was the lunar surface, not outer space. The three Skylat missions in 1973 and 1974 provided astronauts experience with weighless floating in a relatively lage open space within a spacecraft, but not ouside. It was not until the Space Shutte, a teusable tamsportation system, that astor nats acquired operational experience floating both inside and outside a spacecaft.

The award-wiming manned manemering cmit was designed for a specific type of mission: satellite rescue missions. All earlier mancovering units had been designed for experinental missions, that is to test the technolegy, but with the reusable Space Shutte NASA introduced an operational, mission-omented mancuvering wit-he award-wiming manned maneuvering wit (MML). This operational unit was used three times-on the kenth, eleventh, and fouternth flights of the Space Tianspotation System, more commonly known as the Space Shutte. The year of these flights was 1984. The Collier Trophe for that year recognizes astronaut Bruce Mchandless II, who first used the umit in space, NASA's Charles E. "Ed" Whitsett, Jr., and Martin Marietta's Walter W. "Bill" Bollendonk. These three men were instrumental in the development, and Mc Candless in the use, of the mit. Behind this awad is a story of techological development involving a variety of institutions within the national infrastructure of the space program and amid the superpowe rivalry known as the Cold War.

From the preliminary researh and development in the 1950 sto the achevements of 1984, civilian and military personnel-engineers, technicians, and astronants-defined and redefined the technology of mancuverability in terms of perceived needs and capabilities, and within the limitations imposed by budgets and flight sehedules. At cach step reviews, tests, and experiments, as well as political decisions affecting the space program in general, influenced decisions about whether to continte development, in what direction, and by which next step. The identilication and definition of applications for manewvering units actuatly began in science fiction literature, which included carth-based as well as outer space missions. (ivilian and military agencies and govermment contractors, that is industry, participated in the development of manewvering umits of sereval types, including finally the award-winning manned mancuvering unit.

Science Fiction

Before the "science fact" there was science fiction. From novels of the nineteenth century to moving pictures of this century, homans traveled in space-sometimes using mancovering units outside the spaceships and sometimes not, mostly not. Early literary classics of space travel include Jules Verne's novel From the Earth to the Moom (186.5) and H.G. Wells' first Mon in the Moom (1901). Both of these books were made into movies of
the same name's, respectively; Veme's in 1958 and Wells' in $1964 .{ }^{3}$ In both the print and film versions, the space travelers left Earth with neither space suits nor maneuvering units. In Verne's story the characters flew in a ballistic projectile, shot from a huge cannon, toward the Moon. They relied upon the probability that they would be able to survive in the rarified atmosphere of the Moon.

En route to the Moon in Verne's sequel, Round the Moon (1870), the French adventurer Michel Ardan asked his traveling companions, "Why cannot we walk outside like the meteor? Why cannot we launch into space through the scuttle? What enjoyment it would be to feel oneself thus suspended in ether, more favored than the birds who must use their wings to keep themselves up! ${ }^{+4}$ Practical Impey Barbicane, president of the Gun Club that had shot their projectile into space, responded with two reasons. First, there was no air in the ether of outer space. Second, the density of a man being less than that of the projectile in which they traveled meant that a man outside the spacecraft would move at a speed not equal to that of the craft and thus the man would move apart from the craft.

Later Ardan exclaimed, "Ah! what I regret is not being able to take a walk outside. What voluptuousness to float amid this radiant ether, to bathe oneself in it, to wrap oneself in the sun's pure rays. If Barbicane had only thought of furnishing us with a diving apparatus and an air-pump, I could have ventured out." Again practical Barbicane countered the proposal: a diving apparatus in space would burst like a balloon that had risen too high. Barbicane thereupon prohibited "all sentimental walks beyond the projectike" but his authority applied only to his fictional companions and not to writers of other science fiction works.

What Ardan missed both in print and on film, Buck Rogers and Flash Gordon achieved. These twenticthecentury fictional heros provided inspiration-and humor- - 0 the astronauts and engineers involved with maneuverability in space. Mission specialists Bruce McCandless and Robert Stewart even called each other Buck and Flash in the cabin of the Space Shutte on that historic mission when the award-winning mamed maneuvering unit was first used. ${ }^{6}$ Originally the star of a comic strip, Flash Gordon entertained movie audiences via three serials: Flash Goodon (1936), Flash Cordon's Trip to Mars (1938), and Flash Gordon Conquers the Universe (1940). Created by Alex Raymond and plaved by Buster Crabbe, Flash Gordon fought the evil forces of Ming the Merciless. He traveled in Dr. Zarkov's rocketship and other spacecraft. The technology of life support and maneuverability did not clutter his adventures.

Buck Rogers similarly appeared in print and on film. Under the name Anthony Rogers, he made his debut on the pages of a pulp magazine in 1928. Using the name Buck, he moved into a comic strip the following year. A decade later he appeared on film in twelve episodes of Buck Rogers (1939); like Flash Gordon, he was played by Buster Cabber. In the original story, written by Philip Francis Nowlan, Rogers awoke from suspended animation in a fiture time-year 2419 -when Americans wore "inertron" belts, both "jumpers" and

[^125]"floaters" that increased their mobility." A jumper made the wearer weigh "in effect" as little as desired and therefore able to jump considerable distances. Floaters were advanced jumpers equipped with rocket motors that enabled the wearers to float in air similar to a diver floating in water; directional control came through the wearer twisting his body and moving his arms and legs. These rocket-powered mobility units inspired science fiction writers and the recent Walt Disney-Silver Screen movie The Rocketeer (1991), which like the original Nowlan story involved maneuverability on Earth, not in outer space.

Generally, spaceships and space suits received more attention in science fiction stories than did technology for maneuvering. Robert A. Heinlein is an example. His Rocket Shif, Galileo (1947) is about three boys, recent high school graduates, who accompany an atomic scientist to the Moon and while there defeat Nazis. The heroes wore pressurized stratosphere suits that look like diving suits. The helmets were bowl-shaped plexiglass, and the soles and seats of the suits were insulated with asbestos. The characters in print had no maneuvering devices. Heinlein's thin book became the loose basis of Destination Moon (1950), a good Cold War movie about combined American industry racing to get to the Moon before the Russians. In both book and movie the space vehicle is an atomic-powered rocketship; and Woody Woodpecker gives a delightful explanation of rocketry in the movie.

Traveling to the Moon was a race, not simply a space race, but also a military arms race. In Destination Moon the fictional General Thayer announced, "there is absolutely no way to stop an attack from outer space" and thus "the first country that can use the Moon for the launching of missiles will control the Earth." In the movie private industry supported the lunar mission because government was umable to mobilize the necessary resources during peacetime; the movie script thus failed to anticipate federal appropriations in time of a Cold War. The film travelers performed extravehicular activities in space. Wearing space suits and tethered to the spacecraft, they unstuck an antenna. One man released hold of his safety line and drifted away from the ship. He was rescued by another man who carried a large oxygen bottle, released gas for propulsion, and steered by manually facing the nozzle away from the desired direction of travel.

Science Fact

Michel Ardan's wish for "a diving apparatus and an air-pump" was not far afield from the early development of special suits for high-altitude flight, the predecessors of early space suits. In the 1930s aviator Wiley Post attempted and achieved stratospheric flight. As he said, "The main objective of high-altitude flight is to increase the speed of

[^126]travel.". He foresaw tanscontinental and transoceanic flights for the transportation of passengers and freight. But to fly in the thin air of high altitudes, he needed both oxygen and sufficient pressure to protect the cells of the body. He recognized that the aircraft's cabin could be sealed and filled with air under pressine, but at the addition of "prohibitive weight." More specifically, it would be impossible to pressurize the plywood shell of his Wimmir Maf, a Lockheed Vega that he had flown twice around the word and that he used in his high flying. Ite therefore approached the B.F. Goodyear Company with the idea of "a suit, something like a diver's oufit, which the pilot can wear, and which can be blown up with air or oxygen to the required pressure." ${ }^{\prime \prime}$

In response to Post's request, Goodyear built him three pressurized suits. The first cost less than $\$ 75$ (equivalent to about $\$ 800$ in 1994 dollars). It ruptured during an manamed test, before flight testing. Post got stuck in the second suit, which literally had to be cut off him, again before any llight test. The third stit not only passed tests in the Amys low-pressure chamber at Wrigh Field, but also met requirements during the 25 hours that Post logged in the suit. That suit proved compatible with his airplane and allowed sulficient mobility for him to operate the plane's controls; though when inflated. the suit athowed only rery limited mobility. In a series of tlights in 1934 and 1935 Post successfully demonstrated the uility of the pressure suit. To continue his experiments in high altitude flight, he acquired another aitplane. He and the humorist Will Rogers died in a cash of that experimental plane a clash from very low altitude."

Post's successful pressure suit, however, influenced reseatch programs of the Army and Nav, which contracted with manufacturers-Goolrich, Bell Airctafi, U.S. Rubber, National Cabon, and later others-for pressure suits, initially for experimental designs, later for production suits. Military connads, that is military money and military specifications, defined technical progress in the development of pressure suits. One goat was to increase the mobility of the person inside the suit, to allow the pilot more ange of movement. Nthough progress was slow, two key developments were achieved in the 1990s. One was the linknet restraint. This linket-nylon restaning layer prevented a suit from balloming under pressure. Introduced in 1956 by the David Clank Company and the Air Force, this feature helped make the $A /{ }^{2 x 2} 2 \boldsymbol{S}-2$ pressure suit standard Air Fore equipment. Fest pilots flying the $\mathrm{X}-15$ experimental plane wore this pressume suit in supersonic flight. In 1957 B.F. Gooctrich and the Nany built swivel joints with airtight rotating bearings, and also fluted joints (semirigid accordion plats), into the Mark Il suit, made of a rubberized fabric. Improved versions appeared in 1958-Mark III-and 1959-Mark IV.

When the United States began its man-in-space program, high-altitude pressure suits were adapted into space suits. As stated in a Smithsonian publication, (oodyear engineer "Russell Collev is considered the father of the American space suit for constructing the first successtul tully pressurized flying suit for Wiley Post." Project Mercury provided the spaceGaft in which astonames fist used space suits and proved the techoological basis of human space flight. The Mercuy space suits were adapted from the Goodyeat-Nany Mark IV suit. The space suit wats a protective system made of aluminized nylon, Neoprenc-coated nylon, and vulcanized nylon. It would pressurize only in the event of an emergency. In that sense,

[^127]equipping the suit for pressurization was a precatution atgainst the possibility that the spacecraft might decompress, a redundancy built into the Mercury program for the protection of the astronatut. Still the suit was specially adapted for ventiation of the astronatit, for waste removal, and for safery and comfort. Changes were made as experience warmanted.
$O_{n e}$ astronatu at a time, and safely confined in the spacectaft, Mercury astronatus orbited the earth. No Mercury astronat vembed outside the spacecraft into onter space. The importance of integration of all aspects of the space program became apparent during Project Mercury. As one historian concladed, "The greatest lesson leamed from the Mercury flights was probably the mique importance of people to machines. The Merary program began with a machine that had a man in it. And by the end of the program, it truly became a manned spacecraft." Spacectaft, crew, space suit, and other mission equipment needed to be integrated. This lessom applied to mane uvering umits then and later under development.

Although mancuvering units were not specifically a patt of Project Mercury, the possibilities of manevering in space were explored concument with the Meramy flights. Jhe Air Force, for example, began testing space propulsion mots, hand-held, pistol-like com-pressed-air devices, at its Acrospace Medical Labomatory in 195 K . That work was done at the laboratory at Wright-Paterson Air Force Base, Ohio, with some testing also conducted at NASA's Air Bearing Facility in Houston. The main problem of a hand-held mit was "the difficulty of aligning the thrust vector with the center of mass of the man, causing rotation with translation resulting in unworkable flight paths";" in other words, the astromatut could not mantain control. The Air Force's Aerospace Medical Division issued a repont on "Self-Manewvering for the Orbital Worker" in 1960. That year the Rocket Propulsion Labonatory at Edwards Air Force Base, California, provided assistance in designing the propulsion system for an experimental mancuvering unit, a reseatel device designed for testing under weightless conditions, but tot for use in the environment of onter spate.

This early work of the Ais Force led to maneuvering unts for Project Gemini, during which astronatuts wore space suits and remained tedered to the spacectaft during extravehicular activity. Only briefly using mane overing wnits, astronatus began manemering in space, ontside the spacectaft, during Project Gemini.

Maneuvering in Space

Projed Gemini provided NASA experience with extavehicular activity in space and with two manewering devices. One device was the I land-Held Manemvering linit (HIIMU) that White used in I965, also known ats the self mancovering unit, pressure gun, or simply gun. The second device was a backpack called varionsly an Astoonatit
 Mancuvering (tnit (MAMU), and Department of Defense experiment D-12. (iemini crews accomplished extravehicolar activities, six hours of tehered time and six hours of standing up in the open hate of the spaceraft. The live arews who accumulated the tethered time were aboard (ifmimi $4,91,10,11$, and 12 . Both the hand-held and backpack mancuvering

[^128]devices were scheduled for testing during tethered activity on these flights, but only the hand-held unit was ever used in space and only on Gemini 4 and 10. Both maneuvering units, however, provided experience and established precedents that contributed to the Collier-winning manned maneuvering unit of 1984 . From the 1960s to 1984, however, the developers of maneuvering units explored several directions.

Civilian and military branches of the Federal government and contractors and subcontractors in industry participated in the design and development of maneuvering units for the Gemini program-and thereby established the pattern of collaboration that continued thereafter in the development of maneuvering units. NASA was the lead agency. Project Gemini was phase two of NASA's manned space flight program; Project Mercury had been phase one, and Project Apollo would be phase three. NASA's Manned Spacecraft Center in Houston managed the agency's manned space flight program. The prime contractor for Project Gemini was McDomnell Aircraft Corporation, headquartered in St. Louis. Other contractors designed, developed, built, or delivered a variety of products incorporated in the Gemini missions, including space suits, life support systems, and maneuvering units.

The Manned Spacecraft Center managed the development of the hand-held maneuvering unit. Per policy, this NASA center participated in research, design, and testing, but contracted out construction. In developing the Gemini hand-held unit, NASA balanced the advantages of tractor or tow thrusters and the pusher mode. It developed a proportional thrust system, allowing the astronaut more control than an on-off system. The unit accommodated the limited dexterity of the gloved hands of an astronaut. The initial unit used on Gemini 4 had two one-pound tractor jets and one two-pound pusher jet. The gas was oxygen, deemed safe to store in the cabin of the spacecraft. This was a self-contained system. A later model, intended for use on Gemini 8 , received its propellant, Freon 14 gas, from a tank packed on the astronaut's back. In a still later model used on Gemini 10, a hose bundled in the astronaut's umbilical cord transported nitrogen gas from the spacecraft to the hand-held unit. Refinements in the handle of the unit were also made as the Gemini program progressed. Equipment to train astronauts to use the hand-held units included air-bearing simulators in the Air Bearing Facility."

The Air Force managed what it called the "modular maneuvering unit" (MML) program, initiated in 1963, and the Air Force's Space Systems Division became the lead division for developing this maneuvering backpack unit. Why was the Air Force participating in the civil space program? First, NASA requested the Air Force's assistance because the Air Force had launch vehicles (like the Titan II rocket modified for use as the Gemini launch vehicle) and other resources. ${ }^{\text {.6 }}$ Also, the Air Force had effectively supported NASA's Mercury program. The Air Force, in fact, had pursued its own human space flight program, Dyna-Soar, from 1957 into 1963. Canceled three years before the scheduled first flight, the Dyna-Soar program provided important technical information about hypersonic flight, reentry flight control, and heating problems. Secondly, the Air Force, and Department of Defense in general, approached space in terms of national security and military strategy. Dyna-Soar, for example, grew out of military interest in a piloted boost-glide bombermissile (called Bomi), a reconnaissance system (called Brass Bell), and a hypersonic weapon and research and development system (HYWARDS). The three programs were consolidated into Dyna-Soar in response to the Soviet's successful orbiting of Sputnik in

[^129]October 1957. Even after the cancellation of Dyna-Soar, the Air Force retained military objectives for a space program. ${ }^{17}$

In the United States, civilian and military objectives became interwoven in national policy. Congress responded to Sputnik by establishing three space organizations in 1958: the civilian National Aeronautics and Space Administration (NASA), the military Advanced Research Projects Agency (ARPA), and the executive National Aeronauties and Space Council (an advisory panel reporting to the President). At that time the cominty publicly entered a technological and scientific, as well as political, space race. Of the eady years of that space race, NASA historian Roger D. Lamius concluded, "First, NASA's projects were clearly cold war propaganda weapons that national leaders wanted to use to sway world opinion about the relative merits of democracy versus the commonism of the Soviet Union. . . . Scoond, NASA's civilian effort served as an excellent smoke-screen for the DOD's [Department of Defense] military space efforts." ${ }^{\text {Ix }}$

From the military perspective, General Bernard A. Schriever explained the nature of civil-military cooperation:

NASA programs by themselves will not build a military capability. That is not their purpose, nor should is be their purpose. A military capability can be created only by a military organization which possesses a combination of technical knowledge and operational experience with sutable military equipment. Both NASA and the Deparment of Defense have valid and distinctive roles in the national space program. Their efforts are complementary, not competitive; their programs are cooperative, not conflicting."'

The Air Force had particular interest in launch vehicles, operation of spacecraft, commmications systems, and-in General Schriever's words-"techniques needed to transport and support man in space and to permit him to function effectively there." To function effectively in space implied manewerability, and thos the Air Force's research and development of mancuvering tunts, including experiment D -12 in the (emini flight program.

Among the companies involved in the early maneuvering work was Aero-Jet General, which prepared an influential report entited "A Rocker System for Limited Mamed Flight" (1959) and proposed an "Aeropak Flight Vehicle." As early as 1953 , Wendell F. Moore of Bell Aerosystems had begun designing a rockel belt. He continued his effort, and in 1960 Bell obtained an Army contract to produce the Army's A-l prototype rocket belt. In 1962 President John F. Kennedy viewed a Bell rocket belt in flight demonstration at Fort Bragg, North Carolina. ${ }^{2 \prime}$ The next year Ling-Tenco-Vought (LTV) prepared for the Department of Defense preliminary designs of a Remote Maneuvering Unit (RMU) to be ejected from the spacecratt and then remotely moved, by an astronaut inside the spacecraft, toward a target that had also been ejected. The unit was to be man-rated so that

[^130]manual operation would also be possible. Bota Reaction Motors also did relevant small rocket work under govemment contract.

In November 1963 the Air Force's Acro Propulsion Laboratory proposed to develop "an indwidual back-pack experiment which would permit the astronat to manewer independenty around the Gemini vehicle.". This was the beginning of the Gemini astronatut or modular mancuvering unit. The Air Force's proposed extavehicular experiments for Cemini had priority ".05A, equivalent to that of the Ballistic Missile Program," and thus required White House approval.:" The Rocket Propulsion Laboratory in California accepted rechnical responsibility for the rocket propulsion system, which used hydrogen peroxide as the monopropellant. For design and fabrication, the Air Foree intially planned to grant a sole-source contrate to ling-Temeo-Vough, but soon issued a request for technical proposals. LTV and Bell responded.

The Air Fore exaluated these technical proposals on nine points: propulsion, environmental control system, electronics, flight controller, power, acrospace ground equipment, overall swtem, reliability and quatity control, and program plan. Bell was "very strong" in propulsion and scored a ninety percent overall for its proposal, and LTV scored only sixty percent, but "both were considered acceptable." ${ }^{-3}$ ITV then thoroughly amended its technical proposal into something "greaty improved" though still a bit weaker than the Bell proposal, but IIV's cost proposal was $\$ 750,000$ less than Bell's. The Air Force negotiated a cost-phus-incentive-fee contrad with IIV for the construction and delivery of three backpack maneuvering units.

As the prime Gemini contactor, McDonnell Aircraft Copporation integrated the mancusering units and related experiments into the ©emini spacectafi. Although B.F. Goodrich had received the first combact to design Gemini space suits, even delivered two prototypes, the David Clark Company won the contract to produce the Cemini space suits.: Clatk thos paticipated in integrating the space suits with both the spacectaft and the manewering tults and manenvering experiments.

Clark produced three models of space suts actually wom on Gemini flights and continually modified the models in response to the astronatus comments. Like their Air Force predecessor (the A/P22S-2 pressure suit), these space suits had linknet Dacron wowen throughout one layer of the suit. The linknet held the pressurized containment layer to the contours of the body and thereby aided mobility. The basic extavehiculat model (itc weighed thily-five pounds, ten pounds more than model G3C wom only inside the spacectaft and only on Gemini 3. G4C weighed more mostly because of additional outer layers of nylon, aluminized Mylar, unwoven Dacron insulation, and Nomex heat-resistent material that formed a protective hazadousenviromment shield. The Gad helmet similarly had additional protective layers: visual, thermal, and impact shields. like the rest of the suit, the helmet was contimatly modified. The lightest Gemini suit, just sixteen pounds, was the G.5C, worn inside the spacecraft on only the Gomini 7 mission. Variants of (44 : were wom by both members of crews of Gemini $4,5,64,8,94,10,11$, and 12, whether or not extravehicular activities were plamed, as any opening of the spacecraft's hate exposed the crew to the space environment.

[^131]Integration of the backpack maneuvering unit and the space suit posed a particular challenge to Gemini engineers within government and industry. In 1964, for example, ITV uncovered a problem while testing the modular mancuvering unit. The company's exhaust plume analyses revealed that rocket exhaust plumes impinged on the space suit. The exhaust heated the suit, particularly the helmet and the legs. NASA opposed adding insulation patches to the space suit as a solution, so LTV proposed other solutions that involved modifying either the mancuvering unit or the space suit or both. One way to avoid overheating the suit was to extend all thruster nozales far enough to avoid impingement. A second method was to extend the upper forward nozzles beyond the helmet impingement and to add a leg restraint device to prevent the astronaut's leg from moving into a lower plume. Third, ITV proposed modifying the space sait, extending the upper forward nozzles beyond the helmet, and rebuilding the lower suit of materials to withstand higher temperatures. A thermal skirt, a fourth idea, was proposed to cover the astronaut's legs. All the proposals posed their own problem-"delays of varying length to the MMU delivery schedule," ${ }^{\text {: }}$

The decision was to extend two forward nozales on the maneuvering unit and to rebuild the lower section of the space suit, but without altering the delivery schedule, something "not possible if we are to meet NASA flight dates," according to the director of the Air Force Aero Propulsion Laboratory. "This colonel explained, "The only other alternative is termination of the program." He urged close monitoring of contractors and subcontractors, also simultaneous qualification testing, reliability testing, and hardware fabrication, yet "there must be no compromise with the astronaut's safety during space flight." This approach worked. It meant, however, additional weight to the special suit the astronauts wore outside the spacecraft, doubling the weight of the fabric in the legs over that of other C4C suits. As modified for the first in-space test of the backpack manewvering unit, the suit's legs included neoprene-coated nylon, uncoated nylon, fiberglass cloth, aluminized high-temperature film, and Chromel-R cloth (stainless steel).?

As the modular maneuvering units neared completion in February 1966, an accident occurred. There was an explosion during a reliability test of one unit-at hour 96 of the planned 100 -hour operating time. A quick investigation revealed the problem to be in LTV's now damaged test equipment, in the company's Space Environment Simulator (also known as the SES). There was no problem with the maneuvering unit. With the design and development phases complete, and the final verification tests in progress or on schedule, the explosion merely delayed tests conducted in that one facility.

By mid-April 1966 all the testing had been completed, and the three experimental modular mancuvering units had been delivered to the Air Force. Gemini astronauts were in final training for using the units. Wearing training packs, they experienced brief periods of zero gravity aboard a KC-135 aircraft.e" To obtain zero gravity in flight, the pilot pushed the jet airplane into a dive, pulled the nose up, and flew over a parabolic are; the weightless condition occurred going "over the hump."

[^132]Gemini flights had already begun. In fact, Ed White had accomplished the first extravehicular activity on June 3,1965 , as part of Gemini $4 .{ }^{2}$ He used the Hand-Held Maneuvering Unit, the pressure gun. In case of emergency, that is in case White dropped the gun, it 100 was tethered. Command pilot James A. McDivitt kept the spacecraft in a stable attitude while White maneuvered outside the vehicle, and McDivitt took pictures of White's space walk. After White used all the gas in the hand-held maneuvering unit, he could still maneuver with the aid of the tether line, but that gave McDivitt problems controlling the spacecraft. White confirmed the carlier Soviet finding: Man can mancuver in space.

For extravehicular activity, the astronams wore the Clark 64C suit and a life-support chest pack, either a Ventilation Control Module (Gemini 4) or an Extravehicular Life Support System (ELSS, Gemini 9A, 10, 11, and 12). In the spacecraft, astronauts connected their suits to the craft's life support system. Outside the craft an oxygen hose, electrical and communication wires, and a safety tether connected the astronaut to the spacecraft. These were bundled in the umbilical cord between the chest pack, astronaut, and spacecraft. Outside the spacecraft, according to plans for six Gemini flights, the astronauts would carry cither the hand-held mancuvering device or wear the LTV-made astronaut maneuvering unit, the backpack.

Gemini $4,8,10$, and 11 included among their missions experimenting with the HandHeld Maneuvering Unit. White walked in space during Cemini 4. For reasons melated to the mancuvering unit, the Gemini 8 extravehicular activity was canceled. Gemimi I/ and $1 /$ carried an improved maneuvering unit, one supplied nitrogen through a hose within the umbilical cord. The hose comnected the gun to two tanks aboard the spacectaft. During a Gemini 10 docking exercise, Michael Collins successfully recovered a package from a target vehicle. In the process he lost hold of and drifted away from the target vehicle. He used the hand-held unit to mancuver back to place. This was an unscheduled use of the device; the scheduled use was canceled. Before using the maneuvering aid outside Gpmini II, Richard F. Gordon managed to tether the spacecraft and target vehicle together. Due to exhaustion from the physical effort involved in such early extravehicular activities, the crew halted the extravehicular experiment before using the Hand Held Maneuvering Unit. Evaluation of the mission focused on the workload and body restraints rather than the maneuvering unit.**

Gemini 9 A provided the first opportunity to test the modular or astronant mancuvering unit. That was June 1966. Astronaut Eugene A. Cernan experienced difficulty donning the maneuvering unit due to the problem of maintaining body position in zerogravity and the necessity of holding on to hand and foot bars. Outside the craft, he discovered that extravehicular tasks required both more time and more effort than ground simulations. Also, his visor fogged, reducing visibility-the result of his exceeding the design limits of the Extravehicular Life-Support System, the chest pack. Duc to these problems, particularly the reduced vision, the extravehicular activity ended before any operational evaluation of the maneuvering unit. As a result of Gemini 9A, NASA changed the foot restraints on future Gemini craft, added underwater simulation of the weightless environment (this proved more effective than the brief periods of zero-gravity taining aboard the KC - 135 airctaft), and supplied astronauts an anti-fog solution to be applied to their visors before extravehicular activity. Such changes in equipment and technique were made after each mission." The unused maneuvering unit required no modification.
29. A Walk in state, (iemini 4 bxtrawhicular Artivity, a 25 -page commermorative brochume probably putlished by NASA in late 1965. in Record Number 0n7188, NASA Historical Reference Collection.
30. 1). Owen Coons and G.F. Kelly, "Medical Aspects of Gemini Extravehicular Activities," typescript report (without the referenced figures), no date, in Record Number botis9. NASA Historical Reference Collection.
31. R.M. Machell, L.D. Bell, N.P. Shyken. and J.W. Prim. III, "Summaty of Gemini Extravehicular Operation," typestipe report (without the referenced figures), no date, in Record Xumber 007189, NasA Histarical Reference Collection.

Gemini 12 again featured the backpack modular mancuvering unit in a plan that changed before llight. The mit was not even carried aboard the spacecraft. Both astronauts, James A. Lovell and Edwin E. Aldrin, completed extravehicular activities, aded by body restraints like waist tethers, foot restraints, and portable handholds that had been added to this mission based on previously identified need. These spacecraft-based aids to extravehicular activity had taken precedence over the rocket-powered units-foreshadowing the fate of the award-wiming MMU.

The development, delivery, and integration of flight-ready maneuvering units, not the operation of the units in space, proved to be main accomplishments of the Gemini maneuvering programs. The hand-held unit was tested in space twice, briefly during Gemini 4 and 10 . Problems with the spacecraft or the environmental control systems occurred before the unit could be evaluated on other Gemini flights. Similarly, an environmental control problem caused the cancellation of the backpack experiment planned for Gemini 9 A, and plans to test it on the Gemini 12 mission were dropped before launch. No operational test of the backpack unit was achicved during Project Gemini.

Before Project Gemini drew to a close in 1966, the Manned Spacecraft Center awarded Rocket Research Corporation a contract to improve the Gemini hand-held mancuvering unit; improvements included using hydrazine as the propellant. ${ }^{32}$ Ender Air Force contracts, both LTV and Bell Aerosystems designed manewering units that could be operated remotely or controlled by an astronaut wearing the unit. ${ }^{3+}$ LTV's Remote Maneuvering Unit (RMU) could be wom on the back, whereas Bell's Dual-Purpose Mancuvering Unit (DMU) was to be mounted in front of the astronant. Both units incorporated television cameras, stabilizat tion and control systems, electronic sensors, and communications equipment. As ummanned units, they were intended for work too havardous for a man, such as inspecting an encmy satellite, as well as for rescue, repair, and transfer operations. As manned units, they could be used during any extravehicular activity.

NASA explored these and other mancuvering technologies. Some units were considered for later Gemini missions, for the Apollo Applications Program (ADP), for even Project Apollo, and for Skylab. Project Apollo accumulated a total of 170 hours of extravehicular activity, mostly lunar surface time-walking on the Moon or riding the lunar rover. None of the Apollo extravehicular time involved the use of a mancuvering unit in free or tethered flight; none was needed to fulfill Apollo's lunar missions. Yet Apollo and the other early space programs provided opportunity not only to experiment with maneuvering units, but also for many companies and individuals to acquire space contracts and experience. Ed Whitsett, then with the Air Force, for example, worked on several extravehicular activity support devices for Apollo, including a hand-held, self-propulsion gun used in the low-gravity ensironment of the Moon's surface. One group of space scientists had recommended a "Lunar Flying Lnit (LFU)" to increase lunar surface mobility and thereby to increase the scientific return from lunar missions;" the lunar rover, a wheeled vehicle, provided the increased surface mobility on the Moon. Whitsett also worked on the AAP that became Skylab.

Initially part of the AAP, Skylab experiment T020 consisted of a footcontrolled maneuvering unit (FCMU). Donald E. Hewes of NASA's I angley Research Center was the principal investigator; he built on the carlier work of John D. Bird, also of Langley. Some engineers at

[^133]the Manned Spacecraft Center opposed the Langley foot-control experiment and expressed "skepticism about the worth of the experiment's objective and concern over the monetary and manpower expenditures connected with its implementation." ${ }^{4 \prime}$ The program continued. The main purpose of foot control was to free the astronaut's hands. The experimental unit used a cold gas, high-pressure nitrogen, supplied from a tank mount on the astronaut's back. Called "jet shoes" because the thrusters were mounted under the astronaut's feet, four thrusters per foot, the maneuvering unit was pedal operated. Astronauts tested the jet shoes inside Skylab's Orbital Workshop, a "shirt-sleeve" environment as astronauts no longer needed to wear space suits inside the protective environment of the spacecraft. They also conducted a space suit test of the mancuvering unit since the ultimate goal was a unit to be used outside of a spacecraft and thus by a suited astronaut.

Building upon the Gemini example and experience, Skylab's experiment M509 inclucled both a backpack maneuvering unit called the Automatically Stabilized Maneuvering Unit (ASMU) and an improved hand-held maneuvering unit. Both units were propelled by high-pressure nitrogen drawn from a tank on the astronauts back. In fact, both units could be used at the same time. These units were tested inside Skylab, which contained almost 12,000 cubic feet of living space. Skylab allowed the comparative testing of the jet shoes, the improved hand-held unit, and the backpack. On the three Skylab missions five astronauts flew the M509 experimental units on eleven sorties that totaled fourteen hours of orbital flight testing-all inside Skylab, some in shirt sleeves and some in space suits. The backpack proved superior in flight qualities and precision control. As an experimental unit designed for testing inside Skylab, the backpack lacked the system redundancy deemed necessary for safety ouside a spacecraft, and it required a second person to assist the astronaut into the unit. Under NASA contract, the Martin Maricta company built and supported the M509 backpack maneuvering unit; North American Rockwell had also been a contender for the contract.

On assignments to the Manned Spacecraft Center and the Air Fore Spare and Missile Systems Organization (SAMSO), Major Whitset headed the M509 experimental program. NASA admired his ability to balance experiment objectives, hardware development cost, and schedule constraints, and his efforts toward consolidating Air Force and NASA research into a single national program, important during that period of limited funding for space programs. Captain Bruce McCandless of the Navy and David C. Schultz of the Manned Spacecraft Center (renamed the Johnson Space Center in 1973) were co-investigators for the M509 experiment, generically labeled "astronaut maneweening equipment." Whitsett later summarized the backpack program: "An experimental MMU tested onboard the NASA Skylab, Program orbital workshop established key piloting characteristics and capability base for future MMU systems" and contributed to the "operational MMU" used on

[^134]the Space Shuttle. ${ }^{37}$ Only ten years after Skylab, NASA called the Skylab backpack unit the "ancestor" of the Space Shutle MMU. In Lum, Gemini's modular maneuvering unit was the "ancestor" of Skylab's automatically stabilized maneuvering unit.

Manned Maneuvering Unit

Engineer and historian Walter C. Vincenti wrote in What Engineers Know and How They Know It, "Engineering knowledge reflects the fact that design does not take place for its own sake and in isolation. Artifactual design is a social activity directed at a practical set of groals intended to serve human beings in some direct way. As such, it is imimately bound up with economic, military, social, personal, and onvironmental needs and constaints." What is true not only of the experimental MML - modular maneuvering unit of Project Gemini, but also of the operational MMU-manned maneuvering unit of the Space Shutle program. Spacecraft, like mancuvering techology, made the tansition from experimental (Gemini and Skylab) or exploratory (Apollo) to operational (Space Shutte). The reusable and operational nature of the Space Shutule influenced the desigu and fabrication of the Shutle's MMU, as did the experimental experience with earlier manewering technology. In the post-Apollo environment of reduced NASA budgets, both the Space Shutle, like a commercial mock, and the MMU, like a worker's tool, were expected to pay for themselves." Neither would.

NASA, Rockwell Intemational, Martin Marietta, Thiokol, "and the entire govemment/industrial team that improved the concept of mamed reusable spacecrati" won the Collier Trophy for 1981." That was the year that the Space Shutte made its maiden flight (in April) and made the first flight of a reused spacecraft (in November) -both in the orbiter vehicle named Columbia and designated OV-102. Then officially called the Space Transportation System (STS), the Space Shutule program was in fact a small fleet of orbiter vehicles. Other space shutules built by the end of 1984 were Challonger (OV-O99), Emerprise (OV-101), and Discovery (OV-103); Ahamis (OV-104) was under construction. ${ }^{\text {" }}$ MML's were used on two flights of Challenger and one of Disovery, all three flights in 1984.

[^135]With the Space Shmole, NASA introduced a new type of spacectali, but the shutle's MMU represented an evolutionary development of maneuvering lechnology, based heavily upon the M509 backpack tested on Skylab and the earlier Gemini backpack. What was the award-wimning manned maneuvering unit" Whitsett defined it as "a self-contained propulsive backpack" and "a miniature spacecraft which an astronaut straps on for space walking." ${ }^{15}$ Shutte astronaut Joseph P. Allen called it "this spaceship's special dinghy," which "resembles a backpack with armests, or some kind of overstuffed rocket chair." " In a brochure for the "payload community," NASA advertised the MMU: "Since the Manned Mancovering Unit has a six-degree-offreedom control authority, an automatic attitudehold capability and electrical outlets for such ancillary equipment as power tools, a portable light, cameras and instrment monitoring devices, the unit is quite versatile and adaptable to many payload task requirements," ${ }^{*}$

Athough approved for development in 1975, the shuttle maneuvering unit remained in the design definition stage until funding became available in 1979. Under pretiminary design contract NAS9-14593, Martin Marietta established the operational MMU design definition and developed subsystems hardware. "During that period Martin Marietta also worked with Rockwell International on the MMU/shutte interface and with NASA on the MMU's interface with the astronaut's space suit and life support system. Finally in 1979 , NASA let the MMU fabrication contract, number NAS9-17018, to Martin Marietta. Preliminary designs and specifications were updated, technical changes were adopted, parts were procured, verification requirements were defined, components and then the MMU's were assembled, the units were qualified, mission profiles were drawn, training requirements were dedined, and finally flight hardware was delivered. The astronatt representative for the MMU was Bruce McCandless, who as a member of the astronatus corps had served a Cap Com or capsule commmicator transmitting woice messages to Apollo spacectaft 10,11 , and 14 , and who had participated in Skylab Experiment M509. Whitsett, who had moved from the Air Force to NASA, also brought experience with Apollo and Skylab. He worked in the Crew Systems Division of the Johnson Space Center. Walter W. Bollendonk managed the Martin Marietta progran that built the manned maneuvering units. Martin Marietta delivered the two operational units to the Johnson Space Center in September 1983 . Each MMU was valued at $\$ 10$ million. ${ }^{7}$

New features of the shutle maneuvering units included fingertip control (rather than the tiring hand-grip control of the Skylab unit), and storage in the cargo bay. Once in the MMU, an astronatut controlled position (forward/backward, left/right, up/down) with the left hand and rotation with the right hand. Tolerance of extreme temperatures was achieved in part by painting the MMU white to keep the temperature below 150° Fahrenheit and by using electrical heaters to keep components above their minimum temperature limits. An astronaut could recharge the propulsion system at the shutte's cargo bay from airbome support equipment called the flight support station; this support station also provided storage of the MMU when not in use.

The shute MMU system had redundancy. Two silver-zinc bateries provided electricity. The propellant was gaseous nitrogen, GN2, stored in two tanks. The propulsion systems

[^136]were arranged in two parallel sets, each set operating twelve thousters; usually both sets-twenty-four thrusters-were operational at once, but the MMU was capable of full operations on only one set. Furthermore, the Space Shutte nomally carried wo MMUs, the second in case of emergency, and the shuttle could be maneuvered into position to rescue an astronatu should an MMU fail. In conjunction with the propulsion system, three gyros-one each for the yaw, pitch, and roll axes-provided an attitude hold capability. Constructed mostly of aluminum, an MMU weighed 340 pounds-massive, though weightess in space. The operating time was six hours, and the operating range, 450 feet from the Space Shuttle.

Martin Marietta trained astronauts to fly the MMU at its Space Operations Simulator in Denver. A magazine editor who flew the MMU in that simulator reported, "The minimal training and precision flying features were demonstrated by my ability, with only a few minutes practice, to maneuver the unit safely in close proximity to fixed objects." ${ }^{*}$ Astronauts received eighteen hours, not a few minutes, of training in the simulator. The two main features in the simulator were a six-degree-offreedom moving-base carriage and a large-screen television display. NASA of course provided the standard astronaut and extravehicular-activity training.

NASA carried two MMUs (serial numbers 002 and 003) aboard three Space Shutte flights in 1984: 41-B in February, 41-C in April, and 51-A in November. Six astronautsBruce McCandless II, Robert L. Stewart, George D. Nelson, James D. van Hofien, Joseph P. Allen, and Dale A. Gardner-flew the MMU. These mission specialists flew the MMU on a total of nine sorties for a total of ten hours and 22 minutes. Each astronaut dommed and doffed the maneuvering unit in the open cargo bay.

Before exiting the pressurized spacecraft, the astronatu domed an extravehicular mobility unit (EMU) that consisted of the spacesuit and a portable life support system. A NASA brochure explained, "The Extravehicular Mobility L'nit consists of a self-contained (no umbilicals) life support system and an anthropomorphic pressure garment with thermal and micrometeoroid protection."* The Hamilton Standard division of United Technologies Corporation, aided by subcontractor ILC (formerly International Latex Corporation), produced the space suit. The suit consisted of modular parts; the torso, for example, available in five sizes. Gloves were still custom-made for a particular astronaut. The life support system, also supplied by Hamilton Standard, was in a backpack that could attach to the MMU, which became in effect an outer backpack. The EMU was essential to extravehicular activity, but the MMU was one of several extravehicular aids available for a mission; the remote manipulator system, tools, tethers and other restraints, and portable workstations were the other aids. The astronaut and the extravehicular mobility unit, and any tools needed for an assignment, comprised the MMU's payload.

The shuttle mamed maneuvering unit was a tool with a specific mission. That mission was the recovery of satellites. The astronaut using the manned maneuvering unit was a "serviceman" who serviced satellites. NASA offered this recovery service to civilian agencies, the military services, and commercial customers, all of which had satellites in orbit. To retrieve a satellite meant reaching the satellite, grabbing it, stopping its rotation, and moving it into the Space Shutle's cargo bay. Although weightless in space, the satellite still had inertia, against which the maneuvering unit needed power to stop the rotation. Retrieving the Solar Maximum (Solar Max) satellite was to be the first operational assigmment of the MML:
48. Conath, "Manedvering linit Keved to Simplicity," p. 43; and Gaig Hartley, Dave ()wnar, and lex
 from the Johnson Space Center, I Iouston
19. Bland. Space Shuthe EW oppontumiters, p. 3. Regatding the Shutte spate suits, see Korloski, (:S. Spmer (iftr, pp. 123-14.

Lannched in 1980, the Solar Max solar observatory had experienced electrical failures within six months, and NASA planned to repair the satellite in the cargo bay of a Space Shuttle.

Other missions were considered for the MMU, including inspection and repair of thermal tiles on shutte orbiters, handling and transferring payload, construction of space structures (like a Space Station), and rescuing loose material or persomel floating in space. Martin Marietta promoted the MMU as support of shuttle extravehicular activities like inspection of the shuttle orbiter and like deploying, retrieving, and servicing payloads. But satellite retrieval was the primary mission in plans and in practice. ${ }^{\text {an }}$

The first use of the MMU occurred on the tenth flight of a Space Shutte, mission 41-B, during which the MMU was flown on demonstration flights. These MMU flights demonstrated capabilities deemed appropriate for use in the planned retrieval of the Solar Max satellite on a later shuttle mission. Courtesy of the manned maneuvering unit, McCandless, then a Navy captain, became the first person to fly free, untethered in space; the date was February 7, 1984. While orbiting around the Earth at a speed of 17,500 miles per hour, McCandless floated from the cargo bay into outer space, 150 nautical miles above Earth, an experience he described as "a heck of a big leap."31 Mission specialist Robert L. Stewart, an Army lieutenant colonel, also flew the MMU on shuttle mission 41-B. While flying the MML, these men were in a journalistic phrase of the time "human satellites.". They checked out the equipment, maneuvered within the cargo bay, flew away from and back to the orbiter, performed docking exercises, recharged the MMU nitrogen tanks, and collected engineering data. The MMU, according to Martin Marietta's post mission report, "performed as expected and no anomalies were reported. ${ }^{5 ;}$

The main purpose of flight 41-B, the fourth using the orbiter Challenger, was the deployment of two commercial communication satellites, Westem Union's Westar VI and the Indonesian Palapra-B2. These satellites were released, but failed to reach geostationary orbit due to problems with the commercial upper-stage technology designed to lift the satellites from the low orbit of the Space Shutle to the higher geosynchronous orbit-justifying a later rescue mission using MML's. Also, in scheduled extravehicular activity during flight 41-B, astronats demonstrated the shuttle orbiter's manipulator arm. One man at a time rode on the manipulator foot restraint work platform (a Gmmman product) attached to the remote manipulator arm (a Spar Aerospace product), while mission specialist Ronald E. McNair inside the spacecraft controlled the movement of the anm. On this mission the arm developed a little problem with its wrist joint yaw motion capability, but on a later mission the manipulator arm would achieve a satellite rescue after MML-retrieval attempts failed.

In April NASA launched the eleventh Space Shutle mission, 41-C., which again used the orbiter Challenger. In response to the previous mission, Martin Marietta had made only two minor changes to the MMU hardware: new, adjustable lap belts installed on the MMU itself and a modification of the flight support station in the cargo bay. The main purpose of the 41-C mission was repairing Solar Max, and the main purpose of the MMU on the mission was retrieving the satelite. If successful, NASA predicted, this "Shute mission could launch an era of satellites with replaceable pats," satellites repairable in space."

[^137]Again in the post-mission report, Martin Marienta concluded that its "hardware perfomed as expected with no anomalies" for both mission spectalists, George Nelson and James D. van Hoften. ${ }^{*}$ But the astronauts using the MMU failed to retrieve the satellite.

Wearing the MMU, Nelson performed the equipment checkout flight, moved lato feet to Solar Max, matched rates with the satellite, and attempted to dock three times. He was unable to stabilize the satedlite, to stop its spiming. The failure wats later aturbuted not to the MMU but to the trumion pin attachment device mounted on the ams of Nelson's MML, in fromt of him; this device was supposed to lock onto a trmmion on the sutedite. Once Nelson hatd clocked, he was to use the MML thrusters to hat the satellite's rotation. With the satellite stabilized, the manipulator am would grasp the satelite and move it into the cargo bay for repair: The MMU rather than the manipulator am was to capture Solar Max in order to avoid the possibility of the rotating satellite smapping the manipulator arm. But Nelson in the MMU ${ }^{1}$ failed to stabilize the satellite, so NASA persommet in space and on Earth improvised.

Engineers at NASAs Goddard Space Fligh Center in Maryland managed through madio commands to exert some control over the spiming satellite and by reprogramming the satellite's computer to slow the spin. Shutle commander Robert I.. Cippert thew the orbiter for a precision rendervous with the satellite. Then astronat Teny J. Hat operated the manipulator arm to capure the slowly rotating satellite. As an extravehicular activity in the open cargo bay, Nelson and van Hoften repaired Solar Max; and the Challenger crew released the repaired satellite back into orbit. The mission, though not the MMU's role in it, wats a success. "Hart's small grab," not Nelson's free flight, quickly became the symbol of the utility of human space flight. ${ }^{\text {sio }}$

Despite the docking problem experienced during mission $41-6$ and the use of the manipulator arm to achieve capture. NASA personnel still believed that the MML could "provide an extra measure of control in the retreval process" of future satellite reconer operations." NASA scheduled the MMU for its next recovery mission for Nowember. Mission 51-A, using the orbiter Disonery, was to rescue the Westar and Palapa satellites that mission 41-B had deployed in February. This time mission specialist Joseph Allen in MMU serial number three captured the Palapasatellite, and Dale A. Cardner in MML seriat mumber two recovered the Westar satellite. They used a new, improved capture device, a stinger, in the successful recoveries. The capture mechanism worked, and the MMU's antomatic attitude hold function stopped the satellite motation. Again, the MMU's "performed as expected with no anomalies." ${ }^{3 n}$ And again, the reconery operations did not proceed as planned; the retrieval equipment did not fit one of the satellites, and the men had to hold the satellites and manually move them into the payload instead of using the manipulator arm. Despite the problems, Allen concluded, "the capture had been far easier than rodeo calf-roping." Both satellites were secured aboard the Discovery and remued to carth for refurbishment and resale by insurance companies that had acquired the salvage rights."'

[^138]On three missions in 1984, the Manned Maneuvering Unit performed as expected and with precision and versatility. Humans could safely maneuver in outer space free of both spacecraft and tether: In recognition of the development of the MMU and the NASA-industry satellite rescue team, the National Aeronattic Association awarded the Robert J. Collier Trophy for 1984 to NASA and Martin Marietta, with special recognition of astronaut Bruce McCandless II, NASA's Charles E. Whitsett, Jr., and Martin Maricta's Walter W. Bollendonk.

Conclusion

The MMU was only one piece of space news in 1984. President Ronald Reagan had opened the year with a State of the Union address reminiscent in pat of John F. Kennedy's 1961 "goal, before this decade is out, of landing a man on the moon." Reagan directed "NASA to develop a pemanently mamed Space Station-and to do it within a decade." The Air Force and Navy clamed no military requirement for a Space Station, which was seen as competition for funds the Department of Defense sought for military space operations. The Defense Advanced Research Projects Agency, for example, was studying a mamed space cruiser, a light spacecadt in contrast to the heavy-argo Space shutle. Gencral James V. Ilartinger, Commander of the Air Force Space Command, claimed the Soviets had "the woild's only space weapon," an orbital anti-satellite system that threatened the low orbiting satellites of the United States." This comntry needed, according to Hartinger, "to protect our assets in space." Regarding the arms race in space, a defense contractor declared that "the Soviets have taken the high ground on the technology, and we're left with the high ground on the debate."'" Reagan's Strategic Defense Initiative, including controversial laser systems, addressed these military concerns.

In 1984 Congress appropriated funds for both the Strategic Defense Initiative and the Space Station, and the government's civilian and military agencies continued their routine cooperation in space matters. The Air Force, for example, had provided contingency support for Space Shutle lights since the beginning, and it increased that contingency suppont in 1984. Futhermore, in August, the United States adopted a new National Space Suategy that delineated roles for NASA and the Department of Defense." The civil-militarycommercial infastructure adapted to the changing space environment, which remained in part a political environment shaped by the international comperition known as the Cold War. The Strategic Arms Limitation Talks (SAIT) and Strategic Amms Reduction Talks (START), for example, had increased the importance of reconmaissance satellites, which were increasingly needed for verifying compliance with disamament agreements. NASA and its hundreds of contractors began development of the civilian Space Station. In this context Whitset forecasted ample robes for the manned manewering unit in the Space Station program: assembly, tamsportation, inspection, contingency, and rescue."
til. John F. Kemedy, "Spectial Message to the Congress on lrgent National Needs," May 25, 1961 , in
 Office, 196:), p. 404.

63. General James V. Hartinger as quoted on page 128 in Felgar Ulsamer, "The Threat in Space and

64. Robert l. Kirk, president of ITV Aerospace, as quoted in "L.S. Crged to Negotiate Treaty batsed upon Frecedom of Space," Aviatiom Wepk is Space Tedinohon 120/22 (May 28, 1984): 118.
 1984): 14-16.
66. Whitsett, Role of the Manned Manemerving linit for the Sipare Statiom, PP. 10-12.

Yet the MMU has not been used since 1984. There are several reasons for this. First, most extravehicular activities were effective without use of the MMU. Tethers, safety grips, hand bars, and other restraints allowed astronauts to work in the open cargo bay. Furthermore, the maneuverability of the Space Shutte itself and the utility of the shutle's robotic manipulator am had proved capable of rescuing satellites- the primary function for which the MMU had been designed. The orbiter could be piloted with such accuracy that on mission 41-B, for example, commander Vance D. Brand piloted the Challenger into position so that McCandless on the manipulator arm could grab a foot restraint that had broken loose and floated away from the orbiter. On flight 41-C, the MMU failed to achieve mechanical mating to the Solar Max satellite, but the orbiter and manipulator arm recovered the satellite. On the Discovery mission, 51-A, commander Henry W. Hartsfield operated the remote manipulator arm to knock ice off a waste-water port, the ice being a reentry hazard. This sort of contingency was a potential MMU activity, but the manipulator arm solved the problem.

Another reason for lack of use of the MMU was the Challengeraccident. In January 1986 the Challenger exploded 73 seconds after launch. The crew of seven, the spacecraft, and the payload were lost. That accident initially prompted a suspension of space flights that lasted into September 1988. The accident and resulting investigations also prompted new safety rules that would require expensive changes to the existing MMU, changes pending both a customer and a mission for the MMU. Still another reason for not using the MMU has been the lack of a new user with adequate funding and appropriate mission. Finally, since the Space Station is still under discussion, the Space Shutle remains the main space human flight program of the United States. The MMU is not necessary to its operations.

Thus today, as Robert Frost observed in 1959:
But outer Space,
At least this far,
For all the fuss
Of the populace, Stays more popular,
Than populous. ${ }^{67}$
67. The Poetry of Robert Frost, edited by Edward Comery Lathem © 1959, 1962 by Robert Frost, © 1969 by Henry Holt \& Co.. Inc. Reprinted by permission of Herry Holt \& Co., Inc. (New York, NY; Holt, Rinehant, and Winstom, 1969), p. 469, quoted with permission.

Chapter 14

The Advanced Turboprop Project: Radical Innovation in a Conservative Environment

by Mark D. Bowles and Virginia P. Dawson

In 1987, a Washington Post headline read, "The aircraft engine of the future has propellers on it." To many this statement was something like heralding "the reincamation of silent movies." "Why would an "old technology" ever be chosen over a modern, new, advanced alternative? How could propeller technology ever supplant the turbojet revolution? Ilow could the "jet set mind-set" of corporate executives, who demanded the prestige of speed and "image and status with a jet," ever be satisfied with a slow, noisy, propeller-driven aircrafi:' A Whathingtom Times correspondent predicted that the turbojet would not be the propulsion system of the future. Insteadl, the future would witness more propellers than jets and if "Star Wars hero I.uke Skywalker ever became chaiman of a Fortune 500 company, he would replace the corporate jet with a . . . turboprop."' It appeared that a turboprop revolution was underway.

NASA Lewis Research Center's Advanced Turboprop Project (1976-1987) was the source of this optimism. The energy crisis of the early 1970s served as the catalyst for renewed govermment interest in acronautics and NASA launched this ambitious project to return to fice saving, propeller-driven airctaft. The Arab oil embargo brought difficult times to all of America, but the ainlines industry, in particular, suffered and feared for its future in the wake of a steep rise in fuel prices. NASA responded to these fears by creating a program to improve aircraft fuel efficiency. Of the six projects NASA funded through this program, the Advanced Turboprop Project promised the greatest payoffs in terms of fuel savings, but it was also the most conceptually radical and technically demanding.

The project began in the carly 1970s with the collaboration of two engincers, Daniel Mikkelson from NASA Lewis, and Carl Rohrbach of Hamiton Standard, the nation's last major propeller manfacturer. Mikkelson, then a young acronatical researh engineer, went back to the old NACA wind tumnel reports where he found a "glimmer of hope" that propellers could be redesigned to make propelle-powered arcraft fly faster and higher than those of the mid to late-1950s. Mikkelson and Rohrbach came up with the concept of sweeping the propeller blades to reduce noise and increase efficiency and NASA received a joint patent with Hamilton Standard for the development of this technology. At Lewis, Mikkelson sparked the interest of a small cadre of engincers and managers. They solved key technical problems essential for the creation of the turboprop, while at the same time they attracted support for the project. After a project office was established, they became political advocates, using technical gains and increasing acceptance to fight for continued funding. This involved wiming govermment, industry, and public support

[^139]

An advanced pmppeller swivl reconery moded is shown in the NASA I hais Ressarch Center's 8×6 foot supersonir wind tunnel. Proferler dfuciencies and noise are measured at oruise mach numbers up to 0.80 and at takeoff and appmoach conditions. Vane pitch angles and propfan-tr-vane axial spacings are varied. The testing was fart of the Advanced Tubthoprop Pogect, with the groal of providing the technology base to enable the (S.S. develotment of quieter, fuel efficient turbophop engines with a comfortable aircraft interior environment. (NASA photo no. 9(H-78).
for the new propeller technology. Initially the project involved only Hamilton Standard, but the aircraft engine manufacturers, Pratt \& Whitney, Allison, and General Electric, and the giants of the airframe industry, Boeing, Lockheed, and McDonnell Douglas joined the bandwagon as the turboprop appeared to become more and more technically and socially feasible. The turboprop project became a large, well-funded, "heterogeneous collection of human and material resources" that contemporary historians refer to as "big science." At its height it involved over forty industrial contracts, fifteen university grants, and work at the four NASA research centers, Lewis, Langley, Dryden, and Ames. The progress of the advanced turboprop development seemed to foreshadow its future dominance of commercial flight.

The project had four technical stages: "concept development" from 1976 to 1978; "enabling technology" from 1978 to 1980; "large-scale integration" from 1981 to 1987; and finally "flight research" in 1987.' During each of these stages, NASA's engineers confronted and solved specific technical problems that were necessary for the advanced turboprop project to meet the defined government objectives concerning safety, efficiency at high speeds, and envirommental protection. NASA Lewis marshaled the resources and support of the United States ateromatical commanity to bring the development of the new technology to the point of successful flight testing. In 1987, these NASA engineers, along with a wide-ranging industry team, won the coveted Collier Trophy for developing a new fuel efficient turboprop propulsion system. "The winning team included Haniloon Standard, General Electric, Lockheed, the Allison Gas Turbine Division of General Motors, Pratt \& Whitney, Rohr Industries, Gulfstream, McDonnell Douglas, and Boeing-certainly the largest, most diverse group, to be so honored in the history of the prize.

Despite this technical success, the predicted urboprop revolution never came, and no commercial or military air fleet replaced their jets with propellers. The reason for this failure was socio-economic, not technical. Throughout the project, social issues influenced and defined the status of the advanced turboprop. From the beginning it was the perception of an energy crisis, not a technological imnovation, that spurred the idea of the project itself. The Cold War and the existence of Soviet high-speed turboprops played a key role in convincing Congress to fund the project. As the project progressed, within each technological stage, the engineers used distinctive and creative approaches to deal with the complex web of government, industry, and academic contractors. More often than not, the main question was not does the technology work, but how can we get govemment, industry, and the public to accept this technology? In the end it was a socioeconomir issue again which shelved the program. The reduction of fuel prices ended the necessity for fuel conservation in the skies and today the advanced tuboprop remains a neglected, or "archived" technology.

This is not to imply that the technical achievements were unimportant. Each distinct technical stage of the project determined a corresponding social action. During the concept development stage, creative advocacy was necessary to sell the government and industry on this radical idea. During the enabling technology stage, engineers used complex project management skills to ensure that this massive team would function effectively. During the large-scale integration stage, NASA had to deal with a competitor that surprised them by introducing its own high-speed tuboprop. Finally, during the flight research stage, NASA became aware that no current aitlines would adopt the advanced turboprop and thus the

[^140]engincers waged a batke to win the Collier Trophy to try and gain positive status and recognition for their technical achievement.

The relationship between these technical and social spheres was never either a simplistic story of social construction or techological deteminism. Rather, the retationship was one of interdependence. At times the project advanced on its technical merits; at others, it progressed through political persuasion. At each stage, only after NASA engineers and their industrial and academic pariners solved both the social and technical problems holding it back, was the advanced tuboprop project able to obtain funding and move forward. But ultimately, the socionconomic issuc of petrolewn price and avalability managed to scutle NASis technical success.

Thomas Hughes, a prominent historian of techoology, has aggued that the rescarch and development organizations of the wentieth century, no matter whe the they are run by a govermment, industry, or members of a university commmity, stifle technical creativi1y." In these organizations there can be found "no trace of a thash of genius."" In contrast, the bate 19th century for Hughes was the "golden era" of invention-a time when the independent invemor flomished without institutional constaints. Recenty, David Hounshell has chatlenged Hughes's contention that industrial research laboratorics "exploit creative. inventive geniuses; they nether poduce nor numbe them." Nor only an the industrial researel labotatory number a creative individual, but collectively, people engaged in reseate and development contribute to making an invention a commercial reality. In his study of the organization of research at Du Pont, Hounshell paid tribute to the individual brilliance of the organic chemist Wallace H. Carothers, but he argued that the real "genius of nylon was in the organization that developed it into one of the most successful and profitable materials of the wemtieth centmy." In our view, the NASA Advanced Tuboprop Project represents another case in which organizational capabilitics, not individual genims alone, create the opportunity for significant imovation. The organization that supported the development of the wobopop was far more complex than the research laboratory of an industrial tirm, yet in responded to the energy crisis to adanme a madical idea. As Donald Nored, who headed the office at NASA lewis Research Center that managed the three ditcati energy efficiency projects remarked, "The climate made people do things that nomally theyd be too conservative to do." "The history of the aduanced mbopeop demonstates how a madical imovation can emerge from a dense, conservative web of butcancracy to nearly revolutionize the woilds aircraft propulsion systems.

The Conservative Team Environment

Athough NASA won several Collier trophies for innovations related to the space program, it had produced no winners in aeronatucs since the founding of the agency in 1958. NASA's predecessor organization, the National Advisory Committee for Aeronatios (NACA), had received five Collier trophies for contributions to acronatics between 1929 and 1958 . These wophies paid tribute to the individual creativity and the unique research environment of the NACA's research laboratories. James R. Hansen has described in this volume how engincer Fred E . Weick used the NACA's mique wind tumel facilities to develop

[^141]the NACA low-drag cowling. Succeeding Collier trophies awarded under the institutional aegis of the NACA followed a similar pattern. Lewis A. Rodert won it for developing a thermal ice prevention system for aircraft (see the essay by (ilenn E. Bugos, this volume), John Stack won it twice for his contributions to supersonic theory and the development of the transonic wind tunnel, and Richard Whitcomb carried off the prize for his discovery and empirical validation of the area rule. What made the award garnered by the NASA/industry team in 1987 different was that it recognized the collective talents of government engineers from four NASA research centers, academic researchers, and contractors from the propeller, engine, airframe, and airline industries.

The history of the turboprop project is interesting from an institutional standpoint because it took root and flourished within NASA's conservative, bureaucratic environment. It was modeled, not on NASA's small-scale aeronatutical research projects (typically carried on by former NACA laboratories), but on the large-scale projects of the space program. The NASA Lewis Research Center adopted an administratively complex team approach that depended on input not simply from other NASA Centers, but also from numerous industrial and university contractors. Essentially, NASA Lewis Rescarch Center became the center of an extensive government-industry-academic complex. At each stage in the project, the management team determined what needed to be done and sought the appropriate help both from within and outside NASA.

With its expertise in propulsion technology, the NASA Lewis Research Center was ideally suited to manage the turboprop project. Set up in Cleveland, Ohio, during World Watr II as an aircraft engine research laboratory, Lewis became the third laboratory of the National Advisory Committee for Aeronautics. I ewis engineers pursued aircraft engine research in the national interest-often over the objection of the engine companies who perceived the government as interfering with the normal forces of supply and demand. During the carly years of the Cold War, the laboratory participated in engine research and testing to assist the engine companies in developing the turbojet engine. After the launch of Sputnik, the laboratory focused on a new national priority-rocket propulsion research and development. Almost all work on air-breathing engines ceased for nearly ten years.

The return to aircaft engine research coincided with drastic reductions in staff, mandated by cuts in NASA's large-scale space programs." The mass exodus of nearly 800 personnet in 1972 sparked an effort to redefinc the center's mission and find new sources of funding. The following year, OPEC's oil embargo galvanized the Center's director, Bruce Lundin, to look for ways to use its propulsion expertise to help solve the energy crisis. In 1974, Lewis received $\$ 1.5$ million for a windenergy program from the National Science Foundation and the Energy Research and Development Administration (ERDA). A program in solar cell technology development followed on its heels with increasing funding of various energy-related programs by ERDA and its successor, the Department of Energy. The changing focus of the Center's activities prompted rumorsemphatically denied-that it would become part of ERDA. The new emphasis on energy efficient aircraft, unlike the ERIAA projects, promised to keep Lewis strongly in NASA's fold. "Moreover, it brought high visibility to the aeronautics side of NASA, long overshadowed by the cnomous budgets and prestige of the space program.

Although it shared similarities in management with NASA's space projects, the turboprop project differed in significant ways. First, although the advanced turboprop was the reincarmation of an old iflea, it involved the creation of cutting-edge technology. Space

[^142]projects involved rigorous oversight, but generally relied on existing technology. When necessary, NASA contracted with industry to produce whatever new technology was needed for a particular mission. The turboprop project tapped the creative talents of engineers at NASA in ways that were reminiscent of the NACA tradition of in-house research, though in management scope it transcended the narrow institutional boundaries of NASA's research centers. Second, though all NASA projects of the early 1970s needed to be "sold" to an increasingly tight-fisted Congress, the controversial nature of the turboprop meant that NASA Lewis had to build support both at Headquarters and within the aviation community. What NASA referred to as "advocacy" needed to be vigorous and continuous throughout the life of the project.

The Energy Crisis and the Politics of Funding

The OPEC: oil embargo of 1973 awakened the United States to the degree of control outside nations had over the lives of every American. The increased price of oil affected all areas of the economy, but none more than the airlines industry. ${ }^{\text {" }}$ Earl Cook, noted geographer and geologist, has argued, "Whoever controls the energy systems can dominate the society." ${ }^{17}$ An extension of this argument is, whoever possesses the fuel supply controls the energy systems. Five sources of energy, including petroleum, natural gas, coal, hydropower, and nuclear, accounted for all fuel consumption in the United States during 1973. Of these five sources, America was most dependent upon petroleum, consuming approximately seventeen million barels of oil a day." At no other time in American history was Cook's aphorism more evident than in 1973 when the United States imported six million barrels of oil a day, 64 percent of which came from the Organization of Petroleum Exporting Countries (OPEC). ${ }^{19}$ The concern in the United States was that since OPEC controlled the petroleum, could they dominate American society?

In response to the energy crisis, in 1973 the airlines industry initiated its own fuel-saving program which reduced fuel consumption by over one billion gallons per year. ${ }^{24}$ But these measures were not enough. Jet fuel prices jumped from twelve cents to over one dollar per gallon and total yearly fuel expenditures increased by one billion dollars, or triple the eamings, of the airlines. Prior to 1972, fuel accounted for one-quater of the commercial airlines' total direct operating costs. ${ }^{21}$ During the crisis, fuel represented over half of the airlines' operating costs. The result was a reduction in the number of flights, the grounding of some aircraft, and the "furloughing" of some 10,000 employees. If the situation in the early 1970 seemed bad, prospects for the future appeared even worse. Linking the fate of the airlines, the cost of jet fuel and the prosperity of the nation as a whole, airlines industry lobbyists rushed to their comgressmen. The politicians, in turn, appealed to NASA.

[^143]

Why was jet fuel so important to our national interest? Clifton F. Von Kann, senior vice-president of the Air Transport Association of America, pointed out in a 1975 Senate statement that airlines were "more than just another means of transportation." ${ }^{" 2}$ He asserted they played a major part in the economic and military success of the nation. They also

[^144]provided the infrastructure for the mail system, the national export system, and the $\$ 60$ billion tourist industry. Jet fuel was the "life-blood" of the airlines, but it was also their Achilles heel. He warned a failure to control the rising cost of fuel might result in either the nationalization or the withering away of the "basic building block in the structure of the U.S. economy.": Senator Barry Goldwater linked this crisis to the possible "loss of a large part of our world supremacy."\#t The fuel crisis created an opportunity for NASA at a time when Congress had drastically cut finding for the space program. Aeronautics, the tirst "A" in NASA, had long taken a back seat to the spectacular space missions of the Apollo years. Now the agency was ready to reassert its role as the nation's premier institution for research and development in civil aeronautics.

In January 1975, James Fletcher, the NASA Administrator, received a letter from Senators Bary Goldwater and Frank Moss." The letter suggested a massive technology project involving NASA and industry to help ease the burden on the airlines cansed by the energy crisis. Its goal was the realization of a new generation of fuelefficient aircrati. Goldwater and Moss asked NASA to propose a plan, develop the technology, and facilitate the "technology transfer process" to industry." Technology transfer later became a particularly thony issue in the debate over whether the government should carry development to the point of costly flight testing, on leave that phase to the manuacturers who stood to benefit handsomely from this govemment-gencrated techmology.

In February 1975, NASA formed the Intercenter Aircraft Fuel Conservation Technology Task Force to explore all potential options. ${ }^{\text {y }}$ Sixtern govemment scientists and engineers from NASA, the Deparment of Tansportation, the Federal Aviation Administration, and the Department of Defense took part in the seven-month study. ${ }^{2+}$ James Kramer, the task force leader, called for any new ideas that would satisfy government criteria, even those that might be considered "unusual." The task force defined six major areas with the potential for significant impact on aircraft fuel efficiency. It recommended the creation within NASA of the Aircraft Energy Efficiency (ACEE) Program, the administrative umbrella for six new aeronatios projects-three related to the airframe and the to the propulsion system." ${ }^{* \prime}$

NASA assigned management of the three propulsion projects to the NASA Lewis Research Center. The first of these propulsion projects focused on improving existing turbofan engines through the redesign of selected engine componems. It was the least techmically chatlenging of the three projects and aimed for a five percen increase in fued efficiency within a few years. The second project, the Energy Efficient Engine (E^{3}), involved building "a brand new engine from scratch" and offered a far greater payoff-an increase in fuel efficiency of ten to fifteen percent. In essence, NASA proposed to assume the risk for developing an "all new technology in an all up engine." With a new "recompment program" in place, the govermment expected to get back some of its investment out of the profits of the engine mandacturers, General Electio and Pratt \& Whitney.

[^145]In contrast to these two relatively conservative projects, the advanced moboprop offered dramatic increases in fuel efficiency. NASA planners believed that an advanced turboprop could reduce fuel consumption by twenty to thinty percent over existing turbofan engines with comparable performance and passenger comfort at speeds up to Mach 0.8 and altitudes up to 30,000 feet. (It should be noted that commuter turboprop-powered aircraft in cument use fly at far slower speeds and lower altitudes.) The ambitious goals of the turboprop project made it controversial and challenging both from a technical and social point of view. Fechnically, studies by Bocing, McDonnell Douglas, and Lockheed pointed to four areas of concem: propeller efficiency at couise speeds, both intemal and external noise problems, installation aterolyamies, and maintenance costs." Socially, the turboprop also presemed damting problems. Because of the "perception of turboprops as an old-fashioned, troublesome device with no passenger appeal," the task force reporn noted, "the airlines and the manufactures have little motivation to work on this engine type." Clifton Von Kann suctinctly summed up these concems to Bamy Goldwater during his Senate testimony when he said that of atl the propesed projects, "the propeller is the real contoversial one.".

What made the govermment willing to assmme the risk for such a difficult project? Proposed fuel savings was one important factor. However, the task force report indicated another significant and related issuc-the Soviet Conion had a high speed "turboprop which could fly from Moscow to Havana." "The continuing Cold War prompted the United States to view any Soviet technical breakthrough as a potential threat to American security. Duting the energy crisis, the knowledge that Soviet turboprop transports had ahready achieved high propeller fuel efficiency a speeds approaching those of jet-powered planes seemed grave indeed and gave impetus to the NASA program. During the govemment hearings, NASA representatives displayed several photos of Russian turboprop planes to win congressional backing for the project, The Cold War helped to define the turboprop debate. No extensive speculation on the implications of Russian air superiority for American national security seemed necessary. The Soviet Union could not be allowed to maintain technical steperomy in an area as vital as aircraft fuel efficiency. Thus, the report included the demanding Advanced Turboprop Project as part of the ten-year, $\$ 670$ milliom Airctaft Energy Efficiency Program to improve fuel efficiency.

Concept Development and Early Advocacy

Industry resistance and NASA Headquanters' sensitivity to the public relations aspect of this opposition were among the key reasons that of the six projects within the Aircraft Energy Efficiency (ACEE) program, only the advanced tuboprop failed to receive funding in 1976. John Klineberg, later director of L ewis Research Center, recalled that it was delayed "because it was considered too high risk and too revolutionary to be acepted by the airlines."

[^146]If the advanced turboprop was so important to the national welfare, why did it encounter such opposition from the airframe and aircraft engine manufacturers: Donald Nored, the division chief in charge of the three propulsion projects at Lewis, remarked that his engineering peers in industry were "very conservative and they had to be." They were "against propellers" because they had "completely switched over to jets." Because of their commitment to the turbojet, they continually cited problems that they believed resulted from propellers. This included noise, maintenance, and the fear that the "blades would come apart." Nored recalled cach problem had to be "taken up one at a time and dealt with."\$ It appears the govermmen's revolutionary vision of the future frightened the aircraft industry with its large investment in turbofan technology. Aircraft structures and engines are improved in slow, conservative, incremental steps. To change the propulsion system of the nation's entire commercial lleet represented an investment of mind-boggling proportions. Even if the government put several hundred million dollars into developing an advanced turboprop, the airframe and aircraft engine industries would still need to invest several billion dollars to commercialize it. Revolutionary change did not come easily to an established industry so vital to the nation's economy.

Turboprop advocates encountered not only the opposition of industry representatives, but the hesitation and timidity of NASA Headquarters. By default, the advocacy role fell to NASA Lewis engineers, though the public relations aspect of technology funding had never been the Cleveland laboratory's strong suit. Lewis had a reputation for being more conservative and technical than the other NASA Centers. ${ }^{3 *}$ One Lewis engineer remarked that when other Centers sent five representatives to important meetings, lewis sent one. Moreover, research engineers from the aeronatics side of NASA had little experience managing major contracts. Yet the encrgy crisis and the need for projects to sustain the Center's viability within NASA galvanized a small cadre of Lewis engincers into action. They used their technical and new-found managerial creativity to sell NASA Headquarters and industry on a revolutionary new propulsion system-one that might forever ground all existing subsonic turbojets.

Technically, the entire finture of the advanced turboprop project initially clepended on proving whether a model propfan could achieve the predicted fuel efficiency rates." If this model yielded successful results, then project advocates would be able to lobby for increased funding for a large research and development program. Thus, even during its earliest phase, the technical and social aspects of the project worked in tandem.

Lewis project managers awarded a small group of researchers at Lewis and Hamiloon Standard a contact for the development of a two-foot diameter model propfan, called the SR-1 or single-rotating propfan. Single-rotating meant that the propfan had only one row of blades, as opposed to a commterotating design with two rows of blades, each moving in opposite directions. This model achieved high efficiency rates and provided technical data that the small group of engineers could use as ammunition in the fight to continue the program.

At the same time that they proved the technology using small-scale models, Lewis engineers built a consensus for the project, defending it against objections of skeptical segments of industry and govemment advisory committes. Advocacy is essentially "marketing" or "selling" to gain government funding and industry backing for new programs like the advanced turbopop. Funding govemment programs is neither scientific nom entirely rational, but depends on people and how they navigate a complex bureancracy,

[^147]
Advocate Interactions

while awoding numerous political emtanglements. During the Apollo years, NASA had what amounted to a blank check to land a human being on the Moon within a decade. Not needing to spend time and energy fighting for funding, engineers had greater free dom to focus on building and testing hardware and managing space missions. But to keep the programs of the 1970 s alive, even those that responded to a mational crisis, recpured effort in non-technological spheres of activity.

Lewis was formate that Donald Nored, a maestro of project management, played a strong role in building a comstituency in support of the project. Linlike most of the other I cwis engineers involved in advanced mopoprop development, he hailed from the space side of NASA's house. He had worked on chemical rockets and high power lasers prion to taking up his post as head of the Aircraft Energy Efficiency Program Office at Lewis in 1975. He helped to show ateronatical engineers, more at ease with in-house rescath, how to negotiate the system to win funding. In 1981, with Frank Berkoper, Nored attempted to remstify the advocacy process by laying down guidelines for others within the Aeronatuics Directorate. They disabused their order-seeking engineering colleagues of the notion that advocacy could be compressed into a series of well-defined steps. Rather, they wrote, it is

Advocacy Process

"basically informal, unstructured, and quite often confusing." " Since only a few of the proposed NASA programs received funding each yeat, they argued, the advocacy process had become essential and activities related to it should receive a "high prionity."

The advocacy guidelines indicated that the interactions with "industry, advisory groups, and especially Headquarters will often require rapid, comprehensive, and in-depth respondents /sic| to requests." One carly request of the turboprop project centered on the aircraft industry's concem oxer the safety of propellers. An airctaft accident arlvisor rased a question during a meeting of the Industrial Advisony Board at NASA Headquaters conceming the "safely aspert of propellers breaking away from the engine and the damage caused by their impingement into the fuselage." ${ }^{+3}$ Lewis engineers quickly launched their own study into propeller safely and commissoned similan stude's at Ltamiloon Standand and Defoid Diesel Allison. The results were overwhelmingly positive. Lewis examined over 12,000 accident repots from 1973 to 1975 and fomd no instance where a propeller blade broke avay from its engine." Hamilon Standard reponted that after fifty million hours of propeller flight time there had never been an instance of structhal fature ${ }^{\text {s }}$ While after twenty million homs, Detroit Diesel Nlison found one structural falure: they were quick to poinn out that "the aitcraft landed motincly withou further incident and no one was injured in the aitcraft or on the ground." "This example typilies not only the carly shepticism and resistance by industry wo the idea of returning to propeller aircraft but also the "rapid, comprehensive, and in-depth responses" of NASA on industry's concems. The advocacy process required to "market" and "sell" the radical tutboprop project was in full swing. It continued to effectively diffise the concerns of skeptics.

Enabling Technology and Project Management

Successful advocacy brought the formal establishment of the Adanced Turboprop Project in 1978 and initiation of the enabling technology phase. As the lead Center for the project, NASA Lowis had full responsibility for the management of its increasingly farflung and complicated pieces. Before this phase began, NaSA engimeers devised a detailed "management approach" and the plan was approved in 1977. Officially, Icewis was to have "responsibility to execute all detailed project plaming doctomentation, develop and implement the procurement of components and systems, provide techical direction to contractors, pertorm contract administration, perform engineering functions, coordinate the related in-house sesearch and techoology programs, and exercise the usual project review reporting and control fimetions." These interrelated activities put Lewis in the middle of an intricate web of govemment (other NASA Centers), industry, and academic contracts. Project managers were responsible for assigning the techonogy contacts. They also had the equally impontan function of ensuring that both the public and the govermment viewed the ATP positively.

[^148]

ATP Academic Contracts

Once the management structure was in place, the technology studies could begin. Technically, this phase dealt with four critical problems: modification of propeller acrodynamics, cabin and commonity noise, installation acrodynamics, and drive systems. "Propeller acrodynamic work included extensive investigations of blade sweep, twist, and thickness. The late 1970s was the first time that engineers used a high speed computer to analyze the design of a propeller. Computers were not yet in widespread use when the turbofan replaced pro-peller-powered plames in the 1950s. Lewis programmers used their Cray supercomputers to develop the first three-dimensional propeller aerodynamic analysis. A further structural and aerodynamic achievement was to use thimer titamimo blades to reduce the fluter problems associated with the steel propeller blades used in the 1940s and 1950 s.

The advantage of propellers to save fuel had to be balanced against the potential ham to the enviroment their noise caused. "New computer-generated design codes not only contributed to improved propeller efficiency, but contributed to solving problems associated with noise. Fngineers closely monitored the effect of propeller noise on both cabin occupants and people on the ground. To study propeller acoustics, they mounted propeller models on a JetStar aircraft fuselage at the NASA Dryden facility. Microphones located on the airfame and also on a Learjet chase plane provided data at close range and at a distance. After reviewing the sound pattern data, they concluded that substantial

[^149]noise reduction technology was necessary 10 meet the established goals. Fventually, they achieved a reduction of sixty to sixty-five decibels of nove through a combination of structural advances and flight path modifications.

The dinal two technical problems of the emabling phase dealt with installation acrodynamics and the dive system. Numerous installation arrangements were possible for momming the turboprop on the wing. Should the propeller operate by "pushing" or "pulling" the aircratt: How should the prope ller, nacelle, and the wing be most effectively integrated (1) reduce drag and increase fued efficiency? Wind tuntel tests were able to reduce drag significanty by determining the most advantageons wing placement for the propeller. Engineers also examined various drive train problems, inclading the gearboxes.

Solutions to all the enabling phase technical problems was still not enough to guarantee the continued funding of the progran. Key social questions were still associated with this comboversial technology. A vital concem for the advanced tuboprop project mamagers was the social question concerning passengers: how receptive would they be to propeller-driven aircate In 1975, a govermment panel reported that they were "genemalfy opposed to the turboprop aticraft, primarity because they telt that there would be litue or no public acceptance." If the public would not fly in a turboprop plane, ath the potenthal fued savings would be lose tlying empty planes actoss the country.

In response to this concem, NASA and Linited Ainlines intiated an in-might questiomatere to determine customer reation to propellers. Both NASA and industry were awate of the disastrous consequences for the future of the program if this study found that the public was against the retum of propeller planes. As a result, the questionnaire de-emphasized the propeller as old technology and emphasized the turboprop as the continmation and advancement of flight techmology. The first page of the survey consisted of a letter fiom the lnited Airlines vice president of marketing to the passenger asking for cooperation in a "joint industry-government study conceming the application of new
 The tuboprop, inconspicuously renamed the "prop-fan" to give it a more positive connotation, did not make its well-disguised appearance until page four of the survey where the passenger is finally told that "prop-fan" planes cond fly as high, as sately, and ahmost as fast and smooth as jet aircraft." This wats a conscious thetorical shift from the tem "propeller" to "prop-fan" to disassociate it in peoples' minds from the old piston engine technology of the prejet propulsion era. Brian Rowe, a General Electric vice president with oversight of the advanced propeller projects, explaned this new labeling strategy. Ie said, "They re not propellers. They're fans. People felt that modern was fans, and old technology was propellers. So now we ve got this modem propeller which we want to call a fan.": The questionmaire explatned to the passenger that not only did the "prop-fans"
look more like fan blades than propellers," they would also use twenty to thirty percent less fiel than jee aircoat.

The questionmaire then displaved there sketches of planes-two were propeller driven and the third was a turbofan. The passenger had to choose which one he or she would "prefer to travel in." Despite all the planes being in-flight, the sketches depicted the propellers as simple circles (no blades present), while the individual blades of the turbofan were visible, These were all subte and effective hints to the passenger that the "prop-fan" was nothing new and that they were already flying in phanes powered by engines with fan blades.

[^150]Not surprisingly, the survey yielded favorable results for the tuboprop. Of 4,069 passengers surveyed, fifty percent said that they "would fly prop-fan," thirty-cight percent had "no preference," and only welve percent preferred a jee."If the airlines could avoid fave increases due to the implementation of the turboprop, eighty-seven percen of the respondents stated they would prefer to fly in the new tuboprop. Relieved and buoyed by the results, NASA engineers liked to point out that most of the passengers did not even know what propulsion system was currenty on the wing of their aircraft. "Acoording to Mikkelson, all the passengers wanted to know was "how much were the drinks, and how much was the ticket.". Equally relieved was Robert Collins, vice president of engineering for United Airlines, who concluded that this "carefally construmted passenger survey. . . indicated that a prop-fan with equivalent passenger comfort levels would not be negatively viewed, especially if it were recognized for its efficiency in reducing fued consumption and holding fares down.".

At times project management also inwolved informing and changing government opinion. Aeronatuics programs within NASA, because of the low levels at which they were traditionally funded, had never required close oversight by the General Accounting Office ($\mathrm{G} A O)$). The large budge and greater visibility of the Aircraft Energy Efficiency Program (ACEE) suddenly brought it unwanted attention. The first draft of the econerat Accounting Office's 1979 review, though gencrally favorable toward the ACEE program, was highly critical of the advanced turboprop project. It concluded with the statement that the "CAO believes that much of the fuel savings under ACFE atmbuted to the turbopop will not be realized. ${ }^{\prime \prime}$

The drafts "negative lone" and "misleading and distoted view of the program" deeply concerned NASA Lewis project managers who feared the repercussions it would have on funding decisions." They quickly went on the attack. Center Director fohm Klineberg heatedly responded that the Gio had treated the tuboprop project undaimy in comparison with the other aircraft efficiency projects, calling the GAO ignorant of the project's "inherent mocertanties.".

NASA Lewis project managers prevaled in the batte against the negativity of the GAO draft report. The final publication specificatly contained a retration. The "(ind) carefully reevaluated its presentation and made appropriate adjustments where it might be construed that the tone was umecessarily negative of the data misleading." An example of these "appropriate adjustmens" is apparent in a comparison of how one sentence changed from the draft to the linat version. In the drati, the sentence appeared as: "The Task Force Report shows that in 1975 there was considerable disagreemem on the ultimate likelihood of a turboprop engine being used on commereial airliners." ${ }^{\text {not }}$ In the final publication, the GAO amended the same sentence to: "The possible use of turboprop

[^151]engines on 1995 commercial aircraft is still uncertain, but has gained support since 1975."01 These editorial changes giving the report a positive spin indicate the effectiveness of project managers in changing public opinion. Everyone, it seemed, had begun to associate the advanced turboprop technology with the possibility of bringing about an aeronautical "revolution," a paradigm shift, or as Forbes magazine headlined in 1984, "The Next Step." As surely as "jets drove propellers from the skies," the new "radical designs" could bring a new propeller age to the world." ${ }^{\text {"2 }}$

It is important to underscore how important the interpersonal skills of the project managers were to continuation of the program throughout this enabling technology phase. They were responsible not only for managing the project's technology, but also for enabling, proving, maintaining, and adjusting support for the turboprop. They continued to push this controversial techmology against the conservative interests of the government, industry, and the public. Their consistent success paved the way for the third stage.

Large-Scale Integration and Competition

After two years of work, the advanced turboprop idea began to attract greater commercial interest. As a result of NASA's advocacy efforts, news articles began to predict the coming propeller "revolution." All indicators pointed to the introduction of the new turboprops on commercial aircraft by the 1990 s. With the small-scale model testing complete, a data base, and an acceptable design methodology established, the project moved into its most labor and cost intensive phase-that of large-scale integration. The project still had serions uncertainties and problems associated with transfering the designs from a small-scale model to a large-scale prop-fan. Could engineers maintain propulsion efficiency, low noise levels, and structural integrity with an increase in size? The Large-Sale Advanced Prop-fan (LAP) project initiated in 1980 would answer these scabability questions and provide a database for the development and production of full-size turbofans.

As a first step, NASA had to establish the structural integrity of the advanced turboprop. ${ }^{\text {. }}$ Project managers initially believed that in the development hierarchy performance came first, then noise, and finally structure. As the project advanced, it became clear that structural integrity was the key technical problem." Without the correct blade structure, performance could never achieve predicted fuel savings. NASA awarded Hamilom Standard the contract for the structural blade studies that were so crucial to the success of the whole program. In 1981, they began to design a lage-scale, single-rotating prop-tan made of composite material. Five years later they completed construction on a 9 -footdiameter design very close to the size of a commercial model. The model was so large that no wind tumel in the United States conld accommodate it. The turboprop managers decided to risk the possibility that the European aviation commonity might benefit from the technology that NASA had so arduously perfected. They shipped the large-scale propelles, called the SR-7L, to a wind tumel in Modane, France, for testing. In carly lost, researchers subjected the model to speeds up to Mach 0.8 with simulated altitudes of 12,000 feet. The resuls confimed the data obtained from the small model propeller designs. The large-scale model was a success.
 States, July 28,1980 , Nored papers, box 182 , lile Gio report. p. 45.
62. Howard Banks. "The Next Step," Fmbes, May 7, 1984, p. 31.
 Jannary 11. 1989. NASA. Nored papers, box 229.
64. Nored interview.

Success spawns imitators. While NASA continued on work with Allison, Pratt \& Whitney-and I familton Standard to develop its adoanced tumbopop), (enemal Electric (GE)-Pratt \& Whitney's main competitor-was quietly developing an alternative propeller system. A feature of radical inventions is that competitoss often introduce altemative forms of a simila technology before ome form can prevail over another. Historians of technology have shown many cases of "interpretative flexibility" when "two or even mote social gromps with cleary developed techonological fames lartifactsd are striving for dominance in the field." This happened when Gencral Electric intodeded its own rarlical alternative to NASA's advanced moboprop projectole Unducted Fan (UDF). (iE spang the unducted fan on NASA completely by suppise.

In NASA's design, the propeller rotated in one direction. This was called a single rotation tractor system and included a relatively complicated geabox. Since one of the criticisms against the mobopop planes of the 1950 s (the Electa, for example), was that their geaboxes reguired heary maintemance, (ik took a different apporode to prop-fan design. Begimning in 1982, (iL engineers spent fise years developing a gearless, counter-motating, pusher system. They monated wo propellers (or fans) on the rear of the plate that literally pushed it in light, as opposed to the "pulling" of conventional propellers. In I 983 , the ameraft engine division of General Electicic relcased the unducted fan design to NASA shomtly before flight tests of the NASA industry design were scheduled. Suddenly there were two tuboprop projects compering lor the same funds. Nored recalled: "They wanted us to

drop everything and give them all our money and we couldn't do that. "win NASA Ileadquaters endorsed the "nowel" moducted fan proposal and told NASA Lewis to coopatate with General Electric on the unducted fan development and testing.

Despite NASA's initial reluctance to support two projects, the unducted fan proved highly successful. In 1985, ground tests demonstrated a fuel conservation rate of twenty percent." Development of the moducted fan leapt ahead of NASA's original geared design. One year later, on August 20, 1986, (GE installed its unducted fan on the righe wing of a Boeing 727. Thus, to many NASA engineers dismay, the first flight of an advanced turboprop system demonstated the technical feasibility of the unducted fan system-a proprictary engine belonging emtively to Gencral Electric, rather than the product of the foint NASA/industy team. Neverheless, the competition between the two systems, and the willingness of private industry to invest its own development funds. helped build even greater momentum for acceptance of the turboprop concept.

NASA engineers continued to perfect their single-fotating tuboprop ssstem through prediminary stationary flight testing." The first step was to take the Itamilton Standard SR-7A prop-fan and combine it with the Allison turboshaft engine and gearbox housed within a special tiln nacelle. NASA engincers conducted a static or stationary test at Rohr's Brown Field at Chula Vista, Califomia, where they momed the nacelle, gearbox, engine, and propeller on a small tower. The stationary test met all performance objectives after fifty hours of testing in May and June 1986. This success cleared the way for an actual tlight test of the turboprop system. In July 1986 engineers dismanted the static assembly and shipped the pats to Savamah, Georgia, for reassembly on a moditied Gulfistream II with an eight-blade. single-rotation, turboprop on its left wing." The radical dreams of the NASA engineers for fuel eflicient propellers were finatly close whecoming reality. The plane contained over 600 semsors to monitor erepthing from acoustics to vibration. Flight testing-the final stage of adanced turboprop developmentook place in 1987 when a modified Gulfistram II took flight in the Georgia skies. These flight tests proved the predictions of a twenty to thity percent fiel savings (made by NASA in the early 1970s) were indeed correct.

On the heets of the successful tests, of both the GE and the NASA-industry team designs, came not only incteasing support for propeller systems themselves, but also high visibility from media reports forecasting the next propulsion revolution. The Now York Times predicted the "Recturn of the propellers" while a Washingtom Times headline read, "Tuboprops are back!" Further testing indicated that this propulsion technology was ready for commercial development. As late as 1989 , the L.S aviation industry was "considering the development of several new engines and aircraft that may incorporate advanced turboprop propulsion systems."a But the economic realities of 1987 were far differem from those predicted in the eary 1970s. Though all the technology and social problems standing in the way of commercialization were resolved, the advanced turbor prop neser reached production, a castalty of the one contingency that NASA enginects never anticipated-that fuel prices would go down. (See ligute 5) Once the energy erisis passed, the need for the advanced turboprop vanished.

Gei. Nored interview
67. James. J. I Iaggerty, "Propfan Cplate," p. 11.
 fssesment (1)DA) Project
 Mat $1,1483$.

 I:い 1.1989

Environmental Contingency and Insufficient Momentum

One of the main difficulties in the development of a radical new technology is the potential project threatening problems that anse. If they are left unsolved they can destroy an entire project. Historian of technology Thomas Hughes called these problems "reverse salients." Hughes argues that all large technological systems (of which the turboprop is an example) include political, economic, social, and technological components. These system components are interelated so that if one of the components is changed or altered in any way, the rest of the system will also be affected. The systems themselves grow and gain momentum by the process of removing "reverse salients," which arise and could potentially cause the system to fail. An example will help clarify the importance of solving these critical problems. In 1878, Thomas Edison cnoomered a technological reverse salient in his attempt to develop his electric-lighting system. This problem was the short-lived filament of the incandescent bulb. Edison realized that even if he solved this problem, a further economic reverse salient remained. The expense of the copper wire needed to link the entire system together was cost prohibitive for potential wide-scale acceptance. If Edison could not reduce the amount of copper needed for his electric system, then gas-lighting systems would become the more attractive alternative to the problem of street lighting. What is important to understand is that either the techmological or the economic reverse satient could have caused the Edison system of electric-lighting to fail."3

Like Edison, the managers of the turboprop project also confronted a variety of critical problems. These problems included economic (the necessity of maintaining a favorable ratio of (ost to implement tuboprop techoology versus savings in fuel efficiency), political (how to receive funding for a long-term project), social (how to implement a technology which the public could perceive as a "step backward"). institutional (how to successfully manage the govermment, industry, and adademic relations), and technical (how to actually buide a turboprop that improved fuel efficiency by twenty to thinty percent). Each of these problems had the potential to sabotage the entire system. NASA engincers had their own, more practical and direct term for "reverse saliom"-a "showstopper." In 1984, engineers listed a mumber of technical show-stoppers that threatened to derail the project if left unsolved-for example, unacreptable levels of cabin noise ${ }^{\text {an }}$

As system-builders solve critical problems, the system itself generates momentum. This momentum continues to increase and build until, according to Hughes, either a conversion, a catastrophe, or a contingency occurs. Conversions and catastrophes break momentum through either a change in societal belief, like a religious conversion, or a massive technological failure, like a muclear-reactor catastrophe. But, it is the role of contingency which imerests us here as the key factor in the current neglect of the advanced turboprop technology. Hughes identified one particular "contingent envirommental change" "that altered the course of the entire automobile industry-the energy crisis. Ife argues, "The oil embargo of 1973 and the subsequent rise in gasoline prices ultimately compelled U.S. automobile manufacturers to change substantially an automobile design that had been singularly appropriate to a low-ostenergy environment."
 Johns Hopkins (n iversity Press, 1983).
7.3. Hughes, American Gemess: A Century of Inention and Tothologianh Smhusiasm (I ondon, England: Penguin Books. 1989), pp. 71-74.
 box 939 , file NTP memos.
75. Mid., p. 16\%.

The development and subsequent neglect of advanced turboprop technology is the result of this same environmental contingency. In the early 1970s, the energy crisis created a situation which made it a national necessity for the government to explore new ways to conserve fuel. What the managers of the Advanced Turboprop Project (ATP) did not anticipate and could not control was a decrease in the cost of fuel. As the energy crisis subsided in the 1980 s and the fuel prices decreased, there was no longer a favorable ratio of cost to implement turboprop technology versus savings in fuel efficiency. As John R. Facey, advanced urboprop program manager at NASA Headquarters, wrote, "An all new aircraft with advanced avionics, structures, and aerodvnamics along with high-speed urboprops would be much more expensive than current tubofan-powered aircraft, and fuel savings would not be enough to offset the higher initial cost. ${ }^{\text {"7i }}$ In the case of the ATP, its managers overcame all of their critical problems. However, when contingent economic conditions changed so that fuel cost was no longer a critical problem, regardless of the technical success of the project, the advanced turboprop lost its potential market in the industrial world.

Yet Keith Sievers, at that time the manager of the ATP, along with a handful of project staff, was convinced that the NASA industry team had made a significant contribution to aviation that ought to receive recognition. To win the Collier Trophy, he again summoned up the advocacy skills that had proved so valuable in bringing the controversial advanced turboprop to the point of technical feasibility. He used them to lobby for the prestigious Collier Trophy among the wide acronatical constituency that had participated in advanced turboprop development. NASA Headquarters initially expressed some reluctance to lobby for awarding a prize for techoology that was unlikely to be used-at least in the near future. But the timing was perfect. There was little competition from NASA's space endeavors since staff in the space directorate were still in the midst of recovering from the tragic Challenger explosion. As a result, the National Aeronautic Association awarded NASA Lewis and the NASA Industry Advanced Turboprop Team the Collier Trophy at ceremonies in Washington, DC. Today, the technology remains "on the shelf," or "archived." awaiting the time when fuel conservation again becomes a necessity."

Despite the cument neglect of the advanced turboprop, this case study demonstrates how radical innovation can emerge from within a conservative, bureaucatic govermment agency. The govermment-not industry-assumed the risk for developing the new technology. It used taxpayers' money to advance a radical idea to the point of technical feasibility. Engineers involved in the project used advocacy to build a consensus among the members of the aeronatical community that the advanced turboprop would prove a viable altermative to the far less energy efficient morbofan techoology. Indeed, the technical and social achievements of the project were convincing enough to drive General Electric to invest its own funds to develop a competing design. This competition was evidence of wide acceptance for the turboprop concept.

The Collier Trophy in 1987 was presented to the "Lewis and the NASA Industry Advanced Turboprop Team." The team, defined in its widest possible context, included General Flectric's independent commbution of the (DDF and its subsequent flight testing by NASA. In commast to previous Collier trophies in aeronatutios won by the NACA. no inditidual received special mention. Certainly, throughou the cheven years of its existence the project had encourged inventiveness of individuals in a varicty of disciplines, from highly theoretical contributions in blade design and acoustics to more routine lesting. Participants
 reducton advances. gearboxes than use the ATP design, and certan structual advancements, for example, hom
 Sievers interver.
in the project ran the gamut from govermment, university, and industry researchers. But what the prize recognized above all was the project's management genius. NASA I ewis managers did not simply manage contracts. They kept the project alive. They used advocacy to win industry participation and cooperation, as well as stimulate competition. They pushed both the techmical and the social aspects of the project to create the system's momentum. Yet once the energy crisis passed, this momentum was insufficient to dislodge the massive technological momentum of the existing turbofan system.

NASA engineers involved in the ATP project still remain confident that the fulure economic conditions will make the turboprop attactive again. When fuel becomes scarce and fuel prices begin to rise, the urboprop"s designs will be "on the shelf" ready to respond with tremendous fuelefficient savings. But, techmological neglect is not the enthusiastic success on which NASA engineers built their careers. Donald Nored wistfully reflected on the project and said, "We almost made it. Almost made it."ix

Chapter 15

Return to Flight: Richard H. Truly and the Recovery from the Challenger Accident ${ }^{1}$

by John M. Logsdon

Seventy-three seconds after its $11: 37 \mathrm{a} . \mathrm{m}$. liftoff on September 29,1988 , those wathing the launch of the Space Shutle Discovery and its five-man crew breathed a collective sigh of relief. Discovery had passed the point in its mission at which, on Jannary 28.1986 , thirty-1wo months carlier, Challonger had exploded, killing its seven-person ctewand bringing the l:S. civilian space program to an abrupt halt."Alter almost three vears without a latuch of the Space Shutle, the United States had returned to flight.

Presiding over the return-to-flight effort for all but one of those thirty-two months was Rear Admiral Richard H. Truly, United States Nayy. Truly was named Associate Administrator for Space Flight of the National Aeronatios and Space Administration(NASA) on February 20, 1986. In that position, he was responsible not only for overseeing the process of returning the Space Shuttle to tlight, but also for broader policy issues such as whether the Challenger would be replaced by a new orbiter, what role the shuttle would play in launching fume commercial and national security payloads, and what mixture of expendable and shumle launches NASA would use to launch its own missions. He served as the link between the many entities external to NASA-the White House, Congress, extemal advisory panels, the aerospace industry, the media, and the general public-with conflicting interests in the shutte's return to flight. In addition, he had the tasks of restructuring the way NASA managed the Space Shuttle program and restoring the badly shaken morale of the NASA-industry shutule team.

The citation on the 1988 Collier Trophy presented to Admiral Richard H. Truly read: "for outstanding leadership in the direction of the recovery of the nation's manned space program." This essay recounts the managerial and techological challenges of the returntoflight effort, with particular attention to Richard Truly's role in it. However, as Truly himself

1. This cestys lindings and conclusions are the responsibility of the anthor, and do not necessarik reflect the views of NASA or the George Washingon University. The athom wishes to acknowledge with gratitude the dogged research assistance of Nathan Rich; without his cflotis, the task would have been much more difficult

 Doublerlay, 1987).
2. The fommal name for the combined shmote obbiter, Space Shute main congimes, extemal tank, and solid tocke boosters, plus any additional Spacelab copipment mounted in the orbiter's paybad bas, is the Space
 identilving the sts

 no. $88-1 /-497$.
recognized, the recovery program was a comprehensive team effort;' as the first post-Challengen flight approached, he sent a memorandum to the "NASA Space Shuttle Team," saying:

> As I refled over the challenges presented to us, and our wespomses to them, my averviding emotion is one of fride im association. You-the men and women who compose and support thes unique organization-should take great pride in having renowed the foundation for a stronger, safer American space program. I am proud to have beon a pant of this effort; I am proud to have witnessed your extraordinary accomplishments.

Immediate Post-Accident Events ${ }^{6}$

When Truly was named NASA Associate Administrator for Space Flight, he told the press that in the three weeks since the Challengeraccident he had not "had one moment" to review information about the mishap.' Whether he realized it or not, Truly was entering a very chaotic situation. At the time of the accident, NASA Administrator James Beggs was on a leave of absence to deal with a Federal indictment unrelated to his NASA duties. (Beggs was later completely exonerated of any wrong doing and even received a letter of apology from the Atomey General for being mistakenly indicted.) Acting as Administrator was NASA Deputy Administrator William Graham, a physicist with close ties to conservative White House staff members but no experience in civilian space matters prior to being proposed for the NASA job). A few weeks catlier, Graham had been named Deputy Administrator, a White House political appointment, over the objections of Beggs and other senior staff at NASA; in his shom time on the job he had remained largely isolated from career NASA employees. When Challengrer exploded, NASA was thas bereft of experienced and trusted leadership.

Graham was in Washington when the accident occurred. Later in the day, he flew to the Kemnedy Space Center with Vice President George Bush and Senators John Glemn and Jake Gam. The latter three flew back to Washington after consoling the families of Challenger crew members and meeting with the Shutule launch team. Graham stayed behind; in a series of phone calls to the White House during the night, a decision was made to have the President appoint an external revew commission to oversee the accident investigation. Although Graham had been briefed by his NASA staff on how the investigation after the 1967 Apollo I fire had been handed, he apparently did not argue that the NASA Mishap Investigation Board, set up immediately after the accident, should continue to lead the inquiry.

This naming of an extemal review panel was in marked contrast to what had happened nineteen years carlier, on Janwary 27, 1967. When he learned that a fire during a launch pad lest had killed the three Apollo 1 astronatus, NASA Administrator James Webb immediately notified President Lyndon Johnson, and told him that NASA was best qualified to conduct the accident investigation. Webb) later that evening told his associates that

[^152]"this is an event that we have to control. . . We will conduct the investigation. We will get answens. There will be no holds barred. We'll issue a report that can stand up to sorutiny by anybody." Meeting with the President the next day, Webb told him "They're calling for investigations. . . A lot of people think it's a real issue for the future, and that you ought to have a presidential commission to be cleat of all influences." But, argued Webb, "NASA is the best onganization [to do the investigation]."× Johnson concurred in Webb's approach; NASA hat already selected the intitial members of the accident review panel, and they set to work immediatelv. Certainly there were external reviews of the Apollo fire, particularly by NASA's congressionat oversight committees. However, their starting point was the NASA-led investigation.

By not even attempting to retain conteol of the Challenger accident inguiry at the start. NASA found itself subject to searching external scrutiny and criticism, and the space agency had to share decision-making power during the return-to-flight effort with a valiety of external advisory groups oversecing its actions. Dealing with, on one hand, the desire to get the Shutle back into operation as quickly as possible and, on the other, the recommendations of advisory groups who gave overriding priority to safety concerns and organizational restructuring, was one of Richard Truly's greatest challenges between Febnary 1986 and September 1988 . This was particularly the case as the accident investigation quickly changed from one focused on the wehnical canses of the Challonger mishap) to one broadly concemed with NASA's organization and decision-making procedures.

On February 3, President Ronald Reagan amounced that the investigation would be carted out by a thisteen-person pand chaired by former Secretary of State William P. Rogers; the group quickly became known as the Rogers Commission. Reagan asked the Commission to "review the circumstances surrounding the accident, determine the probable cause or causes, recommend corrective action, and report back to me within 120 days."

Within a few days after the accident, NASA investigators had pinpointed a rupture in atield joint" of the shuthe's right Solid Recket Motor(SRM) as the proximate cause of the Challenger explosion. As the Rogers Commission began its work, there appeared to be litthe controversy on this issuc. However, in a closed meeting at the Kennedy Space Center on February 14, Commission members were "visibly disturbed" to leam that engineers from the firm that manufactured the SRM, Morton Thiokol Lac., had the night before recommended against launching Challenger in the cold temperatures predicted for the next morning: that their managers, at the apparent urging of NASA officials from the Marshall Space Flight Center, had overuled their recommendation; and that more senior NASA managers responsible for the lannch commit decision were maware of this contentious interaction. This was a "tuming point" in the investigation; the Commission immediately went into executive session. It decided that the NASA team working with the Commission should not include any individual who had been involved in the decision to laturh Challenger. It decided to broaden the scope of its investigation to include NASA's management practices, (enter-Headguaters relationships, and the chain of command for banch decisions-in effect, shifting the focus of the inguiry from a technical failure to NASt itself. At the end of its exectutive session, the Commission issued a damning statement suggesting that NASA's "decision-making process may have been flawed.""
A. Webb is quoted in W. Itemy Lambright, Pomang Apollo; James E. Whin of NASA (Baltmore, MD)
 tigation on pre $142-88$ of his book

10. So-called beatuse it was assembled at a \times Sist field center (Kemmedy Spate (anter) rather that at the matuatactarer's phant.

 took plac. Willian Regeos told the press that in his opsinom the detision-making process definitely "was thated."

This indictment of shuthe management provided the batektrop against which Richard Thuly would work in succeeding months. As the Rogers Commission tried to fix responsibility for the "llawed" decision to launch (hatlenger, the agency was tampant with internal conflicts and finger-pointing. The Now York Times reported on its front page that the Marshall Space Flight Conter, the key organization for diagnosing and fixing the SRM problem, was "seething with resentment, hostility, depression, and exhaustion."' Aveation Werk described the Li.S. space program as being "in at crisis situation." ${ }^{19}$ Truly remarked in his first press conference "I have a lot to do"; he was certainly not overstating the situation.

Truly Takes Charge

White he may have been unfamiliar with the details of the Chollenger mishap. Richard Iruly was no stranger to the spate agente; he had been a NASA astemath from 1969 to 1983, had piloted several of the early unpowered tests of the shmole, and had flown as pilot on the second shatle mission in November 1981 and as commander of the eighth shutle mission in August-Scptember 1983. He lef NASA on October 1, 1983, to become the first head of the Naval Space Command; it was from that position that he retmened to NASA to assume conto of the Office of Space Flight. Truly was an engine ering graduate of the Ceorgia Institute of Technology and an experienced Naval aviator: To most, the combination of his techmical backgromed and astronatu experience-and his absence from NASA for the period preceding the accident-made him well qualified to head the return-to-fight effort.

Truly spent his first weeks as Associate Administrator becoming familiar with the situation he had inherited, organizing his immediate office, and establishing a close wotking relationship with the Rogers Commission. As soon as he entered office, Truly became chatir of the "STS 5I-I Data and Design Analysis Task Force," which had been sel up by Acting Administator Graham to provide NASA support to the Rogers Commission. One of Trulys crucial early decisions was to bring in J.R. Thompson as vicechair and day-today head of this task force: in effect, this put Thompson in charge of NASA's part in the accident investigation. Like Truly, Thompson had been a long-time NASA employec, but had been in another job in the years preceding the Challenger mishap. Other members of the task force were astonam Robert Crippen; Col. Nathan Lindsay, Commander, Eastem Spate and Missile Center; Joseph Kemwin, Director, Space and I ife Sciences, Johmson Space Center; Walter Williams, Spectial Assistant to the NASA Administator; and the leaders and deputies of the six task force teams on development and profuction, pre-launch atcivities, accident amalvsis, mission plaming and operations, seath, recovery and reconstruction, and photo and television suppont that had been set up to patallel the organization of the Regers Commission investigation. The tatsk force in tum drew on all relevant resomees of NASA.

Between intensive task force efforts during Marh and April 1986 and the equally intense activities of the fifteen-person investigative staff of the Rogers Commission (plus a patallel investigation by the staff of the Committee on Science and Technology of the

[^153]House of Representatives), "it was unlikely that any aspect of the accident would go unexamined. This was especially the case given the constant media scrutiny of the investigation.

By the cond of March, Richand Truly was ready to go public with his return-to-llight stategy. In a March 24 memorandum which he later described as a "loming point" in the recovery effort," he tisted the "actions required prior to the next flight":

\author{

- Reassess Eintire Program Mamagement Sharture and Operation
 - Solid Rocket Motor (SRM) Joint Redesign
 - Design Requivements Revrrification
 - Complete (:IL/OMI Revieru
 - Complete OMRSO Rnime
 - Iarmch/Aherl Rerasessmem!
}

Truly also spelled out the "ordenty, conservative, safe" criteria for the first post-accident Shutle launch. These included: a daylight lanch and landing, a conservative flight profile and mission meses, conservative criteria for acceptable weather, a NASA-only flight crew, engine thrust within the experience base, and a landing at Edwads Air Force Base in California. He closed the memo by noting that "our nation's future in space is dependent on the individuals who must carty this strategy out safely and suce'ssfully. . . It is they who must understand it, and they who must do it. "x

Truly reviewed his strategy before an audience of over 1,000 at the fohmson Space Center, his remarks were televised to other NASA Centers. He argued that "the business of flying in space is a bold business. We cannot print enough money to make it totally riskfree. But we are certanly going to conect any mistakes we may have made in the past, and we ate going to get it going again just as som as we con under these guidelines." The New fonk Times reponted that "his upbeat words appeated to be meant oblift spirits at the beleaguered agency and to turn the staffs eyes forward to the shateres future. . . .".

In just over a month after taking office, and well in advance of any recommendations from the Rogers Commission and the Congress, Richard Truly had set out the general ontines of the stategy he would follow over the following two and one half yars. However, that it would take that long to retum the Space Shutte to llight was likely inconceivable to him and his associates at the end of March 1986. NASA plaming at the time called for at worst an 18 -month delay to July 1987 in latunching the next shuttle. Lefl to its own devices, it is possible that NASA and its industrial contractors could have met this sohedule. NiSh was no longer a free agent, however; the Challenger accident and the resulting extemal somtiny of NASA's decisions had changed the agencys freedom of

[^154]action forever. Over the coming months, Truly would have the almost impossible task of balancing the pressure to fly as soon as possible in order to get crucial national security and scientific payloads into space while convincing the agency's watchdogs that a return to flight was adequately safe. It was not to be an easy assignment.

Trying to Get Flying Soon

As mentioned earlier, it was clear within a few days of the accident that the direet catuse of the mishap had been a failure in the joint between two segments of one of the shutte's two solid rocket motors. That fature was in turn quickly traced to the failure of the "O-rings" designed to prevent the escape, through the joint, of the hot gasses generated daring SRM firing. On March 11, Acting NASA Arministrator Graham told a congressional committee that a redesign of the SRM joint and seals would be needed, and estimated the cost of the redesign at $\$ 350$ million.

Responsibility within NASA for oversee ing the SRM lay with the Marshall Space Flight Center in Huntsville, Alabama. On March 25. Truly, ating on his memorandum of the previous day, amounced the creation of a Solid Rocket Moror Tcam "to recommend and oversee the implementation of a plan to requalify the solid rocket motor (SRM) for flight, including the generation of design concepts, analysis of the design, planning of test programs and analysis of results, and any other initatives necessary to certify flight readiness." The following day, Truly named James Kingsbury, Director of Science and Engineering at Marshall, to head the team on an interim basis."

Within a few days, Kingsbury told The New York Tomes that he believed a redesigned solid rocket motor could be ready for flight within twelve months, and would not require ordering substantial new hadware. "We can use everything we have, and just modify it," he told the Times. In particular (though it was not publicly aknowledged at the time), NASA hoped to be able to use 72 steel casings for the SRM that had been ordered six months before the Challengen accident. As would become evident in the course of the accidem investigation, NASA had been aware for some time of problems with the original design of the field joint; these casings hat been planned to accommodate a new joint design incorporating a "capture fixture" that had been suggested as an improvement on the original joint design as eatly as 1981.2

In its eagerness to get started on the return-to-light process, NASA appeared to be getting ahead of the findings and recommendations of the Rogers Commission, which was not scheduled to report to the President until carly Junc. For example, Truly had said on March 25 that it was probably infeasible to add a crew exapre pod to the shmule orbiter, but "certainly if the Presidential Commission conclucles we should do that, we will do in." Particularly troubling to the Commission was the speed with which a redesign of the SRM fiedd joint was being proposed. On May 7, the Orlando Semtimel, in an article headlined "Red Flags Fly Over Joint Redesign," reported that "engineers redesigning the shutle's flawed booster joint will submit a preliminaty plan to NASA today, but members of the Challenger

[^155]Commission say the agency is moving too fast on the project and could repeat its mistakes." Some Commission members, the anticle clamed, "are so concemed about Marshall botching the redesign that they want an independent panel of experts to approve the new joint.". ${ }^{2}$

NASA had little choice but to respond to the Commission's concerns, particularly once they had become public; the ayency in the wake of the Challenger accident had lost the ability to act counter to those reviewing it from the outside. The commission's concoms were communcated in a private meeting with NASA's top officials, and a response followed quickly. On May 9, Truly announced that James Kingsbury would be replaced as head of the solid rocket motor redesign tean by John Thomas, who had been Spacelabs Program Office manager at Marshall before being assigned to the 51-L Data and Design Analysis Task Force in March. This was a switch that had been in the works for some time, but it may have been accelerated by Kingsbury's bullish approach to SRM re-design. Truly also amounced that "an independent gromp of senior experts will be fomed to oversec the motor redesign" and that this group would be involved in all phases of the redesign effort, "will report directly to the Administrator of NASA, and will thoroughly review and integrate the findings and recommendations" of the Rogers Commission in carrying out its responsibilities.: The interations between this external panel, which was appointed by the National Research Council(NRC) in Junc, and NASA during the redesign and testing of the SRM would be a key determinant of the pace of the return-to-flight process.

On May 12, Richard Truly got a new boss. James Beggs had long since resigned as NASA Administator. The White House, in March, had nominated James C. Fletcher as his replacement. NASA Administrator from 1971-1977, the period during which the Space Shutle had been approved and developed. Fletcher was quite familiar with the program. It look two months for Fletcher's nomination to be approved by the Senate. After being swom in by Vice President Bush, Fletcher told the press that, if necesary changes to make the shutule sate were not completed by the July 1987 target date for the next latuch, "we just won" fly."

In effect, any chance of a next lanch before early 1988 had vanished with NASA's acceptance of the oversight role of an extemal advisory group, though it took several months before the agency fully recognized that reality. If there had been any prior doubt, it wats now clear that the recommendations of the Rogers Commission, due out in early June, would be the de-fining context for NASA's return-o-llight effort, at least in the public mind. It was clear, moreover, that those recommendations would go well beyond the need for a redesign of the SRM to many other suggestions on how the Space Shutle should be operated and managed; The Nou Yok Times commented that, with such a broad set of recommendations combined with White House and congressional pressure for full complance with them, "the complexiIf of NASA's [and thos Richard Truly's] task appears to have been greatly magnified.":-

25. NAS \backslash Release $86-58$, "Thomas Assmes Responsibility for SRM Redesign," Mav 9.1986.
26. Washington Pont, May 13 . L9B6. P. Alo. Fletcher brought with him to NASA wome baggage that wath

 withont tied joints, that would eliminate the need for a joint redengu atogether, See coverage of this issue in The Vre liok Times, July 19. 19N6, p. A1; September 23. 1986, p. A23; Jecember 7, 1986, p. A1; December K, 1986,

 of the redesign," Persomal commmanation to aththor, Amgost $14,1945$.
27. Veat Youk Times. June 12, 1986, p. A1.

The Rogers Commission Report

The Presidential Commission on the Space Shumle Challenger Accident (the official name of the Rogers Commission) submitted its repon to Presiden Ronald Reagan on Friday, June 6; the report was released to the public the following Monday. The over 200page document, which contained detailed assessments of the causes of the accident and of NASA's overall failings related to the mishap, culminated in nine recommendations. Among them were:

Recommendation I-"The fauly Solid Rockel Motor joint and seal mast be changed. This could be a mew design eliminating the joint or a redesign of the cument joint and seal."Alse, "the Administrator of NASA should request the Nationat Research Council to form an independent Solid Rocket Motor design owersight committer to implement the Commission's design recommendations and onerser the design effort."
Recommendation II - "The Shulle Program Struchure should be revimed." Also, "NASA should emcourage the transition of qualified astromauts into agency managrment positions. ".
Recommendation III - "NASA and the primary shutlle contratoms should revieal all Criticality I, $1 R, 2$, and $2 R$ items and hazard analwes."
Recommendation IV - "NASA should establish an Offier of Safety, Reliatitity and Qualidy Assurance to be headed by an Aswoiate Admimistrator, reporting directly to the NASA Administrator:"
Recommendation VI - NASA must take actions to improve landing safety. The tire. brake and nossuwhel system must be improved."
Recommendation VII - "Make all efforts to provide a cran escafor sysem for use during combolled gliding flight."
Recommendation VIII - "The nation's whance on the shuttle as its principal space launch capability created a melentless pressum om NASA to increase the flight rate. . . NASA mast establish a flight rate that is consistent with its momures. "n

In canrying oun its mandate, the Rogers Commission had intervewed more than 160 people and held more than 35 formal investigative sessions, generating more than 12,000 pages of transcripts. The full-time staff grew to 43 , plus some 140 part-time support speciatists. In the end, the report loned down any strong criticism of NASA's overall performance and responsiveness; such a harsh approach had been proposed by Commissioner Richard Feymman." Rather, the report's recommendations were followed by a conciliatory "concluding thought": "the Commission ugges that NASA continue to receive the support of the Administration and the nation. . . The findings and recommendations presented in this

[^156]report are intended to contribute to the future NASA successes that the nation both expects and requires as the twenty-first century approaches."

On June 13, President Ronald Reagan directed NASA Administrator Fletcher to implement the Rogers commission recommendations "as soom as possible," and asked for a report within thirty days on a plan for doing so. ${ }^{2}$ NASA's response came on July 14 ; Administrator Fletcher told the President that "NASA agrees with the [Rogers Commission] recommendations and is vigorously implementing them." On June 20, in a memorandum to Richard Truly, Fletcher said that he would take direct responsibility for implementing recommendation IV on a new safety organization to replace what the Rogers Commission had chatacterized as NASA's "silent safety program."\$3 Flether told Thuly that "the Office of Space Flight is directed to take the action for all other Commission recommendations." Fletcher asked him to "status me on your progress on a weekly basis.":'

While submitting its report to the President, NASA released a schedule for the return-to-flight effort that slipped the earliest possible date for the first launch by $6-8$ months, to carly 1988 . Administrator Fletcher noted that some within and outside of NASA were urging that the three remaining Space Shuttles be returned to flight immediately, with constraints on the conditions under which they could be launched, but that, although he was "uneasy" and disappointed "about the additional delay," in view of the large visibility of the accident . . . when we stant flying again we want to make sure that it is really safe." ${ }^{3}$.

Implementing the recommendations of the Rogers Commission, and modifying them when justified, would occupy much of the time of Richard Truly and his Space Shutule team for the next twenty-six months. They worked in the glare of constant congressional and media scrutiny and outside reviews of their actions. There was titule margin for error in their task. This was in marked contrast to the situation in the months following the Apollo accident, where, after one round of congressional hearings on the NASA accident report, the space agency made the required technical and management fixes without anyone looking over its shoulder. Indeed, NASA in August 1968 even secretly made a decision to send the second post-accident mission, Apollo 8 , around the moon. This decision came before the modified Apollo capsule had been tested on the October 1968 Apollo 7 flight.

Fixing the Solid Rocket Motor

As mentioned earlier, a Solid Rocket Motor Team based at Marshall (but including personnel from other NASA centers, particularly Johnson), and led since May by John Thomas, had gotten an early start on SRM redesign. Sharing leadership with Thomas was Royce Mitchell, another Marshall engineer. Working with the NASA team was a parallel group of engineers from the SRM manufacturer, Morton Thiokol.

This group was headed by Allan J. McDonald, who had been one of those vociferously opposing the lame of Challenger on the nigh of Jamary 27. McDonald's testimony to
31. Feresidential Commission. Report to the Provileth. p. 201.

33. Fletcher ammone on x Juls that he was establishing a new olfice af Sate ty, Reliability, atud Quality Assurate e, reporting dinedy to the NASA Administrator. This wfice would be an internal watehdog with respert
 this oftice was outside of Richard Trulys responsibility during the retmon-to-flight effort, it is not disoussed in detail here. However, the impote of the Office of Safery, Reliability, amb Quality Assumate into Trubys management decisions were beaty an importan consideration in that effort.
 (Thallonge Acrideme fuly 14,1986, pp, v, 4.3.
35. Nro low Times, July 15, 1986, p. AI.
the Rogers Commission about the cevents of that night had brought him much positive media attention. Following that testimony, however, Morton Thiokel had reassigned MeDomald and another senior engineer who had opposed the lamed, Roger Boisjoly, to jobs not related w the SRM. Congressional outrage at such a reassigmmem and NASA pressure had led the firm to restore McDonatd wa central role in the SRM effort. ${ }^{3 /}$

The Marshall and Morton Thiokol reams played the central role in developing an appoad to SRM redesign and testing: from late 1986, the team worked out of temporaty quarters near the Morton Thiokol facility in Brigham City, Lah, north of Sall Lake City. The SRM redesign effor received two overall directives from Trulys office: most fundamentally, "to provide a solid rocket motor that is safe to fly," and, secondarily, "to minimize the impact of the schedule by using existing hardware if it can be donce withoun compromising safery.":

Thomas revealed on July 2 that the redesign effort was focusing on two altematives for fixing the field joint, both of them based on using the previously ordered castings. "On August 12, he announced an overall plan for SRM redesign, which inchuded not only changes in the fied joint but also fixes to the SRM nowle-to-ase joint and to the nofle itself. The redesign proposed for the ficld joint incoporated the caphure feature that had been discussed since before the Challenger acrident, added a thind O-ring, and made other modifications."

NASA's plan was controversial. For example, the front page of The New Sonk Times, on September 23. reported "rising concems that it [NASA| may be discarding mome reliable designs in an eflont to save time and hundreds of millions of dollats." "

Among those with reservations aboul the path NXSA was laking were members of the NRC: Panel on Techaical Exaluation of NASAS Rerlesign of the Space Shumle Solid Rocket Booster: This was the extemal review group that had been established in Jume the thesing of the Rogers Commission: the eleven-man Panel was chaired by II. Guyford Stever, a highly respected engineer who had been Dinector of the National Science Fonndation and Science Adviser to President Getald Fomed.

The Stever Panel's first report was submilled to James Fletcher on August 1. It acknowledged that, of the lactors driving SRM redesign, "safety is the prime consideration," but that "the critical national need for the launch capability of the shutte makes time a chose second." The Pancl expressed early concern that the test program for the redesigned motor "meers only a minimal repuirement."

Over the next two years, the Stever panel would keep constant pressure on NASA io explore alternative designs and to conduct an extensiee test program." The panel's next report was submitted on October 10, after NASA had annomeded its choice for the redesign of the field joint. The Panel gave only a tepid condorsement to NASAs plans. noting that "if this appoach is successfal, i.e., if the kest program succeeds and the level

[^157]of safery is judged acceptable, the shutle flight program can resume at the earliest time." The Panel expressed some skepticism about the likelihood of such success, however, urging that "NASA manatain a program to explore and develop original, possibly quite different designs. . . for the contingency that the baseline design may not offer sufficiendy good performance and margin of safey." It noted that if the design competition had not been constrained by the desite to use the previously-odered castings, "we believe that more basic altematives to the basic design would probably be preferred once thoroughly analyed." The Panel also told NASA "we believe that the planned test program requires significant augmentation with additional facilitie's and tests." ${ }^{+3}$

NASA, after spirited internal debate, concluded that the panel's suggestions were wellfounded, and added a number of partial and futl-sale tests to its plans. On October 16, NASA also announced that it would follow the Panel's recommendation and build a second facility for full-scale tests of the SRM." NASA did get Panel endorsement of its decision not to follow once of the Regers Commission recommendations. At the urging of member Joseph Sutter of Boeing Airctaft, the Commission had suggested that the wedesigned SRM be tested in a vertical position, since that was thought to more closely simwhate the various condtions during actual SRM usc. Constructing a stand for such a test would have cost wenty million dollats and added at least a year to the time before the next shmule launch. Both the NASA Marshall team under John Thomas and Allan McDonald at Morton Thiokol argued that a horizontal test could be conducted in a way that better simulated flight stresses than would a vertical test. The Stever lanel concured "that horizontal testing can be appropriate."

Between 1986 and August I988, the NASA-Morton Thiokol team conducted a test program that included eightecon full-scale but "short burn" tests of SRM joints; seventy-six tests of subscale motors; fourteen SRM assembly tests; and five full-duration tests of the redesigned SRM. Flaws in SRM insulation and seals in joint areas were deliberately introduced in a number of tests; particulatly severe thaws were created for the last full-scale SRM liring before return to flight, in August 1988."

The test program did not always go smoothly, and on occasion produced results that fored the ream to revise the ir baseline design. As a result, the date for the first latuch slipped twice from a February 1988 target, to June 1988 and then to the August-September period. Farly subscate tests convinced the team to stay with the original O-ring material, mather than introduce a substitue. The first full-sale firing was delayed from February to May 1987. The redesigned joint was first tested in a subscale firing in carly August 1987; the full scale test came on Angust 30. (Richard Thuly's reaction to the successful test was "a couple of grins." ${ }^{12}$ A December 23 test of the new desigin at temperatures close to those at the time of the Challenger launch was at first called a success, but a few days later engineers discowered that the redesigned outer boot ring at the junction between the SRM nozele and the rest of the motor had failed." After this test, even though it had not identified the specific catuse of the fature, in order to save time the redesign team abandoned the new design and returned to one that was a modification of the pre-Challenger design and had perfomed well in the August test. A successful fourth full-scale test on the

```
    NRC: (iollerad Reports pp. 7, 13, 12, and It
    NASA Release Bitatio. (Otoler 16, 198ti.
```



```
    47. She Bank fimes, August 31 , 1987, p. A1.
```


fuly 198!. p. 13.
new test stand that had been suggested by the Stever Panel came in June 1988; it simulated the bending, vibrations, and other stresses of an actual liftoff.

The final full-scale test came on August 18 ; it was the most demanding and controversial of the series. The need for such a test, introducing the "worst credible" tlaw, had been urged on NASA by the Stever Pancl as "essential." "The redesign team used a putty knife and shoelaces, among other means, to introduce holes in the primary SRM seals; these flaws allowed the seepage of gases in order to check whether backup seals would actually work. Such deliberately induced major tlaws were unprecedented in the history of solid rockets, and "months of internal debate" within NASA and Morton Thiokol had preceded Richard Truly's decision to accept the NRC recommendation and approve the politically very risky $\$ 20$ million test. (If there had been a failure during the test, NASA certainly could not have launched Discovery a month later, even though the test motor contained flaws well beyond anything likely to appear in Discouery's SRMs.) Athough there were some within NASA who favored the test, most did not; that Truly appowed it suggests the power the Stever Pand had over the character and pace of the return-to-flight effort."'

As the test ended, Allan McDonald and Royce Mitchell, the NASA engineer who had shared leadership of the SRM redesign effort with John Thomas, leapt on the still smoking booster to check for joint failure. There was no evidence of it. In the crowd watching the test, Truly shouted "we did it!":

A few weeks later, a Morton Thiokol spokesman amomed that the test had becn "as near perfect. . . as you can imagine." With that outcome, NASA judged the redesigned SRM ready for use. In its Scpember 9 report to the NASA Administrator, the Stever Panel concurred, noting that "risks remain. . . Whether the level of risk is acceptable is a matter that NASA must judge. Based on the Pancl's assessment and observations. . ., we have no basis for objection to the cument launch schedule for STS-26.".

To its great relief, NASA was now fell both technically and politically ready to retum the Space Shutbe to flight. Successfully redesigning the solid rocket motor had been the "long pole in the tent" of the retum-to-fligh effort; with the muted endorsement by the Stever Panel of the redesign effort, the last obstacle to an initial post-Chatlenger flight had been removed.

One person close to the program suggested that the redesign and testing work between carly 1986 and August 1988 "exceeded, by four or five times, the amount of work put into original motor work in the mid-1970s." ${ }^{\prime 2}$ While Richard Truly was necessarily removed from the day-to-day engincering details of the enterprise, he at its outset focused efforts on only those redesign activities that were mandatory for requalifying the SRM for use on the firs post-accident flight, and resisted pressures from many fronts to introduce changes, including new designs, additional tests, and different contractors, that would

[^158]have delayed resumption of shuttle flights even more. ${ }^{57}$ Truly defended the NASA-Morton Thiokol effort to a sometimes hostile Congress. He accepted the risk that the proposed "minimum necessary change" approach to redesign would not be successful, and authorized ordering SRMs incorporating the baseline design changes for the first postChallenger flights at the time the redesign reviews were completed, but before major tests of the redesign had begun. If there had been a major design failure in the test program, NASA would have had to go back to square one, and those SRMs redesigned or scrapped. ${ }^{\text {an }}$ When the pre-launch test program concluded with the August 18 success, Richard Truly had reason to be excited.

A New Management Structure

Putting a new management structure in place was second in importance to redesigning the SRM as a prerequisite to clearing the Space Shutle for its retum to flight. Richard Truly made a reassessment of the entire shate program management structure the first item in his return-to-flight strategy in March 1986, and the Rogers Commission listed such a review as its second recommendation. In May 1986 , mewly reinstalled NASA Administato Fletcher had chaged the fomer manager of the Apollo program, retired General Samuel Phillips, with conducting an overall review of NASA organization and management. On June 25, Truly directed astronatu Robert Cippen to form a fact-finding group specifically responsible for assessing the National Space Transportation System (NSTS) management structure.

A first step in refoming program management was the departure on nansfer of a number of those who had been in key management positions at the time of the Challenger atcident. By October 1986, there were new directors at the Johnson, Marshall, and Kemedy Centers, and several other individuals at Marshall who participated in the decision to lameh Challenger had lefi NASA.

The Coppengroup submitted its findings in August. They were consistemt with the siews of the Phillips review, and so on November $\overline{5}$, atter extensive consultations with NASA, Truly amomeed a new shotte management structure." Aviation Wepk desoribed it as "resembling that of the Apollo program, with the aim of preventing communication deficiencies that contributed to the Challengeraccident." ${ }^{\text {is }}$

The key management change was moving lead responsibility for the shutle from the Johnson Space Center to NASA Headquarters in Washingtom. Amold Aldrich, who had

 buile with the design that had faiked in the lecember test. This change took almost there months and was apt many reason whe the SIS-26 lameh had to be delaved matil August of hoptember l988. NASA did not know whether the December falume was due to a fale design of watemanding test that had been perfomed at the

been NSTS manager in Houston, was asked by Truly to come to Washington as Director, NSTS-in effect, the single director of the Space Shutle Program, with all shutle-related activities at the Johnson, Marshall, and Kennedy Centers reporting to him. He in turn would report directly to Truly. Aldrich, who was the only toptevel shotle manager who retained his position after the Challenger accident, would have two deputy directors, one for the NSTS Program based at Johnson, and one for NSTS Operations, based at Kennedy. Richard Kohrs was named to the first deputy position; Robert Crippen, the secomol. The Director, NSTS would have "approval authority for top-level progran requirements, critical hardware waivers, and for budget authorization adjustments. . . "is

Truly in his memorandum also noted that "a key element in the ultimate success of the Office of Space Flight is a revitalization of the OSF Management Council."et This body included the Associate Administrator for Space Flight and the Directors of Johnson, Kennedy, and Marshall (and the much smaller National Space Techonology Laboratories). It had not been very active in the pre-(Challenger period. This top-level group, lead by Truly, began to meet on a monthly basis, and served as the forum for overseeing the return-to-flight effort in the months following. Its meetings were described as "frec-wheeling, no-holds-barred," at which "programme issues are flushed into the open and relentlessly pursued to resolution.".is

A secondary aspect of the Regers Commission recommendation on management changes was that "NASA should encourage the transition of qualified astronauts into agency management positions." Richand Truly was himself a fonmer astronaut, and it might have been expected that implementing this recommendation would have been a straightforwatd matter.

The reality turned out to be somewhat different. In the wake of the Challengre accident, the public discovered that the image of the astronaut corps was very much at odds with reality, and that the group was racked with "longstanding strains and resentments," and with "low morake, internal divisions, and a management style that uses flight assignments as a tool to suppress discussion and dissent.". Chief astronaut John Young, who had commanded the first shutte mission, was particularly critical of NASA's approach to flight safety."

Truly's first challenge, then, was rebuilding a positive attitude among his former astronaut colleagucs. He met with them privately in March 1986 , and made sure that Crippen considered astronatt views as he reviewed shutle program management. He was not lotatly successful; some in the astronatu office believed he was too ambitions in trying to return the shutte to flight by February 1988, and was planning on too many launches per year once the shutte was back in operation. They were critical of the measured pace of the recovery effort, given a launch target only sixteen months in the fiture, pointing out that after the Apollo I fire, the command module was redesigned in only cighteen months and suggesting that "management has either got to cut back what they want to do before restarting flights, or get a 'tiger team' approach to pick up momentum, ",

By July 1987, NASA noted that "ten current or fomer astronants hold key agency management positions." One of them had been Rick Hatuek, who served from August 1986 to January 1987 as NASAs Associate Administrator for Extermal Relations before he returned to 1 louston to train for the $S T S$ - 2 mission. It was rather well known that I fauck was likely to command the first postaccident shutule flight; he wats thus a convincing spokesman for the satety

[^159]aspects of the retum-to-flight effort. Other astronats brought into management positions had "some difficulties in adjusting to the realities of bureaucratic life," but felt that "Wheir presence had made a difference, pointing with pride to intluence on key policy issues." "w

Other Changes to the Shuttle

Even before the Rogers Commission submitted its report, Richard Truly made one key decision related to reducing the risks of future shutle operation. Some in NASA, even before the accident, were concened about the wisdom of using a modified Centan rocket. fueled by highly combustible liquid hydrogen, as an upper stage to carry satellites from the shumle's payload bay to other orbits. Among the payloads for which the Centaur was to be used were two solar system explomation missions, Ulysses to explore the Sun's polat regions and Galileo to orbit Jupiter, several classified Deparment of Defense payloads were also scheduled to employ the Cematur upper stage.

A combination of congressional pressure and the more stringent safety criteria being applied to the shumbe atter the atecident led to a NASA reassessment of Centant. Although owe $\$ 700$ million had atrady been spent on modifying the Centaur for shutle use, and uts tmavailability would cause major delays in the solar system exploration program, Truly recommended cancelling the Shutle Centaur program. Administrator Fletcher agreed and amonnced the decision on June 19, 1986."

Another key decision was to teminate plaming for lamehing the shutte into polar onbit from the Vandenberg Air Force Base in Califomia. This decision mean that the very expensive Shutle Launch Complex foat Vandenberg would be mothballed and that the mumber of overall Deparment of Defense (DoD) flights on the shumbe reduced (DOD) would use a Titan IV expendable launch vehicle for payloads originally scheduled for a shumle launch from Vandenberg). This decision reduced overall schedule pressure on a fom-onbiter shutle fleet, and eliminated the need for a lighter, filamen-womed SRM case. ${ }^{\text {w }}$

The thisd recommendation of the Rogers Commission had directed NASA and its industrial pathers to review, in temon of safely and mission success, all Criticality I, IR, 2 , and 2 R items and hazard analyses. Richard Truly had called for an even more extensive risk review in his March 1986 return-to-flight strategy. The Rogers Commission had also separately recommended a series of actions to improve landing safety.

That the shutle had been flying with a number of less-than-optimum systems and components wats well known to those close to the program, but the pressures of matitaining an ambitious launch schedule and budget constrants had bocked any extensive review and upgrading of the shutu before the accident. When it became clear that the shuttle would be grounded for some time, Amold Aldrich, at the time still in charge of the shutte progran at the Johnson Space Center, had on March 13, 1986, initiated a comprehensive review amed at identifying possible shoute upgrades. By the end of May, this review had identified " 44 potentially [critically] flawed components of the space shut the ... that may have to be fixed before shutte flights can resume." ${ }^{*}$

The conduct of a comprehensive Shutle Failure Modes and Criticality Analysis and the audit of the resulting Criticality 1 and 2 items recommended by the Rogers Commission was an extensive and complex process. In its July 1986 report on implementation of the

[^160]Rogers Commission recommendation, NASA indicated that "he overall reevaluation is planned to ocour incrementally and is scherluled to continne through mid-1987.". By the time Disorery was ready for latuch, the list of Criticality 1 items had grown from the 617 items at the time of chatlenger to 1,568 ; cach of those items had to pass paticulaty rigorous review before Discouer was cleared for flight. The number of Criticality IR items hat also grown dramatically, from 787 10 2,106.:1

Similar to his situation with respect to SRM redesign. Richard Truly found an external review committe assessing NASASations with respect to risk assessment and management. The National Rescareh Comeil ercated a Committer on Shutle Criticatity and Hazards Analysis Audit in September I986; the Comminte was chaired by retired Air Force General Aloon Slay. In its initial report, submitted to James Fletcher on Januaty 13, 1987, the Slay Commitere noted that it had "been favorably impressed by the dediated effort and extremely beneficial results obtained thes fas:" The Commiter raised a point that recured throughout its work, that "the present decision-making process within NiSA . . appears to be based on the judgment of experienced patationers and has received very litte contribution from quantitative analysis." The Commither also questioned the timing of the risk resiew in temes of incorporating any resulting design changes in the shutte before its scherluled return to flight (then Febnary 1988), noting that there may not be "time to incorponate any substantial design changes that may be indicated by the outcome" of the review. ${ }^{2}$

The Slay Committee combinued its woth throughom 1987 and submitted its final report to Administrator Fletcher in Jamary 1988, atthough the report was not made public for two months. While gencrally positive in tone, it criticized NASA's risk assessment activities as still loo "fragmented" and "smbjective," and for not taking advantage of wideIf used quatmitative techniques such as probabilistic risk assesment." But, most important 10 Richard Tioly and his associates, the Comminece found "absolutely wo show-stoppers" from a risk assessment perspertive in terms of NASA's retum-to-light plans."

Rechard Truly had relieved much of the pressume of implementing the separate Rogers Commission recommendation on improving tanding safery by mandating in his March 24, 1986, weturto-flight stategy that the first flight would land on one of the exormely long rumwas at Edwatds Air Force Base in the Califomia desert. In its 1987 teport to the President, NASA said that it had identifed several design imporements "to improve the margins of safety for the landing/deceleration system. Some of these improwements are modifications to existing designs and will be completed priot to the next flight." But, added NASA, improvements involving more extersive design changes would have to be certitied for flight and then introduced "later in the program.". ${ }^{\text {a }}$

In fact, this was the philosophy followed for atmost all design changes to the shumbe in the aftemath of the Challonger accident which were not related to SRM redesign. The first post-acedent shutte flight was lameher as soon as possible after the requalification

[^161]of the SRM for flight; the introduction of other tedesigned shmble elements as a result of the risk reviews or of Amold Aldrichis examination of desirable shutte improvements did not have signiticant influence on the shumbe latuch schedute. However, the postChallemger reviews did have other impontant impacts, both before and after retum to flight. The system was owerall much safer and reliatle on September 29. 1988, than it had been in the 1981-1986 period. The shmute's main engines were upgraded, its brakes improved. and the valves in the orbiter that controlled the flow of fuch to the orbiters engines modified to prevent accidental closume. But the result was a "shutte in transition"; "the hated Hoth," said Adrich," is that the really major changes take years."."

Adding an Escape System

As a former astronam, Richad Truly gave particular, personal attention to the Regers Commission recommendation that an exape system be added to the shutle to allow its coew to leave the whicle in ath emergency whike it was in controlled gliding tight (i.e., after the SRMs had finished firing and bect jentisoned and the shumbe's main engines shut down). In fact, a seath for a viable escape system had begun in Mach 1986; as the seareh progressed astomant Bryan OComor plated a key whe in assessing vations options. Alternatives considered included ejection seats, "tactor wocke" extaction of seated arew members, bottom bail out, and tactor rocke extaction through the side hath. All but the last altemative were eliminated be the end of 1986 , but in its Jaly 1987 repont to the President on how it was implementing the Rogers Commission recommendations, NASA satd that a decision to implement the side hatch, rocket-powered escape approach "had not been made.";

NASA in December 1986 had in fact made a tentative decision to go fomand with this appreath, if it could be shown satistactory in tests and installed in time for the next lande. By September 1987, due to delass in the testing program and the possibility that an adeguate supply of parts for the system might not be amailable on a timell basis, NiSA began womsider a simpler alternative-one using a telescoping metal pole extending nime fee beyond the shatile excape hatch. In an emergency, erew members would atach themselves to the pole and slide away from the shutte orbiter's wing before they parachuted to Earth."

Based on tests of the wo systems, Truly in April 19×8 selected the pole escape approach. This was perhaps the last major prefanch choice stemming from a Rogers Commission weommendation. One factor in the decision was avoiding the additional risks created by instathing the pyotechnic tactor mockes in the shotle cabina also, the STS-26 crew preferred the pole system. The escape svatem could be used only with the shante in controlled fight at a less than 20,000 foot attitude. with landing on a primaty or emergency momav impossible. (Whe the in an conergene to pusth the shmes man engines berond their design limis to enable the orbiter to reach a tans-itlantic abort site. of to bail out was a controversial isste up almost to the time of the Diseover lannch. Astonats and mission controllers favored a bail out eption. but they were overuled by Truly who wanted to awod losing another obbiter in an ocean ditching. ${ }^{\text {wa }}$ Bailing out of the shottle was considered far preferable to trving to survive a water landing; one individual responsible for the esape system commented, "the orbiter desen't survive dithing very well."*

```
76. Vaw Won Tima, December 2h, I9N6, p. 1
77. N\S\, Implrmenting the Rocomurwhatoms.p. 67.
```



```
IIN-S/ Scptember 7, 1087, p. 125.
the:S/, Scptember 2f, IOss, p. 63.
Ilim., &pmil II, IGNs. p.3I.
```


Setting a Flight Rate

The Rogers Commission had identified "the relentless presseme to increase the flight rate" as a major contributing factor to the Challomerraccielent. Though not directly related To getting the shatte ready for its first postacciden flight, detemining the appropriate schedule for shuthe lameles after the STS meturned to flight occupied much of the time of Richard Truly and his staff at NASA Iteadquaters while the shuthe was grounded.

A firs consideration was what paylods the shumbe would carry as the launch rate was reduced; it was clear that critical national secmity payloads would have first priority. After a series of intense debates within the Reagan administation-over NASAs objections-the President anomed on August 15,1986 , that, except in situations where there were overriding national security, foreign policy or other reasons, the shutte would no longer be used to laturh commercial commonication satcellites." This decision and plans for its implementation announced two months later removed a major category of paylonds from the shutle manifest; prion to the accident, eleven of the wenty-four earlier shutle missions hat carried one or more commerciat commmation sate flites.

In October 1986, NASA released a shumbe lameh schedule that called for a buildup to fourteen or sixteen lanches per year, four years after the STS returned to ilight, and after a replacement orbiter had entered service. ${ }^{*}$ This was mote ambitious than the latunch rate thought reasomable by yet another National Reseanch Council review committee. At the request of NASAS House Appropriations Subcommittee, the NRC created a panel to camy out a "post-Challengerassessment of Space Shutte flight rates and utilization." In its October 1986 report, the panel concluded that with a fou-orbiter flee NASA could sustain a launch rate of eleven to thinten lameher per year, but only if there were signilicant improvements in various aspects of the shutte program. Without such improvements, the pancl estimated, the maximum rate was eight to ten launches per yeate. The panel noted that only "under special conditions" might the launch rate surge to fifteen latuches per year."

Batancing the clesire to get flying again on a regular basis, the pressure to land critical national security and scientific payboads as soon as possible, and the need to consure continued safe and reliable operation of the Space Shutte was a constant chatlenge for Richard Truly. Ite recognized that "we will always have to treat it (the shutle| like an R\&D) test program, even many years into the filume. I don't think calling it operational fooled anybody within the program. . . It was a signal to the public that shouldn't have been sent and I'm sorry it was." mi Media watchdogs were quick to report perceptions that NASA was "puting schedule over safecty." But, as Truly had said on many occasions, "the only way to operate the shutle with zero risk is to keep it on the ground." That was not his intent.

Return to Flight

The Space Shuttle Discoury was rolled out from the Vehicle Assembly Buideling to launch pad 39 B on July 4 , 1988 ; as a morake-boosting measure, throughout the day Kennedy Space Center workers and their families were allowed to drive around the pad.

[^162]There were no wavers (permissions to latnch even though specifications were not med) on any hadware element, and an internal NASA committee had found a "positive change in attilude" with respect to safety considerations and a "healthy redundancy of safety reviews and oversights." The group found no safety issues that would adversely affect the latunch of STS-26, then set for September 6 . ${ }^{-7}$

There were a few minor delays before the shutle was ready for laneh, however, slipping the launch date to late Scptember. A 21.8 -second Flight Readiness Firing of Discouery's main engines was conducted on August 10, and a two-day Flight Readiness Review in early September. The final launch date of September 29 was set when it was detemined that Hurricane Gilbert would not affect operations at mission control at the Johnson Space Center.

When Disoory roared off of the latuch pad after a 98 minute weathereansed delay on the morning of September 29, a great weight was lifted off of not just Richard Truly, but the whole NASA organization. Truly would later say that "the time when the Spare shutle did not fly was time well spent by NASA. When we look back at 1986-1988, we will see it as a time when NASA and the counny took an unwanted, but necessary, breather in the space program. During this time, we took a hard look at ourselves and at what we hoped to accomplish in space. What we saw was solid. Some things needed changing and changes were made. It was a time of introspection, not without pain, but mostly it was a time when we rechatered our course and rededicated ourselves to space exploration."×n

Richard Truly brought a pertaps mique set of attributes to his joh as NASA Associate Administrator for Space Flight. Though admitting frustration at the inefficiencies of the political process and impatience with the need to testify so frequenty to Congress and to participate in frequent executive banch meetings. he was skilled at charting a course through the political process. Ilis status as a former astronatutganed him credibility on Capitol Itill and with the public, and legitimacy within the space flight community inside and outside of NASA. He was able to gain the support of the many extemal groups overseeing the accident recovery cffort for most, if not all, of NASA's actions and decisions. He had enough technical background to understand the issues under debate during the recovery process. He sumounded himself with a team as committed as he was to the shutthe as the centerpiece of the U.S. effort in space.

As he rellected on his experience a few months before the shatle refuned to flight, Richard Truly suggested that during the preceding months "the high and low points have been very high and very low" and that "there have been great frustrations," particularly in dealing with the eriticisms of NASA and its employees. Ile admitted that NASA deserved "some" of the criticism, and so his approach "has simply been to try to build a team that will win our credibility back." The high point in his experience during the remento-llight cffort, according to Truly, "has simply been watching this tean come back together."

Richatd Truly accepted the 1988 Collier Trophy on behalf of all those in govemment and industry that had participated in the remon-to-light effort. It wats an honor well camed.

[^163]
Chapter 16

The Hubble Space Telescope Servicing Mission

by Joseph N. Tatarewic\%
Prelude
Big Science, Hubble, and Historical Trends

In March of 1994, the National Aeronatic Association anomen that its 1993 Robent J. Collier Trophy would be awarded to the NASA I lubble Space Telescope Recovery Team "for oustanding leadership, intrepidity, and the remewal of public faith in America's space program by the successful obbital recovery and repair of the Hubbe Space Telescope." Representing the more than 1,200 men and women directly involved in the mission, the seven-person astronaun crew of Space Shutle Mission STSGil and four gromad managers were named as the recipients. It was truly, by all assessments of the participants and the observers and in the language of the Collier award, "the greatest achievement."

The Hubble Space Telescope had taken longer to build and launch than any other NASA spacecraft, including Apollo. It had cost more than any other scientific space progran, and more than nearly any other space mission. Deployed in the Spring of 1990 with the express mission of addressing the most enigmatic and exciting questions of astomony, it promised a revolution in understanding the origin and evolution of the universe and myriad other astronomical and cosmological guestions. Within weeks, a horrible realization gradually emerged: the instrumem bote a seemingly fatal and irreparable manufacturing flaw that would severely degrade or even scumle its fifteen-vear mission. Worse, various oblher systems and components began to act erratically or to fail. Soon the Hubble Space Telescope and NASA itself were the objects of anger, soom, and ridicule. What began even before launch as a plamed and routine servicing missiong grew into a bold and comprehensive overhaul, a "rescue mission in space." The Hubble Space Telescope Recovery Team rescued more than just the telescope and its mission, however: By atl accoments they rescued NASA and the U.S. space program as well.'

1. National Aeroname Association, "Hobble Space Delesoope Recovery Team Wins teat Comice

 program will be given in minutesseeonds from stare ol the tape.

This article is dedicated to Boh Bless, leader of the High Spered Photometer Team ath the laversity ol Wisconsin, who worked tinclessly for dedades and in maty ways lo see the Spate Tebencope achieved, and then gracefolly made room for (OSSJR.

I am gratefint to a very large number of people who gracionsly gave freely of thein time by sending or wising me infomation, oral history intervews, and informal discossions. The Habble Selvicing Mission was at massive effot that drew a dofen institutions and thousath of perple into its cats. I have tried to give represcmative weight to the vatoms commbutors, but it would have been impossible within the limits of this brief articte even

 ath woldy moponsible for all cond lasions and interpereations late

Astromaul I: Story Musgrave, anchored on the end of the Remote Manipulator System (RMS) arm, prepares bo be plevated to Astromant: Story Misgrave Mable Sfour Telescope (HST) to install protective covers on magnetompters. Astromaut Jeffrey A. Hoffman (hottom of frame) assisted Musgrave with final smicing tasks on the telescopte, atrapping up five days of space walks. (NASA ploto no. 94-H-16).

In the introduction to this volume, Pamela E. Mack discems a number of trends that altered the chatacter of air and space llight over the eight decades of Collier awards:
(I) "NACA and then NASA [becamel incrosingly raught in a wof of bureaucratic and political obligations": individuals rame to matler less and the planning process itself bectame more impertame.
(2) "Researh and development projects hatue berome mowe complicated in fundamental ways," requiring more diverse expertise than any tone inventor coudd muster and separating developers of technology foom nsers.
(3) "Allitudes towards funding research have changed"; affer Apollo there arose a "note emphasis on cost-benefit calt whations but also mome willingness of fund projects on the basis of popular support."-

The Hubble servicing mission represents these trends in full bloom, as well as obler chatacteristics which have been identified as the classical indicators of big science: "money, manpower, machines, media, and the military." The Hubble Space Telescope program generally presents these chatacteristics in their more benign foms, as well as the pathological tariants identified by Avin Weinberg of "journalitis, moneyitis, administatitis." 'In what follows, I shatl lirst discuss these characteristios as they apply to the Ilubble senvicing mission. Then I shall present a basic historical marative of planing and executing the mission. Finally, I shall conclucke with some of the scientific results that consued during 1994, and present a few conclusions addressing broader issues.
(1) Buraturatic and political obligations: Be-ween the initial planning in the 1970s for frequent romine shote mantenance of the telescope and the December 1993 servicing mission, replacing components came to acquire a heavy load of significance and implications. The servicing mission became a way to repay bureatuatis and political obligations that extended far beyond the telescope program itself, even bevond NASA. In late 1993, the then-tamished reputation of NASA as a whole, the capability of its shutle system and astronam conps, and the viability of its most important next program, the Space Station, all rode with the crew of the Endeavom: It seemed they would all come back in the same condition: heroic and vindicated. on disgraced. The servicing mission wats a resomeding success on neanIy all couns. The long and demanding spacewalks were among the most mproblematic ever done, and over several days press and media coverage of the mission was more intense and more favorable than perhaps at any time since Apollo. Live television of the repair activities wats caried mintermpted on many able television chamels, and scenes of the astronatus working on the telescope dominated the evening newseasts. Astronaut Story Musgrave recalled being stopped by people while doing his Ghristmas shopping shortly after the mission: "They were blearyeded from staying up all night. We were better off than they were, . . . Hey were very excited because they had lised it vicarionsly."'

Tellingly, the crew and ground managers were joined by beaming agency officials and politicians in postmission press conterences and events. When the telescope

[^164]resmed operations and the repains were folly tested in Jantary 1994 , its performance was far better than anticipated. and the end-users were extremely pleased. To what degree the Itable Space Telesoope was restored to its original planned perfomance is a diflicult judgment, and to some extent depends on the criteria one uses. It was, however, dramatically improved. Over the following year, it produced a string of significant results that would not have been possible in its original state.
(2) Cisen and derelones of romplex bedmology: The complexity of the process and alicuation of the users from the developers is amply visible in the history of the space telescope itself. This aspere is docomented and illustated in published scholarly history, govermment atudits by such mots as the (eneral Accomeng OHice, congressional hearings, and memoirs. From the list organized campaigns by astonomers in the late lomios, thongh leasibility studies in the 1970s, development in the 1980s, and operations in the logos, the I Hubble Space Telescope has been sustane by a complex and protean codition of diverse parties. If astromomers are the end users (but in no way the only beneficiaries) of the space telescope, then in part the history of its clevelopment is one of astronomers struggling to prevent thein interests from being submerged and wemum by all the others. The need for the servicing mission at all arose becatise the useds (ashonomers) failed to protect fully the in interests and allowed the developers (engineers and managers) to produce what looked like a spate telescope but did uon fiention as a space telesoope should. This illustates big science as what fames Gapshew and karen Rader have called "at once a broadly dillused mode of cognimon and a concentated form of orgmized labon.".

Not that the astromomers did not the they tried mightily over the decades, singly athd in gromps. But the soope of what Rober Smith has called "the biggest kind of big science," big enginecring, and big management was overwhelming. In my view, the system that was building the space telescope was bigger than any putat tive ssistem builder (in the sense of historian Thomas I Lughes) could eve hope 10 manage. Not shondel we assmme there was bad lath or villanous subversion. The users (astmonomers) were not the only, nom necessaty the most imporatat teat soms for building it at all. Many other interests (engincering, commerer, politios) wathed a spate telescope, and the astrotomers only got one beratuse these obler interests watued it. These other interests, however, did not require that the telescope finction in quite the same way as the astomomers wished. These other interests did not willitly ignote of subver the astomomers requirements; mostIv they were just insensitive to the astromomers and lat mome powerfal. The it needs for a sucocsshally functoming space telescope were har more redaxed than

the needs of the astronomers. Even though all the different interests assembled around a single big machine, it was an instrumentality with many meanings and many criteria for success. One manage puou the issue succinctly: "If the agency did nothing more than take one unaberated pieture from the Wide Field Camera in 1993, it would have been declated a success; so why add any risk to | the servicing mission by fixing other problemsl: Well, . . . we promised a finctional telescope, not a stemit.";

The servicing mission was successfin in part becatuse the users asserted themselves and interjected themselves forcefully into the process. The idea for the optical fix came from the user advocates. Implementing the lixes was possible becatuse the other interests fomed their salvation through the needs of the users. If the development of the telescope illustates the alienation of the users in big science and the dispersion of incerests, its repair prosides an illustration of how big science can work beantifully when interests merge. The servicing mission evolved from a diffused set of adtivities with many parties operating somewhat independenty into a tighty focused and expuisitely choreographed group effort. It was well finded, hatd the rapt attention of management, and a working level espinit de copps that transernded institutional and other loyahties."
(3) Attitutes fonarads funding: Some ill-chosen hyperboles aside, the Hubble Space Telescope's benefits were as pure as the driven stom: It is hated to quantity the value of knowing better the nature, history, and origin of the uniserse in order to compare it to the cost of the Ielescope. The general public and its representatives might not comprehend fully the subteties of astrophysics and cosmology, but they dide expect at leas contertainment and edification for the investment. While the severat problems of the telescope affected atl the instrumems, no just the cameras, it was not furs spectat or muddy digital data that became the public saudal, but wather "blumed vision." The mytad of misteading and homibly mudded similes and analogies used to convey the problems and remedies all came down to the easily and instantly understood pietures and clarity. Fen Sonator Babara Mikulski, herself one of the mosi knowledgeable and savy adrocates, referted to her outrage an the "catamace" and her clation at the successful "contact kens." Hence, the I Iubble servicing mission

 apposimate lape commter mamber.

was in some sense a redemphion, because the defects in the extremely expensive instrument were immediately graspable by the public, who could also easily see the impowement after the repait. They could also easily grasp the magnitude, if not the specific dollar amount, of its cost. As one of the astomomers involved in the program teased in a 1984 lecture:
"That is a nice topic," said Alice, "I will put the projece in its historical perspective and draw analogies with other great scientific projects.
"Nonsense!" sadid Humpty Dumpty, "The answer is very short. Space Telescope will revolutionize mankind's understanding of the Universe because it cost a billion dollats! That's all. They wouldn't have spent the money in the first place if it hadn't been so, now would they?"

Great Expectations, Bitter Disappointments

Initially, mantenance and refurbishment missions (including even return of the entire spacecraft for ground overhand and then reflight) were part of the Space lelescope's romine seemato. The liss official NASA telescope planning phase began around 197 l . just as the Space Shumbe was being detined. With anstere times ahead after Apollo, the Space Telescope and the Space Shutte soon found common catese. An orbital telescope of that size and cost could not be justilied umless it could operate for years or decades, and to that end the Space Shutte promised routine access for repair and tygate. I acking the Space Station, deleted from planning due to cost, the shatle needed a place to go and usefol work to do that could not be accomplished by expendable boosters. To that end. the Space lelescope and Space Shathe pair became an exemplat of a new and eosteffective way of doing Eath orbital science. Initially projected at about two-and-athalf-year intervals over the lifteen-year life of the Telescope, such service calls were expected to be mproblematic and rontine. Indeed, the frequency of access to the spacecraft, predicated on the presmened regular and rontine shothe hatlic, was to have remowed urgency. If something could not be accomplished on one catl, it conld wat umt the next. It also meant that expensive pre-dight design and testing could be relaxed some what, secure in the knowledge that the spacerationd we aceessible for servicing. This notion of routine mantenance remained with the lelescope through its plaming in the 1970 s , its new statt appowal in 1977, and though some mamatic budgetary times in 1980 . Howerer, sereal manticipated circumstances emerged to ast the spotight on maintatioing the Hubble Space "Pelescope and to taise the stakes."

First, carly in 1983 NASA Administator James Beggs was stanted to be fold, on the very eve of release of the Presidents budget for fiscal year 1984, that the program was once agan significantly over budget and behind schedule. The full extent of the cisis emerged over the following few months, and prowoked paintin congressional hearings,

[^165]shakeups of the program and project management, and serious loss of political capital. By the time the new launch target date was in place, and the new budget understood, the program was operating under "last chance" understandings. It could not go back to the well again, and the program remained under scrutiny from within and without NASA. One salutory effect of the reorganization was that some orbital replaceable units, deleted earlier in the program for budgetary reasons, were reaffirmed, making the Telescope more easily maintainable than it otherwise might have been."

Second, after recovering from this setback, the spacecraft was waiting in storage and testing at Lockheed's Sunnyvale, Califomia, plant when the Space Shutle Challenger accident in January 1986 halted all shutte missions for an indefinite time. The Telescope program had to keep its "marching amy" idling but consuming money during the resulting hiatus, contend with more conservative mules for shutte bay payloads, and worry about the potential effect on the spacectaft of the umplanned-for extended stomage. Moreover, the more conservative shutte schedule, and even tighter budgets that emerged in the post-Challenger crat, meant fewer and less-frequent future maintenance opportunities. The program was forced to absorb the additional costs without ability to obtain more money from without. The maintenance and refurbishment budget was an casy target, and money was shifted by adjusting the maintenance schedule and that for future replacement instruments. Some worried about how the spacectaft and its components would fare, not having been designed to reside in storage for so long. Others worried that new instruments would not be ready in time to replace inevitably aging and failing ones. ${ }^{12}$

Third, the Hubble Space Telescope became the centerpiece for recovering from Challenger after effects. It was the largest and most complex scientific payload to be delivered to orbit, except perhaps the Galileo Jupiter probe. Unlike Galileo, which would take several years to reach its destination and return data, the Hubble Space Telescope would start providing results in only a few days or weeks of deployment. As launch neared, the press and media coverage was enormous.

When the Space Shutule Discovery roared from the launch pad on April 24, 1990, occupying nearly all of the payload bay was an enormously complex spacecraft. Rather than the usual spacecraft with instruments attached, the Hubble Space Telescope was an immense collection of instruments enshrouded by a spacecraft and various appendages. At the heart, a cylindrical Optical Telescope Assembly held a 2.4 meter diameter primary mirror which would first receive the light from astronomical objects, reflect it forward to a 0.31 meter secondary mirror, which would then send the light back through a central hole in the primary mirror. Just behind the primary mirror five scientific instruments and three fine guidance sensors, themselves large and complex assemblages of optics, motors, and electronics, would share the bundle of precisely focused light. Surrounding the Optical Telescope Assembly, the Support Systems Module contained dozens of electronic and mechanical black boxes to operate the ensemble, and sprouted two deployable antennas and two large solar arrays to generate electricity.

[^166]Designed to be serviceable in orbit, the Hubble Space Telescope was the most mechanic-friendly spacectaft ever flown. Dozens of bright yellow hand holds and sockets for the astronats portable foot restrants were strategically located around the spacecati. Inside the multitude of hinged doors, atl of the instruments and many of the black boxe's could be removed and inserted by a space-suited astronatu using only a few tools. If motors or actuators failed, the solar arays could be rolled up (like a window shade) or other appendages deployed or stowed using a ratchet wrench. Some of the deployment crew, notably astronauts Bruce McGandess and Kathy Sullivan, had practiced various conergency procedures for years. McCandless had worked, off and on, for wenty years hedping to develop the mainainable features of the Telescope and the special tools required. They had spent many hous in Lockheed's clean room observing and working on the flight spacecraft itself, and in the water tanks at Marshall and Johnson working with various mockups.":

On April 25, astronatu and astromomer Steven Hawley grappled the spacecraft with the shumbe's robot am and eased the 12-ton railroad tank-car sized vehicle ont of the payload bay. Still attached to the arm, a carefully orchestrated sequence of commands instructed the spacectaft to deploy its antemas and solar arrays. There was a tense period when one of the solar arravs got stuck, and McCandless and Sullivan domed their spacesuits, wating inside Discovery saiflock, ready to go outside if necessary. Ground controllers freed the artay, however, and in mid-aftemoon only one orbit later than planed, Hawley rekeased the Telescope. Within ten minutes the freely flying spacecradt had locked onto the Sun, and later manewered itself to point the delicate optics, protected by the still closed aperture door at the from, away from the dangerons sumbight. As Discouey backed atay, ground controllers began the complex sequence of commands to "wake up" the varions domant sustems of the Telescope and prepare it for its fiftern-year mission. McCandless and Sullivan doffed their spacestits, and with the rest of the crew continued Disconerys flight, the toolboxes never having been opened. Neither saw the Telescope again. and both left NASA shontly atter the mission. Sullivan became chief scientist of the National Oceanic and Amospheric Administation. McCandless retired from NASA, leaving the mantenance of the Telescope to other astronats who might never have seen it in person-or so he thought."

The euphoria of the successful deployment was mixed with mild concem as the spacecraft encountered some initial problems. These had nothing to do with the mirtor, but rather involved a varicty of glite hes with the commanications antennas and the control systems. The spacecrat somewhat spastically and repeatedly shut itself down into several so-called "safemodes" in response to the motions of various appendages, and had to be coaxed back into opetation. When, a few days after deployment the fine guidance sensors attempted to lock onto stars, comectible errors were discovered in the programming but a more persistent oscillation prevented the telescope from keeping itself pointed with the required acouacy."

[^167]While engineers had forewamed before latuch that such a complex spacectaft and gromed svisem wats bound to take some time to achieve stable operations, these initial problems carned the spacecraft some bad press that, in the words of a Washingtom Post story, "has burned it into fodder for stand-up comics and prompted some citizens to mumur that it may be a $\$ 2.1$ billion lemon." On May 15, 1990, late-night comedian David Letteman offered the "Top Ten I Lubble Telescope Excuses:","

```
10. The guy at Serers promised it would uom fine.
9. Some kids on Earth must br fooling around with a gamage door opener.
8. There's a little dowirkey mblemg agrans the par that looks kind of tike a coobeng hat.
7. Ser if you com think siraigh after 12 degs of drinking Tang.
6. Bum with squegee smoared lens al wed light.
5. Bhaprimts drawn up by that "Hey Vom!' grey.
4. Those damm raccoens!
3. Shouldn't have used G.l:. compoments.
2. Ran out of quarters.
1. Race of sutper-avolved gralartir brings are screwing with us.
```

After stabiliaing, but not solving these and other operational problems and taking the first test image a month after deployment, there was a brief period of almost giddy clation. By mid-Junc, however, some scientists had become more and more woried about subtle characteristios of the star images. This concem tumed to near despair as scientists and engineers realized the reason for the Telescope's inability to focus. The heart of the instrument, either the primary or the secondary mirror, or both (it would later turn out to be the primary) had been ground and polished over several years a decade earlier nealy perfectly to the wrong specifications. That this error had gone undetected over the yeats of testing was something most people within the program found too starting to believe. Just convincing them that the problem lay with the opties was diflicultit took nearly a month, from late May to late June. Scientists and managers responded to the suggestion with a mixture of bewildement and ouright denial. Once the analyses had finally become too compelling to ignome, NASA Associate Administrator for Space Science Lennard Fisk was told, and he responded that it might be space science's equivalent of the Challengeraceidem. A NASA press conference announcing the conclusion on June 27 showed a panel of somber faces, and the official making the first amouncement literally stuttered ower the words, "spherical aberration." Outside the program and NASA, the news was received with less grace, and more outrage and even ridicule. Congressional representatives were furious, influential Senator and space enthusiast Barbata Mikulski, calling the Telescope a "technoturkey" expressed outrage over Hubble's "catarat." Comedians and editorial cartoonists, from Hetblock to Gary Larson's Far Side, could hatdy believe their good fortunc. Even filmmakers were quick to seife on the opportmity, and before the year wats Out: "An opening scene in the comedy film Naked Gian $21 / 2$ features a dark lounge with a depressing atmosphere, downbeal music, and walls lined with pictures showing historiCally horrible disasters. There, between a picture of the Hindenburg and a hatf-sumk Titanic, is the Itubble Space Telesope. ":

[^168]
Fix it or Write it off?

Initially, many feared that NASA or Congress would finally decide to write off the loss." The first servicing mission, already plamed for 1993 , then became much more than a simple seheduled service call: It became the only chance to save the program and the spacecaft from cither euthanasia or perhaps resignation to living with its diminished perfomance. Sciemists and managers organized themselves along sevetal strategic lines of wotk. White fending off the vatious congressional reviews, NASA I leadquarters appointed a "Ihubble Space Telescope Optical Ssstems Failure Review Boatd," chaired by Jet Propulsion Laboratory director I ew Alen. The Allen Committer, as it came to be called. began wonk in July and within a month had concluded the trouble lay with the main mirror. Investigating the records and the hardware that remained from the fabrication and testing of the mintor in 1980-1981, the Allen Committee found that a simple error in the test setily had shewed the measurment checks on the mirom, and that the computercontrolled polishing machine had datifully shaped the mirer to the wrong carvature. Discordant test results at the time had been ignored under the sehedule and cost pressures and independent tests were not done. Exentally, the Justice Department and Hughes Danbur Optical Systems (Hughes had earier bought the portion of the Perkin Ehner Corpotation that had buit the Optial Telescope Assembly) setuled out of cout." While the Allen Committee was working to determine the catuse of the spherical aberration, an HST Stategy Pand at the Space Telescope Science Institute under astronomers Holland Ford and Robert A. Brown began work to determine options for recovering from the mirror problem. The Science Institute had been established long before launch to be the foctes for the academic commmity who wished to use the Telescope. With Goldard managing the mission and controlling the Telescope, the Science Institute would receive proposals from astronomers, manage peer review, and then work with the selected astronomers to shedule and obtain the desired observations. Institute staff included scientists who specialized in catibating and understanding the Telescope's instrments, and engincers who specialized in merging thousands of approved observation requests into an efficient observing schedule. Cuder the leadership of the assertive and persistemt Riccardo Giacconi, the Science Institute had made itself the watchdog for the scientists, at limes much to the consternation of NASA managers. They interpeted their charge broadly, and since well before lamoh had been proactive without much regat for stepping on government toes."
18. Hubble Spate Tilescope and the Space Shutle Problems: Heating Before the Subcommitere on science, Technology, and Space of the Commiter on Commerce, Scieme and liansportation, finted States Semate, Onte Hundred First Congress, Second Session . . July 10, 1990 (Washington, DC: GPO, 1990): Hubble Space Telescope: Hearing Before the Suboommiter on Space of the Committee on Science, Spate and
 (Hashington, DC: (, P⿳
19. Lew Alen, Rogery Angel, John D. Mangus, George A. Rodney, Robert R. Shamom, amol (harles P.

 41-57. I am grateful to the I/artford Gomam for supplying a reprint of the original serie's. Sec also "Inbble Board

20. Smith, The Spar Tebsope, Chapters 6 and 9 ; Chaisson, The Jhbbe Wars, p. 200 di.: "Space Telescope

At Goddiad, the newly appointed Assoctiate Director for Fight Projects for the HSI: Foe Rothenberg, and the Project Sciemtist. Al Boggess, met in late July to lay out a strategic recovery plan. Fist, they would do whaterer science could be dene with the Telescope in its curnems state; second, they would try to fix the Telescopers problems at the 1993 maintenance opportmity; finally, they wotld concentrate on extending the wavelength coverage into the infrared on subsequent soheduled servicing missions that would install replacement instruments. Rothenberg was carefill to establish close working relationships with the relerant I leadquarters managen and with the Seience lnstitute.

Plamers were wery lucky that the figume of the mimo was so precisely and mifombly in ertor: Concurent with the Allen Committee and the Stategy Pamel, a "Itubble Independent Optical Review Pancl" under Duncan Moore, Dlniversity of Rochesten Institute of Optics Director, worked to detemine the precise presctiption for the aberrated mimor, based on records and artifers at the manufactuer and data taken by the Telescope instrments. The 2.4 meter wide main mirror was too flat by about 2 micrometers, or $1 / 40$ the thickness of a human hair. That meant that an optical element with the reverse prescription could corred moch of the aberation. It had already become dean that future replacements for the existing scientific instruments, scheduled to be inserted crery few veas beginning with the 1993 savicing mission, could incorporate intemal optics that would reverse much of the aboration of the lelesope's mirom. However, the existing five instrments and the line guidance sensems (used by the astrometry team as a sixth virtual instrument) would remain severely compromised for many years unkess some other solution were found. In particular, the European Space Agencys Faint Object Cameta had no follow-on in the plans, and it was scientifically as well as politically impontant to find some way to address the European concems. The primary mimor defect hat two serious consequences. Fits, because the lighn atss were not precisely brought to a single focus. the images would lack resolution and the other instrments could not pick out individual objects in crowded fields or very small features of extended objects. Second. because the light was diffused the Telescopers instruments could not reach the plamed limits of fainthess. These iwo desiderata, clatity and fammess, were precisely the reasons for putting a Telescope of this size above the atmosphere in the first place. While the Telescope was still capable of providing valuable data and addressing much of its observing program, it was compromised in the areas for which it wats supposed to be unicpuch suited. The existence of a very serions latw that was nonetheless amenable to compensation was the foundation for an expanded servicing mission.

The Hubble Space lelescope Stratergy Panel included many distinguished and expenenced astronomers and engineers, as well as retired astroman Brace Mochadless to advise on the on-orbit feasibility of various proposals. Co-Chair Rober Brown had served as Space Telescope Project Scientist for several years before laneh. The Panel considered a wide variety of schemes, including: mechanically or thematly slighty defoming the main minor; overodating the main mimor to aher its shape; installing full-aperture glase or gas-ifled conrective optics at the front of the telescope; peplacing the secondary mirror.

These and other proposals were all found wanting, or downight dangerous (to the Celescope or to the astronats) to various degrees. The Panel also considered how to incoporate changes into the plamed replacement instruments scheduled oo be instatled every few years starting with the 1993 servicing mission."

Bits and pieces of the solution lay near to hand, but would require imovative modifications. As a precation, work had begun at Jet Propulsion Laboratory in the early 1980 s on a replacenent for the main imaging camera, the Wide Field/Planetary Camera. Its internal optics would be modified by adding small mimors figured to reverse much of the spherical aberation introduced by the man mimot: Early in the HSI Strategy Panel discussions, optical exper Mark Bottema, of Batl Aerospace, suggested using mirrors similar to those in the replacement Wide Field-Planetany Camera If to adjust the incoming light for the other, axial sciemtific instruments. The problem was how to deliver such mirrors to the telescope and insent them precisely into the light bundle behind the man mirror: The solution to this problem, due to electrical engine Janes Cocker of the Space Telescope Science Institute, is so remakable as to seem apocryphal. One evening, during the Strategy Panel's meeting at the Space Telesope Eumpean Coodinating Facility in Guching, Geman, Gooker steped into the shower in his hotel room. The Furopean-style fixtures included a showerhead on an arrangment of adjustable rods. While manipulating the shower, Crocker realized that similar articulated ams beating Bottemas mirrons could be extended into the light bundle from within a replacement axial instrument by remote control: "I could see Murk Bottema's mirrors on the shower head." ${ }^{21}$

In the carly 1980s, work had begun on a device called STAR, Space Telescope Axial Replacement, an empty stand-in for one of the four axial scientific instruments, just in case one might have to be removed with no new instrument avalable for insertion. STAR was designed to be medtanically, thermally, and in other ways benign, so that the complex spaceoraft would not "notice" the missing instrument. With Bottema's mirrors and Crockers mechanical anangement packed inside, STAR would become COSTAR, Concetive Optics Space Telescope Axial Replacement. Once installed as if it were a replacement axial instrment. COSTAR would deplos the timy mimors, each figured to interept and then rewse the spherical aberation for that pertion of incoming light directed to varions apertures of the remaning thee axial instrments. The three remaining axial instrments had a total of five precisely-placed entrance apertures, and the optical design required wo minots for each. Thus, ten minors had oo be insented into the light path in such a way as on interept the light, conect it, and direct it into the apertures, all

 (0) tober 15, 1990): 25.

 , I have followed this asage.

 Fiedd Plation (just $1 x$ hind the primats minow:
the white precisely shatowing the apertures from the flood of the remaining aberated light. COSTAR was an exceptionally complex and delicate system of 5,300 parts including mirrors, mechanical components, and electronics all controllable from the ground. Some of the coin-sized mirrors were an optician's nightmare to figure, their shapes being "anamorphic fourthooder aspheres on toroidal blanks," painstakingly hand-made by Tinsley Optics in Califomia. COSTAR would "fix" the European Faint Object Canera, the Goddard High Resolution Spectrograph, and the Fain Object Spectrograph, and the replacement Wide Field-Planetary Canera would restore the primaty imaging cancra abilities. Astrometry and pointing contol would have to live with the diminished performance of the Fine Gudance Sensors, and the Itigh Speed Photometer, the least problematic but the least-nsed instrument, would have to give up its spot for COSTAR. Having setted on the COSTAR approach, Ball Aerospace began design and proposal work in November, and was awarded a contad in fantary 1991. Ball had built the Goddard High Resolmion Spectrograph for the telescope, and was designing two second generation scientific instraments for fulure servicing missions."

The first senvicing mission now included replacing two scientific instrments and it would have to remedy a host of other emerging problems, some of which were becoming very serious. At the end of 1990 , engineers operating the edescope had devised softwate changes to try to comber the oscillations of the solat atrass, which would respond shaphe io passage between shade and the Sun that occumed twice each 90-minute orbit. The themally-induced oscillations slowly damper out but took longer than half an orbit to do, so, when another passage would stat them all over again. There was limited atailable memory in the ombard compures, and the new control laws to handle the solar and oscitlations consumed a good portion of it. Solar aray replacement looked as though it would have to join the other maintenance tasks, although the final decision to replace the European-provided solar aravs was not made mil much later. After a spirited debate, they even edged out the optical fixes to assume highest prionity.

The Telescope continued to be temperamental, and NASA finally decided in bate 1990 that the engine ring commissioning phase, called Oebital Veritication, was complete-or that they had gotten the spacectaft operating about as well as they could and regular seience operations should wait no longer. The Mashall Space Fight Conter team who had been in residence since deplownent returned to Hunswille, leaving (oddand Space Fight Center 10 operate the spacectaft and the Space Telescope Science lnstitute to continue its work coordinating observing proposals, scheduling objects to be observed, calibrating the instroments, and archiving the data. Beoween the degraded focus, solar array oscillations, the fine guidance sensors acting temperamentally, and a tariety of other sporadic problems, all of the observing plans were contintally in flux. Varions observing programs, planned with the full capability in mind, had to be reassessed and sometimes deterred. The operational problems had further made scheduling difficult, both by degrading observations and also taking up scheduled observing time to resolve. ${ }^{\text {z }}$

During 1991, the teams setted into doing the observing programs not preempted by the hardware problems, while developing COSTAR and the other major harelware for the servicing mission. Ball Acospace began assembling hardware for COSTAR in July, receiving the first flight optics at the end of the yar. As the sewicing mission plaming group considered how to include the new tasks (iher had been meeting fomally since August 1988), they found themselves under pressure winclude still more. In May, a memone unit in the spacecraft's main compuer failed, sending the Felesone into the deepert safemode available, nearly the equivalent of a coma. In June, a second of six gyoscopes failed, leaving only one spare since three were required for the spacectaft to determine its position and attitude accurately conough to conduct observations. In July, the Coddated High Resolution Spectrograph developed a problem in its power supply, diminating hatf of its capability. By the end of the year, it was clear that the first servicing mission was going to be much more ambitions than anyone had expected. It would be more of an werhat than a repair. Cost estimates are difficult, both for the servicing mission and for the Letescope as a whole but the repair cost a signifeantly lage fiaction of the Telescopers initial cost. Had it been an attomohile. it might well have been de clared a total loss.-"

Planning a Service Call

The elose cooperation required of so many parts of NASA, combined with the high stakes and growing anxiety evident in Washington, encouraged a number of institutional clashes that had to be overcome. Fo the managers and astronates at the Johnson Space Conter, the servicing mission at first appeared as one among others, and it never occurred to them to treat it any differently. Confident and proud of their system for plaming and executing Space Shutle missions, with a host of other missions at various stages of execttion, and already interacting with tarious institutional "customers" for those missions, Johmson was slow to change its appoath. As Hearlquaters serutiny increased, the complexity of the misson grew and the need for more subtle interadion with other elements of the program became more apparent, fohnson managers began to feel the pressme, "

The result was that plaming for the mission at Johnson accelerated much earlier than was their spical procedure. For "customer driven" missions, a multidisciplinary and multiinstitutional Payload Operations Working Group would spend one or mote years developing the outlines of a miswion. Actual flight crews and ground controllens were seldom selected catier than a year before launch. In the Spring of 1992 , some twenty months before launch. Story Musgate was the first crew member named. Musgrave, an Apollo-era veteran, polymath, and extremely atcomplished in extravehicular activity, would be the Pavload Commander, foreman for the repair crew and altimately responsible for the Celescope. Musgave had started working on making satellites maintainable and serviceable in orbit in 1976 , and had been the astronam most involved in developing the space

[^169]Buovancy Simulator, working with mockups in simulated underwater microgravity to obtain rough appoximations of the times regured to do various mantenance tasks. All the while, new black box failures on the spacceati put pressume on the roster of chores to be accomplished.t"

At about the same time, J. Milton Iteflin was chosen lead flight director. With almost thity years experience at Johnson. Ifeflin had been involved in ocean recovery of the Apollo astronatus, and had been in mission commol since the very first shatle landing tests in 1977. With ten years and twenty shuthe missions under his belt as a tlight director, he was one of the most experienced and seasoned. As Heflin got organized, he was also supporting several other missions as well. He, like most at JSC. recognized that the Hubble Servicing Mission was challenging and needed mone attention than some other missions. He would soon realize, however, just how muth more attemtion and resources it would require. Initially, the core of his mission control team included payloads officer Jeff Hanlev, robot am engineer Sal Ferreat, and extavehioular adivity experts jim Thomon and Susan B. Ramwater."

Meanwhile, events in Washington transpired that would have decisive and far-reaching effects on the agency and on the Hubble servicing mission. In early 1992, after escalating discord with the White Honse, Richard Truly was effectively fired as NASA Administator. Truly, a career astronatu, was admired and respected throughout the agency but perhaps nowhere more than at Johnson. By March, a new, non-NASA face appeared and was confirmed on April 1. Not perhaps since James Webb had there been a NASA Administrator who was more of an ousider, more inscrutable, or more difficult to adjust 10, than Danid Coldin. Itaving worked in mostly classified space programs at TRW, Goldin was expected to bring a mo-nonsense industrial agility and accometability to the agency. The Bush-Quayle administration had decided that Truly was too closely identified with the old guarel, and were determined to bring a fresh approach of NASA. While Goldin championed what he considered to be NASA's strengths, and went out of his way to praise the achievements of NASA, he wats detemined to bring change to the agency. To some old hands Goldin seemed impulsive, abrasive, and farfully insensitive to the agency's core taditions and values. To Johnson, anyone who replaced the beloved Richard Truly, under cluress no less, boded ill. Stories of strife in "Code A," whe office of the Administrator, were rife.

[^170]The strong signals of change grew more potent when, in May, Marine Major General Jeremiah W. "Jed" Pearson IIl replaced astronant William B. Ienoir as Associate Administrator for the Othice of Space Flight ("Code M"). Pearson had been deputy commander of Marine fores in (operaton Desen Stom before senving briefly at Marine Headquaters, and he now commander the very heart and soul of NASA-the Space shottle program. Goldin continued to replace many Headquaters and Center officials, while the old hands at the agency went though the anxiety of organizational change."

In mid-May Goldin traveled to Johnson to observe a Space Shotele mission first-hand. The STS 49 Emdeavore crew's mission was to capture and repair the Intelsat V commmenications satellite and evaluate Space Station construction techniques. Intelsat VTs apogee kick motor had fated two years earlier, leaving it stranded in a low orbit. The crew wats to approach the spiming satedite, insert a special tool into the central motor chamber about which it tumed, and lire a grappling device that would seize the chamber, allowing them to slow it donen. Once stabilized, they wond repair it and then send it on its way to geostationary orbit.

Problems developed almost immediately. The four and one half ton satellite bounced away each time Pierre Thuot, in foot restraints at the end of the robot amm, tried to thrust the capture bar into position. Worse, it began to wobble, and fearing that further attempts might be too dangerous they decided to quit for the day and revisit their options. The seven million dollats capture bar had worked during mumerous ground simmations. Something was whong. Ovemight, the crew worked with ground planners and astronatuts in simulators to devise a bold contingency plan. The next day, after the capture bat adean lailed to work, for the first time in history, thee astmontes were outside their spacecraft at once. Thuot, Richatd lieb, and Thomats Akers, "the gang of there", stationed themselves in a circle in the payload bay, their feed anchored in restraints, while piot Dan Bratudenstein eased the shatte toward the spiming satellite. They used their glowed hands to reach outh, grab, bate Imfelat VIto a stop, and then lower it into its repair fixture."

While the crew repated the satellite and sent it on its way to geosynchmonous orbit, they were hailed as "space wizards." Goldin praised the bold move as a "return to the can-do NASA of old," and editorials and commentaries gushed about the drama of the satellite rescue and its proof of the usefulness of astronatuts. However, outside the limelight, it "set NASA managers scrambling to rethink their training methods and assmmptions about handling large masses in orbit." The flight and gronond crews had saved the mission, but they had taken what some considered to be undere, perhape even foolhardy risks. Canght between deeply engramed and contlicting values, Johmsom had been tom belween conservatisn and salety, on the one hand, and the driving desire to momplete the mission, on the other. They had chosen deliberately on the gromed and in space to be bold and complete the task. Tom Akers and Kathy Thomon tan intofuther poblems assembling prototype Space Station elements in the payload bay later in the mission. This, too, did mot go as it had in simmations and taming. It shook johmson's plaminge, traning, and simulation groups to the core."

Worse, while Goldin praised publicly his charges for the dating satellite resoue, he is remembered by others to have commented on "those cowboys!" Barely six weeks into his tenure as NASA Administrator, this was not getting off on the right foot. While fohnson quictly looked inwad to reassess their training methods, (ooldin appointed a high-level group task fore on satedite rescue and repair wo study how NASA should handle future stoch situations. Implications for the Space Station and the Itubble servicing mission were not lost on anyone. Center Directors and II Cadquanters Associate Administrators decided they, too, needed to track the sevicing mission mone closely. By the end of July, four new review teans were looking at the I Iubble servicing mission, and many more would follow.

At the end of August, sixteen months before launch, thee astronauts were named to join Story Musgrave as the extavehicular adivity contingent for the servicing mission, making it the most experienced and seasoned crew ever: 'Tom Akers, Kathy Thornton, and Jeff Hoffman. A lot of work was scheduled in Marshall's. Neutal Buoyancy Simulator and Johnson's Weightess Environmental Taming Facility to refine further the timelines for the servicing mission, and "EVAs of opportmity" were inserted into upooming shutle missions wherever possible to gain more experience. In Jantary 1993, on STS-54, Mario Runco and Geg Hablangh of the Emdenour crew improvised the first of these by camying one another around the payload bay in a "mass handling" exercise and tested some new tools. Several other crews practiced aspects of the repair mission in orbit, spacewalks being added at every possible opportanity.

Meanwhile, the Telescope continted to be a problem child. In September 1992, the Faint Object Camera's power supply developed problems eliminating hatf of that instuments capabilities. A third gyroscope failed, leaving the Telescope ruming on its minimum complement of three. If another gyrosope were to fail, the spacectaft would be sate but umable to colled any scientific data. A second flight computer memory unit fated. Most of these falures added relatively easy individual tasks to the servicing mission, but the timelines were already overbooked and confelence in them somewhat shaken by the new conservatism. They also caused a scramble among spacecrati engineers to detemine which problems could be repaired at all, and of those which had highest priority."

Goddard and the Science Institute, resigned to operating what had become a positively cantankerous spacecraft, became quite adept at dealing with sudden hiccups and replanning observations again and again. The Goddard controllers and scientists had been operating astronomical spacecraft for thinty years. In paticular, they could draw on their experience and institutional memory of the remarkable International Ultaviolet Explorer (IUE), which had surved well beyond its design life. They had even learned to operate IUE on a single gyroscope. It was befiting that in the ILE control toom sat a stuffed toy "Energizer Bunny." Begimning at the end of the summer of 1991, after the

 Juls, the \|Sl Semicing Mission Critical Design Review (CDR) was held.

shock and denial had run its comse, the astronomers and operators had resolved to make the most of the capabilities they had. The first science results were published in Astrophysical fournal Letters at the end of 1991. By the end of 1992, astronomers had accumulated a respectable suite of results, some of which surprised even themselves. The Telescope was performing at a level somewhat better than Earth-based telescopes, but far below its expected capabilities. ${ }^{3 *}$

In December 1992, a year before lanch and at about the time it would have been usual to first assign a crew, Richard Covey (Commander), Ken Bowersox (Pilot), and Clande Nicollier (a European Space Agency astronatt and expert on the robot arm) were named to complete the STS-61 Hight crew. With these three, the servicing mission continued to enjoy the most experienced and seasoned astronauts available, now with sixteen peevious shuttle flights among them. Also in December, a new face at Johnson was named to a position that had not been used since Apollo: Randy Brinkley was to occupy the newly created position of Mission Director." ${ }^{\text {w }}$

Brinkley and his position were controversial from the first at Johnson, even though the post had been recommended by former Astronaut Thomas Stafford's review of the servicing mission. "Badged Headquarters," Brinkley reported to Washington but was located at and caried on his work at Johnson. The term carried special significance at Johnson, originally created as the Manned Spacecraft Center in the early 1960s. The Space Task Goup, a small band of space enthusiasts among acronauticists at the Virginia Langley Research Center, had virtually invented hmman space flight at NASA. As Apollo grew into a behemoth, Headquarters decided to create a new Center on some politically favorable bayside land south of Houston. The space pioneers from Langley had little choice but to leave the Hampton, Virginia, area that many of them loved, for to resist moving to Houston meant to be out of the action. They built the space center from the ground up, developing all the camaraderie and social structures of pioncers, and absorbing much of the rugged, self-reliant culture of Texas. They developed and flew Mercury, Gemini, Apollo, Skylab, and the Space Shutle. They invented astronaut training, mission control, and spacewalking. At JSC, as they referred to their institution, they operated a veritable space university, with several associated colleges where they trained recruits in how to operate in space and support space flight from the ground. Through Apollo and into the shumle era there had been a constant tension between Headquarters and JSC, a continually and dynamically negotiated balance of independence and subordination. From Webb onward, Headquarters administrators had placed personnel at JSC who reported not to the Center but to Headquarters. ${ }^{\text {+" }}$

Brinkley had been at Johnson for several months as a special assistant to Headquarters' space flight chief Jed Pearson before being appointed to the servicing mission. A Marine aviator for twenty-five years, he had served with Pearson during Desert Storm and then later
 (Junc 1992): 4446; Faye Flam, "NASA PR: Hype or Public Educationi", Scime 260 (June 4, 1993):1416-18.
39. NASA News Release $92-218$, December 8 , 1992; Rothenberg Intemiew, August 8, 1995: 2/A: 020.
40. Ronald I. Newman and Randy H. Brinkley, STS-61 Mission Dirertor's Post-Mission Ropent (Houston, TX: Johnson Space Center, Jantary 1995), pp. 31-32, contains background on creating the post; I am grateful to Messrs. Brinkley and Newman for providing a copy of this detailed and lenghthy docoment. The attindes toward brinkley's reception at Johnson are drawn from several oral history interviews, including brinkley (16 March 1995), referenced in this article, as well as conversations with other Johnson personnel. On the (atnter's culture, see Henry C. Dethloff, "Suddenly Tomorrou Came. . . A History of the fohnson Space Center", (Washington, 1) C: NASA SP-4307, 1993). On Headquarters and Johnson relationships, see Arnold S. Ievine, Managing NASA in the Apollo Fra, (Washington, DC: NASA SP-4102, 1982) and W. Henry I ambright, Pomering Apollo, Jones E: Weld of NASA (Baltimore, MD: Johns Hopkins University Press, 1995). As John Logsdon notes in his contribution to this volume, as part of the post-Challenger management reforms, lead responsibility for the shutle was taken away from Johnson and returned to Headquarters.
spent a brief time with McDonnell Donglas. Before taking on the semicing mission, Brinkley had studied the shutle program and tried to get oriented, absorbing some aspects of the JSC culture in the process. He had been impressed by JSC's techmical competence, but no less by its independence and his own difficulty in "break[ing] into that subculture." Brinkley researched the Mission Director concept and tried to figure out how to implement it, seeking the advice of many old hands. His charter was beoad, to ensure the success of the servicing mission, and largely undefined: "I knew I had the responsibility," he recalled, "somehow I had to grow my own authority." This was a broad mission order commonly used in the Marine Corps, similar to others Brinkley had received there, and in keeping with Pearson's style. Brinkley assembled a smatl staff, representative of the various kinds of inside expertise he would need."

He had also, early on, been impressed by how impontant this mission was to many beyond JSC. From meetings with Pearson, Goldin, and congressional representatives (especially the plain-speaking Barbara Mikulski), the message he received was: "this was a make or break mission for NASA . . Brinkley, don't screw this up, the future of NASA lies in the balance." To gain insight into the progress of the many phases of the mission, he turned to using the independent review groups that had atrady been set up by ohers, and created some of his own. The many reviews, some of them uncoordinated and motivated by growing upper-level anxiety over the mission, put a great deal of pressure on the working troops. If Brinkley added to this pressure somewhat by commissioning still more reviews and assessments, he also drew gratitude from the workers by managing and coordinating the reviews and serving as somewhat of a lightning rod. "Answering the mail from Headquarters," while initially not seen as much of a genmine contribution to the mission, eventually was seen as a taluable activity that allowed the people working on tarious aspects of the mission to function with minimal diversion. The various review recommendations and attention also gave the Hubble servicing mission team a good deal of clout in getting the resources they needed on a priority basis, clout which Brinkley was not afraid to exercise from time to time. This also catused some dismay among the crews of other missions competing for flight controllers, simulation and training time, and attention from the various technical service group.

In January 1903, Administrator Goldin appointed the most formal and highest level review committer of all. Tapping Joseph F. Shea, an Apollo manager, and several senior aerospace executives and experts, the formed "The Task Fore on the Hubble Space Telescope Servicing Mission." After several formal meetings and numerous briefings at all the sites where the mission was being plamed, the panel in May called the repair mission "achievable" but recommended continued close management attention, strongly endersing the Mission Director concept. They were concemed about the "escalating nature of the mission," and the "instability" of the plans and on-orbit schedule, based on a "worrisome" trend of equipment failures on the spacecraft."

[^171]
Confluence

The servicing mission itself lay at the confluence of several streams of work involving NASA Lleadquarters, Jet Propulsion Laboratory, four NASA Centers, the Space Telescope Science Institute, and a half-dozen contactors. During the summer of 1993 , these streams would tuly converge, and any residtal tubutence had to be deall with. Choreographing the mission was easily as challenging as any other aspect. Before and after capture, myriad instruments and systems on the spacectafi would have to be tumed off systematically, the aperture door closed, antemas retrated, and solar arrays rolled up. The shutte crew would have to grapple the spacectaft with the robot am, and gingerly berth it into the receising fixture of the pathoad bay where electrical comections could supply "life support" during the repairs. The Goddard controllers would have to watch the health of the spacecraft, putting some systems into standby and tuming obers off as the repair crews began to remove connectors and components, and then turning the systems back on afterwatd to ensure the "aliseness" of the new parts. As various access doors on the Telescope were opened, the shmesters atmede had to keep stay sunlight from entering the lelescope while still maintaining lock on the tateking and data relay satellites.

The "EVAs of opportunity" inserted into the shate schedule duming 1992-1993 revealed ontial information that probably was decisive in the success of the servicing mission. For tamions reasons the areas of the Telescope being worked on had to be kept out of sumbight. If subjected to sumlight, for example, the black insulation that suppressed interior reflections might "outgas," exuding contaminants that might later depesit onto the optical sulanes. Solat heat might canse insulation to de-bond or expand. Over most of the extratehicular ativit experience since (emini, the problem had been keeping astronats cooh. since they were dmost dways in sumbigh or reflected canthshine and so the suits and gloves were very efficient at cooling. Mission designers, not taking crew temperatures into consideration, designed a trajectory optimum for the Telescope's and onbiter's needs. This oversight revealed itself damatically and at most inopportune time.

In May 1903, Stow Musgate began a series of human thermal vacum tests, similar to those done by many astomats since Apollo. After four hours in the airlock, breathing oxygen in his suit to rid his blood of nitogen, he finally entered the vacuum chamber for an experience he described as, "the world's worst hell. That's the toughest day that you are ever going to have as an astronat." Inside the black chamber; pumped down to the deep est vacum possible, and dragging his counterbatanced 180 -pomed inflated suit "like a plough horse," he stated several hours of tool lit checks. His job was to gothrough all possible combinations of tools-sockets, tatcheds, extensions-and fasteners to see whether ther would fit and behave at a hundred and seventy degrees below rero. Even Musgrave himself, a medial doctor, did no realize what was happening as he squeered the tools hatder to get them to shap together and apart." It was, he savs, the "insidionsness of going from pain to injury." Working in an inflated glove, and feeling numb anyway, he worked on for hours, occasionally pulling his fingers out of the gloves and up, the way a person in a parka might pall his hands into the skeves, and occasionally trying to wam them in another pat of the chamber that simmated sumbigh temperatures. Afer finishing the fit checks, hours of decompressing, and emerging from the aitlock. the metal on his suit was still too cold for amome to approach. As he stuggled to ged his gloves off, and they dropped away. the damage was evident: severe foosbite, tissue death, in cight fingers."

[^172]"It was an essential thing which had to happen . . . it redefined the entire FVA world," he said. John Young later noted that astronats had "complained of cold EVA tempectatures for years," and Musgrave recalled cold hands on his very first shutle spacewalk on STS-6 in April 1983. But previous shutte astronats had only been in the shade for portions of the ir spacewalks, and the I Hubble mission would require them to work for extended periods away from sem- or cathshine. With only seven months to go before the mission, Musgrave was flown to be treated by frostbite experts at the U thiversity of Alaska, mission phamers morned to reconsider extavehicular activity equipment and procedures, and high-level managers fretted. Musgrave recovered fully in time for the mission, and was even in the water tank within days of the injury. But the incident produced "a whole new attitude"- quite literally ${ }^{\text {t" }}$

John Mccune, an experienced "pointer" who specialized in designing orbiter attitudes for missions, suggested flying an upeoming mission in the orbiter attituele plamed for the servicing mission to karn about the thermal enviromment. Astronats on STS 57 in June found that the payload bay was indeed far too cold for extended work. The mission design engineers went back to their computers to determine a series of orbiter attitudes that would keep the paytoad bay temperatures manageable, while keeping the direct smbigh out of the Telescope bays, accommodating the orbiters needs, yet still conserving already tight maneuvering propellant. Others developed wamer overgloves and other techniques, and revisited the iclea of storing the tools inside the warmer (but abredy full) orbiter cabin tather than in the payload bay toolboxes. Had the cold hands problem emerged on-orbit, in the middle of the repais, it could have been very serious, exen disastrous. As it was, planners had to pull out a thead tighty interwoven thronghout the wap and woof of a complex and interlocking mission. It took considerable cooperation beween (ioddad and Johnson to work out a new flight plan that would accommodate the new themat requirements. ${ }^{1}$

Over the summer, as headquaters was preoccupied with President Clinton's decision concoming the Space Station, Goddad engineers and astemomers tested and exabuated the instruments and ofher componems in preparation for shipping them, in Augnst, to the Kemnedy Space Center. As the instruments and oher components flowed through Goeldard. they were subjected to multiple, independent, and rigerom testing wowsedeck the results and avoid the kind of erom that had befallen the minom. At Goddand and the Science Institute, planors refined the complex and interlocking sequences of instructions that would have to be sent to the spacectati to prepare ead component for replacement and ast its successor: Houston was occupied with preparing for joint integrated simulations of the mission. A total of seven would be held. August though Nosember, and represented the most complex total exercise of any mission plan in the history of the shuthe pregram. With ratous astronams in the Nental Bumancy Simulator at Marshall, gromed comoollers at mission control in Ifouston, and varions supporting engineers and scientists at Goddatd, the Science Institute, and contactor sites atound the woild, the would rehease various pats of the mission as well as momerous "failures" concorted by the simulation supervisors.

One recommendation from several of the wevew teans concerned increasing the fidelity of the water tank simulations. The robot anm at Marshalls Neutal Buowane Simulator was crude, and plaming began on a higher-fidelity version. Johnson's tank was too shallow to acomodate an am. Also, to allow longer and more realistic simmations plans were made to instatl a nitrogen-oxygen ("nitrox") breahing mixture, which would athow smutations of emtire six-hour spacewalks, tather than having to break them up into smaller portions." Itere Brinkley ran into center parochialism, as the upgrades to the

[^173]Marshall tank were seen by some as competing with proposals to upgrade the much smaller and more-limited Johnson Weightless Envitonmental Traning Facility to a full Neutral Buoyancy Labomatory, conveniently avalable to Houston flight crews. After paperwork "got lost" along the waty, the changes were finally implemented barely in time for the October simmations."

The flight crew took advantage of the long water tank simalations to hone their bodies and their spirits as well. They would have only one chance on-orbit, and so prepared for that as if it were the Olympics. "We did things at Marshall like we were going to do upstairs . . at seven a.m. we would be in there and we would brief what we were going to do, and then we would position our tools . . . then we'd get in the suit, and then we would go work, we'd do six or seven hours there, we would get out, we would debrief how everything went, we d capture our lessons $\|$ leamed!. Then we went off to the gym, . . we would put in an hour and a half or wo, . . yeah, hard work . . then we would come back from there . . . and start taking about and revewing the next day's activities . . . and wen it's ten p.m. and at 7 a.m. we're back at Marshall and the whole day repeats, and we did this day after daty after day without missing a day for three weeks. Now, you wonder why it workede".it

Brinkley "wasn't worried about the flight team," but was worried about upper level managements readiness for real-time decision making. Brinkley found that previous mission simulations had effectively concentrated on exercising decision-making among the crew, flight controllers, and the many "back room" technical groups that advise them. Generally, decisions that were too serions to be made within mission control had relied on a Mission Operations Director console position, the occupant of which would be the Flight Director's interface to the upper management. During the joint integrated simulat tions, a reatime mission management team comprising administatoms from the highest levels of the agency participated and were faed with contrined situations that pitted the "safety of the orbiterversus the survival of the Hubble." Associate Adminismators for Space Science (Wes Huntress), Space Flight (Jed Pearson), and Center Direotors (John Klineberg, (eoddard) worked with the team to practice how they would confront sudt situations during the flight."

In addition to the water tank simulations (738 hours), several other areas of ground training enjoped renewed emphasis. Since the viscosity of the water tended wo make handing massive objects less realistic, an ab-bearing floor simulator was used to gatu more realistic experience in the dynamics. Twenty hours of manned thermal vacumm lests were done. Computer graphios virtual reality simulators were developed, and were used to reseateh positions for the crew and robot atm to use on the repairs. In the Manipulator Development Fatcility, Claude Nicollier and Ken Bowersox worked with a realistic robot amm, hoisting full-scale helimm-filled batloons in the shape of lhabble and of a spacestited astronatut (nicknamed "(immbs")."

[^174]At the High Fitelity Mechanical Simulator at Goddard, the crew practiced replacing components using highly realistic models and even flight hardware. Goddard had built the simulator, which reproduced the aft portions of the telescope, where the instruments fit. and the equipment bays that held the various electronics components, so that replacement and new components could be checked accurately on the gromed. In addition to being responsible for the Hubble Space Telescope, Goddard had worked on satellite servicing concepts since the early 1970), developing tools and techniques used on other earthorbiting spacecraft. Rothenberg, Frank Ceppolina, and others had been sensitized to the minute detail required in testing and training simulators by many experiences, among which was the repair of the Solar Maximum mission spacectaft on STS-41C: in 1984. There, astronatuts had been temporarily halted by a small piece of insulation that had sagged out of place. Goddard also maintained a separate electrical simulator for testing the numerous data and control connections. Most of the components for the servicing mission would travel to the launch site via Goddard's clean roon, where they would be tested and where the crew would have a chance to work with real hardware. "Goddard was just magnificent in knowing how to get a crew ready . . . they were much more than just the customer . . . they were EVA trainers, they swam with us all the time . . ." Musgrave recalled ${ }^{\text {³ }}$

The astronauts also went to various other locations around the country and in Europe to see and handle the actual flight hardware. They even went to the Smithsonian's National Air and Space Museum, riding a cherry picker cranc after-hours to inspect the old Structural Dynamic Test Vehicle. The only full-scale version of the telescope to have been built in a program that tried to save money by building only one full-fledged flight spacecraft and no prototypes, the vehicle had served as a wire-form on which the 25 miles of flight wiring had been laid out. Not realistic in many respects, the carefully restored and preserved artifact nonetheless retained the many simulated comnectors and black boxes where the cabling now in space had once been meticulously strung. Unlike the more aesthetic models built later to represent the flight spacectaft, this vehicle did not have a covering of multilayer insulation to get in the way and obscure details."

The Hubble Space Telescope program had eschewed building prototypes, and so there was no single place the crew and engineers could go to see a truly accurate and completely realistic version of the spacecraft that orbited more than three hundred miles up. There had arisen by necessity a panoply of mockups, models, and simulators, supplemented by thousands of photographs and video tapes taken of the flight spacecraft before it left the ground. Each was accurate in some important respects, yet each was dangerously misleading in most other respects. To get the whole picture, it all had to be synthesized in the mind. No one experience was adequate, and all had defects. The astronaut would have to pick out mentally the appropriate parts of each training exercise and suppress the rest. Musgrave described what it was like:
> "In your imagination you extract from the manned thermal varuam testing the appropriate parts, so when you've in the water dong those marvelons things with those gloves, you have to say, 'this is not the way tus gonna be.' You have to go back to the manned thermal vac, and think what my real gloves were like there, at flight temperatures . . only in the head does the entive missiom exist. . . Vou cannot go dumb in the
53. Musgrave Interview, March 22, 1995, 1/B: 280: Robrenberg and Frank Ceppolina had worked on the Solar Maximum Mission repair planning 1982-1983; the experience influenced the Hubble servicing mission in many ways. Sec Rothenberg Intervew August 10, 1995, 1/A: 299, 1/B: 520, 2/B: 300 and September X, 1995 2/B: 159 .
54. The Stenctural and Dynamic Test Vehicle is documented in the Artitact Files of the Department of Space History, National Air and Space Muserma, Smithsonian Institution, Washington, DC, and in associated documents and oral history imerviews of the Space lelesonpe History Project.

Abstract

water lank and say, whis is the way it sqonna be, . . . you mentally foull from the weater experionce, you pull from the air bearing floor; . . you pull foom the vacuam chambers in your rail suil. you pull fiom $/$ 'll, from Ball, from the then room al Gouldarl, you Now you sal dom'n and in your imagimation you go dhroush fiof dags of awomk. . jus days. So I buill, just like the some of a symphony, I had the whole five day in my herad. . . nery single molion, rovy tramslation of the body, wery worksite. . . The reasom Hubble worked was, mumber ome. Hubble weas incradibly friendly to being serviced on all EVA crouperson, and we zure able to alluck all the details in all of those cmuironmonls and build a mission."

Such an ambitious and expensive servicing mission might never have been serionsly considered had not much more than the Hubble Space Telescope been riding on it. The Space Station had long been NASA's choice for the next logical step bevond the shutle. As the Hubble Space Telescope's problems and their potential solutions emerged, and with the new awareness of the difficulty of spacewalking under certain circumstances, plaming work on space station assembly revealed that it woukd require an unprecedented amount of extravehicular activity. With only the restrictive volume and weight apacity of the shutle, assembling the space Station scemed to call for spacewalks in a nearly implausible number, duration, and complexity and variety of tasks. Review committers questioned seriously whether such a scenario was reasonable. A successful Itubble servicing mission would provide dramatic proof that the Space Station assembly could be done. While the revews of the servicing plans were going on in the summer of 1993, President Clinton was making an important and extremely contested decision concerning the future form of the Space Station. The Space Station "Freedom" of the Bush administration was replaced by Space Station "Alpha," a less-ambitious and less-costly version. That a pace station at all emerged from the presidental decision process was catuse for rejoicing, but it was now tied more firmly to the success of the Hubble servicing mission."

Later in the summer, several other unfortunate events served to tamish futher NASA's reputation and raise the stakes. A weather resomes satellite, NOAA-/3 failed shorly atier lanuch in carly August. The Catileo spacecraft, enroute to Jupiter atier a perils-of-Pauline life of its own, had been unable to deploy its high-gain amtenna, and attempts to free it seemed doomed, the atening the viability of its mission. The next shutle mission, STS5 , was delaved fiom its late July launch date because of concems abou a particulaty active ammal Persed meteor shower. When Discovery finally flew in mid-September, the crew tested Jubble tools on-orbit during a full seven-hour spacewalk September $16,1993{ }^{\circ}$

sti. The National Reseath Comeil had resiesed Space Sbation Freedomassembly plans and worted

 space station assembly wats lait. Masgate lntervew, March 29, 1995, 1 B: 160.
 139 (5xptember 20, 1993): 3t5-37.

The most serious, and mysterions, mishap of those remarkable few weeks, however, was the Mars Obserer spacecraft which, on the verge of entering Mars orbit suddenly went silent. Again the cries of crities rose to a din and NASA suffered the barbs of pundits. On September 6, 1993, NASA was honored with its scond Dave I ctteman Top Ten list."

In addition, 1993 was a finstrating year for the shuttle program. By mid-August, four launch coundowns had proceeded to within twenty seconds of ignition and had to be scrubbed for varions reasons. Two had actually ignited the main engines and them shotown juse a split second before the solid rocket boosters were to ignite-the point of no return in a latuch. In October, the Landsut- satellite's kick motor faled atter launch, leaving the Earth resources satellite stranded and useless. Some of these untoward events were not even within NASAs resposibility or control, and others were only remotely related to the Hubble mission. if at all, yet the servicing mission was acquiring a significance fat beyond just reparing the Telescope. While upper-keve managers worried about the lager picture, engineers and astronauts tried to maintain their focus on the details that would make or break the mission. As Musgrave recalled: "Did the pressure come to me? No. It's out there, and I know it's out there. But I am goma go do my job, apan from the pressume and apart from the ouside word. Im the ballerina, and 1 know the opera company may be resting on my shoulders. OK, it's tongh. but I'm goma go do what I've got to do. It doesint matter that the opera company is resting on my shoulders, or isn't. It's my att, and I'm going to perfect it to the best of my ability, and it's me and it's my art. . . Yes, there's pressure, but it's not external pressure, it's internal."."

By December, as launch approached, nearly every press story on the mission declared it to be do-ot-die. It was a mission of superlatives: more spacewalks, by more astronats, for more total time than eve-before attempterl; one-chance to rendervous; no second chance to rendezvous once the telescope was released at the end of the repairs. The complexity and high stakes of the mission were reflected in the mprecedented series of reviews, so numerons and extensive that some feared the mission was being reviewed on death, and that the preparation required for these reviews was laking resources away from the mission inself. By the November 17, 1993, Fligh Readiness Review, 195 formal recommendations had been made by welve review teans, of which only wenty-seven iemained to be closed."

When the prionties for various repairs were put alongside the order in which cetain tasks had to be done, it was not possible to do the vations tasks one after the other using 6-hour spacewalks. In priority order, the tasks for full mission success were: solat armas; two gyroscopes; Wide Field-Planctary Camera; COSTAR; magnctometer; and Solar Amay Drive Electronics. Minimum stecess would be thee reliable gyroseopes and an operational WF/PC II or COSTAR Secondary objectives would include a fix for the Godelard High Resolution Spectrograph, a 386 coprocessor to mplace the failed computer memory, a sedond magnetometer, and gyroscope control electronics. The final timetine scheduled these tasks to get the highest priority items dome as soon as feasible, but not in strict priority

 least we didn' blow all our money on some dork screwing womad with a car phone; e. Remember Watergate Well. Nixums up to his old mide again!: I. Space monkers.

 others were proative and sucereded in exeroising some degree of intemal entomb.
onder: Fach days work had to leave the lelescope and the payloat bay in a condition that, should the wost emergency arise, the crew could release the delescope puickly, dose the payload bay doors, and head home."

The Servicing Mission: "A Ballet of Bodies and Three Hundred Tools"

On December 2 at $04: 27 \mathrm{ESI}$, following a one-day delay for weather, Disooury limally roared away fom the Kemnedy Spate Center in an uneventul lanch. After nearly two days of catching up with Hubble, and periodically diring thrusters to slow down the catchup rate. Pilot Ken Bowersox reported the mostoften used words to describe the Telescope: "I Ouston, it's ratly big!" Claude Nicollier grappled the Telescope, and gingerly berthed it into the Flight Support Station where the shate spower wonld substitute for that from the solar arrays. The tiltable tumtable would be used to orient the Telescope work areas so that Nicollier and Bowersox, operating the robot arm from the aft flight deck, would have the appropriate portions of the Teleseope facing them.

On light day four, December 4 at $10: 46$ p.m. EST, "the odd couple" of Musgrave and Holfman began the first spacewalk. For five days one or another pair would exit the airlock at around the same time eate evening and spend between six and eight hours in the patoad bay. This was the real test of all their training, as Musgrave put it: "I like the heat of the kitehen; I live in it, Ive lived in it for decades, and I thrive on it. And so, it gets me tp-10 where I've got to be. Goin' out the door for the first time, I was incredibly interested, comemod about, have we nailed it in terms of our imaginative process, are the simulators right, are the mockups right, did we approach this job righte", Alter setting up the work site. Musgrave and Hoffman replaced the gyroscope packages inside the aft shrond of the Telescope, and gyroscope electronics and fuses in the modular bays around the "waist" of the spacectafi. They ran into some problems clasing the aft shmod doors, but otherwise all went according to plan. "Eindeavour; Houston; not to get you spun up, but weve got six good gyos on the telescope," Capsule commumicator (ireg Harbangh punned to the rew after the aliveness test spen the new gros up op operating spered.

On tlight day five, thers and Thomen removed the solar atrays. One aray had reftesed to toll up into its cassette, a situation that had been the subject of one of the sim-
 top of the telescope, stoned the orientation of the Earhis mannetic field and provided an additional attitule ref-

 in the lithe of this section is from Story Mungrave [nterview, March 2e, IG95, I/A: 440.
63. Story Maggave. quoted in Agunre. Restat Mission in Spate. They were called the "odd couple" becatue they were assigned to the odd-mumbered spacewalks.
i.t. Hablagh, quoted in Aguise, Rowle Mission in Sfacf, 2f:00; Heflin haterview, Math 17, and Marh 23,1995 . The balky aft shmod door was a small problem, but one that had important implications. Worried about applying tos monh force and distonting the vital and irreplacoathe doon, giemond engineers caucosed extensisely about how to get it closed and latehed, while Musgrave wanted to be a shap to pull the doob into dignment. Heflin finally decided to le the crew onsite do it the way, fothe mild consternation of some gromed engimets. Iedlin Interview, March 23, 1995, 1/B: 350.
ulations. Working during otbital nigh, when the aray would not be genemating electrici(x, Thomen removed the huge and cumbersome wing, holding it while Nicollier moved her into position with the robot am. At smmise, as Thomon let go and precisely spread her ams to ten and two belock, the aray stood roch-steady for a moment, and as thrusters fired Find deromer began to batk away from the shiny gold "bircl." It rotated slowly, and then as a thruster plume hit the amay it bent as if a bidelor a pterodactyl flapping its wings. The replacement solar arays wemt on without a hitch."

On flight day six, Musgate and I Ioffman removed the Wiele Field/Planetany Camera, stationed it tempomarily on a fixture, and prepared to install the replacement. Musgrave likened it to moving a baby grand piano, holding it by the keybord, and trying to insert it into a gigantic deesser like a datwer. At the far end. however, to be inserted right into the heat of the lelesope just behind the primaty mitror, wats the camera's all-mpentant "pickoff minot," Musgrave hate to remove the protective mitore cover, at which time the optics would be exposed. "That is the most powerful camera in the wotd, it sees the finethest out there in space and time, if you tonch that mimor, howerer you touch it, that will be on every single image that comes down fiom the world's most powerful camera." The camera wedt in without incident, and Mosgrave and Ifoffman moved to the very lop of the Telescope to instadl new magnetometers.

On flight day seven, mission control played the tratitional wake-up mosic, appropriately the popular song, "I an see clearly, now." Working in the aft shoud, Akers and Thomon removed the Iligh Speed Photometer and then installed COSTAR. Cooker got a message from a friend shorly after COSTAR was installed, "Congratulations . . there's a tain leaving Battimote tomonow night at $8: 30$; if this thing doesmit work, be under it." All they coudd tell from the aliveness test was that the instrment was ready, but the mirrot ams would not be deployed until several days after the servicing mission. In one of the equipment bays, they installed the 386 coprocessor to angurat the dight computers failing memory. Initially the new coprocessen seemed not to work. providing one of the very few serions problems in the mission. Planners considered adding another spacewalk to remove the new coprocesser and simply replace the cotire computer, bu it moned out that the problem was on the gromel in processing the telementy

Flight day eight began with a boost from bideranes engines to get the ensemble to the highest ofbit possible, 320 natutical miles. The last scheduled spacewalk was challenging, for it involved mostly equipment that had not been designed to be replaced or repaired. Musgrave and Hoffinan installed a special cable to restore the power supply in the Goddard High Resolution Spectrograph, replaced insulation on the magnctometers, and replaced the electronics box for controlling the solat aravs. When the rolled up solar amays did mot extend, the crew had to crank them out manally. After that, the blankets extended from their cassettes nomatly:

On flight day nine, December 9 at 11:43 p.m. EST, the Telescope was transfered to its own imemal power. At $5: 27$ the mext moming, Nicollier released the spacectaft and the

[^175]shutte slowly backed away. While the controllers at Goddard began the carefully-orchestrated sequence of reactivating the varions Telescope systems, the crew enjoyed a day off, and then prepared the shutte for remon. They landed at the Kemedy Space Center on December 13 at 95 minutes past midnight. The most remarkable thing about the mission was that nealy everything had gone according to plan. The few glitches that had occured were minor, and relatively easily solved. Sky amd Telesope magarine, in a relatively brief post-mission anticle, simply referred its readers to the preview published the preceding month, since things had gome so well. The telemetry signs were encouraging, but it was a tense Christmas season while evervone wated to see whether the new instruments would really work as well as they secmed to be functioning.

Postlude—Redemption

"It's fixed bevond our widest expectations." Program Scientist Ed Weiler beamed at a mid-Jamary press conference. Barely five weeks after the servicing mission, after numerous engineering checks, the Telescope had excecised both the new Wide Ficld-planetary Camera and COSTVR with the Fami Object Camera. Jim Cocker said the performance was "as perfect as engineering can achere and the late of physios will allow."." The newly repaired Telescope "owershadowed ereryhing else at the American Astomomical Society (ADS) Meeting" in Jamaty 19g.f." The astronomical end-users of the technology were delighted. Fientually even skeptics had to admit that the Telesoope was making good on its most extatagant clams. The dramatic images released only hinted at what was 10 come. Ove the following months, as the rest of the mimotams of COSTAR were deployed and the various instruments focused and calibrated, the Telescope really got down to work.

In May astronomers amonnced the first generally consincing evidence for the existence of blat holes, an object at the center of the neaby galaxy M-87 with a mass wothee billion times that of our Sum compressed into the size of out solat sistem. This led the Wiashogron Prove to ditorialize that the "triats and tribulations" of the Hubble Space Felescope were in the end, "worthwhite."

In June, a leam led by fomer Space Telesope Program Sciemtist Bob ODell annomed that the $\begin{gathered}\text { had obtained images of protoplanetary disks around young stars in }\end{gathered}$ the Orion Nebula, and found the process of planetary formation going on around st of the 110 stars observed. These rotating disks of gas and dust had been interned fiom other orbiting obseratories data and in ome case even imaded, but not in the detail or in the mumbers reported from Hubble :-

 Datuan 1:3. 1994.
 (1弓-6is.

In mid-July the fragments of Comet Shoemaker-Levy 9 hit Jupiter, and Hubble was ready. Day after day, for more than a week, images of the giant planet from Hubble showed the comet fragments as they went in, and the dasky spots where they had disturbed the giant planet's atmosphere

In October, the astronomers were startled and the public bewildered by the first results from one of the projects that had been of prime importance since conception of the Telescope. Observations seemed to suggest an age fon the universe of eight to twelve billion years, dramatically downard from the fifteen to eighteen billion years previonsly estimated. Paradoxically, this age was younger than some estimates of the ages of certain stars."

By November, contidence in the Telescope's abilities was so high that its failue to find stellar objects was considered a major discovery. For decades astronomers and cosmologists had been increasingly uneasy about the so-called "missing mass," some 90 percent of the matter expected to be in the universe that nevertheless does not show up in survers. When two sepatate teams using Hubble space Telesoope observations failed to see anywhere near the expected number of red dwarf stars or other objects in certan liclds, it deepencel the mystery. The number of conventional places to look for the "missing mass" was dwindling, forcing theorists toward more exotic locales. ${ }^{\text {º }}$

In December, three teans using the Telescope reveated that they had obtaned images of galaxies from very ealy in the universe, perhaps only one tenth of the total time elapsed since the big bang. Surprisingly, the primeval galaxies were found to be of a variety of complex shapes rather than unifomly simple, chastered ather than evenly distributed, and to harbor apparently very old stats. At such an caty age of the miverse, they had expected to see more uniformity and less structure, and were somewhat at a loss to understand how so much evolution could have taken place in such a shon time. ."

These and many other results flowed in a steady stram from the teams using the Hubble Space Telescope. Satisfied customers: Eestatically so. The telescope carried a lot of baggage. But cren if one takes into consideration the varions ways in which the performance of the repaired telescope fell shont of its original planned performance, it still was enormously useful. It had graduated from making-do to normal operations.

The political success of the mission can be read in who decided to appear on the dais at the press conference amouncing the first corrected images from Hubble on Jamary 13. Headquarters Acting Associate Administrator for Public Affairs Jeffrey Vincent, in a classic Freudian Slip, welcomed everyone to the "Goddard Space Flight Senator-ah, Contes:" He had good reason to be nevons. Instead of scientists and engineers, the first panel to speak included Administrator Dan Goldin, White House Science Adviser John Gibbons, and Scoator Barbata Mikulski (D-MD), head of the Senate Appropriations Committee in charge of NASAS budget and in whose district was Goddard, as well as the

[^176]Space Telescope Science Institute. Goldin kept breaking a grin thronghout his wideranging introduction that praised the servicing mission and likened it to great missions of exploration throughout history. Gibbons, referring erroneously to the formerly "astigmatic" Telescope, took the occasion to praise the vision of the Clinton-Gore administration as well. The remarks of all were rhetorical, ceremonial, political, and tinged with minor scientific and technical errors. Senator Mikulski got right to the point: "I chair the subcommittee that financed the manufacture of the most significant contact lens in dmerican history, the fix on the Hubble Space Telescope, and then bankrolled this extraordinary space IIMO that went out and gave Hubble Telescope a new contact lens, and I an happy to announce today, that atter its launch now in 1990 and some of its earlier disappointments, [raising her voice] the trouble with Hubble is over!" Suddenly, she became a scientific briefer as she proudly held up two images taken by the Faint Object Camera before and after COSTAR and explaned in detail how much better the perfomance was. "This shows what COSTAR Gan do, and. Mr. Goldin, I'm going to ask you to hold that, because there's more to come." drawing laughter from the assembled reporters as she fomed the NASA Administrator into her chartholder. Holding up an earlier Wide Fiekl/Panetary Canera image. she said it "looks like the way you would look at a road map New Year's eve," and then pointed out the much cleater inage from the cameras successon. "I believe these pictures are tangible evidence that not only has Hubble been fixed, but NASA is well on its way to fix that culture that created some of these problems . . . this was a high stakes repair for I Hubble. . . . ${ }^{-7}$

The success can also be rad in what happened to the people who led the mission. Of the Collier awardees, two managens went on to significant positions in the Space Station program, the most impertant effort of the agency since it represented the future. Randy Brinkley became Space Station Program Manager at Johnson, and Milt Heflin began working on integrating extravehiculat activity in the Space Station assembly. Brewster Shaw continued to lead Space Shutle activities at Johnson. Joe Rothenberg eventually became Director of Goddard. The flight crew members went on a long public relations tour that took them to the White House, Congress, Emrope, the homest late-night talk shows, and even an appeatance in an cpisode of ABC's hit comedy series 'Home Improvement.' There they played a bit of tape from one of the spacewalks that included two of the male astronauts in the argo bay of the shatte doing the primitive grunt popularized by Tïm "The Tool Man" Alten. As Story Musgrave reflected, ". . . it was something so basic and primitive about it, humans and their tools, and the drama of whether it was all going to get done. ${ }^{7 x}$

Commander Richard Covey retired from NASA and joined L'nisys Space Systems to head their simulation and training activity. Shortly after the mission he satid, "This would be a great mission to cond my astronath career on, and it would be hard for me as a commander to look to another one that would bring as much reward and joy. . . ." Chamateristically, the rest of the astonatuts returned from their publicity tours to move on to the next assigmment. Chatacteristically, when asked about their roles in the mission they would praise the team, and point to somebody else as responsible for the success.

The experience and lessons learned from the mission were carried far and wide by the many people who worked on it, and it became a paradigm for emulation. Brinkley, as he moved to head the Space Station planning, deliberately sought out the people and expertise from the Hubble Servicing Mission to incorporate them into Space Station. Even 18
77. Hubble Spate Telescope First (a)rected Image Press Confereme, Goddard Space Fligh Conter, Jай
8. Story Musgrave, quoted in Agume, Rearer Masion in Space, 31:30.
79. Cows answering question the Crew Post Flight Press Conle ence. Jamary 4, 1994.
months later, on June 25, 1995, after the first docking of the shuttle with the Russian space station, Mir, Will Trafton, NASA Headquaters Space Station Director said: "We're estimating now some six hundred plus hours," fof spacewalks to assemble the Space Station, with the Russians doing an additional 200 hours. | "We look at EVA as a resource . . it's not just another way for a bad event to happen. Hubble has taught us a lot, we've using the Hubble crew and the Hubble experiences 10 look at the EVA work that's required to assemble space station, and we're pretty happy about where we are." From the Hubble servicing mission came confidence that more than a hundred days of Hubble-type work could be done in assembling the station."

The Hubble Space Telescope, amid the many mondane reasoms for its existence, represented at least in patt a transcendent and pure purpose: to explore and try to understand the deepest mysteries of the cosmos. It was also in serious trouble, yet not so serious it could not be saved. NASA, an agency that also represents, at least in part, transcendent and lofty goals, was also in trouble, and its fate tied to that of the Telescope. This brought out the best in people, in the samatitans whe extended themselves far beyond their job descriptions to come to the aid of the machine and the idea. They worked long hours, pushed themselves, studied, became innovative and clever. They even were able to forget for a time business, Headquaters, Center, and divisional boundaries, and turf, a remarkable achievement in such institutions. Because people believed in the worth of the mission, and because they also feared in their very benes that failure would bring the most dire of consequences, they gave the mission attention and resources. From Congress and the White I House all the way down to smatl divisions and work groups, they put in money, time, and attention. The anxiety of execolives looking over their shoulders might have made more work for the executors, but that anxiety also gave them clout to override ordinary bureancratic bariers. Amid all the other missions, tasks, and priorities swirling about, they put this one on top for a while. Thus the I Iubble servicing mission represents the kind of infrequent and special kind of push that people and organizations do from time to time. "Not since Apollo," was a phrase that many people used to describe how they felt working on this mission, Like Apollo, or the Olympies, however, such a special conjunction of will, spirit, and effort probably amot be sustained in the ordinary course of things. It was, quite literally, an achievement of focus." ${ }^{\text {" }}$

Like Apollo too, however successful the mission, it could not by itself create a rising tide for NASA. "That's a lot of baggage to carry with you," Coney said in answer to a question at the post-mission press conference, "we had a task to do, and that was to fix the Hubble. . . . and we knew that the best thing we could do was to do that job very well, . . . and that was all we were thinking about during the course of the mission. . . We hope that someone else is able to translate that into NASA doing well." ${ }^{\text {we }}$

Significan historical movements were afoot that were not controllable, indeed, hardly predictable. Azation Werk warned, shorty after the mission: "in political and public relations terms, Mission 61 probably presented more risks than 'up-side' potential. Failure could have been disasterous. But few space policy insiders expect success to give NASA a big. lasting 'bounce'. "*: Even while ruly spectacular results were flowing in from the Telescope, and the Climon administration reaffimed its fath in the Space Station, the

[^177]NASA budget was in trouble. As an agency, NASA had been selected by the administration to be a showcase for "reinventing govermment," and from the White llouse came directive after directive to reduce its budget. Later in 1994, as a new Republican majority was elected to Congress, even more pressure was brought to bear on NASA. Many of the congressional representatives who had been friends to the agency and who had been impressed by the Hubble servicing mission found themselves in the minority party, having been replaced by other representatives who were either hostile or indifferent. Most ironically, the space science budgets were squeezed ever more tightly, Hubble's included. Scientists feared that the very mission that saved their observatory had lent credibility to the Space Station, which theatened to devour it.

Had the mission not been attempted, the Hubble Space Telescope would have been a constant, orbiting reminder of failure, even while producing very good science. With the successful repair came redemption-but only redemption. The agency's credibility, in this and many other areas, was saved but not boosted. Hubble was no longer an albatross atound the neck of NASA, and it appeared the agency could indeed do what it said it would do. But what the public, the politicians, and others aremed NASA to do remained as it has for most of the history of the agency: uncertain, fiekle, and contested.

About the Contributors

John D. Anderson, Jr., is a member of the Department of Aeronautical Engineering at the University of Maryland, College Park. He is the author of several books and articles including, Fundamentals of Aerodynamies (McGraw-Hill Scries Acronautical and Aerospace Engineering, 1991); Compuitational Fluid Iynamias: The Basirs With Applications (McGiawHill Series in Mechanical Engineering, 1995); and A History of Amodynamirs and Its Impart on IVying Machines (Cambridge University Press, 1997).

Mark D. Bowles is vice president of History Enterprises, Inc. and is finishing his Ph.D. dissertation in the program of the history of techology, science, and medicine at Case Western Reserve University. His research focuses on an analysis of information overload as a multi-disciplinary problem from 1945 to the present. He can be reached at mdb HistoryEnterprises.com.

Glenn E. Bugos is head of The Prologue Group, a company specializing in the study of the history of high technology. He has worked on supersonic flight, having written a history of the development of the McDomell F-4 Phantom II, Anginerring the F-4 Phantom II: Paris into Systems (Naval Institute Press, 1996).

Andrew J. Butrica, a graduate of the doctoral program in the history of science and technology at Iowa State University, is a research historian and author of numerous articles and papers on the history of electricity and electrical engineering in the United States and France and the history of science and technology in nineteenth-century France. He is the atuthor of a corporate history, Out of Thin Air: A History of Air Produets and Chemicals, Inc., 1940-1990, published by Pracger in 1990; To Sern the Unspen: A History of Planetary Radar Astronomy, published as SP-4218 in the NASA History Series in 1996; and editor of Beyond the Iomosphere: Hifly Years of Satellite Commumication (NASA SP-4217, 1997).

Steven T. Corneliussen, a longtime student of NACA history, is an editor and writer at Jefferson I ab, a national particle physics laboratory near NASA Langley Reseatch Center, Hampton, Virginia.

Virginia P. Dawson is founder and president of History Enterprises, Inc., located in Cleveland, Ohio. The company specializes in producing business and institutional histories in a variety of print and electronic formats and organizing archives. She is author of Engines and Innoration: Lewis Laboratory and American Propulsion Tochnolggy (NASA-SP-4306).

Henry C. Dethloff is a member of the History Department at Texas A\&M University. He is the author of mumerous books and articles including, "Suddenly Tomorroun Came . . .": A History of the Johnsom Space Conter, 1957-1990 (NASA SP-4307, 1993); Trxas AEM (binuersity: A Pidorial History, 1876-1996 ('Texas A\&M University Press, 1996); and several other works.

Donald C. Elder teaches history at Eastem New Mexico University, Portales. He has published several articles on space flight and his book, Out from the Behind the Eaghuball: A History of Project Echo, appeared in 1995 from Univelt, Inc., in the American Astronautical Society History Scries.

Michael H. Gorn is an independent scholar of aerospace technology. He has written The ('niversal Man: Theodor von Karman's Life in Aeromautios (Smithsonian Institution Press, 1993), and is presently working on a biography of Hugh L. Dryden, NASA deputy administrator in the 1960 s, and a history of light research.

James R. Hansen is a member of the Department of History, Auburn University, Auburn, Alabama. Ie has written two volumes on the history of the Langley Research Center. The lirst of these is Engineer in Charge: A History of the Langloy Aeromautical Laboratory, 1917-1958 (NASA SP-4305, 1987). The second is The Spaceflight Revolution at NASA Iangly: From the Sputnik Crisis to the Lunar Landings (NASA SP-4308, 1995). He has also published From the Ground Up: The Autobiography of an Aeronautical Einginer (Smithsonian Institution Press, 1988), with Fred E. Weick, and several articles.
W.D. Kay is a political scientist at Northeastem University in Boston, Massachusetus. He is the author of Can Democracy Ry in Space? The Challenge of Revitalizing the U.S. Space Irogram (Pracger, 1995).
W. Henry Lambright is on the faculty of The Maxwell School of Citizenship and Public Affairs, Syacuse University. He has published widely on science and technology policy, including, (orverming Science and Ter hnology (Oxford University Press, 1976); Shooting Doun the Nuclear Plane (Bobbs-Merrill, 1976); Technology Transfer to Cities (Westview Press, 1979); and Presidential Management of Science and Terchology: The Johnson Presidency (University of Texas Press, 1985). He has just published Powering Apollo: James E. Webl of NASA (Johns Hopkins University Press, 1995), an administrative biography of NASA Administrator James E. Webb who served between 1961 and 1968.

John M. Logsdon is Director of both the Center for International Science and Technology Policy and the Space Policy Institute of George Washington University's Elliott School of International Affairs, where he is also Professor of Political Science and Intemational Affairs. He holds a B.S. in physics from Xavier University and a Ph.D. in political science from New York University. He has been at George Washington University since 1970, and previously taught at The Catholic University of America. Dr. Logsdon's research interests include space policy, the history of the U.S. space program, the structure and process of government decision-making for research and development programs, and intemational science and technology policy. He is author of The Decision to Go to the Moon: Project Apollo and the National Interest (MIT Press, 1970), general editor of Exploring the Unknown: Selected Decuments in the History of the U.S. Civil Space Program, three volumes to date, and has written numerous articles and reports on space policy and science and technology policy.

Pamela E. Mack is associate professor of history at Clemson University, Clemson, South (arolina. A Ph.D. in the history of technology from the University of Pennsylvania, Philadelphia, she is the author of the seminal study, Virwing the Eath: The Sorial Comstrution of the Landsat Satellite System (MIT Press, 1990), and has written several articles in acrospace history.

Anne Millbrooke is an historian at Montana State Iniversity, Boroman. Formerly, she served as archivist and historian with United Technologies, Inc.

Joseph N. Tatarewicz teaches history at the University of Maryland, Baltimore County and has a substantial record of publication in history of science and technology, specializing in space science and planetary exploration. He is the author of Spare Technology and Planetary Astromomy (Indiana University Press, 1990) and is the author of the forthcoming history entitled Lixploring the Solar Sysiem: The History of Plandary Geosciences Since Gatileo. which will be published by the Johns Hopkins Cniversity Press.

Lane E. Wallace is an independent aviation writer. She is the author of Airborne Trailblazer: Two Decades with NASA Langleys Boeing 737 Fhing Lathomtory (NASA SP-4216, 1994), Hights of Discouery: 50 Vears of the Dryden Flight Research Cemter (NASA SP-4309, 1996), and numerous articles.

Jannelle Warren-Findley is a member of the Deparment of History at Arizona State Liniversity, Tempe. She is the coneditor of Lxphoning the Unkmome: Selected Doruments in the History of the U S. Cinvil Space Program, Vohume I, Organizing for Explonation (NASA SP-4407, 1995).

Index

A

A.B. Chance (ompany, 293

Academy of Sciences, Viemm, 65
Ackeret, Jakob, 82. 107, 127
Adams. Mike. pilor, 150
Adtanced Orbiting Solat Obsematory, AOSO, 217
Adtanced Rescarch Projects Agency, ARPA. 172, 307
Adanced Turboprop Project, ATP, 333, 342, 34.3
Aero Digest, 17, 18. 19. 24, 111
Aemet-General, compotation, 285,307
Africa, 1×7
Agriculture, 1:S Depatment of, $237,238,239,242$
Aircraft Enceg Eficionoy, ACEE, 32s, 329, 337
Aircrafi Engine Rescarch Labomatory, NACA, 5\%
AiReseanch Manulacturing Compans: 41
Air Fome, $1.5,123,135,145,146,148,150,151,153,154,155,157,160,161,163,164,179,173,176,197,199$, 200. 281, 286, 304, 305, 306, 307, 308, 309, 311, 312, 318

Die Force Spate and Missile Sistems Organation, SAMSO, 312
Air Mail Service I .s., 8
Air Tramport Aswociation of America, A1A, 40, 54
Air Tramspore Command, ATC, 51
Ahers, Thomeas, astromatr, 380, 381, 390, 391
Akins, David S., 216m13
Akridge, Max, $278 \mathrm{n} 3.28 \mathrm{~m} 1 \mathrm{f}, 15$
Aldrich, Armold, $358,359,362$
Acdrin, Edwin "Bu/" E., Jr., 193, 208, 311
 1890103.10. 190 а110. 21.1n.5

Allen, fosepla P, astronam, 290, 314, 315, 317
Allem, II. Julian, 120, 197, 128, I29
Nllen, 1 cow. $3 \overline{7} 4$
Allen, Tim "The Trool Man," 394
Nlestad, D.. 376inte
Allisom (as Timbine Disision, Gemeral Motors, 323
American Airlines. 31
American Soxiels of Mechanical Engineers, ASME, 50
Amen Beronamical 1 ahomatory, 35, 37, 58, 120, 127, 279
Ames Flight Reseatch Brameh, 35
Ames Joseph 5., 13, 14, 15, 16, 36, 71, 75, 106, 111, 119, 12.4
Ames, Millom, 10hne9,
Ames Reseatel Center, ARC, 255, 256, 393
Anders, Willian A., 193. 206, 281
Auderson, Senator Clintom, 203. 260

Ambe, experimental pider, 230
Apollo-Applications Pagram, A AP, 216, 217, 219, 290, 291, 242, 311
Apollo spactoatt, 156, 157, 163, 169, 193, 191, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207.
$208,209,210,211,213,216,219,220,221,294,232,239,253,257,262,277,278,280,281,286,287,288,292$.
293, 297, 296, 301, 306, 313, 328, 331, 347, 35, 358, 359, 365, 367, 370, 378, 381, 384, 395
Apollo Fevescope Moum, ATM, 217, 218, 293, 296, 297, 229
Apollo: The Rare to the Mom, 10.3

Apt, Jay. 385
Arabella, experimental spider, 230
Arabian, Don, $223 n 31$
Ardan, Michel, 302, 303
Amstiong, Neil A., astronaut, 193, 206. 208
Army Air Forces, AAF, 40, 41, 42, 43, 50146, 51, 54, 59, 92, 93
Army Air Comps, USAAC, U.S., 35, 38, 39, 85
Army Air Service, 13
Army Corps of Engineers, L.S., 237
Army, l.S., 6, 86, 113, 170, 173, 175, 176, 214, 304, 307
Amold. Henry "Hap" H., 85
Asbury, Scotl C., 99n26
Asker, James R., 395083
Astronant Manenvering Unit, AMU, 305
Astrophysiad fournal Leflers, 382
Atlantis, space shutle, 996,313
Allas, 168, 189
Atomic Energy Commission, AEC, 26.3
Augenstein, Bramo, 247n42
Amora 7 , spacecradt, 189
Automatically Stabilized Mancowering ('nit, ASML, 312
Avation Werk magavine. 128, 349, 358, 395

B

B-1 aircraft, 147
B-4 airctatt, 17
B-10 aircrafl, 17
B-17 aircrafi, 49, 115
B-94 airctaft, 49, 55
B-25 aircraft, 55
B-99 airctaft, 59, 87, 137
Bres aircraft. 159. 157
B-58 aine raft, 147
Batas, Donald D., 8nl4, 97n16. 98, 106, 130, 145
Badgley, Peter C., $237 \mathrm{n} 9,240$
Baker. Bubby, 203
Ball Aerospace, 376, 377, 378
Bangent, Linda S., 99ne 6
Bare, E. Ann, 99n26
Basalla, Ceorge, 3ns
Bateman, M., 106n42
Battelle/Columbus labootories, 294
Bay of Pigs. 196
Bean, Alan 1.., 228, 299, 230
Beatumon, Texas, 297
Becker. Joln V., 29, 78, 91, 93, 97n18, 98, 99n22, 101, 102, 107n46, 108, 109, 113, 115, 116, 117, 121, 129n86,
$123 n 88,125,129,130,131 \mathrm{n} 120,133,140,150,153$
Beggs. James, 347, 352, 370
Beisel, Rex, 23nt4 4
Belcw, leland F., 220, 223n30, 224n32, 226n34, 226n38, 230n43,231, 232n49
Bell Aerosstems, 307, 311
Bell Airctaff Corporation, 86, 87, 160, 304, 308
Be-11, 1atremee 10., 86, 101, 310n31
Bell X-1 aircraft, 59, 60, 61, 62, 63, 64, 85, 87, 88, 89, 91, 94, 105, 126, 131, 135, 142, 147

Bellanca aircraft, I
Benesch, Jay, 91n]
Benne t , William A., 51
Bensom, (hates D, $213,216 n 11,217 n 17,221 n 26,292 n 8,294 n 33,226 n 35,229 n 40,231147,232 n 48$
Berkopec, Frank D., $333 \mathrm{n} 40,41,42$
B.F. Goodrich Rubber Company, 32, 34, 37, 55, 183, 304, 308
B.F. Goodyear company, 304

Biermann, Amold E., 92
Bijker, Wiche E., 339
Billings, Richard N., 189 m 109
Bilstein, Robert E., 151n9. 201n18, 21, 207n24, 204n50
Bingham, Senator Hiram, 14
Bioletti, Carloon, 22
Birch, I ouglas, 376 ne 24
Birct, John D., 311
Biskind, Peter, $182 n 76$
Bobbiti, Percy J., $99 n 26,127,129$
Bocing corporation, 196. 202, 216, 262, 284, 323, 329, 340, 356
Berllar, Blewellyn Michael Kralls, 41, 42
Boggess, Al, 375,
Bohr, Niels, 142
Boisjoly, Roger, 355
Bolleodenk, Walter W., 300, 301, 318
Bombers, 1928 w 1980s, L'.S., 17
Bond, Peter, 184n86, 186m96, 187n98, 191n118
Bonney, Walter T., 103 n 36 , 136n?
Boothman, Fle.Lt. John N'.. 71
Boman, Fawk, 193, 203, 206, 281
Boston, Romald C., 150
Bottema, Murk, 376
Boushey, A.II., 278
Bowersox, Ken, astronaut, 382, 386, 390
Brand. Vance D., astroname, 319
Brandernstein, Dan, astromant, 380
Braslow, Albert L., 91, 128n111
Bram, Wernher von, 197, 205, 215, 216, 217, 260, 289. 286
Brevomet, Matrice J. 23
Briggs, I yman J., 69, 70, 75, 104in42, 10x, 115, 119
Brinkley, Randy, astronaut, 382, 383, 394
Bribish Advisory Committec for Acronatios, of
British National Physical Laboratory, NPL, 17, Xf
Bromberg, Joan liva, 274
Brooks, Courtucy (.., 22ln24, 222n27, 230n42,44
Brooks, Senator Overton, 278
Brown Fiedel, Chula vista, California, 340
Brown, Robert A. astronomer, 374, 375, 376ne9
Browne, J.A., 31
Brvati, G. M., 6f
Burk Rogers, 302
Burden, William, 56
Bureau of Aeronautics, BuAer, 6, 10, 35, 50, 160
Burean of the Budget, 240, 241, 246, 247
Burgess, W. Sterling, 5u7, 271n81
Busemamm. Adelf, 138,142
Bush, President (ieorge, 346, 347, 379, 388

Butler, Bryam, 273
Buter. II. Scott, 91ıI
Burrica, Andew J., 26.5 nis
Burd, Commander Richard \mathbf{F}. i
Burne. John V., e49
Byme, Robert W:, 127
Bymes, Mark E., 177

C

(.-17 aircmaft, ©0)
(-i) 4 aircraft, 37,50
(:-74 aimafti, 50
(0.29) aicrafi, 53

Caldwell, Frank, 66, 67, 68, 69, 75, 107, 108
Califomia Institute of Techonology, C[I, 267, 273
Gallon, Michet, Iet
Cambridge Conisersity Press, 3ns
Camadian National Rescane h Combil. 37. 16
Gubera, Atstralia, 273
(aper Canaveral, Florida, 170, 176, 184, 185, 190)
Gape Canmeral Lame h Opeations. See kemuedr Space Cemer, 289

Gwothers. Watlace HI, 32 1
Catpenter Cismmander M. Scont. 165. 189
Garr, Cerald P. 213, 230, 231. 239
Camoll. Thomas, 31n5.
Carroll, F.O.. 5.4
Carter, President Fimms, 248, 249, 266
Casami, J.R.. 2litintil
Case Westem Rewerve l'mernils, 17.1
(ientan, spaceraft, 380
Conter for Radar Astomom, Stanford Iniversity, 265)
Ceppolina, Frank, 3s7
Ceman, Fugenc A., astronant, 311

Challonger, spate shutle, 296, 313, 316, 317, 319, 342, 345, 347, 348, 349, 351, 359, 353, 354, 355, 354, 357, 358, 359, 361, 369, 363, 370, 373
Chambers. Washington I., 6
Chapman, Richat LaRos, 938
Chew. W.L. 99 M25
Chinese National Simars, 53
Chrintement fulien 31.. 305nd.t
Chesler Corporaton, 176
(Gurhill. Winstom, 169
(icero Fichl, \&
(avil Aeromatios Authotis, (CA. 46, 57, 58
Cisil Acmontics Boand, CAB, 50
(ivil War. 1 OO
(lath, Johntays
(las, William C... 31
(lift. J.R., 918
(ilinton, President Willian "Bill," 385, 388, 394, 395

[^178]
D

D-558-1 aircraft, 105
Dana, William H., 151, 163
David Clark Co., 160, 304, 308
Davies, J.K., 260n30. 263n49
da Vinci, I conardo, 105
Dawson, Virginia P., 58 n69
DC. 3 atraft, 26, 32, 55, 115
DC. -4 aircraft. 55

DC-6 aireraft, 50, 51, 55, 56
Debus. Kurt H., 282
Defense Advanced Rescarch Projects Agency, DARPA, 318
Defense, U.S. Department of, DOD, 157, 162, 168, 199, 200, 216, 250, 282, 284, 305, 306, 307, 318, 328, 360
DeFrance, Smith. 35, 38, 41n30, 49n42, 50, 51, 53,54, 58
De-icing, NACA, 29-58 passim
de Laplace. Pierre Simon Marquis, 62
Demer Research linstitute. 144 n29,30,32
Desert Sterm, wat: 250
Dethloff, Henry C., 223n29, 277n2, 280n12, 287 7138
DiCiregorio. Barry F... 307n20
Discovery, space shutule, $296,299,313,317,319,345,357,361,362,363,364,371,388$
Disher, John. 232
Distinguished Service Medal, 185
Doenhoff, Albert E. von, 120, 128
Doig. Jameson W., 194n5
Donaldson, Coleman duP., 130
Donkon, Charles J. 295
Doruberger, Dr. Walter R., 279
Douglas Aircraft Company, 49, 127, 196, 216, 217, 292
Doughas, G.P., 68
Dealey Eugene C... © 9 , 136
Dressler, A., 393076
Dryden, Hugh, 59, 62, 63, 69, 70, 75, 93, 94, 99, 102, 107, 108, $112 n 59,116,119,121,122,123,125,130,149$, 174, 195, 197, 215, 216
Dryden Flight Research Center, 329, 385
Dr. Zarkon, fictional chatacter, 302
Dual-Purpose Mancuvering ['nit, DML?, 311
Duluth Jumior College, 29
Dupent corporation, 394
Duand, William F., 10, 106, 109n51, 116no6

E

Farth, 176, 183, 186, 187, 189, 191, 196, 206, 208, 209, 214, 216, 217, 299, 230, 232, 235, 237, 242, 244, 248, 250, $251,253,258,260,267,2699,270,272,274,276,277,279,280,302,303,316,362,370,381$
Earth Observation Satellite Company, 24!
Earth Ohserving System, FOS, 194
Eath Orbit Rendemous, EOR, 198
Earth Resources Survey Committec, 241
Earth Resources Survers, FRS, 240
Eath Resoumces lechnology satellite, ERTS, 238
Eastebrook, Gregg, 151, 163n43
Edson, lee, $110 \mathrm{n}, \mathrm{M}$
Edisom. Thomas, 3, 21. 102, 341

Fort-Controlled Mancusering Cnit, FCMU, 311
Forbes magazine, 338
Ford, (erald, 233, 355
Fond, H.C., 376ne2
Ford. Holland, astromomer. 374
Forat mmotor, 20
Foreign Agriculture Sorvice. 242
Foss, R.1... 83
Foundation, Alewandro Volta. 78
France, 264
Freedman, W.L., 303 n74
Freedom 7, spacecrath, 185, 186
Freitag. Robert F. 982 B 18.19
Friedman, Herben, Naval Research Lab, 258, 259, 261
Fricudship, 7, spacecrati. 187
Frost, Kobert, poet, 319
Frutkin, Arnold W., 244
Full-Scale Timuel, FST, 97

G

Gagarim. Majom Yuri Aleksevevich, 184. Istr, ING, IOti
(Galileo epacecratt, 271, 360, 371, 388
Garduer. Dalc A., 315, 317
Gam, Scomor Jake, 347
(Garmott, Owen K., $928,229,230$
(amison. Peter, Inl
Garmell, F.dgat S., 38ne5
(remini, spacectaft, 156, 157, 197, 190, 200, 201, 210, 211, 277, 280, 287, 297, 299, 301, 305, 306, 308, 309, 310, 311, 319, 313, 314, 382, 384
Goncral Acoonting Office, CidO, 337, 313
General Drmamics, 144, 281,284

Genemat Motors. 127
General Thaver, fictional datader, 303
Genome Project, 194
Geological Sumen, 1 S. S., 1stis, 237, 238
George Washingon C niversity 21
Coorgia Treh, 297, 349
Getman Reich. 1 by
(icmany, 169)
(;ibbons, Jolum. White louse, 393, 344
(;ibson, Fdward, 2930, 231, 232

Qamert, Ileman, 70, 75

Glem I.. Martin Company, 17, 40, 164
Gennan. T. Keth, 114. 166in10, 168, 173, 174, 175, 197, 214, 215
Goddatd Itigh Resolution Spectorgraph, 377, 378, 389, 391
Godedatd. Dr: Rubert H., Memorial Trophy, est
Goddat Spate Flight Center, NASA GSFC, 240, 241, 256, 265, 317, 375, 377, 381, 383, 385, 387, 392, 393, 394
(oothert, Bembard H., 99, L09, 110, 112, 120, 126, 129
Goetrmamm, William 11., 177
Goldtherg, I co. 2939
Coldin, Danitl, 379, 380, 381, 383, 393, 394

```
Goldwater, Senator Barry, 328, 324
Gordon, Richard F., astromant, 310
Gore, Albert, Vice President, 304
Gottmgen llaversity, (ermatmy,62
Grace Episcopat Chmeh, Yorktown, Virginia, 89
Graham, William, 347, 35l
Grand Tout, plantetary exploration, 251, 253, 254, 255, 256, 257, 258, 250, 260, 261, 262, 2643, 264, 269, 271, 272,
    275
Gray, C.G., 16, 5.3
Gray, Fdward (i., 2]!3
Gray, George W., 31, 37, 106n4], 107n47
Great Britain, 2fj4
Great Depression. 26
Great Socicty, 200, 210, 211, 220, 253
(irimwood, James M., 167419, 168n13, 176n52. 179n65, 180n69, 182n77,184n85, 185m91, 187n97, 189,103,108,
    I90nl10, 201n20, 214n:丁
Grissom, Virgil "Cas"1., 165, 181, 185, 186, 219
Grcence. Howard E.. 37
Geenwood, Johm T., 97n17
Gregge, David, 4.0n:37
Grossman, Arie, 27.3
Grumman Aircoaft Engineering (omporation, 145, 146, 2&4, 290
Grubitz, Myron B.. 150
Guggenhe'im Aeronatutial Laboraton\, (alifornia Institute of Terhmology, 62, ge)
(malfistream corporation, 323, 340
Gimmsum, Bill, 145
(inynu-fones, Tenry, 6
H
Hacker, Barton, 10n19, 201n20
Hager, Roy D., 32:3n7,8, 329n31
Haggerty, James I., 340n67
Hale, Edward Evement,213
Hale, N. Waync, 277
Hallion, Richard P., 60n2, 8Gn40, 88,92n2,92n3, 94n11, 114, 122n82, 150m5, 154n16, 15tin25, 157n97
Hamblin, Doma fance, 187n100
Hamilon Acro Mamulacluring Company, 22
Hamilom, Manta M., 321n1, 336n5!
Hamilom Standard, 44, 46, 315, 321, 323, 334, 333, 339, 340
Hampton, Vargimat, 38%
Hamd-Hetal Mamenvering Lhit, HHMO:, 305, 310
Handler, Philip, National Academy of Sciences, 258
Hanler, Jefl, 379
```



```
    324
Hatbagh, (imeg, astronamt, 3kI, 390
Hardy.J.K., 43, 53
Hagrove, Frwin (., 19/n5
I Dart, Temy J., astmonaut, 317
Hartinger, James V., 318
Hatman, Fdwin P., 29, 49
Hartsfidd. Henty W., astromamt, 319
Harwood, William, 389n59
```

Hanck, Frederick "Rick" H., astronati, 346
Hawks, Frank, 13
Hawley, Steven, astronaut, 372
Haw, T. Park, 32
Heacoch, Ramond I.., 265455
Hearth, Donald P., 254
Heflin, J. Milton, 379, 385447, 394
Heinemann, E.11., 49)
Hemene Robert A., 303
Heise uberg, Wermer. 142
Hemslev. Richard T., 309
Herblock, coditorial cartomist, 373
Hertell, L., 376u®?
Hewes, Domald E... 311
I libbard, Hall L... 35
Hich, Richard, astomath, 380
High Altude Observatory, HAO, 229
Hiller. Fainchild, 8!
Hilmers. Datid C., astronath, 346
Hiloon, W.F., RG, 121477. 191
Hinder. Dr. Vmest, 2ese
Hotman, \mathfrak{f} I... 5m 7
Hoftman, feff, astronatu, 381, 300. 391
Holmes, D. Bamerct, 1990, 200
Hower, President Hether1, 13. 15, 21, 102
Hounshell. David, 3e4
Homse of Representatives, 1 C.S.. 173
Houston, Robert S., 150, 151, 154n17, 157, 160n39,33, 163, 902. 2930. 287
Hownom, It xas, 196, 210, 299, 230, 278, 281, 359, 382, 385
Hste-shen, Tsiten, 195
Huber, Witlian C... 306nts
Hubble space Telescope, 115T, 194, 365, 366, 367, 368, 369, 370, 371, 379, 373, 374, 375, 376, 378, 379, 381, 383,
$3865,3 \times 7,388,390,391,394,393,394,395,394$
Hoghes Ainctaft company, 204, 269
Hughes Danhury Optical Ssstems, 374
Hughes, Thomas P., 140 ml , $141 \mathrm{n} 19,142,194,249,324,341,368$
Hhgoniot. Pierre, 65
Huguenard, $\mathrm{E}, 115,116,119$
Hull. (i.F., 69, 108, 119
Humphery, Hubert H., Viee President, L.S., 195, 203
Hunley, J. D., 9/nt, l6En10
Homaker, ferome (i, 6, 103n36, 111, 112n50
Humter, Wilson H., 55
Huntress. We:sev I., 386
Hurd, Peter, 190. 191
Hurricane (iilbert, 364
Itsland, lawrence A., 193, 203
Hepersemic Weaponand Researth and Development System, HYWARDS, 306

I

Ice Rescarch Base, IRB, 51
linomel X. 152. 160
Institute of the Aeronatical Sciences, 37
Integral Lanoch and Recotry Vebicle, II RV, 28I

Intelsat, satellite, 380
Interior, ©.S. Department of, 237, 238, 234, 241, 24t, 249
Intemational Aeronatucal Federation, 21.3
International Come il of Scientific L'noms, 171
Intemational Geophysical Year, ICS', 171, 177
Intemational I atex Comporation, H. 6,315
International Nickel Compans. I60
Intemational Lhamole Fxplorer, ILY, 381
Io, satellite, 275
Iron Curtain, 169
Irvin, James B., 193, 211
J
J-5 aincratt, 144
J-65 aircratt. 146
Jacobs, Easman, 71, 75, 78, 79, 109m51, 110, 120, 121
Jakab, Peter, 10ne 1
Janos. Leo. 60
Jenkins, Demnis R., L5ln7, I61n3e
Jet Propulsion Laborator, JPL, 1664, 172, 203, 204, 214, 253, 254, 255, 256, 259, 260, 261, 262, 263, 264, 265, 268,
2697n76, 272, 273, 275, 374, 376, 383
JetStar aircraft, 335
Johns Hopkins Cniversity, 14, 69, 71, 107
Johnson, Clarence L... 35
Johnson. HatoldA. 42, 306in 5
Johnson, Kelly, 73
Johnson, President Lymdon B., 1:S., 165, 172, 173, 186, 196, 200, 201, 209, 203, 206, 207, 217, 280n11, 347, 348
Johmon Space Conter, JSC: 223, 227, 230, 241, 249, 278, 295, 350, 358, 359, 300, 379, 378, 379, 380, 381, 383. 385, 386, 394
Johmson, Thomas H., 15]
Johmston, S. Paul, 13
Johnsville. Pemosyania, 156, 184
Jones, Alun K., 32, 34, 35, 40, 41, 43, 49, 50, 51, 52,53, 57, 58ntis
Jones, I loyd S., 17
fournal of the Aeronamical Sciences, 118, 119
foumat of Copohysiat Resorwh, 268
foumat of the Royal Alomautical Soriets, 17
Jupiter, missile, 168, 172
Jupiter, planev, 251, 253, 254, 256, 259, 260, 261, 2652, 263, 264, 266, 267, 268, 270, 271, 272, 275, 276
Justice, L'.S. Department of, 374

K

Kahoutek, comet, 231
Kamn, Clition F. Vom, $326 n 20,327 n 22,329 \mathrm{n} 33$
Kansas Caty Junior College. 29
Kaman, Theodore von, 59, 62, 84, 110, 125, 294n48
Karth, Joseph E., 240
Kay, W.D., 151, 162
KC-135 aircraft, 309
Kemedy, President John F., (i.S., 150, 165, 167, 174, 177, 184, 185, 186, 189, 193, 196, 198, 199, 200, 205, 207, 208, 211, 257, 307, 318
Kennedy, Robert, 206

Kennedy Space Center, John F., KSC:, 197, 202, 219, 292, 228, 289, 291, 296, 348, 358, 359, 363, 385, 390, 391 , 392
Kelly, G.F., 310
Kelly, Thomas C... 137n8
Kephart. J.F.. $309 n 25$
Kemin, Joseph P., astronaut, 222, 223, 224, 226, 349
Keves, Daniel J., 91nl, 114
Khrushohes. Nihita, Soxiet Premier, 184
Kill Devil Hills, North Carolma, 6e
Killian, James R., 17:
Kimball, Leo B., ts
King. Martin Luther, Yot
Kingsbury, fames, 351, 352
Kingsford-Smith, Sir Charles, 6
Kimpler, Juch. 293
Kirk, Robert I.., 318
Kitt Peak National Observatory, 282
Kitt Hawk, Vorth Garolina, 168.190
Klineberg, fohm, 329, 337, 386
Kloreppel. Peter. 9InI
Knigh, William "Pele" J., 155
Kıutson, Row K, 279
Korluondoter, Fited I)., 2701778
Kohlhase. (..... 2bitintil
Kohrs. Richad. 359
Korean Wia, 170
Kotcher. Елta, 8t. 83, 86
Kraft. Ghistopher (... Jr., 183, 287
Kramer. Roleot S., 250
Kamer james. 3
Kuchemam, Dieqrich, 141
Kucture, Joak him Pr, 182
Kuhn. Thomas S. $1+2$ nes 3
L
Ladd Field, 39
Lake Okeechobec, Florida, 185
Lambight, W: Hemry, 174, 198, 200n17, 202n92, 250n55, $348,34 \mathrm{Mn} 8$
Land Remote Sensing Policy Aet, 250
Latudsat, satellite, 235, $237,238,239,240,242,243,244,245,246,247,248,249,250,277,389$
Langles Memotial Atronatical Laboratory, L, MAL, 1-32 passim, 71, 72, 75, 78, 79, 80, 82. 85, 86, 89, 91, 92, 94, $95,97,98,101,109,105,106,107,108,109,110,112,113,118,119,120,124,125,126,127,129,130,131$, 132, 133, 136, 153, 168, 219
Langle Reveath Center, 13, 135, 136, 137, 138, 139, 140, 144, 145, 146, 174, 175, 282, 280, 311, 319, 323, 389
Lantan, John, e5s
Large- Scate Advanced Prop-lan, LAD', 338
Lamon. (arv, atuthor, 373
Larsom, Kat ()., 39
Lamius, Roger 1). 168n17, 169n22.23, 170n23,94,25, 171n98,99,30,31, 173n37, 177n54, 185n90, 189n307, 307
law, John, 194
Lamamere, Charles W., 3ng, on7. 6, 8
Lawtence, I.J., 359nt
Lavman, Richard T., 62, 77, 9hıl
I.ee. Frederick B., 208

```
L.cMay, Maj. Gen, Curtis F., 93, 94, 121
Ifrnoir, William B., 380
L.eschly, K., 37tin2.3
Lesley, Fverett P., 10
L.eslie, Stuart, historian, 251, 252n6
Letteman, David, comedian, 373, 389
Levenson, Thomas, 133
levine, Alan,J., 170,171, 172, 174, 179, 197n11
Levine, Arthar I., 25%m17
Levintan, R.M., 333
Levy, Gerald S., 265
Lewis, Fugene, 210n27
L.ewis, (eorge W., 10- 22 passim, 36, 51, 57, 581688,78, 55, 102, 107, 111, 119, 114, 116, 117, 118, 125
lewis Laboratonv, 45, 174, 215
Lewis Reseatch Center, 321,322, 323, 324, 325, 326, 328, 324, 330, 331, 333,335, 337, 340, 342, 343 passim
Libery Bell 7, 186
Liepmamm, Hans W., 69
Life, 167, 184, 187
limerick, Patricia Nelson, 17%,179
Lindal, (munar, 26%
Imoday, Nathan, astronam, 349
Ling-T(moc-Vought (ITV), 307, 308, 300, 311
Lilly. Howatd, 105
Lindbergh, Charles A., 2, 6, 15, 100
Lindsey. W:F., 79n30, 82n,34,121
Littell, Rolert E., 79n30, 82n34, 121
Little, B.I1., Jr., 99n25
Lockheed 12A, aircrat, 29, 34, 35, 36, 38, 40, 46
Lockhoed Air Fxpmess, 2, 13, 284, 393
Lockhoed Propulsion Compans, 29, 36, 37, 83, 280, 281, 285, 29%, 294, 30+, 399, 371
L.oconing, (iower, 3nt, 5m7
Loftin, Laturence K., J.., 11, 115, 116, 103n89, 139
1.oflus, Joseph, 2X9m4, 294n50
logsdon, John M.. 151, 157. 173, 196nt, 213n4, 237n5, 379n32
L.ong James F., 254nll
l.oughborough, Dwight I., 37
I orunge, John M., 346
Lomsma, Jatk K., 228, 229, 230
1.ovell, James A., 193, 206, 281, 311
low, Ceonge, 205, 206, 221, 254, 264n38, 286, 336n54
Luce, Hemrv, 179, 238n1-4
lucky Linds, 167
Luke Shwwalker, fictitious olatacter, 3星
I.una II, III, Soviet spacecraft, g80
L.unar Flying ('nit, LFL', 311
I.mnar Orbit Renderoous, I.OR, ION, 199
I.undin. Bruce, 325
```


M

Mach, Finst, (6.5, 128. 142
Mathell, R.M., 310n31
 $246 n+01,249 \mathrm{n} 47$
Manhattan Project. 140, 169, 173. 186, 194

Mamed Manewering Vnit, MMC, 299, 300, 301, 305, 306, 309, 311, 312, 313, 314, 315, 317, 318, 319
Manned Space Flight, Office of, OMSF, 197, 198, 199, 202, 216
Mamed Space Flight Experiments Board, MSFEB. 217
Manned Spacecraft (enter, MSC: 196, 197, 205, 216, 219, 278, 281, 284, 285, 286, 287, 289, 290, 293, 306, 311, 312. 382

Mandathang Engincering Labomany, 218
Mariner, spactaft, 251, 250, 261, 262, 263, 264, 266, 267, 26x, 269, 271, 272
Mark II, III, [V', pressure suits, 304
Makisen, Am. 169neo
Mars, planet, 201, 251, $253,273,277,389$
Matshall Space Flight Conter, MSFC, 197, 217, 218, 290, 292, 293, 256, $278,280,281,285,286,287,289,290$, $348,349,351,352,355,356,358,359,372,377,378,381,385,386$
Matin Maricta Corporation, 262, 277, 282, 284, 300, 301, 312, 313, 314, 315, 316, 317, 318
Martin, Kussell, 299 n !
Massachusetts lnstitute of Techmology, MIT, 6, 16. 113.196
Mathews, Charles W., 219
Maver, Johm, 293
Manwoed, Illineis, 8
MeAvos. William H., 11-44 passim
McBrico, R.I., 36, 40
McCandless, Bruce astronaut, 300, 301, 302, 312, 314, 315, 316, 318, 319, 372, 375
McCook Ficld, 66. 75, 106
MeCune, John, 385
Mc Curds. Howard E., 103, 104, 173, 175, 197n10, 201n21, 233n59
McDivitu, James A., astronatu, 310
McDomald, Allan f., 354, 355, 356, 357
McDomell Arcraft Copporation, 176. 222, 306, 308
McDommell Donglas corporation, $281,284,240,294,323,329,383$
At Dougall. Watter A., $92 n 3,114 n 63,171,172 n 33,173,200 n 16,237 n 6$
Mc Dowell, Jonathatr, 149n1, 150nt
McFtow, John H., 235n2, 240n21, $249 n 53,250 n 54$
Mc Farland, Stephen I... 3nt
Mcllugh, James (i.. 22
Mt Kay. Jack. pilot. 156
Mckee. Damid D., 306 n 16
McKennat, James T., $388 n 57$
Me Kenna. Paul J. 333
McLarren, Robert, 96
Mc. Namara, Robert, Secretary of Defense, 186, 199, 200

Mcenar, linc., 43
Mead, Senator James M., 92
Memorandum of Understanding, MOU, 153, 157
Mercanti, Ennico P., 244
Merours Progect, 156, 157, 163, 164, 165, 166, 167, 168, 169, 173, 174, 175, 176, 177, 179, 180, 181, 182, 183, 18.4, $185,186,189,190,191,197,199,200,201,211,214155,215,231,273,277,279,280,287,299,304,305,3065$, 382
Mercury-Atlas, 187, 188
Mercury Seven, 191
Messner: Julian, 150
Mever, Theodor, 65
Michener, James, 100, 103
Mikkelson, Damel, 321, 337
Mikulski, Senator Barbara, 369, 373, 383, 393, 394
Miller, Elton W'., 17, 18, 19, 91
Millikan. Clark, 99, 102

Mills, Charles TIL.. 99n26, 271n80
Mississippi Test Facility, nee NSTL, 296
Mitchell. John, 120
Mitchell, Rowec, 354, 357
Miu, Milum A., 264n53,54, 267n65.68
Modalar Mancovering ['nit, MMI, 305, 306, 313, 31/4, 315, 316
Moffett, Admial Willian A. Gnl1, 7
Moffer Field, Navs, 35
Mojave Dessert. Califomia, 59
Mondale, Walter, 286
Moon, 176, 186, 197 , 199, $900,901,909$,904 905,906, $908,204,210,211,215,216,251,253,278,280,281,302$ 303, 311, 331
Moone viat, D.W., 246
Monere, Dancan, 37.
Moore, Wendell F., 307
Marris. Owen, 277,289
Mortow Beard. 18
Monow, Dwight, 18
Moros, IF. Chryble Corporation. 279
Moss. Senator Ftank. 328
Tutler, (reorge, 200, 202, 205, 216, 217, 218, 219, 220, 221, 278, 281, 285
Muenger, Elizabeth A. 108
Muhbman, Duane ()., 273
Munk, Max M., 7, 18, 110, 121
Muroc Dry lake, 59
Murtas, Bruce, 251n2, 263n50
Muras Chates. 103, $205{ }^{2} 93$
Muspate, Story, astomant, 367, 369, 378, 381, 384, 385, 386n50, 387, 388n55, 389, 300, 391, 394
Maskie, Senator E.dmund, 286

N
National Academy of Sciences, NAS. 253
National Adisory Commitue for Acronautics, NACA, 1-163 passim, 250, 279n9, 280, 324, 325, 326, 342
National Aeronatic Asoctation, NAA, 3-15 passim, 147, 208, 251, 318, 342, 365.51
National Acronatuics and Space Admimistation, NASA, 164.396 passim
National Aeronatuts and Space Conncil, NASC, 307
Nabonal Air and Space Musenm, Smithsoman, 176, 387
National Bureat of Standards. NBS, 46, 48, 62, 75, 195
National Carbon corporation, 304
Natomal Geragraphior, 108
National Ocemic and Ammopheric Administration, NOMA, 242, 249
National Research Commol, NRC, 352, 355, 350n43, 357, 361, 363
National Science Foundation, XSF. 276, 355
National Security (onmeil, NSC. 171
National Space Club, 251
National Space Testing I abomatory, NSTL fomerly Mississippi Tent Facility, e9ti
Nathor. 268
Vaugle, Johu F., $262,263 \mathrm{n} 46,26 \mathrm{Kn} 73$
Naval Aicrato Factory, ti
Naval Air bevelopment Center. 150
Naval Reseath laboratom, 37, 38, 44, 169, 171
Vaw, $(5,6,6,815,10,35,42,86,113,193,146,153,154,156,157,171,172,173,304,318$
Nam-Curtiss (NC). 6

Nazis, 303
Neet, Carr, 35, 41, 5t
Neely, Frederick J., $3_{n 6}$
Nelson, (eoorge D., astomatr, 315. 317
Neptune, planet, 251, 256, 259, 260, 263, 269, 271, 273, 274, 275, 276
NFRVA, engine, 260
New Concord. Ohio, 189
New Deal, 2
Newell, Homer, 292, 25-n10, 255, 25ti, 2650.57
New York, New Yoik, 13, 189
Sou Sork Times, 117, 347, 349, 350, 351, 359, 354n35, 355, 350in47, 357n5s, 359n62, 360n66, 369n76
Newkirk, Frtel, 2291n94, 222n27. 227n37, 930n42.44
Newton, Isaat, 62, 1+1
Nicollier, Claude, ESA astromant, 382. 386, 390, 391
Nike-Zeus, sutellite. 172
Nixom, Presidem Richaud M., 184. 207, 209, 221, 253, 256, 257, 261, 281, 286
Nion, astronaut reconery ship, 189
Nobel Prize. 91, 98
Nored, Domald, 324, $32 \operatorname{tn} 21,330,333 \mathrm{n} 40,1,42,339,340 \mathrm{n} 56,343$
Nordberg, William, 239
North, J.D.. 17
North American Aviation Comporation, 1529, 154, 160, 196, 202, 203, 205, 279, 280, 285
North American Rockwell corporation, 262, 281, 24, 1,312
Vorthrop corporation, ! 27
Northwest airlines, 3]
Norton, F.LI. IOMint2
Nowlan, Philip Francis, 30 ?

0

(0)-4 airctaft 35

Oberth. Hemamn, 213
OComom, Bram, antronatu, 362
OODell, C.R.. 392n7e
Office of Management and Budget. OMB, 162, 163, 235, 239, 247, 259, 261, 262, 263
Opalko, Jane, 3kGnse
Ordwas, Frederich I., III, 216n10. 239n5l
Organization of Petroleum Exporting Comaties, OPEC, 326
P

P-34 aircraft, 73, 83, 84. 192, 193, 12.
P-39aircratt. 124
P-40 ainctate, 122
P-17 aimati, 115, 129
P-91 amotat, 59, 87, I05. 137
P-59 ameralt, 123
P-80. airctaft, 193
Patilic ocean, 6, 189, 207, 297, 230
Palle, Thomas, 205, 207, 220. 258, 28.
Pamamat Cand, 9
Patersom, Vew Jerey, 6
PBYe boat, 35
PBE: airctaft, fo
PBOY:3 amocalt, 4

PBAY'I boat. 4 .
Peat Habor, 117, 119, 129, 125, 171, 177
Peason, Jerembiah "Jer" W゙., $380,382,386$
Pecota, W.T., 238 Bn 14
Pendegrati, J.B.. 9 IK
Peonemunde, (;emanss, 177
Pemmshana-Central Arlines. 31, 53
Petersen, Commander Forrest S., 150. 159
Pretengill, Gordon H., 962
Philadelphia Naws Yard, 6
Phillips, Genceal Samuel, 200, 202, 203, 205, 358
Phasios Todda, 120
Pickering. Villiam H. 263346,268
Pindrola. M. 99ne5
Pinkel. Benjamin, 2 2
Piukel. Irvings, is
Pinsom, Jay 1)., 83 n35
Pionem, spatectati. 253. 26ti, 268
Piper Pannecatorat. Roll
Pitsomagh Plate Cilass Co.. PP(i, f1)
Pluto, planco. $254,254,259$
P. . 10 boat. 6. 7

Poguc, Willian R., 913, 290, 231, 23:
Polluck, Andrew, 340
Pope Alan, 126
Post, Wilev, avator, 30:3, 304
Prandtl, 1 udwig, $62,65,70,75,105,100,110,112$
Pratid Whinnes, 17, $29,93,24,46,144,290,323,328,339$
Presidemis Airctalt Boand, is
Previdents Commission on the Space Shutle Chatlenger, we Rogers Commission
Presidents Science Adison Commite ISAC. 173
Prim, J.W., 310n31
Primitia, be
Propeller Researli Fimuel, IPRT, 7-26 passm, 97, 107, 119. 128
Proxmire, Senator William. 286
Puchen, Allen F... 69
Pudely. Domakd. 2e2?
Pune. Suphen J. $17 \mathrm{~s}, 179$
0
Quavke, Vice Presidem 1) an, 379
Gucen Isateclla, 190

R

Rammater, Susan B., 379
Ranger, parceratt, 251, 263
Rankine. William John, 64, 65
Ravoul, S. Ichtiaque. 251n4, 261n+0, 263. 266
RCA compams, 24?
Reation Moroms, 160, 161, 163.3
Reagam, President Renald, 24! , 297, 315, 348, 353, 354, 363

```
    Redstone Arsenal, Alabama, 169, 170, 173, 175
    Reed, Svhanus, But, 5n7
    Recdy, George, 172
    Rees, Eberhatd, 982, 287
    Reid, Elliott G., 12
    Reid, Henry J.E., 18, 21, 24,78
    Remote Mancuvering Linit, RMU, 307, 311
    Remote Mamipulator System, RMS, 366
    Remsberger, Boyce, 348n11
    Rensselacr Polytechnic Institute, RPI, 12
    Research Airplane Committee, 154
    Reynolds, Osbome, 128
    Richardson, Holden "Dick" C. , 6. 7,8
    Riemann, G.F. Bemhard, mathematician, 6.4
    Riolo, Robert. 91nl
    Robert J. Collier Trophy, see Collier Trophy
    Robie, Bill, 3n6, 147n42, 149n2, 165m5, 167n11, 295m1, 251n1, 313n41
    Robinson, Russell C., 131
    Rocket Propulsion Laboratory, 305, 308
    Rocket Researh Corporation, 311
    Rockwell International, 290, 295, 296, 313, 314
    Rodert, Lewis August, 29-58 passim, 101, 325
    Rogers Commission, 348, 349, 350, 351, 352, 353, 354, 355, 356, 358, 359, 360, 362, 363
    Rogers. William P., Secretary of State, 348
    Rohr Industrics, 393
    Rohrbach, Garl, 321
    Roland, Alex, 5n9, 17, 18, 90, 21, 56, 93, 95, 97n18, 103, 104, 111, 114, 117, 125, 133, 313140
    Rollin. Vermon G., 23n63
    Roosevelt, President Franklin D., }1
    Ruse Garden, White House, 165, 167
    Rosholt, Robert I.., 157
    Rothenberg, Joseph, 375, 377, 379n30, 387, 394, 395n81
    Roush, Paul A., 37
    Rover, 208
    Roval Academy of Science, Rome, 78
    Royal Aeronantical Establishment, see Reval Aircraft Establishment
    Rowal Aircrafi Establishment, RAE, 43. 6f;
    Rubashkin, David. 253n7. 257n29.23
    Runco, Mario, astromaut. 381
    Russia, 169,177
    Rutherford, Lomd Emest,91n]
S
Sagan. Carl, 2tisi
Sands, Mary 340
Saturn, planet, 251, 256, 259, 261, 262, 263, 264, 266, 267, 264, 269, 270, 271, 272, 275, 276
Satum V, lameh whicle. 161, 196, 205, 219, 290, 229, 223, 230, 980
Gaturer, Kathe. 373 n 16
SB2D-1 atrcate, 50
S.6B ameratt, 71, 73
Shey, Oscar W., 20, 23
Schima. Witter M., Jr., 165, 189
Schjeldahl, G, T.. Compans, e2e3
Schmitr, Semator Harrison, 182, 209, 248
```

Schneider, William (.., 221, 222, 232, 233
Schriever, Bernard A., 307
Schulman, Robert, 190
Schula, David C., 312
Schumeier. Harris "Bud" M., 261, 264
Schweickart, Russell "Rusty" Louis, 224, 226
Science, 26 K
Science Institute, 374, 381, 383, 385, 394
Sctence News, 259
Scientific American, 115
Scott, David R.. 193, 211
Seamans, Robert C... Jr., 151, 197, 202, 217, 219, 238n14
Selftest and repair computer, STAR. 260
Sentinel, newspaper, 351
Serling, Robert J., 321
Shapley, Willis H., 247n42
Shea, Joseph F., 202, 216, 383
Shepard, Commander Alan B.. Jr., 165, 181, 184, 185, 186, 231
Shipman, Harry I.., 299
Shutte Avionics Integration Laboratory, SAll., 287
Shutule Mission Simulator, SMS, 287
Sievers, Keith, 337n59
sigma 7 . sparecraft, 189
Sikorsky, Igor, 56
Silk. J.M., 308n2!
Silverstein, Abe, 112 n (0)
Skoglund, Victor J. 48
Skolnikoff, Eugene, 247n42
Sky and Telescope magazine, 391, 392
Sklab, spacectaft, 213, 214, 215, 22
382
Slade, Martin A., 273
Slay, Alton, 361
Slavton, Donald "Deke" K., 1655, 182, 222, 228, 312n35
Smith, Bradford, 263, 264
Smith. Herschel 1.. 7
Smith, Senator Margaret (hase, 203
Smith, Michael L.., 178, 179, 180
Smith, Richard K., 97, 108, 113, 125n95
Smith, Robert W.. 260, 368, 369n7
Smithsonian Institution, 6
Society of Antomotive Engineers, 13
Solar Aircraft Company, 41
Solar Maximum satellite, 315, 316, 317, 319, 387
Solid Rooket Motar SRM, 348, 349, 351, 352, 354, 355, 356, 357, 358, 361, 362
Soule. Hartley A., 111 not
Soviet Inion, L.S.S.R., Russia, 144, 156, 169, 177, 1801, 184, 185, 186, 196, 199, 201, 205, 210, 214, 257, 307, 323.
329
Spatz. Gemeral Cant, 56
Space, 103
Space Science Board, 253. 259, 261, 262, 271
Space Telescoper Axial Replacement, STAR, 376
Space Tranemtation Svatem, STS, 313, 358, 359, 363, 361, 36:"
Spencer, Jim, ©hal
Spery, Elomer, 3n6, 5n7

Sperry (inoscope 160
Sperty Messenger. 6, x
Spumik. ('.S.S.R satellitc, 156, 163, 171, Kymunih172, 177, 179, 180, 214, 306, 307, 325
Sack, fohn, $69,63,71,73.75,77,79,80,81,82,84,85,86,89,91,92,93,94,95,97,98,99,100,101,109,110$
Stafford, Thomas, 382
Stainforth. Ftilit. George 11., 73
Stanford Eniversity, 10. 106, 265
Stapleton. Geother, 9111
Stamemmaier, John M. 3n:
Stechman, Bemadette ($\therefore, 377 n 25$
Steelman. Donald. 291
Stemis, John C., 2x6
Stever. H. Genford, 355. 35, 357
Stesart, Hemer Joe, 255
Stewat, Robert I... astronamt. 302, 315, 316
Stewart-Wamer Coperation, 41, 51, 53
Stinson aircrafi. 2
Swlp. P.C.. 333
Stone, Dr. Fdward (., 251, 252, 264n522, 206n63, 267, 268, 270, 274
Somes, Willian, esons
Strack. Willian C., 396 n 21
Stradiaari, Amonio. 133
Strategic Ame Reduction Talhs, STARI, 318
Strategic Defense Initiative, SDI, 318
Stategic Ame limitation Eaths, SALT: 3IX
Stuhlinger. Fonss, 2lt, egentl
Sullivan. Kithr, astronatut. 379
Summerlin, Ler B., 217
Sull, 270

Superomic Tramspor Planc, 2xi;
Surverot spatcotalt, 201, 20, 210, 251
Suntaining C'niversis l'rogram, st:P, 196, 200, 210. 211
Suter, Joweph, 3:Hi
Sweden. 264

Somington, somator Stuat, ext

T

Taykr, Captam David W:. 6
Taton, Michat J. H. 146 n 39

The Right suff, 1003

Thobol ©opmation, 277, 985, 313, 348, 354, 355, 350, 357, 398
Themas, Albert. lexas Rep. Itti
Thomas, Jhan, 320, 354, 355, 356, 357

Thompson, John R.. 3.49
Thompson. Rolert F., 284, 286,293
Thomton, Jim, 379
Thomton Kahy astronath, 380, 381, 390, 391
Thuot, Pierce, astronath, 380
Tichenor, Frank, 17, 18, 19, 20, 111 no 7
Tirouderga, aurcati, 26
Tim-Life, comporation. 179, 180, 363n86
[Budall. Howard "Bill" W., 293
Fitan, missile, 273, 306, 360
Titos (;heman, 187
Tombinsm, D.W.. ('S.S.R.. 38n21, 39
Townend. Hubert C... 17
Fownes. Chates W, 261433, 262
Traftom, will, 395
Trane company. 43
Transcontinental airlines, 39
Transonic Wind Tumel, NASA Langlev, 96
Tiamsportation. L'S. Department of, sex
Tavis. John, 3921770
Tribus. If. Myron, t9, 51, 53, 5t
Trimble, William F., 6n11.12
Triplett, William, 380 n 3. 3.
Tritom, celosial satellite, 276
Truly, Richath, $931,277,345,347,348,349,350,351,354,355,356,357,358,359,360,361,362,363,364,379$
Truman, President Harv S., 89, 101, 197
TRW, 965.379
Csiolkonsky. Komstantin, 213
Tiobuju Reachaiom, 115
TWA. arlines. 31
Tycho Brathe, obsematom, 25!
Tvier (; laronad, 26)

U

L'datl, Stewatt l... Sectetan! of the Interior. 238
Chsses, spacectaft, 360
Enducted Fin, LDFF, 339, 342
-nisw space swatems comporation, 394
C'nited Sirchafl and Tamspot Conporation, 23
'nited Airlines, 31, 32, 38, 40, 51, 336, 337

 $180,183,184,35,125$
$3+1,345,349,365$
Futed Terhnology Center 285
U nisemsity of Alaska, 385
Lniversits of Califomia, Berkeles: 71, 84
Fniversits of Ithinois, 8
I'miversity of Michigan. 12. 16
Guversits of Mimesota, 29, 39
Gomersity of Prague, (iembans, fis
Cniseqsity of Rexhestem, 375
(miserats of 'irginia, 124

```
Cramus, planet, 251, 256, 259, 260, 263, 269, 271. 272. 275, 276
(I.S.Nous and Wold Report, 181
C.S. Rubber corporation, 304
C.S.S. New Orteans, ship, 230, 232
V
```

Valentine, F. Floved, 9
Van Allen, James. 172
Vandenberg Air Force Base, California, 360
van Hoften, James D.. 315. 317
V'angtard, Project, 171, 172
Variable Density Tumel, VDT, 7, 18, 23, 71, 80. 86, 97, 108, 110, 119, 128, 13
Vaughen, Dianc, sociologist, 103 , 104n37
Velcro, materiat, 290
Venturi, G. B. $^{\text {, } 138}$
Cemus, planet. 253, 262, 270, 273
Veme, Jules, 115, 301, 302
Vickery, Hugh, 32l
Victory, John F., 50, 100, 101
Vietnam war, 200, 209. 211, 219, 220. 253, 286
liking / spaccoraft. 169, 251, 957, 259, 261, 263
Vincent, Jeflies, sos
Gncenti. Wather G. 5ns
Sirden, Ralph, piler, 83
YDan, 55
Very Large Arran VI A 973
Gowoh I. Sowiet pacecraft, 184, 186, 189
lowager spaceoraft, 251, 252, 253, 263, 266, 267, 268, 269, 270, 271, 972, 273, 274, 275
Vabel. Deborah, 323n7, 39913.31
Fultec, Gemy 1:3

w

Wainwright, 187ng9
Wiatrop, M. Mitchell, 247n43
Walker, Dr. Joseph A., pilot, 150, 151, 155, 1.57
Wallate, Haves D., $1+1$
Wallops Island, V'irginia, $87,137,130$
Halton, Ernest T.S., 9]
What, John William, historian, 100, 102, 122, 129
Ward, Vemon (:, 94, 98, 99, 132
Wamer, Fdward Pearsom, 13, 17, 18, 19, 20, 38n23, 192, 123n\$א
Warwick, James W:, 265 n 5 s
Washington Exwening Star, 250
Wiahongton Pow, 100, 118, 126, 321, 354n32, 356n45, 357n50, 360n69, 361n71,74, 373, 309
Washington Nay Vard, Washington, DC, 6, 173
Hashagron Times, 32I, 3:0
Wasp, engine. 94
Watson, James, 274
Hebb, James E., 174, 177, 186. 190, 191, 193, 195. 196, 197, 198, 199, 900, 201, 202, 205, 206, 207, 210, 217,219
$290,347,348,379,384$
Weick. Fred, x -26 passim, $39-4$
Weiter Fidwatd J. 3 392

Weinberg. Avin, 367
Wemberger, Caspar W., $26 \ln 40$
Weisner, Jerome, 199
Weitz, Paul J., 222, 223, 224, 226
Wells, H.G., 301, 302
Wen, Zheng, 392 n 72
West Germany, 264
Western Airlines, 39
Western Union, 316
Westervelt, Captain George C., 6
Westfall, Catherine, 91
Whirlwind Engine, 12, 13
Whirlwind J-5 aircraft, 6, 12,13
, 136, 137, 138, 139, 140, 142, 144, 145, 146, 147, 148, 325
White, Edward H., astronaut, 219, 301, 306n15, 310
White, Major Robert M., 150
White House, 13, 15, 16, 165, 194, 200, 209, 258, 261, 308, 345, 347, 359, 379, 393, 394, 395, 396
White Sands Proving Ground, New Mexico, 169.190
Whitlow, John B., $326 n 21$
Whitsett, Maj. Charles E., Jr., 300, 301, 312, 313n37, 314, 318
Wide Field-Planetary Camera, 377
Wikete, J.E., 333n43
Will Rogers, humorisu, 304
Williams, Watter, 349
Wilson, E.B., 106n42
Winnic Mae aircraft, 304
Winter Flight Laboratory, 39
Wolfe, Tom, The Right Siuff, 103, 179, 184,
Wood, Donald, $8114,19,21 n 35,22$
Wood, Gordon F., 265
Wood, R. McK., 68
Woods, Robert J., 86
Woods Hole, Massachusetts, 253, 254, 258, 259, 261, 262
Woody Woodpecker, cartoon character, 303
Worcester Polvtechnic Institute, 21, 136
Worden, I.t.Col. Alfred M. 193, 211
World War I, 62, 66
World War II, 11, 16, 25, 37, 59, 65, 85, 91, 93, 102, 111, 129, 135, 138, 140, 142, 167, 169, 173, 175, 177, 189, 195. 214, 325

Wright Aeronautical Corporation, 6
Wright Apache, aircraft, 12
Wright brothers, 3, 10, 16,54, 65, 89, 95, 118, 122, 126, 168
Wright Brothers Memorial Trophy, 101
Wright Corporation, 6
Wright Field, 35, 38, 39, 41, 43m, 46, 49, 50, 84, 85, 145, 304
Wright Flyer, 66
Wright, Orville, $3 \mathrm{n} 6,5 \mathrm{n} 7,100,105$
Wright-Patterson Air Force Base, Ohio, 106, 305
Wright, Ray H., 94, 98, 99, 102, 107n46, 1099, 110, $1161666,120.122,125,126,127,129,130,131,132$
Wright Whirlwind aircradt, 7
Wright, Wilbur, 105
Wyatt, DeMarquis, 215

NBM-I bomber. 3!
XIR-I 1 rochet engine $151.155,161$
Xl, R-49 reskel engine. 151. 153. 155. 160, 161, 162. 163
NP-7! recker. $x 7$
X「132l)-1 amant, 5

Y

Sickers Aimate Compans. x
lackey Tramsponts aireralt, 10

hamg. Alfied W. 20
Siming, Jamen O., 88
Senng, John, manalu, 277, 297, 297, 359, 385
limug. Wivar. e95
Z

Tahm, Whert F., 106int2, 109, 10. 111

The NASA History Series

Reference Works, NASA SP-4000

Grimwood, James M. Projert Mercury: A Chronolog (NASA SP-4001, 1963)

Grimwood, James M., and Hacker, Barton (... with Vorzimmer, Peter J. Projet Gemini Technology ant Operations: A Chmonolog (NASA SP-4002, 1969)

Link, Mate Mills. Space Medicine in Projed Mercury (NASA SP-4003, 1965)

Astronautirs and Aeronautics, 1963: (hronology of Scipnce, Technotogy, and Policy (NASA SP-4004, 1964)

Astronautirs and Aeronautics, 196t: Chomology of Sciente, Trchnology, and Policy (NASA SP-4005. 1965)

Astronautios and Aeronautics, 1965: Chonolagy of Scime. Technology, and Policy (NASA SP-4006, 1966)

Astromantios and Apromatios, 1966: Chronology of Sirimat. Technology, and Policy (NASA SP-4007, 1967)

Astmonatios and Aromatirs. 1967: Chomology of Scioner Technology, and Policy (NASA SP-4008, 1968)

Ertel, Ivan D., and Morse. Mary 1ouise. The Apolly Spacecraft: A Chronology, Volume 1. Through November 7 1962 (NASA SP-4009, 1969)

Morse, Mary Lonise, and Bays, fean Kermahan. Th Apollo Spacecrafl: A Chromology, Whome II, Nowember S. 1962-September 30, 1964 (NASA SP-4009, 1973)

Brooks. Courtney (;., and Firtel. lyan D. The Apulle Spacecrafl: A Chronoligy. Volume III, Oitoler 1 , 1964 -jamuary 20, 1966 (NASA SP-4009, 1973)

Frtel, Ivan D., and Newkirk, Koland W., with Brooks, Courtney G. The Apollo Sparercaft: A Chonolegs Volume iv. fanuary 21, 1966-fuly 13. 1974 (NASA SP-4009, 1978)

Astronauties and Aeronamies, 1968 : Chromoghy of Science, Technology, and Policy (NASA SP-4010, 1969)

Newkirk, Roland W., and Fitel, Ivan D., with Brooks, Courtney G. Skylfo: A Chmomotery (NASASP-4011,197\%)
Van Nimmen, Jane, and Brume, 1 eomard C.., with Reshoht. Kobert L. NASA Mitomical Data Book. Wil. I VASA Resourers, $1958-1908$ (NASA SP-40I2. 1976. rep. ed. 1988)

Ezell, Linda Neruman. NASA Histoncal Data Beok, Vol II: Brograms and Moperts. $1958-1968$ (NASA SP-4012, 1988)

Fadl, Linda Nemman. NASA I/sterical Datu Bork, Wod. III: Programs and Projects, 1969 -1978 (NASA S1-4012, 1988)

Astomautics and Ampmaties, 1969: Chmolegy of Scimer. Tetholong. and Policy (NASA SP-4014, 1970)

Astronaticx and Aormantios, 1970: Chronology of Scioner, Trethologn, and Policy (NASA SP-4015, 1972)

Avemmation and Ammantiss, 1971: Chmolnge of Science, Terhnology, and Policy (NASA SP-4016, 1972)
 Technolugy, and Policy (NASA SP-4017, 1974)

Asmmantis and Aeromautis. 1973: Chonolog of Sciene Tehmolog. and Policy (NASA SP-4018. 1975)
 Tethooleng, and roliy (NASA SP-4019, 1977)
 Tethnotogy and Policy (NiSSA SP-4020. 1979)
 Thhanagy, and Policy (NASASP-4021, 1984)

Astronambirs and Acronautios. 1977. Chronology of Scienor. Trohnolong. and Polig (NASA SP 4029 , 1986)

Ismomatios and Amonamios, 1978 : (hromodogy of Simure Tahmologr, and Policy (NASA SP-4023, 1986)

Nomantios ard Aemonation 1979-1984: Chronolegy of Scinter, Technology. amd Polioy (SASA SP-40ツ4. 198K)
 Terhmalag, and Policy (NASA SP-4025, 1990)

Camaliak, Ihor Y Compiler, NASA /istorical Data Bowd, liol. N: NASARpsourres, 1969-1978 (NASASP-4012, 1944)

Noordangs, Hermann. The rablem of Stuere Tiwne: The Rodet Motor: In Femst Stuhlinger and J.D. Hunley, with Jembiler (arland, exlitors (NASASP4026, 1995)
 Scimer, Technology, and Policy (NASA S1-4027, 1697)

Management Histories, NASA SP-4100

 $195 \mathrm{~S}-1963$ (NASA SP-401. 19(8i)
levine. Armold S. Mammeing NASA in the Apollo lim (NASASD-4102, 1982)

Roland. Atex. Morlel Rewabh: The National Adidem (ommitler for Acromutiot. 19/5-195X (NASA SP-4103. 1985)

Fries, Sylvia D. NASA tingimers and the Age of Apollo (NASA SP-410t, 1!92)

GHennan, T. Keith The Binth of Nast: The Dian of T
 (993)

Scillatas, Robrot (i.. Jt. Jiming at Tirgets: The
 1946)

Project Histories, NASA SP-4200

Swenson, I ond S., Jri. Crimmood, James M., and Alexambler, Charles (.. This Now Ocerm: A History of Phepet Itemors (NASISP-1201, I!6fi)

Green, Comstance Mil.. and Lemask, Milion
 Smithsonian lustitinion l'oess, 1!77)

Hasker. Batoon C.., and Gimmood. James M. On Ghoulden of Thtans: A /history of lroiget Comim (NASA SP-f203, 1977)

Benson. (tharles D, and Faherty, William Banoalen
 (forations (NAS\SI-1204, 1978)

Brooks. Conorney (i.. Cirimwood, janes M., ind Swenson. loyd S., Jr. Chariots for lpollo. A /fistom of

Bilstein. Roger \&. Stage to Satum: A Tochmologazal
 SP-F2O(i, 1980)
(iompton, Wh David, and Benson, Charles D). Livine and Working in Spare: a Hisooy of Skyed (NiASA SP-1208. 1983)

Firell. Erlward Clintonn. and Fercll, I inda Neuman. The
 (NISISP-12(H9. F978)
 (NS1SP-4910,1977)

Newell. Homee E. Bownd the Atmosphere: Larly lemes of Spar' Scifne (N\S\SP-1211, 1980)

ERell, Edward Climon, and Erall. I.inda Neuman. On Mas: Exphoratim of the hed Ihamat. I95s-1978 (NASA S"-4219 198.1

Pites, John A. The Humat furton: Siomedirio . the Mamed Space Pragram to 1980 (NASA Sl'4213, 1985)
(omplon, W: David. Whar Nion Man Has Gome Before: A Histmy of Apullo lamar Fxplowamm Missions (NASA S1- +2] 4,1989

Naugle. John F. Fins Amomg ligucts: The Selection of NASA Spa Seimer Axpmiments (NASA SP-4215, 1991)

Watlace, I ance E.. Airbome Timilhlave: Time Decades with N1SA Iangle's Bumge 377 hying Iaboratory (NASA SP-4216, 1994

Butica, Andrew J. Editon: Bryomd the homosphere: fifty liars of Sonce (iommmicotion (NASA SP-4217, 1997)

Buntica. Andrew J. To See the l'merm: A hisory of Ilanetary Redar Ismomome (NASA SP-421א, 1996)
Center Histories, NASA SP-4300
Rosembal, Alford. Iommo into Space: Early Gears of (iodidam Shace thigh (imam (NASA SP-4301. 1985)

Hartman, Edwin, P. Adarntums in Resomb: A History of Amas Revemh Gimter, Jodf-1965 (NASA SP-4302,
19701

Jallion. Richatal I. Ohi the foomiar: Hight Rewawh at

Muenget, Flizabrob A. Srarhing the IGonizom: A History of Ames Reswanh Gemer, l9moーJソTh (NASA SP-4304, 1985)

Watnsen, Jantes R. Enginev in Chagre: A Misary of the Lemgley Ammantical Labemiory, 1917-1958 (NASA SP-4305, 1987

Dawson, Virginial P. Eingimes amd Jmanabion: Lewas laboratory and Amanian Prophation Terhnology (NASA SP-1306, 1991)

Dethlofl, Henty ($:$ "Suddenly Timomone Giame . . .": A IVistory of the Johmon Sfure (imior 1957-199) (NASA SP-4307, 19493)

Hansen. James R. Spardfight Revolution NASA Janghey Rowarh (imter trom Spulmik to Apollo (NASA SP-430X.
ISO5)
 NASA Droden High Rewarh (entor. (NASA SP-4309, 1996).

Herring, Mark R. Wing Shation to Spate: A Hivery of the fohe (:. Stenmin spere Conter (N1SiSP-4310, 1997).
 an Ammaran Spurr Prgatm (NASA SP-431I, 1997).

[^0]: For sale by the U.S. Govermment Pinting Office
 Superintendent of Dxcuments, Mal Stop: SSOP. Washington, DC 20402-9328
 ISBN 0-16-049640-3

[^1]: 1. I have distinguished between "big seience" and "hig technology," but NASA uses the temm "big science" to include benth.
 2. For references to the big science literature, see below; for dincussion of how the study of lage ter h nology fits into broder historiographical ternds in history of techoology, see fohn M. Standemmater, "Recent

[^2]: the only published list of selection commite members that have encountered. The awated that vear went to
 pilots and crews.
 17. The cuntem practice is that the President of the National Acronatic Assoriation externd abome sixn insitations bo participate in the selection commitere, and the commitue is composed of whatever momber accept the imstation. Most of those insited are members of the Associations presidemes of the Air Clubs affilated with the

 intervicw whth fill Baucom. Administatave Assistam, National Acronatuic Association, Derember 15. 1995.
 mone ofgective sonme of prestige. Instead. the Collies Thophy mantaned its status as the "mest prized of all anit-

[^3]:

 21. Roland, Model Rosermh, 1:2 $4-25$
 29. During the wat vars the NACA spent more than hatf its total budge on buidding its batoratory wather than on immediate watrelated projects. Roland, Model Researh, 1:30-31, 46.
 23. Wid., ch. 3
 24. Mid. 1: 80-87.
 25. Mid., 1: 87-89.

[^4]: 26. Roger D. Latmias, private commanication to athhor, May 29, 1996.
 in physics.
 27. Roland, Mondel Rescarh. 1:89-98
 jet aireraft. See Edward W. Constant II, The Origims of the Tarojrt Revohaton (Baltinore, MD: Johms Hopkins [lniversity Press, 1980).
 28. Roland, Modet Researh, eh. L2. patiacularly $1: 288$
 29. Ibid., $1: 990$. Roland reports that the subject of Sputnik did not arise at the NACA ammal meroing held less hat wo werks hater

[^5]: 40. The momentum of techmological development is necessamits more a mater of institutions tham of
 in Westom Sariefy, $1880-1930$ (Baltimore, MD); [ohns Hopkins Lhiversity Press, 1983), ch. VI.
 41. Brace L.R. Smith argues that a broad consemsus in suppory of federal fimding of research and development disimegrated in the second half of the lobos under criticinm from both the lefi and the right. See Smith. American Scomor Poligy Sme World War I/, ch. 4, particularly pp. 75-76.
 42. The chassic critique of the space shathe for not living up wo the exagerated promises that hat been used to gain apposal for the proje is Alex Roland, "The Shatle. Tmumph of Turkey" Disoner 6 (November 19x5): 29-49.
[^6]: 43. For the early history of the tem "bigs science" which actatly dates bach to the late Ionob, we fames H. Capshew and Karen A. Rader, "Big Science, Price to the Prexom," Oirin (second wries) 7 (1992): 4-18.

 44. For the miversity side of the ston geod places to stat are Stuat W. I eslie, The Cold War and Amman Scime: The Milhay-Industriat-Academa Complex a MIT and Stayord (Xew York, NY: Cobumbia (Uibersity Press, 1993) and Ronald I. (eriger, "Science, Enisersities, and National Detense, 1945-1970." Osiri, (second series) 7 (1902): 20-18.

 4t). Peter Galison and Bruce Hevly, eds., Beg Stamer, The (inath of Lorge Sode Resemeh (Stanford, CA: Stanford (iniversity Pres, 1992), pp, 3-8.

[^7]:
 Krige, "The Installation of I Ligh-Fnergy Accelerators in Britain Afor the War: Big Egutponent hat not "IBig

 Scicntific, 1988).
 48. For a comparison between highenergy physies and space programs (not only in the U.S. but also in other countries) see John Krige, exl., Gowing Big Tehmagios (Gemeva, Switerland: Harwood Academic Pablishers, 1993).

 4!). (apshew and Rader "Big Science" provide one useful thematic inmodmetion; I take my themes part Iy from the de discussion of Alvin Weinberg's waming that the three diseases of big science are "jommatitis. mon evitis, and administratitis" (p). 5).

[^8]: 50. I ambright, Ponering Apollo, is a good place to start for this issote.
 51. In the logots a new genetation of advocates for small satellites developed this critique of what they perceived as a NASA culture of bureaucratic commol and large-sade programs. The impact of this challenge to the old way of doing things is not yet cleat; but it has alieady had some impact on the congressional committeres that wersee NASA's budget and on the leadernhip of the agency itself. For a good example of the critigue, see John R.

 52. The decline of the individual inventor and the rise of complex systems in the corporate world has
 Thbmolugual Smbhesam (New York. NY: Simon and Schoster, 1989).
[^9]: 33. Many seconists hase criticized NAStis emphasis on puting people in apace as being a wate of

 their mefernacs.

 5ti. Londen, IFO w the Chate p. $1+9$.
 fod lab/ext hom, Marh 20. 199ti.

[^10]:
 13. Seellewshell Smith. A

[^11]: 17. Weick and Hansen, From the Ground (ip, pp. 49-59.
 18. Walter G. Vincenti, "The Air-Propeller Tests of W. F. Dumand and E. P. Lesley: A Gase Study in

 Ancien World," Terhmodgy and Culhore 9 (Jamary 1968): 34-50.
 19. For refernces, sec Vincenti, "Air-Popeller Tests," pp. 711-1.5.

[^12]: 24. Weick ambl Hansen, from the Bround [p, p. 60.
 25. Thid. pp. 60-bil.

 ment from NASA in 1971 . Much of my amalysis of the four stages of langley's cowling work that follows in this cssay is based om Weick's atobographical accomut. See also "The N.A.G.A. Cowling." Avintion es (Nomember 17 . $1928): 1556-57$ and $1586-90$, by Fed E. Weick; and "Notes on the Devign of the N.A.C.A. Cowling." Aviation 27 (September 21, 1999): 6.36-38, by William H. McAvox.
[^13]: 27. Weick and Hansen, fom the (iromad 0 p, p. 6才.
 28. NA(A Technical Note 501, quoted in Weick and Hansen, From the Ground (if, p. G6. See also Weick's, "Drag and Coming with Varions Forms of Cowling for a Whirlwind" Radial Air-Cooled Engine, I," NACA TR 31 ; 1929, and "11," TR 3/4. 1929.
[^14]: 29. Regarding the NACA's public announcement of the cowling, see George W. Iewis's, "Cowling and Cooling of Radial Air-Cooled Engines," transcript of speech before the Society of Automotive Engineers, Detroit, April 10. 1929, Accession 61 A 195 (Box 25), Records of the National Advisory Committer for Aeronatics. National Archives and Records Administration, Washinglon, IC.
 30. Weick and Itansen's from the Ground lp, p. 67. See also Thomas Carroll, "Flight Tests of No. 10 Cowling," in F. P. Wamer and S. Paul Johnston, Aviation Handbook (New York, 1931), p. 145
 31. Telegram dated Febmary 6, 1929, NACA I angley Correspondence Files, Code A176-11. Langley Cental Files (LCF), NASA Langley Research Center, Hampton, VA
 32. Fiftenth Anmual Repert of the Natiomal Advisory Commithe for Amomantios, 1929 (Washington, IDC: U.S. Govertment Printing Office, 1930), p. 63.
 33. Ibid. p. 2.
[^15]: 35. Hansen, Ingimer in Charge, p. 145
 36. The fall text of the law establishing the NACA in 1915 (Public I aw 271 , 63rd Congress, approved March 3, 1915) is reprinted in Fingmer in (harge, p. 399, appendix A.
 37. Janes K. Hansen, "Ceonge W. I ewis and the Mantagement of heronatical Reseamen, in Willian M. I sary, ed. Armion's Golden Age. Pombads fom the 1920 s and 1930 (Iowa (ity, IA: Iniversity of Iowa Press, 1989), pp. 93-112.
[^16]: 46. Tichenor, "The N.A.C.A. Counters," p. 50.
 47. Ihad. pp. 50 and 129: Fiton W. Miller memorandum to IMAI, engineer-in-charge attacherl to "Comments on the Article in the December l930 Issue of Aem Dight. Entitled 'Why the N.A.C.A. \bar{z} ", " dated Jammary 2, 1931, Accession 55 A 319, National Archives.
[^17]: Ticheoor, "The NACA Counters," p. 124.
 Quoted in Roland's Model Resperch, 1:356, n. 22.
 From the comand Lf, p. 67, by Weick and Hansen.
 51. "The Effect on Airplane Performance of the Factors That Must Be Considered in Applying Low-Drag
 ng to Radial Engines," TR 414,1932 , by Wiliam H. McAvoy, Oscar W. Schey, and Alfred W. Young.

 Cowling to Radial Engines," $1 R+14,1932$, by Wiliam H. M
 52.
 Weick and Hansen, From the (romend Lp, p. 72.
 53. lbid.

[^18]: 54. Ihid.
 55. Donald H. Wood, "Tests of Nacelle-Propeller Combinations in Various Positions with References to Wings, I-Thick Wing-NACA Cowled Nacelle-Tractor Propeller," TR 436, 1932.
 56. Weick and Hansen, From the Ground lp, pp. 72-73.
 57. Ibid., p. 73.
 58. Flon W. Miller to LMAL engineer-in-charge, December 19, 1930, file A17ti-11, LCF.
 59. As quoted in Roland's Morlel Researh, 1:105.
[^19]:

 batle. A1 athout this same time Pratt 8 . Whimey and Vought were finding this type of bafte inferion whe tight

 framal $3+$ (Mav 1934): 159.

[^20]: 65. Theodore Theodorsen, "Theory of Wing Sections," TR $41 I$. printed in the NACA annual report of 1932. р. 29.
 66. Theodorsen wh MAL engineer-in-charge, June 28 , 1935, file R1600-1, LCF; telephone interview, James G. McHugh, Hampton, VA, with author, June 13, 1983.
 67. Theodorsen, Maurice J. Brevoort, George Stickle, and Melvin Cough, "Full-Scale Tests of a New Type NACA Nose-Slot Cowling," TR 595, 1937; Theodorsen. Brevoort, and Stickle, "Full-Scale Tests of NACA Cowlings," TR 592, 1937, and TR 662, 1939.
 68. Becker's High Sjferd Frontier, pp. 142-43.
[^21]: 1. Edwin P. Hartman, Adzomures in Researh: A IIstory of Ames Reseanh Cemter, 1940-1965 (Washingion, D(: NASA SP-4302, 1970), p. 77.
 2. "Rodert, Icwis August," Whe's Who in Worth Aziation (Washington, DC: American Aviation Publiations, Inc., I 958), p. 376.
[^22]: 17. Cray, Fromtions of Flight, p. 312.
 18. "File: McAvoy, Win. A." (WDC): RG255: Biography File: Box 25).
 19. "Inelcing Test Rig," Acro Digest 51 (November 1, 1945): 88+; Dwight L. Loughborough, Howard E.

 Grecne, and Paul A. Koush, "A Sudy of Wing De-Icer Performance on Mount Washington," Aermautical Enginerring Revirw 7 (September 1948): 41-50).
 20. Lewis A. Rodert and Lawrence A. Clonsing, "A Flight Investigation of the Thermal Properties of an Exhaust Heated Wing De-Icing System on a I ockheed 12-A Airplane," NACA Advanced Restristed Refort (June 1941).

[^23]: ⒈ "Memo: Progress on Wing Aad Propeller De-leing," Comdi. D.W. Tominson, L.S.N.R., Chaiman,

 29. DeFrance to 1 , wis, Febmaty 19, 1942 (RC ;255/Central/66/AFI-15a)
 23. Fidward Wamer, NACA, to Frank R. Colbohm, Douglas Aircraft Corporation, March 5, I941 (WD)C: R(255: (Eneral Correspondence (Numeric Filel: Box 247: File 50-14D).
 24. "Minutes of Meeting of Special Sulxommitte on Deicing Problems, Committee on Aerodynamics," April 15. 10.41 (WDC: R(255: Ceneral Correspmdence [Numeric File]: Box 247: File 5014B "Deicing Problems, Minutes").
 25. Edgar S. Garedl, president of Air Transport Association of America, to (.W. 1ewis, Jume 18, 1940

[^24]:

 30. Rocent of DeFrance. Nonember 26, $19+1$ (WDC: RG:255: Gemeral Records Relating to Ames
 Installation of JC-88 Aiplane at Wright Fïdd." November 29.1941 (RGG25/Contal/104/AF19-10).

[^25]:

[^26]:

[^27]: 45. Roclent to Engineer-in-Charge, Nowmber 14, 1941 (RG255/Contal/104/AF19-20).

 4fi. Army Air Fores Spectication No. R-40395, Anti-loing Equipment for Airctafi. (Heated Surface
 Type) (eneral Specification For:" April 21, 1942 (R (2255/Central/93/AF5-20).
 47. NACA's work on cowlings, another Collier-winning endeavor, also showed how NaC A rescarchers imotated not just in new componems, but also new protocols for adapting that component to each aincralt under development; sec James R. Itansen, "Enginering Science and the Development of the NaCA Low-D ang Fngine Cowling." in this volume.
 48. Roder to Engineer-h-Charge, "Memo: Ite Researh at AAl.," May X, 1942 (RC;255/Central/101/ AF19-10).

[^28]: (ROSOS Contal $104 / \mathrm{AF} 1920$).

 ment," Augus 9. 194t (RC:255/Central/101/AF19-90)

 3t, L. Myon Tribus, "Repore on the bevelopment and dppheation of Heated Wings: Anmy Air Forces Technical Repont Xo. $4972:$ " presented at the War Engineering Annual Meeting of the Socicty of Altomonive Engineers, Detroit, fanmany 8, 1945) as "Development and Application of Heated Wings," SAE Jomal 54 (Jme 1946): 261-68; see also "Cataking Ice," Air Form Magazim (Jamary 1945).
 57. Mono: DeFrance to 1 ewis, Febrtary 28 . 1945 (R6.255/Central/101/AF19-10). Compare Tribus epont (note 56i) with Lewis A. Rodert, "Recont Trends in Airplane le Prevention Tedhique", paper prepared for amecting of the Society of Automotive Engincers, New York, April 5, 1944 (RG255/Central/113/AM14-20a);

[^29]:
 io. J.F. Victory w Willian AM. Burden, "Recommendation for Collier Tophy Award for 1946," October 30, 1947, in 1946 Coller Tophy File: Awards and Trophies Reference Files: I ibnary of the National Ais and Spare Muse om, Washongon, DC. My thank to Pan Silbermann for alenting me to these records and making them availathle to me.
 19.27, Wandington, DC: "Nominations for the 19 Hi Robera J. Collier Award," (National Ait and Spare Muse mat

[^30]:

 lyons remberd it inclevant.

[^31]: 1. Theoclore von Kármán, Amodnamin (Ithaca, NY: Comell University Press. 1994), p. 116.
[^32]: 10. The critical Mach number is precisely defined as that frecotream Mach mumber at which sonic flow is first encometered on the surface of a body. The latge dag rise due wompressibility effects momatly ocems at a freesiream Mad number slightly abowe the critical Mach mumber; this is called the drag-disergence Math momber. In reality, Caldwell and Fates had reached and exceeded the dog-disergence Mach mumber in the in experiments. But their immoduction of the word "critical" in rengunction with this speed was eventually the inspiration for its use in later woining the temo "critical Mat homber:"
[^33]: 11. This authon, upon studving Cadwell and Fales detailed data rednction, has found that, athough they recogmied that the density of the airfow changed inside the wind tombel at the higher speeds, their acounting for this in calculating their lift and dag coefficients from their masured lift and drag fores was done incorredty. They thought they had worked the it data reduction so that "density does not enter into the calculation." Rather, thevexpressed their lift and drag coefficients in terms of the impact pressure- - be difference between total and static pressure. This is why they said that "density does not enter into the calculation." But they incomedy and rather navely used the incompressible Bernoulli equation to replace the velocity-squared term in the delinition of lift coeflicient with the impact presome. This resulted in about a ten percent ermor in the watwes of their reponted liti and dag coefficients at high aperds. For more details, see fohn D. Anderson, Ji., The

 12. FW. Caldwell. and E. Fales, "Wind Tumed Studies in Acrodynamic Phenomena at figh Sperd." NACATR 83. 1920.
 13. G.P. Donglas and R. Mck. Wood, "The Effects of Tip Speed on Airsorew Petormance. An Experimental Investigation of the Perfomance of an Aiscow (Over a Range of Speeds of Revolution from
 for Aeronatios, 1423.
[^34]: 14. I.J. Briggs: (9.F. Hall: and Hugh I.. Dryden, "Acrodynamic Characteristics of Airfoils at High Speeds." NACATR207, 1924.
 York, NY: John Wile yand Sons, 1947).
 15. LJJ. Briggs and Hugh L.. Dryden, "Pressure Dintribution Over Airfoils at High Speeds," NaCA IR 255.1926.
[^35]: 17. L..J. Briggs and Hugh 1.. Dryden, "Aerodyamic Characteristics of Twenty-Fom Airfoils at Iigh Speeds," Naca TR 319, 1929 .

 IS. H. Clatum, "The Effect of Compressibility on the Lift of an Airforil." Journal of the Roval Sorivty 1 Is (192年): 113. Alop published as R \& M No. 1135, Advivory Commitere for Acronatics, Sepermber 1927.

[^36]:
 liom the Natiomal Acronatolic Asombations.
 (Wishingtom, I) (\because N

[^37]: 23. Mid.
 (Jamany 1934): 10-43.
[^38]: DC: NASA SP-4t5, 19800 , p. Iti.

 97 . Andersom, Boder" Compresible Iow, ppe 282-84.

[^39]: 31. Stack. "Fffects of Compressibility on Iligh Speed Flight," pp. 10-13.

[^40]: 33. Anderson, Woudern Compressible Vhou, p1. 270-73.
 34. Stak: I indsey: and I ittell, "Compressibility Bumbe amd the Eflect of (ompressibility on Pressures and Forces doting on in tirfoil."
[^41]: 35. This chart is taken from the tigure on page 78 of the aticla by R. I.. Foss, "From Propeders wets in Fighter Airctaft Design," in Jay D. Pinson, ed., Diomom /ubile of Pawerph Fight: The Evedution of Alocrafeet Design (New York, NY: American Institme of Aeronamics and Astromatios, 1978). Pp, 51-64.
[^42]: Historical Arehives
 10. Hallion, Sufersomic Might, p. 34.

[^43]: 42. Hamsell. Smaner in (harge, p. 267.
[^44]: 41. Collirtis December 25. 1948.
 42. John Siack liles, NiSA I angley Mrohives.
[^45]: Address as President of the Royal Society" a long-sbanding "ambition to have avabable for study a coproms supply of atoms and electooms which have an individual encrgy fan trancemeng that of the alphat and beta

 (Amsterdam, XY: Elsever Publishing (ompany, 1979), p. Re. Danicl J. Keves. The Phasints: The Misfory of a

 Becker, Jay Benesch, Allent I. Braslow, II. Scolt Buter, Francis J. Capone, Nomman l. Crabill. James R. ILansen,
 Vincemi for reading this essat in manuscript form.

[^46]: 27. James A. Michener. Spore (New York, NY: Random House, 1982), p. 175. Mond Reworh, 1:351 19. 6

 moting a theeway join awad of the then-mpending Coflier for 1947.
 28. Ward, "Chates A I indbergh: His Flight and the American Ideal." in Finhotegy in Ameriat: A History of Individuts and Ideas, 2el ed., ed. Carroll W. Pursell, Jr. (Cambridge, MA: MrT Press, 199m) pp. 211-26 (originally in The Amertan (uartory, spring 195x, as "The Meaning of lindbergh's Fligh"). "Intuition Broughor Supersonic Figha," Wishington Powt, December 21, 1948.
[^47]:
 quotalion fromp. 106. Gonceming the Hoover quotaton, see Hansen, Emginer in Charge, pp. 132, 133. Koland. Hadel Restarh, L:LOS, and Lewn's original request leter in the Milon Anes collection holder "George Lewis," 1.1A. In "Fat Finding for Tomorow's Planes," Natomal Cographic, December 1953. pp. 757-80, Dryden atuib-

 R170 tile, LIAA.

 interview April 3, 1990 .

[^48]:

 to the Moom (New York, N: Simon and Schoster. loses).

 patses and ignomes its poblems and shotommings." Bommeys summaty also appeated in ARox. Comgressional

[^49]: 40. Quoted p. 91 in Hugh I.. Dryden, "Aerodynamiss- Theory, Experiment. Application," Aemmantical Singinering Renifu 12. No. 12 (December 1953): 88-95.
[^50]: M1): Miltons. Eisemower I ibrary, Johns Hopkins L'nversity, 1974), pp. 20-28. thabeth A. Muenger has also
 Center, $19+0-1906$ (Washington, DC : NASA SP-434. 1985). Dryden, p. 762. "Fact Finding for Tomormes's Plancs," National (iographic Magraine, December 1953, pp. 757-80.
 19. Becker, Migh Sperd frontier, p. 8.
 50. Report 207 appears pp. 465-79 in AR25; p. 468 discusses W. If. Nichols, the purchase of whose "quipment Hansen wports on p. 83, Enginer in Charge Becker, High-Siperd Fombion pp. 8, 9, 20.

[^51]: 53. AR 1915, p. It and p. 13.

 Kimmin studem, friend, aud colleague Willian R. Scats, p. 36, "Von Kímain: Flad Dvamics and Ohe
 neering (and perhaps in a much broader category) cond protitahly be attached mathematically:"
 54. Keport 142, "General Theory of Thin Wing Scetions"; Water G. Vincenti, "The Davis Wing and the
 (O)tober 1986): 717-58, especialls pp. 740-44, 749, and 750; Hansen, Linginer in Chage, pp. 81 and 111-18. In an Aphil 3. 1906, telephone intervew, Becker conlimed that the was crows-pollitation at langlev concerning theoretical uncerstanding of lamina-flow airfoils and closely refated high-speed airfoils. Vincenti calls for mome wholarship on arfoil design on pp. 738 and 739 in his aticle, which also appears as a chapter in What tmginers Kimu' and /han They Knowe It.
[^52]: 141.573. Langley technical libany): Beeker, High-sperd Fonther, p. 23.
 Resmah, 2:65:2-57: quetation on fe 6.57.

[^53]: limmels: Their Application to Ballistics, Aeqodynamies and Acomantics," from La Tichmifur Amontatiguf.

 powince of this magabime." The issue boasts (p. (4) that the magazine covered the Whights almosi wo years before Kitus Hawh, and quoted Robert Goddard saying in laso six yeats before the litst liguid-fueled rocket flight, the kitty Hawh of rocketry-that "a rocket capable of reaching the mom could be buils."

 Bmes collerion labder "Ceorge Lawis,"I.IA. Telephome intervew, july 18.1996.

[^54]: Comecrning the NAC A's prewar tavails, see Roland, Model Ressarh, ch. 6 ind 7.
 collection folder "Cerorge Iewis," IILA. Roland, Model Respanh. L:I47. Excerpt from Mead committer report.

[^55]:

 85. AR46.p.2
 80. "Compresible Flows in Aeromantios," p. 140. Becker, Migh-sperd Fomert, p. 35, sees this December

 $5:$ Dryden, "Fater Than somend."p. 8.

[^56]:

 sense of the idea in the 1930s, see the last paragraph of Statks"Effects of Compressibility on figh-Spered flight." p. 12 in AR39, and Becker, Hightstured fromion. p. 26;

 90. "Simmaty of Recommendations on Rescatch Problems of Transonic Aitctati Design, Compiled bs

 dynamies commoteres lemmal answer to the sumer responses and recommendations.

[^57]: 91. October 8, 1948; copies in RA70 folder "Research Authorization 70," IIIA.
 92. [ypeseript of "Methods lor Investigation of Flows at Tansonic Specds: Paper for Presentation at the
 13 and 14 , in Sack collection folder of the same name, IIIA. This passage reappears verbatim on p. 573 of
 Anglo-American Conference 195b, in a Stack collection folder tabeled with the revised paper's title . The 1951 version was obviously published; the citation for reforence 54 on p. 172 in Becker, / ight-sperd frmier, savs the 1951 conference took place September $7-11$ in I ondon.
 Z of tepeseript "Introduction, Orientation, and Summary"
 9.4. Wigh-spred Aroodynmers. See expectally the preface and p. 9.
[^58]: 103. Becker. High Sperd Fimmion, p. 13; Stack. "Compressible Flows in Acronatics," pp, 128 and 130.
 104. Reprinted in the Latgley Ai, Soup, December 19, 1952, avaibble LIIA
 105. "hataiton Broughat Supersonic Flight," Washington Post, December 21, I948.
 106. Langles tio berep. December 19, 1952, ataitable 1.14A.
 107. Nan Pope, WimdTum, Testing (New York, NY: John Wiley \& Soms, Inc., 1947), p. 207.
[^59]:
 19月6, signed "Ray II Whight, Phwicis," in Stack collection folder "Researh Poblems \& Guestions (Reid's trip to Entoper) +4-46." IIIA.

[^60]: 2. Richard T. Whitcomb, interview with Walter Bonney, March 27, 1973.
[^61]:
 of an airctath, paralteling the fuselages As the pered of airtlow through the cinched weck pertion of the venturi
 to the shtem inside the plane.
 10. Whitcomb, interview, Mareh 27, 1973.

 Sirgima, 1956, pp. 1. 20-21: Whiteomb, intervers, Mare 97,1973 ; Whitomh, "Research om Mefhods for Redacine the terodsamic brag at Tansmaic Speds," p. 3

[^62]: 18. Fergusoll, Emgineming and the Mind's Eye. p. 172.
 Mindi Avi. pr. 172-73
 (Seprember 19, 195:0): 13.
[^63]: 26. Whatcomb, interview, May 2, 1995; Hansen, Impiner in (Marge, p. 336.
 27. Whitcomb,"A Study of the Aero-Lifi Drag-Rise Chatacteristics of Wing-Body Combinations Noan the Speed of Somad," pp. 20-21.
 28. Lomis B. C. Fong, Dir, NASA Office of Terhmology [tilinatom, "The NASA Program of Industrial

[^64]:

 35. Bats and Corlise, Whm Litumts of Nist p. 63.
 36. Whitcomb, intemiew, Was 9 , lgas; Whatoomb, "Rexcach on Methods for Reducing the

 view, Mat 2 I! 19!

[^65]: 41. Whitcomb, interview, Nay 2, l99\%; Whitcomb, "Research on Meohods for Reducing the Acrodynamic Drag at Tramsonic Speeds," November lf, leq4, p. 3
 Asociatom, (Washington, D(: Smithsomian Institution Press, 1993), p. 232; Richatd I. Whitcomb, telephone intervew with antoor, May l: 1995.
[^66]:

[^67]: 18. The second wehicle arrived in Catibmia April 1959 . X-bs mumber 3 was almose completely destroyed in June 1960 during a gromed tent of the troubled XLR-99. After being rebuill, it was delivered oo NASA in Jume lotil.
 19. Stone, "The Quiel Records of the X-15"; Jenkins, The Wistory af Daveloping the Natiomat Stmate Transportatiom Sysem, pp.7-8. For a complete listing of X-15 lights, see "X-15 to Fmer Smithomian," NASA News Release. April 27. 1969, pp. It-21. For a list that includes aboted missions, see Melowell, "The X-15 Spaceplane," pp. K-19.
 20. Several efforts were made to complete mission mumber 200 before the program ended. The final attempt, on December 90 , I9f8, was canceled due to show at Edwats.
 "Strangled Infant: The Bocing X-20, D Dena-Soar," in Hallom, Mypersomir Renothom, 1:185-370.
 21. For a thomough listing, see foh V. Bechere "Principal lechmology Commibutions of X-I5 Progam." NASA Langley Researeh Conter, October 8 . IGG8 (in NASA Histony OHice); and the somewhat dated Sillwell, X-15 Rewamh Resulls.
[^68]: 23. "Brief History of the X-15 Project."
 24. Sece"Companing the X-15 and Space Shute Programs." It is important to kecp in mind, however, that ahhough these figures appeat nominal by the sandands of the coment space program, they were far in

 25. Hallion, on the fromtion, p. 117.
[^69]: 37. Hallion, (on the Fimutier, p. 117.
 38. Se W' 1) Katy, "Is NASA to Blame for Confusion in Space Efort?" formm for Appliad Respard and Publir Pohicy (Winter fy9?): 3 (1-43.
[^70]: 39. Honston, er. at., "Thamsiting from Air w Space," pp. 13-15.

 40. Honstom, "Tramiting from Air lo Space" " Pp, $118-20$.

 Shumb (New Yotk, NY: (rown P'ublishers, 1987).
[^71]:
 fropet Meran (Washinglom, DO XVSS SP-4201, 1966).

[^72]:
 11. limid.
 15. hish

 (ко口иам, 1994). p. 39.
 18. Swemon. (irimwoed, and hexander, This Vaw Oem, p. I34.

[^73]:

 29. [evine Hivile aml Span liata, p. 28.

[^74]:
 (;eorge Reedv, queted in 1 atminss, NASA, p. 26

 /but. plo. $69-70$.

[^75]: 37. Lambus, NASI, p. 29.

 38. hid. pp.15. 36-50.
[^76]: 42. Gleman, Birth of NASA, p. 5
 W. Henry lambright, Pomering Apollo: fames \because Whb of NASA (Baltimore, MD: Johns Hopkins (iniversity Press, 1995), pp. 90-101.
 43. I (evine. Missile and Spare Race p. 103.
[^77]: 50. Oncolcel in ihmi, p. 91.

 ㅇ. Hid., p. list.

[^78]: 64. Mid. p. 184
 6.). Swensom, Grimwood, and Alexamder, This Nam Oram, p. 160.
 65. The antroman who was separated during the selection process was Gordon Cooper, according is

 66. Levinc, Biswile and Space Race, p. 110.

 6*. Jhid.

[^79]: 75. Onoted in ibid., p. 203.
 York, NY: Pantheon Books, 1983). pp. 101-59.

[^80]: Redstone and the dilas beosmers.
 90. See lamius. NASH, p, 40, as an example of these kinds of pressmes
 91. Swenson, Grimmod, and Alexamder, This Now Ocme p. 311.

[^81]:

 Mid. p. tis.

[^82]: 97. Hid., p. 36; Swenson, Grimwood, and Alexatuder, This Nom Oetm, pp. 370-78.
 98. Bond, Heroes in Space, p. 37; Loudon Wainwright, The Geqt Americar Magazine: An haide Iestory of Iife (New York, MY: Alfeed A. Knopf, 1986) pp. 272-73.
 99. Wainwright. Grat American Magazim. p. 273.
 100. Dora lane Hamblin, That war the life (New York. NY: W.W: Norton, 1977), p. 81.
 101. Quoted in Bomd, Hores in space. p. 42.
 102. Quoted in Mid., p. 39.
[^83]:

 In5. Ithit. p. IS\%.
 1016. Ibid
 107. Latumes. N.SA. p. SI

 (Boston, MA: (Jumlan Pross. 198s). pp. 79-95

[^84]: I16. Imid., p. 6t.
 117. James E. Webb to Matin M. Decker, Prevident, Natiomal Aeromatuic Association, September If 1!963. NASA Historical Reference (oblection

[^85]:
 Amold S. Levine, Managing NASA in the Apollo tra (Washington, DC: NASASP-A102, 1982); John Doble Wiford. Wh Reathed the Mom (New Yonk, NY: Bamam, 1969): (hates Muray and Caherme Bly Cox, Apollo: Whe Rure wo

 The lingages of thallo (Now York. NY: Viking, I99t).
 2. James IL Gapshew and Karen A. Rader, "Big Se ience: Price we the Pesent," os/RIS, 2nd serics 7
 (1 : Stanford L niversity Press, 1992).
 3. Lohn Law and Michel Callon, "Fngimering and Sociolegy in a Military Aircraft Project: A Network Smaksis of Technological Change," Sociad Problems. Vol 35, No. 3, 1988, pp. 284-97. See also Wietre Bijker and

 4. Thomas Hughes, "The Seamless Web: Techoology, Sotence, Etectera, Ficcteta," Sorial shudien of Sience Vol. 1ti, I!Nfi, pp. 281-92.
 5. Jameson W. Doig and Erwm C. Hargrove, eds. Leadoship and Immation, (Baltimore MD: Johns

[^86]: SHI Pross 1970)
 (Batimone Mo : Johns Hophins ('nibersity Press, 1995).
 Gimh, NY: Mccime Hill, letge).

[^87]: a) Tiagis.
 15. Ser motr abose

[^88]:

[^89]: 24. Bilstein, Ohders of Magnilude, p. 91.
 25. For voyages to the moon, see ibid., pp, 9k-100; and Willitm David Compton, Wherp No Man Has Gome Before: A History of luthar Explomation Missoms (Washington, D) : NASA SP-4274, 1989).
[^90]: 96. Law and Callon, "Engineering and Sociohogy in a Military Aircraft Project," p. 90
 97. The concept of "apolitical sheld" is developed by Eugene Lewis, Publir Rnirefroneurship: Toumer a

[^91]: 1. W. David Compton and Chates D. Benson, living and Working in Spate: A fivary of Bytab (Washingtom, D(: NASA SI-4208, 1983), pp. 379-386.
 2. Astmantics and Aeronautios, 1974 (Washington, DC: NASA SP-4019, 1975), p. 95.
 3. Mid.
 4. John M. Iogsdon, "Space Stations: A Itistorical Perpertive," in Mireille Gerad amd Pamela W.

[^92]:
 Sission, 1959. pp t6, KI.
 CDS. $\mathrm{SP}^{-1011,1977) \text { p. } 9 .}$

 9. Jhirl. Itae prediction of the participants about the catient possible date lior a hamat lameling was remankathy proscient.

[^93]: Kricger Pub. Co., 199-1), pr 172-79.
 11. Comphon and Benson, Lizing and Workimg in Space p. 9.

 Bensom. Lining rand lionking in Space pp. Ls-18.

 Refermee (s)llertion.

[^94]: 19. Complon and Benson, Livmeg and Womking in Sprtie, pp. 83-84.
 20. Newkirk, Ertel, winh Brooks, Shylab, p. I23.
 21. (iompton and Bonson. Lining ami Working im Space pps 96-97.
[^95]: 24. Newkirk. Ertel, with Brooks, Skylah, p. 169.
 25. Leland F. Belew, ed., Skyiat, Our Fixt Sfuer Station (Washington, I)C: NASA, 1977), pp. 16-34.
 26. Compton and Benson, Liaing and Wowing in Spate, pp. 118-293. Fon a discussion of the Apollo system of management see Robert C. Seamans, Ji, and Frederick I. Ordway, III, "Lessons of Apollo For Lange-Sale Technology," in Frederick C. Durant III, ed.. Befuren Spumik aml the Shume: Nome Dprypertives om Amman Astronation (San Diego, (A): (Univelt, Inc., I981). pp. 241-87.
[^96]: 34. Belew, Skyat. pp. 50-75; Compton and Benson, Living and Workeng in Spare, pp. 268-76.
 35. Compton and Benson, Lizing and Working in Space, p. 289

 3ti. Ihed, p. 290.

[^97]: 39. Ihid, pp. 104-106.
 40. Compton and Benson, Living and Working in Spare, pp. 300-02. NASA officials had been troubled by readings indicating that leake migh have oce ured in the rocket throster svstems, thas jeopardizing the mission. Ionomat and Garriont confinned during their space walk that the situation had stabilized.
 41. $1 \mathrm{bm} / \mathrm{pp} .302-03$.
[^98]: 4.) Inid. pp. 313-16.

[^99]:
 49. Below, skyah p 155.
 wid the Shulter, p. 213.
 51. Stuhlinger and Ordwas. Wemher zom Bran! pp. 2gk-99.

[^100]: 10. Mack. Limengr the Earth, pp. 0it-79
 11. Ihid, pp. $52-60$.
 12. Inited States bepament of the Interion, Office of the Secreaty. Press Release, "Eathes Resomecen (o) be Sudied From space:" September 21 , 19fib. The Department of the Interion adted its program Eath Resources Observation Satellites (later Systems), or FR()S.
 13. The Weather Bureat phatd a similar game over management of the TIROS program, but in that case the Weather Bureau hat made arangements to cooperate with the Department of Defense instead of with NASA. Sere Richard LeRoy Chapman, "A Case Study of the US. Weather Satellite Program: The Iateration of Science and Politics," Syacuse I'niversity dissertation, 1967.
 14. Chatles F. Luce to Robent C. Scamans, Jr., October 21, 1966, with attached "Operationat Requirements for Gobal Resource Survey by Eathorbital Satelles." W. T. Pecoat, Director, Geological Survey, to Ender Secretars, Department of the Interior, "Status of EROS Program," Dratt, June 15. 1967. For more details see Mak. pp. Sobs. Public pressure not only spurred NASA leaders to faster action than they had planned but also helped them overome outside opposition to earth resources satellites. Resistance to the idea of a smatl earth resources satellite ame not only from NASA leaders with an interest in a more sophisticated experiment but also from the intelligence communty and their allies at the Bureat of the Budget who opposed any civilian eath resonmes satellite. See Mack, Vimeng the Eath, pp. 58, 61.
 15. Mack, Virating the Lieth pp 70-73.
[^101]: 16. William Nemdterg to Wilferd E. Scall, "Review of Cser Agemey Requmements for ERIS i in Response to September 17 Mecting at (iSFC:" October 14, 1970, William Nordberg to Willian Fischer, (Otober 19, 1970).

 ed in later satellites.

 IS. The summary of B ob attempts to cut the progtam is based on Giommitte on Earth Studies. Space

 SO 9.3 and Fisenlse is, Pmabiaing (inmonmat hifomation.
 19. Hid. एp. 81-9!

[^102]: 25. Mide, p 97-98. For the larger isobe of the role of the fohnson Space Center in applications devel opment ser pp. 14t-5x-meses sometimes sats the JSC projects as an athemph preserve johs for people who had worked on Apollo.
 26. Midl. p. 99.
 27. Alden P' Cohecomesses lo Rescatch Condinaton. EROS programe "L iaiwon with Goddand on ERTS-
 Ifistory Office, Nast Headquaters. Washingtom, DC:
 28. Mack, lizaing the Eath, p. 188-73. 101.

[^103]: 30. Mack. Virmeme the Earth, pp. 107-18
 31. Hid., pp. 130-58.
 32. Thid. ply 150-70.

[^104]:

 30. Mack. Vimomy the liath, ple. 139-1)

[^105]: 41. Commituer on Eanh Sudies, Earth Owervations from Space, p. IIE
 42. Bruno Augenstein, Willis H. Shapley and Eugene Skolnikoff, "Eath Information From Space By Remote Sensing," Reported prepared for Dt. Fank Press, Director, Office of Science and Techoology Policy. Fxecutive Office of the President, June 2, 1978.
 43. For example, a plan to lamol a fourth Landsat satellite carving only a new sensor-the thematic mapper-resulted in stoong protests from users who wathed the satellite to catry the older sensor ats well to provide data continuty. See for example M. Mitchell Waldrop. "Imaging the Eanh (I): The Troubled Finst Decarde of Landsat." Scione 215 (March 26, 1982): 1600-033.
[^106]: management, but she had some experience inside the project.
 55. Hid, pp. 15i-5x. W. Hemy Lambight, "The Political Construction of Space Satellite Technology," Sctent, Techoology * Ihuman Vaus 19 (1994):56
 56. Committer on Earth Studies, Eath Observatom form Sifure, p. 114.
 57. For a scathing review of the overall situation see Committer on Eath Stadies, Farh obmomioms from space.
 58. William Stones, "Landsat 8"s Word" briefing charts, Febrtary 2, 1996.
 54. John McFlros, "Preface." p, sii.

[^107]: 1. Wording cited from the collier Tiophy held at JPl and conveyed wo the anthor in a memonamen
 (Cub of Ammica and the Natiomal Ammantic Assoriatien (Washington, D): Smithoonian Institution Press. 1993), p. 235.

 Research Company, 1985), I: 4t0. The Trophy consists of a brome se ulpted bust of Coddard.
 2. Magellan sent back mone images per se, but those were range-I) pppler images created by a suthet is aperture radar. Enless otherwise stated, mfomation is from the NaSA Headguaters webs site:

 3. S. IChtiaque Rasool, intervew whth authom, Paris, December 12, 1994.
 4. Face sheet on missions prepared by JPI. Archives.
[^108]: Science Board, Outer Plants Explomation, 1972-1985 (Washington, D) : National Acallemy of Sciences. I971): Waff, "Scatching," p. 11: Waff, "The Struggle," pp. 48-49. As Homer E. Newell, Beyond the Atmospher, p. 212 points out, the 1970 Wood's Ifole summer study was thick with friction. The group chose to decrease support for magne ospleric and fields-and-particles restan h in laver of planetary reseach, therely alienating fields-anelpatickes scientists, and by stressing high-energy astronomy over dassical oplical astronomy and solar physios, the group created more strife.
 25. Watt, "The Next Missom," pp, 78 and 127; Kubastikin, "Who Killed Grand Tom:" pp. 1\%-15. In 1969, Grand Tour (four spatecraft-two lights os. Jupiter, Saturn, and Pluo and two wo Jupiter, Jranus, and Neptunc-phes a test flight to Jupiter) was estimated to cost $\$ 660$ million. Possible additional missions, such as a 974 upper anmos phere probe of Jupites, exta Jupiter-Satum-Pluto or Jupiter-d ramus-Neptune latuches, or two Urams depentre probes in 1979, could raise the Grand Tour total price age oo \$1.45 billion. "Otfice of Space Science and Applications

 26. Memorandum, Warren Keller to Elvita Haas and Julie Kertes, December 14, 1970, record nos. 00:148, NASA Historical Reference Collection.
 27. George M. Low to Donald B. Rice, December 16, 1970, record no. 005148, NASA Historical Reference Collection.
 Close Look at the Outer Plane ts: Scientiss wing for Shares of NASA's Space Budget Disagrec aboul this Once-in-alifetime Oppertanity" Simer Now 99 (Jaman 30, 1971): $77-78$; Homer E. Newell, IGniel H. Heman, and laul Raver, "Potential Contributions of the Luiter States Space Program w Pxploration of the Solat System," pp.

[^109]: Sciences, 1971), esp ple 32-33
 36. Waff "Scerching." p 25

 "Ihe Next Miswion," pp. 123-94.

 1004-105, cop 1103

[^110]: 41. Guoted in Waft, "The Next Mission," p. 12:3
 t2. Quoted in Rubastikin, "Who Killed Grand Tour?" p. 25.
 Fletcheq, February 92, 1972, record no. O0556ib, NASA Historical Reference Collection.
 million. "Vonagev cosss, July 18,1977 " and "FY78 Senate Auhorization, Part $11, "$ record no, 0055s6, NaSk Historical Reference collection.
 42. Gordon H. Pettengill, interview with author, MII, September 28,1993 ; Gorden H. Pettengill, interview with athor, MIT, May 4, 1994.
[^111]:

 Historical Reference Collechom; Edwad (. Stone, interview with atatbor, [PI. November 23, 1994.

 Gi. "Invitabon for Paticipation in Mission Detation for Giand Tom Missions to the (Onter Solat

 67. Edward C. Stone, interview with athtor, JPl., November $23,1994$.
 Collection; "Inviation for Participation in Mission Defintion for Gand Fome Missions to the Onter Solar
 view with aththor, Paris, December 12, 1994; Fdward (:. Stone, intervew with athor, JPl, November 23.1994.
 69. Edward (: Stone, intervew with athor, JPL. Nosember 23, 1994.

[^112]: 71. Davies. "Bried History," p, 39: sparflight (Jume 1977): 10.

 Murrav. pp. 152-153.

 76 . JPL, Public Information Office, Nows Clips, May 29. 1985, record no, 005586, NASA Historical
 Rinelatiand Winston, 1982), pp. 187. 200-01 and 20! Davics, "Brich history, vol. 24 (1982) , pp. 250-57.

[^113]: 77. Cooper, Imaging Saturn, p. 182.
 78. Fied D. Kochendorfer, Memorandum for the Record, April 21. 1978, Rodney A. Mills ut Distribution, April 21. 1978. and A. Gustafero to Associate Administrator for Space Science, Febmary 1, 1980, record mo. bo506i, NASA Historical Reference Collection: Murray, forme inw Spate, pp, 152-54.
[^114]:
 9. 1987, n.p.. NASA Historical Reference Collection.
 83. Frank A. (arr to Fidwand C. Stone, Decomber 18. 1980, and Frank A. Cat whamond I.. Heacock, December 12. 10xt, record no. OOF56ig, NASA Historical Reference Collection; Edward C. Stone, intersiow with author, IPL. Nowember 23,1994 , Davies, pp. 210,253 and 257.

[^115]:

 p. 28, JPL. Archincs.
 87. JPl. Pablic Information OHfer, News Clipe, May 29, 1985, record mor. ons5ki, NASA I listorical

 1987, p. 41, Jll Amhives.

[^116]: 91. James H. Capshew and Karen A. Rader, "Big Science: Price to the Present," Omis, ser 2, vol. 7 (1992): 14, 16, 20-22.
 Press. 1990), passim.
[^117]:

[^118]: T. Mid.p. 9
 (i. Mid. ग1 9-10.
 7. Wid. |pp. B 5-91.
 8. Mid., |Pl ! !

 1957, JSC I Iname Office.

[^119]:

 the NRO ligher phate.
 Rinthat \& Winston, 1971), Pp. 280.81.

 13. Mid. pp. 1!1-9!.

[^120]: 14. Ahridge, Spate Shume hisumy, p. 36
 15. Mid. pp. 30-48.

[^121]:

 36. Mist.
 37. hid

[^122]: f0. Thid. pp. 121-92.

 History Olfice.

[^123]: 48. Thompson, Vom Kimen Lecture, pp. 5-9.

 Hided. pp. 10-12.
 50. See Roger E. Bilstein, Orten of Magmitude: A Histoy of the NACA and NASA, $1915-1901$ (NASA: Washington, D(:, NASA SP-4406, I989), pp. 69-70; and 1 oftus, Andrich, Goorlhant and Kemedy, "The Fwolution of the Space Shumbe Design," p. 12.

[^124]: York: Stewart, Tabori, and (hang, l(185), p. 75.

[^125]: 3. From the Fath to the Mom, Waverley, 1958 , and Itant Mon in the Mam, Golumbia/Amema, 19G4. Intomation about all movics mentioned in this article appears in Leslic Hatliwell, Hallouell's Film Guide Kth edition, edited by fom Watker (New York, NY: Haper Peremial, 1991), pp. 384, 118. For Verne and Wells. The best overview of seieme fiction and spacedight is Frederick 1. Ordway III and Randy Liebermama, editors.

 4. Jules Venc, From the Eath to the Moon and a Trip around I/ (1865, 1870; Philadelphia: J.B. I ippincot, (1.d.), patt 2. p. 173
 5. Verne Fom the Earth to the Moon, part 2, p. 177; Babbicane response is on the same page.
 6. "'Steppin" out with Flash and Buck," NASA Lyndon B. Johnson Spate Centex, Spare Nome Roundup, $23+(2+$ Fobmam 1984): $1-2$.
[^126]: 7. Philip Francis Nowlan, Armageddon 2419 A.I). (1928-1929; New York, NY: Ace Publishing Corporation, 1962), pp. 24-25. This version of the story contains both "Armageddon 2419 A.D." (1928) and its sequel "The Airlords of Han" (1929), both originally serialized in Amazing Stories, but with "a certain anount of revision and condensation" in this book, according to the foreword
 8. Destination Moon, Universal/George Pal, 1950. In Heinkin's book Haze Spare Suit-Will Travel (1958), alien flying satucers tansport space tavelers. The hero of this tale, Clifford Russell, won a space suit in a Shyway Soap slogan contest. Previously used at a satellite station, this obsolete pressure suit was a real-though fiction-al-space suit, not a toy. Made by Goodyear, air conditioned by York, and equipped with auxiliary systems by General Electric, the suit had a body of silicone, asbestos, and glass-fiber cloth. The helmet was chrome-plated with a bright reflecting surface so as not to absorb heat from the sun. Oxygen came from steel bottes carried in a backpack. The suit, named Oscar by its new owner, served Cliff as he was kidnapped and taken to the Moon, then to cold Pluto, and then beyond, and-of course-back to Earth. Cliff concluded his adventures by deciding to become a space suit engineer. Throughout his adventures, Cliff rode in spacecraft or lunar rovers, or he provided his own mobility without the aid of any maneuvering device
[^127]: (O) cober 1934): 49-95; quite on page 492.
 Hi, Wimme Mac, and the Wowh Iow Prosme Suit |Smithsonian Amals of Flight, Nomber 8! (Washingtom, I)C: Smitheonian Institution Press, 1971).
 11. Buan B. Sterling and Frances N. Storling, Whl Rogrov Bi Wiby Pow: Doath al Ramou (New York, NY: M. Fans and Company, 1993).
 Pross, (994), p. 15

[^128]: 13. Mid. p. 50.
 (Howand Barfield), Edwards Bir Fonce Base docoment \#l in "Support of the (ocmini Program, A bocument Collection, Volume II-MMU, though Derember, I96t," by Reseateh and Techoology Disision, Rocket

 (OH: Aerospace Medical Division, Wright Air Development Division, 1960).
[^129]: 15. Harold I. Johnson, William C. Huber, Edward H. White, and Michael Collins, "EVA Manenvering about Space Vehicles," typescript report (without the referenced figures), no date, pp. 2-7 plus tables I-III, in Record Number 007189, NASA Historical Reference Collection, NASA History Office, Washington, DC.
 16. Colonel Daniel D. McKce, "Gemini Program," pp. 6-15, in The U.S. Air Force in Space, edited by I ieutenant Colonel Eldon W. Downs (New York, NY: Frederick A. Praeger, 1966), p. 6
[^130]: 17. Ser Chapler two. "Dynamic Soating," pp. 11-19, in Demnis R. Jenkins, The Hisemy of betefoping the National Sfore Tranyortation System, the Beginning through STS-50 (Marceline, MO: Walsworth Publishing Company, 1992); amd Koy Franklin Houchin 1, "The Rise and Fall of Dona-Goar: a History of Air Forde Hypersonic K\&D, 1944-1963." Ph.D. dissertation, Auburn I niversity, 1995.
 Publishing Company, 1904), pp. 34-35. Regarding the spate race in the comext of the Cold War, see particularly Walter A. McDongall. . . The Heatoms and the liarth, a Pblitical Hisumy of the Spare Age (New York, NY: Basic Books, 1985). Regarding the immediate response to Sputnik, see Robert A. Disine, The Sputnik Challenge, Bivenhnoe Respomse to the Sonion Satellie (New York, NY: Oxford Eniversity Press, 1993).
 18. Ceneral Bemard A. Schriever, "Does the Military Have a Role in Space"" pages 59-68 in Space: Ifs
 L.ibaries Press, 1973), p. 63 ; the phrase quoted in the same paragraph is from p. 62 .
 19. Regarding the histony of the Bell row bet belt program, see Batry E. DiGregorio, "The Rocke belt,"

[^131]: 91. Colonel J.M. Silk, Director. Air Force Rocket Propulsion Labotators. W Major Siavedra, Vonember 20.1963 , document \#4 in "Support of the (;emini Program, 'A Document Collection.' Vohme II."
 92. Daul (. Erivkem, Meno for the Record, "Pogram 631N" December 5, 1963, documen \#6 in "Support of the (iemini Program, 'A Document Collection, Volume II."
 93. P. ©. Erickson to PRPRE, regarding tip to the Aero Propulsion Labomatory of March 30-April 9, 1964, document \#10 in "Support of the Gemini Program, 'A Domment Collection," Volume ll," The "greatly improsed quote later in the paragraph came from document \#11 about a May review, in the same solume.
 e.t. Chapter t. "(remini Space Suis," pp. 51-72 in Koaloski, lUS Spact Gear, and Gregory P. Keomedy, "Development of the (ermini Space Suit and Extravehicular Equipment," pp. 97-109 in Natiomal Ab and Sparf

[^132]: 25. J.F Kephart. Trip Repor [Dallas trip, March 24, 1960], docoment \#19 in "Support of the (emini Pregtam, A Document Collection,' Volume III-MMV, January I-June 30, 1965." by Researeh and Technology Division, Rocket Propulsion Laboratory, Air Force Sustems Command, on microlilon woll \#26225. Air Forre Historical Research Agency. Maxwell Air Force Base, AL.
 26. Colonel Richard T. Hemsley to A [in] F[otce] R[ocket] Plopmasion] L/aboratory] (Colonel [JM.| Silk), April 5, 1965, document \#14 in "Support of the (iemini Program, "A Document Collection, Vohume III." 27. Kodoski, C.S. Space Gatar, p. Gifi.
 27. Regarding the conclusion of the pre-flight activities, see "Support of the demini Program, A Docoment Collection, Volume V-MMU. October 1, 1965-Jume 30. 1966," by Researeh and Techoologe Division, Rocke Propulsion Laboratory, Air Force Systems Command, on microfilm roll \#2de2s, Air Force Historical Research Agency.
[^133]: 32. Johnson and others, "EVA Mancumering about Spate Vehicles."
 33. Memomandum from Chatles W. Mathews regarding "MSC Contract with Rocket Reseath (omp for Tiwo Hand-Held Mancuvering Lhits," June 14, 1967, Record No, 008093, NASA History Oltice
 34. "Space L'nit IQ Is Secend Only to Man," Demet Post, August 4, 1965, p. 9; and "Bell Designs DML to Propel Astronants in Orbital Tasks," Amoptare, Jantary 1967, p. 9.
 35. William David Compton, Whore No Man Has Cone befor, a History of Apollo I, unar Lxphoration Mesiom, (Washington, D(: NASA SP-4212, 1989). pp. 338, see also) !7-99.
[^134]: 36. Donald K. Slayton quoted in Gregory P. Kemedy, "HHML, AMD, and MML", the Development of Asmonam Manewering Units." pp. 471-82 in Skylah, Spmer Phafoms and thr Fuhtre [Advances in the Axtronatiocal Sciences, Volume 49 (San Dicgo, CA: American Astronantical Socicty, 1982). 475. See also Donald F.. Hewe's and Keuncth E. (;lover, Dovelopment of Skylah Expriment Tozo limplosing a Foot Controlled Mamourring luit (Washington, D(: NiSA TN 1)-3809. 1972); and David F. Thomas, John D. Bird, and Richard F. He llbam, fet Shoes, an Extmathicular Spar Latomotion Denioe (Washington, DC: NASA TN D-3809. 1967).
[^135]: 37. C.E. Whitselt, Role of the Manmed Mamenering I nit for the Spore Station, |SAE Technical Paper Scries No. \& filol2] (Warrendale, PA: Society of Automotive Engineers, 1986), p. 1. Regarding Whitset duties, see memorandam from Willam C. Shaneder, Director of the Apollo Applications Program, to Assistant Administator, Office of DOD and Interagency Aftairs, April 9, 1969, copy in Record No, 002eges, NASA History Office. Washington. DC. Ser aho C.E. Whitsett and B. MCCandless II, "Skylab Experiment M509 Astronatil Mancusering ("nil Otbital Test Results and Future Applications," The Skylab Result |Adames in Asmomatical Sciene Sciences, Volume 31, Pat 1] (Tamana, (A: American Astronatical Society. 1975): Leland F. Belew and Ernst Stuhlinger, Skytab, a Guidebow (Washington, D(: NASA EP-107, 1973), pp, 197-98, 201-02; and W. David Compton and Charles D. Benson, Liong and Wioking in Simer, a IIstory of Sky/ah (Washington, DO: NASA Sp-
 clipping from an midentified fohmson Space Center employee publication, and Whiselt obituary [died it October 1993], from a Houston newspaper-both clippings obtained from the fohnow Space (enter, Houston. Whitsett was educated at Aubum Conversity and the Air Force Institue of lechoology. His Navy colleague. MeCandless, held degrees from the Naval Acalemy and Stanford I miversity.
 38. NASA, "f1-B Tenth Space Shutle Mission Press Kit" (Release No. 84-4, Februay 1984), p. 15.
 Hestory (Baltimore, MID: Johms Hopkins I misersity Press), p. 11.
 39. Alex Roland, "The Shutle, Triumph or Turkey?" Deromen 6 (November 1985): 29-49; and Danied A.
 (A) Ater, n.d. [pre-1984]).
 40. Quotaion fiom the base of the Collier Trophy, as quote in Bill Robic, For Greatest Aharmemen, a
 Press, 1903), p. 235.
 Space Shuthe officially replaced Space Tramsportation Ssstem as the program name in 1990.
[^136]: 43. Whisett, Role of the Manned Mamenaring Lhil for the Space Statim, pp. 1,5. Regarding the evolution of the awatd-winning MMU, see Kennedy, "HHML, AMU, and MMU, the Development of Astronath Maneuvering Units;" and D)J. Shayler, "The Shutle MML"," Sparefligh 27 (June 1985): 263.
 44. Allen, Entring Spare, p. 113.
 45. Bland, Spare Shutle hVA Opportunilies, p. 7.
 46. Martin Marietta, "Briefing: Manned Maneuvering Unit," at Lymbon B. Johnson Space Center, September 27, 1979, copy obained from Johnson Space Center Library, Houston.
 47. Craig Covatult, "Mancouvering Enit Keyed to Simplicity," Aviation Woek iv Spare Technology 120 (January 23,1984): 43 .
[^137]:

 (September 1983): 24-27, quote fromp. 25)
 Technology 120 (Janmary 9,1984): 44.

[^138]:

 rescte mission was suppesed to go is detailed in Craig Covant, "Tight Pace Challenges Solar Max Repair," Aviation Werk iv Spare Technoleg 120(March 26, 1984): 42-51; and how the mission attally went is reponted in

 Iti. 1984): 21-24; regarding the docking failure, see this article and Alon K. Marsh, "NASA Socks Catuse of Docking Failure," on page 25 of the same istare.
 Missum Summary Refor STS 51-4 (Technical Repon MME-SE-17-111. Febriany 1985), p. E2.

 1984): 16-19.
 60. The insumace moterwiters hat paid NASA $\$ 5.5$ million reonery tee in adrance of the mission; see

[^139]: 1. Martha M. Mamilon. "Fimms Give Propellers a New Spin," Washomgon Poat, Februany 8. 1987.

 lewis Reseath (onter, box equ

[^140]: 6. See James H. Capshew and Katen A. Rader, "Big Science: Price to the Present," Osim, 2ud ser., 7 (1992): 3-25.
 7. Roy D. Hager and Deborah Vrabel, Aderened Thobopop) Profect (Washington, DC: NASA SP-495, 1988) p. 610 .
 8. (itation for the Collier Trophy in Ren D. Hager and Debotah Vrabel, p. vi.
[^141]: 9. Thomats P. Hughes. Amerian (iemons p. 5t.
 10. Thil., p. 183
 Departures, and (ctitiss," Histor and Tehmolgy 12 (1990): 217.
 REO. 1902-1980 (Cambridge. MA: Cambridge (1niverity Press. 19R8).
 11. Interview with Domald Nored al Case Westem Reseove l minersity by Vinginia Danvom and Math Bowlos, Augus 15, 1905.
[^142]: (Washingtorn, D(\because NASA SP-4306. 1991).
 15. Mid.

[^143]: 16. The lsateli victory during the Six-Day War in 1967 resulted in retaliation by OPEC.. Seeking to fore a pro-Arab stance from the Enited States (Israel's ally), Saudi Arabia imposed an American oil embango concurrent with the quadnupling of oil prices from the other OPEC, nations. See Don Peretz. The Midde Fiast Tiddey
 dded. (New York, NY: Happer \& Row, Publishers, 1990), p. 971.
 17. Earl Cook, Man, Emerg, Soriety (San Franciso CA: W. II. Freeman, 1976), p. 208.
 18. A bartel contains 42 gallons.
 19. In 1973, total C'. S. crude oil imports totaled 1,184 million barrels, 765 of which came from oped: The OPEC nations at that time included Algeria, Ecuador, Indonesia, Iran, Itaq, Kuwait, Libya, Nigeria, Qatar, Satidiabia, United Arab Emirates, and Vemezuela. Statestical Abstract of the Cnital States (Washingtom, DC: U.S. Depatment of (ommerce, 1994), p. 503.
 20. (ifton F Vion Kam, testimony before the LIS. Senate, Commiter on Aeronatical and Space Scitaces. September 10, 1975, p. 1 .
 21. Domatd I. Noned, John B. Whitlow, Jr., William C. Statk, "Status [pdate of the Nisis Advanced Lurboprop Project," unpublished repori, Nored private papers.
[^144]: 22. Kallo testimony, p. 3.
[^145]: Ibid. . 1. Г.
 Semator (ooldwater's response to Kahn, ibid. p. 8 .
 It was likely that the NASA staff drafted the letter:
 Bary Goldwater and Frank Moss to James (. Fletcher, as fomed in, Aircraft Fucl Conservation Techasogg, task force report, September 10, 1975, pp. 138-39.
 27. Roy D. Hager and Debotah Vabel, Admaced Tuhopmp Poped (Washington. DC: NASA, 1988), p. 4. 28. Airaft Fuel Conservation Techoology, task force report, September 10, 1975, pp. 1 and 2.
 29. The Aircaft Energy Ffficiency (ACEF.) Program airfame progets included: the Fuel Conservative Transport to impowe on acrodymanic design and potentially save fifteen to wenty percent in fuel use; the Composite Primary Structures which would decrease the weight of aircraft through the use of composite materiak and save 10 ow 15 percent in fuel costs compared to an all metal aiphane: and Laminar flow Contol to allow an ameatt to manam low datg, thos crating a potemial find savings of wenty to forty percem.
 30. Noted interview:

[^146]: 31. Hager and Vrabel, Athenced Tutopme Pmert, p. 5.
 32. Aictati Fuel Consemation Technology, task force teport, beptember 10, 1975, p. 4.
 Sciences, september 10, 1975, p. 9.
 33. Mikhelson interview.
 34. Airctatt Fuel Consersation Techology, task fore mport, September 10, 1975, p. 48. These Sonict
 range of 7.800 miles, a propeller diamethe of 18.4 feet, and operated at a 7.5 math mase seed) and the Amtomos AN 29 "Cack" (which weighed 550,600 pounds, had a maximum range of 6,800 miles, a propeller diame

[^147]: 37. Noted interview.
 38. Ihid
 39. Aimafi Fuel Conservation Techmology, task force repont, September 10, 1975, p. 46.
[^148]: 40. Donald I. Nomed and Frank I). Berkopere. "(indelines for Achocacy of the New Programe in the
 Nomed Berkopec, box 238, p. 1.
 41. Midl. p. IO.
 42. Ihid.
 43. I. li. Wikete, Aircrali Accident Information, Amgon A, 1976 , Nored papeos, NASA, box 294.

[^149]: 48. Domald L. Nored, John B. Whitow, Jr., Willam C. Stratk, "Status I petate of the NASL Adanced Thbopeop Project," unpublished repont, Nored papers, pp. $4-10$.
 49. Aircratt Fuel Conservation Te homogy, task force repon, Sopumber 10, 1975, p. Ix.
[^150]: George M. Low to Alan Lowelace, April 28, 1975
 anter Ainhes Passenger Surver, NASA, Nored papers, box 294.
 Quoted be Mathat Iamilton, "Fimms Give Propeders a New Spin: (E leads high-stakes competition
 Eg. Quoted by Matha Lamilton, "Fims Give Propellers a New Spin: (EE Kads hig

[^151]: 53. Prop-Fan, survey resuls. December 1978. NASA, Nered papers, box 231.
 54. Intervicw with Keith Sievers, Augnst 17, 1995. aurl celcphene interview with Ramomd (alladaw Angust 17. 1995, by Virginia Dawson and Mark Bowles
 55. Mikkelson imerview.
 56. Authos' italics. Robert C. Collins statement submitted to subeonmittec on ransportation, aviation. and materals, Holse of Representatises Committer on Science and Techoology, Fehmany 26 , 1981 .
 57. Preliminary draft of a propesed report, wew of NASAS Aimadi Energy Efficiency Project (ido office. August 1979 , Nored papers, box 182. p. 36.
 58. Unkmonin NASA Headquarters alministator to J. H. Solarow, fanmary 21, 1980, NASA, Nomed papers, bex 182, file Gido report.
 59. Fohn M. Klimeberg to NASA Headquarters, December 21. 1979, NASA-Lewis Rescameh Center

 Noted papers. box 182, file CiAO report.
 60. Preliminary daff of a proposed report, reviow of NASAS Airctaft Energy Ffficiency Project, (ido) office, Augusi 1979, Nowed papers, 1oox 182.p. 37.

[^152]: 4. Of these who worked closely with him in the retmote-light effor, Truty singles oun tom pantionata

 Tam, "Relum to Flight,"Jume 10. Ig8s,
 5. Entess otherwive cited, thin narratise of the refurn-to-flight eflion is based on aceotants in the hat
 All the er gave detailed coverage to the eflom

[^153]: 12. New lonk Fimms, March I6, I Inkti, p. Al

 t. The Chathenger mission had been dexignated iol-I; as noted abose, ST'S was the actomym lom the Space liansportation Sistem, the oflie ial name for the Space Shutte

 Lt. Ihompson had spent twenty years at the Marshall Spate flight (enter ats an emgineer and manag
 Labonatory in Princetom, New Jernes

[^154]:

 Gantenance Requiements Specification Deroments.

[^155]: 20. Wirhinglom Pont, March 12, 1986, p. AI.
 and 3-76. In this essay, the temo Solid Rocke Motor (SRM) is used except when the context in clearly one that deals with the wemall Solid Rocket Booster (SRB) which incopporater not only ohe SRM but other elements such
 tutil the lime of latumel.
 21. Newh hork Times, Manch 30, 19k6, p. A1, Septomber 29, 1986, p. AI, and September 23, 1986, p. A!

 巳3. Thid Truly, in an August 14 , 1995 personal communication to the ambor, notes "I dent remember
 since a ped wats totally out of the question for seremal we homat, budgetary, and sohedule reasoms."

[^156]: 28. Criticality I items were theore where a failure could cause loss of life or vehicle: Criticality 1 R , where a failure of all redumam hatware items could have the same elfect; Criticality 2, where lailure could eanse kes of mission: Ctiticality $2 R$, where falure of all redundatht hardwate items cond have the same effect.
 29. Presidential Commission on the Space Shamle Challenger Accident, Requet to the /rasdem, Jume 6 . 1986, pp. 198-901. Other recommendations rlealt with the need wimprove internal commmications within NASh, particularly at the Marshall Space Flight Comter, amd improving mantemance procedures for Shotle parts.

 views of the investgation and report. Feymman critical views of NAS were published as an appendix to the full Rogers Commission repost, but the volume of the wepor in which they appeated was not printed until well afted the relcase of the main text of the report itselt.
[^157]:
 Shulle Chatheme Arrident. Jume 1957, p. 13.

 fome last report of how it was implementing the recommomblations of the Rogers commission cited atome

 f2. Richard Thaly rematis that: "Gow Stever and his NRC group were without dombe the mont helphat

 the anthor, thegos II, 190.5.

[^158]: Callocted heports, 1) 27
 decided that the Stever pancl was comect, and that the risk of the test wits "woth taking." Ife also suggests that "I womblit hase hesitated to go the other way had I helieved that they were womg." Persomal communication lo atuthor, August 14. 1995.

 5l. 1 bid.
 Nrou lomk Times, August 31, I 1888.
 NRC i, Cohleflid Reponts, p. SR.
 september efi, $1988, ~ p .17$.

[^159]: Rechard Traly memorandum, Nowember 5. Igas.
 mivid.
 L. F. Lawrence, "Spate Shumle-Return to Fight." Spareflight, Scptember I98s, p. 352.

 65. NASS, Implememation of Rerommondaioms, Julv 1987, p. 39.

[^160]: 66. Nou Kork Times June 2. 1987, p. C.
 67. Vou hork Times, Jure 20, 1986, p. AI.
 bis. Comment on drati of this essay by Richard Kohrs, Jaly 19. 1995
 68. Washingran Pow, May 28 , 1986 , p. A5.
[^161]:

 Bocle," Amynar /hishman, Jume 1971.
 p. 1233.

[^162]: 82. Hid., August 18. 1986. pp. 18-19
 83. Mid., October 13, 1986, pp, 22-23.
 8.t. National Rescatch Cometil, Comminter on NASA Scientific and Techmical Program Reviews, Pent-
 1986), pp. $7-8$.
 84. Allesti, Sepember 26, 1988, p. 16.
 85. Time, February 1. I9אs, p. 20.
[^163]: N7. Allest, Juls 11. 1988. pp. 34-35.

[^164]:

[^165]: 2. 5 ; I ongair detivered the lecture on which this book is based in June I 98 A , at which time the com of the thable Space Telescope was estimated at about a billion dollars.

 bing even before latuch and deplownent. A loo of words and bile were expended behind the semes wer such banished teoms as "tepair" "lix," and "rescue," becanse these terms mplied a spaterath that wat "broken." See Chaisson. The Hublle bate for examples.

[^166]: 11. Smith, The Spare Teleowpe, (hapsers 8-9.
 12. Smith, The Space Telecope, Chapter 9 ; Chatisson, The Hubble Wars, Chapler l. While the \$6 million per montl seems like a lot for storage, the spacecraft had to be kept in amammoth dean room wath active air conditioning and filtering systems opetating constanty, some nitrogen purging of areas of the spacecratt, and some of its systems powered and operating. This was not "dead storage", but much more akin to a patient in intensive care. By the time the spacerati was launched, it had spent almost a third of its intended design life suspended ventically in a gravity and atmospheric enviroment for which it was not designed, and with many of its systems powered up and rumning. Rothenberg, however, believes that this period provided opportunity for testing and debugging that ultimately was beneficial; Robhenberg Interview, Angesi $8,1995,1 / \mathrm{B}: 160$.
[^167]: 13. Broce Mchandess, Oral History literwew Jamary 8. I986; Kalyy Sullivan, Oral History Interview, danamy 9, bunti. These interviews are in the Space lelescope History Project colletion, National Air and Space Museum, Smithsonian Institution.
 14. Chassom, The Huble Was, Ch. 1.

[^168]:

[^169]: billion, making the repait almot one-third the "bate" of the Felewope. However, the figures change subsiantially il onte

 Scplember \&. 1945 9 13: 320.

[^170]: 30. Rothenberg lutervien. August 8, 1995, 9/A: 010 .
 31. Heflin Interviow, March 17, 1095, 1/A: 020, 1 B: 075; it is aganst the prexaling ethes at fohnsen wo single out a particular mission as mome impentant than others, and to chameterize some people as better than others. Hewever it is chear fiom interviews and conversations that while all missions are equal, Hubble was mote equal than many others. Acomplished people were eager to be a part of it, and supervisons were concemed on assign theit best talent to the mission. On llight assigmenents, particularly the asmomat mandate of never asking fon a particular assigmment, see Henty S. F Cooper, Jr., Befor Liffoff: Ihe Making of a Spare Shuthe Crew (Baltimore. MD: Johms Hopkins University Press, 1987).
 32. John Logsdon details elsewhere in this volume Truly's role in the two-and a-half year teturn to flight atter the Ig86 Challenger acciden, a contribution that carned Truly a Collier Trophy. On Coblin's appoinment as NASA Administator and his management style see: Kathy Sawyer, "The Man on the Moom; NASA Chied Dan Goldin and a Little Chaos Just Might Save the Space Program," Washington Post (July 20, 1994): B-1; Theresa M. Foley, "Mr. Goldin Goes to Washington," Air and Spate 10 (Apmil-May 1995): 36-43. Fanty in his caveer Goldin had worked at the NASA I ewis Research Center, but had been with TRW for 25 years prion to his appointmem.
[^171]: consutied astmonats lom Staflond and John Yoang, both of whom had flown an Apollomissions.

 mission we were basically able to get what we weeded." bot that might not be the catse for all missions, he adeled,

 bulion. See also cooper. Brfor lifoglf

[^172]:

[^173]:

[^174]:

[^175]:

[^176]: (1) ecember 1994): $1-5$

 mumerous and conflicting assumptions that underlas such calcolatoms. Amoug others, see "When bid ber L'niverse Bequin" Time 145 (March 6, 1995): 76-82?.
 Relase PR-94-H1. Nusember 15, I994.

 Decmater 6. 1901.

[^177]: (inters Junc 29) I!95.
 si. Roblenterg noted. "If woutake oner a prohteon . . . Thats the mumber one or wo prierity to the orgat
 ple are going to tatly atound it." Rothenberg fatervew. Augus x. 1905: 1 /a: 510.

[^178]: Consing. Iawrence A., 34-44 passim
 Cochran, Jackic, 5o

 Cockrofi, Sir John, 91
 Cohen, Aarm. 287. 248
 Cohm, Benedici, 123
 Cold War, 147, 167. 1699, 170, 176, 179, 185, 186, 194, 204, 210, 301, 303, 318, 323, 325, 329
 Cold Weather Test Station, 39
 Colley, Russell, 30.4
 Collicy Tiophy, 1929, 1, 3, 6, 14, 91, 25, 29, 50, 55, 54, 89, 90, 91, 93, 95, 97, 98, 111, 120, 135, 147, 149, 150, 151, $164,165,166,167,176,191,193,200,204,205,207,208,210,213,233,235,244,251,274,277,297,301,306$, $313,318,323,324,395,342,345,364,365,366,394$
 Collins, Michatl, 193, 908,, 297n56, 306n15, 310
 Collins. Robert, 337
 Columbia, space shutle. 296, 297, 298, 2999, 313
 Colvocoresses, Alden P., 241n-2

 230248, 311435
 Congress, $115,92,113,117,162,177,186,189,194,196,197,199,200,202,203,205,210,214,216,217,219$. $220,235,238,240,249,262,280,244,266,289,296,307,318,323,326,328,345,350,358,364,374,394,395$, 396
 Connct, P.K., 244
 Comad, Chatles "Pere" 922, 293, 294, 296, 297
 Constant, Edwatid W.. 95, 97,18. 111, 114, 115. 117, 118
 Comair Comporation, 144, 145, $146,147,148,171,176,281$
 Cook, Fanl, 326
 (iooke, 11. lester, 190m11+
 Comens, I). Owen, 310n30
 Cooper, Leroy (eordom. Ji., 165, 168, 189 , 196
 (iopp, Matin, 120
 Corliss, William R., 8ul4, 97n16. 145
 Comell Ulaversity, 15

 (oney, Richatd ()., astomant, 346, 381, 394, 395
 Cowling NaC: $1-27$
 Cox, Catherime Bly, 103. 205023
 Crabill, Nemman I ., 91
 Crippen, Robern La, astionamt, 297, 317, 349, 358, 359
 (Socos, Alumo. $7 x$
 Coocker, James. 376
 Cooft Themas A. 265
 Gonsfield, Sontr, pilar, 155, 161, 162
 Cubbage , James M.. Jr., 99n25
 Cummings, C.M., 35
 (Curtis, Robert I., 120)
 Curtiss Aeroplanc \& Motor Company, 29
 Curtiss C-40 antoralt, 99
 Cumiss Glemn 11, 3; 3n7
 Curtins Hawk NT-5 a arctaft, 2, 4, 13, 20
 Cutiss-Wright Coppotation, 127

