

Information Flow in the Launch Vehicle Design/Analysis Process

W.R. Humphries, Sr. Marshall Space Flight Center, Marshall Space Flight Center, Alabama

W. Holland and R. Bishop Sverdrup Technologies, Inc., Huntsville, Alabama

National Aeronautics and Space Administration

Marshall Space Flight Center • MSFC, Alabama 35812

Acknowledgments

This effort was completed through the cooperation of several people from Marshall Space Flight Center's Structures and Dynamics Laboratory (ED), Sverdrup Technology, Inc., and International Space Systems, Inc. (ISSI). The following list contains the names, organizations, and specialty area(s) of the contributors:

Wayne Holland, ED01/Sverdrup, Lead
Steve Ryan, ED12, Performance & Trajectories, Guidance & Control
Fred Harrington, ED23, Structural Analysis
Robert Garcia, ED32, Aerodynamics & Induced Environments
Don Ford, ED52, Vehicle Configuration & Structural Design
Rhonda Childress-Thompson, ED53, Vehicle Configuration & Structural Design
Uttam Gill, ED63, Thermal
Chris Cole, Sverdrup, Systems
Rodney Bishop, Sverdrup, Systems
Jerry Whitenstein, ISSI, Systems, Rocket Based Combined Cycle
Troy Stanley, ISSI, Systems, Rocket Based Combined Cycle

The contribution of the Bantam design process definition team to this study is also acknowledged. The following list contains the names, organization, and specialty area(s) of the Bantam team members:

Steve Ryan, ED Lab, Guidance and Control Systems Wayne Holland, ED Lab, Structural Analysis Lee Foster, ED Lab, Fluid Dynamics Don Ford, ED Lab, Structural Design Mickey White, ED Lab, Thermal Pam Jefferson, Structural Test Kenny Mitchell, ED Lab, Systems Rick Christensen, EP Lab, Reliability Norm Brown, EP Lab, Propulsion Bob McKemie, EL Lab, Ground Operations John Brunson, EL Lab, Natural Environments Jeff Sexton, EO Lab, Flight Operations Bill Lewter, EB Lab, Communication & Data Handling, Electrical Power Tamara Landers, EH Lab, Manufacturing and Materials Fayssal Safie, S&MA, Safety and Reliability Kyle Daniel, S&MA, Safety

Available from:

NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320 (301) 621-0390 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487–4650

FOREWORD

In 1997, at the request of the Advanced Space Transportation Office, Marshall Space Flight Center (MSFC) initiated planning to perform an in-house design for the low-cost expendable launch vehicle referred to as Bantam. Dr. Randy Humphries, Director of the Structures and Dynamics (ED) Laboratory, formed a team to define a Bantam vehicle design process with emphasis on the design/analysis functions performed by the ED Laboratory. This team developed a collection of information documented in reference1 that defined a design/analysis process for the Bantam vehicle. The N×N diagram format was used to display the interdisciplinary interactions among the design/analysis functions. This information proved useful to the in-house development of a reference architecture for the Bantam. The reference architecture and design process report were made available to the contractors bidding to develop competing conceptual designs in response to NASA Research Announcement, NRA-2.

After completion of the Bantam vehicle design process study, Dr. Humphries tasked a new ED team to define a design process that is generically applicable to classes of launch vehicles currently envisioned in NASA's advanced space transportation initiative. Additionally, the task was limited to focusing on the interactions of design/analysis functions performed by the ED Laboratory during phase C.

Page intentionally left blank

TABLE OF CONTENTS

1.	INTRODUCTION	1
	1.1 Purpose	1
2.	APPROACH	3
	2.1 Process Templates	4
3.	CONCLUDING REMARKS	33
4.	RECOMMENDATIONS	34
ΑF	PPENDIX A—Basic N×N Diagram	35
ΑF	PPENDIX B—Glossary for the Launch Vehicle N×N Diagram	36
RE	EFERENCES	43

Page intentionally left blank

LIST OF FIGURES

1.	MSFC's launch vehicle design and analysis	2
2.	Vehicle configuration tree	3
3.	WBS 2.1, Vehicle configuration and structural design process flow diagram	7
4.	WBS 2.2, Performance and trajectories design process flow	8
5.	WBS 2.3, Aerodynamics and induced environments design process flow	8
6.	WBS 2.4, Structural analysis design process flow	9
7.	WBS 2.5, Thermal design process flow	10
8.	WBS 2.6, Guidance and control design process flow	10
9.	WBS 2.7, Mass properties design process flow	11
10.	WBS 2.8, Propulsion systems design process flow	11
11.	WBS 2.9, Materials and processes design process flow	12
12.	WBS 2.10, Communications and data handling design process flow	13
13.	WBS 2.11, Electrical power design process flow	14
14.	WBS 2.12, Ground operations design process flow	15
15.	WBS 2.13, Flight operations design process flow	16
16.	WBS 3.14, Manufacturing design process flow	17
17.	WBS 2.15, Safety design process flow	18
18.	WBS 2.16, Reliability design process flow	19
19.	WBS 2.17, Cost design process flow	20
20.	Basic N×N diagram	35

Page intentionally left blank

LIST OF TABLES

1a.	N×N diagram, top partition	5
1b.	N×N diagram, bottom partition	6
2.	Task description, WBS 2.1, Vehicle configuration and structural design	21
3.	Task description, WBS 2.2, Vehicle performance and trajectories	22
4.	Task description, WBS 2.3, Aerodynamics and induced environments	23
5.	Task description, WBS 2.4, Structural analysis	24
6.	Task description, WBS 2.5, Thermal design	25
7.	Task description, WBS 2.6, Guidance and control	26
8.	Task description, WBS 2.7, Mass properties	26
9.	Task description, WBS 2.8, Propulsion	27
10.	Task description, WBS 2.9, Materials	28
11.	Task description, WBS 2.10, Communication and data handling	28
12.	Task description, WBS 2.11, Electrical power system and electrical integration	29
13.	Task description, WBS 2.12, Ground operations	30
14.	Task description, WBS 2.13, Flight operations	30
15.	Task description, WBS 2.14, Manufacturing processes	31
16.	Task description, WBS 2.15, Safety processes	31
17.	Task description, WBS 2.16, Design reliability	32
18.	Task description, WBS 2.17, Cost	32

LIST OF ACRONYMS

ABL ablation

aerochemical equilibrium ACE ALS Advanced Launch System

communications and data handling C&DH C&DM control and data management

computer aided design **CAD** configuration control board CCB

CG center of gravity

CID cable interconnect diagram

CIL critical items list

CMA charring material ablator **COTS** commercial off the shelf

design, development, test, and engineering evaluation DDT&E **DeMAID** design manager's aid for intelligent decomposition

Structure and Dynamics Laboratory ED

EEE electrical, electronic, and electromechanical

EGSE electrical ground support equipment

expendable launch vehicle **ELV EMI** electromagnetic interference **EMS** engineering modeling system **Environmental Protection Agency EPA**

electrical power system **EPS**

FEAS-M failure environment analysis system-MSFL

failure environment analysis tool **FEAT**

finite element model **FEM**

full iterative relation matrix **FIRM**

failure modes and effects analysis **FMEA**

flight mission reserve **FMR FPR** flight performance review

FTC fault tree compiler

GPS global positioning system **GLOW** gross lift-off weight

ground support equipment **GSE**

hazard analysis HA

I/F interface

IP&CL instrumentation program and component list

specific impulse

I ISSI International Space Systems Incorporated

KSC Kennedy Space Center

LIST OF ACRONYMS (Continued)

lox liquid oxygen

LMR launch mission reserve

MARSYAS Marshall systems for aerospace simulation

MIUL material identification and usage list

MOI moment of inertia
MPS main propulsion system
MSFC Marshall Space Flight Center

MST mission support team
MUA material usage agreement
NDE nondestructive evaluation
NLS National Launch System
NPSP net positive suction pressure

OBC onboard computer

OPS operations

OSHA Occupational Safety and Health Administration PATRAN a finite element preprocessor and postprocessor

POGO pogo suppression system

POST program to optimize simulated trajectories PRACA problem reporting and corrective action

PU propulsion unit

QRAS quantitative risk analysis system RBCC rocket-based combined cycle

RCS reaction control system

RF radio frequency

RLV reusable launch vehicle

SINDA systems improved numerical differencing analyzer

S/W software

TCS thermal control system
TPS thermal protection system

TRASYS thermal radiation analysis system TRL technology requirements level

TVC thrust vector control

VAB vehicle assembly building WBS work breakdown structure

TECHNICAL MEMORANDUM

INFORMATION FLOW IN THE LAUNCH VEHICLE DESIGN/ANALYSIS PROCESS

1. INTRODUCTION

For today's competitive environment, it is imperative to reduce the time and cost of launch vehicle design projects. Launch vehicle design involves the work of many disciplines; each dependent on the work of other disciplines. To achieve faster, better, and cheaper designs organizations are flattening and new projects are beginning with teams distributed across both industry and government agencies. In this environment it is important that design engineers see the larger picture so they understand the connections between what they do and where it fits in the overall design process of the project. It is also important that design managers understand the information flow between disciplines and can track and control it during the design process to assure that the right people receive the right information at the right time.

Another document, "Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned" is a comprehensive treatment of the entire design process. It describes the overall process and issues such as other design phases, merging of the discipline and subsystem aspects of the design process, and iterative nature of the process.

1.1 Purpose

This report describes the information flow and interactions between the design functions involved in phase C of the launch vehicle design process. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It also provides design managers with a better understanding of information flow in the launch vehicle design cycle.

1.2 Scope

Figure 1 summarizes the goals and objectives, schedule, and achievements to be realized at completion of this study (as originally planned). The task objective is to describe the information flows and interactions between the design functions involved in the launch vehicle design process with focus on the design functions residing in the Structures and Dynamics (ED) Laboratory. The design functions residing in the ED Laboratory are Vehicle Configuration and Design, Performance and Trajectories, Aerodynamics and Induced Environments, Structural Analysis, Thermal Analysis, and Guidance and Control. The process description must be generic and applicable to the diverse launch vehicle concepts

being considered for NASA's advanced space transportation requirements—everything from conventional expendable launch vehicles (ELV's) with solid rocket propulsion to reusable launch vehicles (RLV's) with air-breathing propulsion systems.

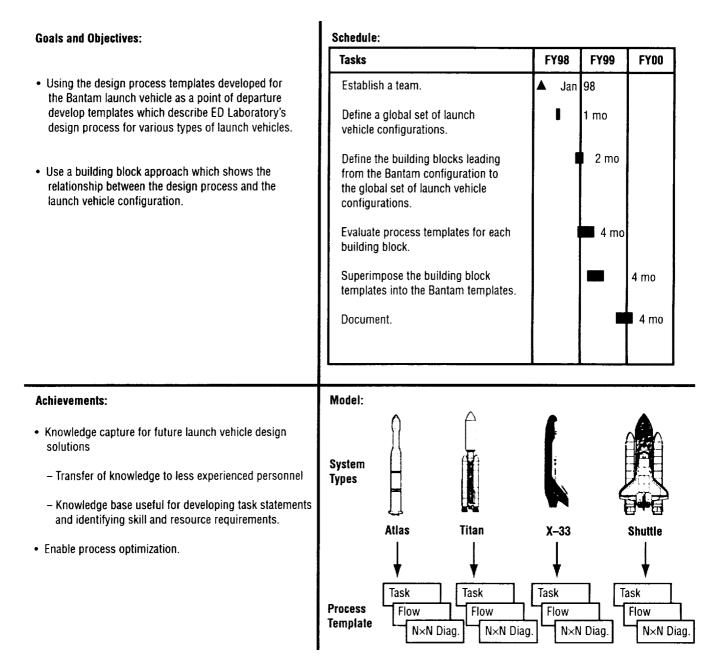


Figure 1. MSFC's launch vehicle design and analysis.

2. APPROACH

The design process described in reference 1 for the Bantam vehicle (an ELV) was the point of departure for this study.

An ad hoc team was formed. The team was comprised of a senior representative from each of the ED Laboratory's design functions and augmented with contractor members bringing additional expertise and experience in the areas of launch vehicle design, air-breathing and rocket-based combine cycle (RBCC) propulsion systems, and systems engineering.

As a first step, the team examined the launch vehicle concepts being considered for NASA's advanced space transportation requirements. The vehicle configuration tree, figure 2, encompasses the concepts.

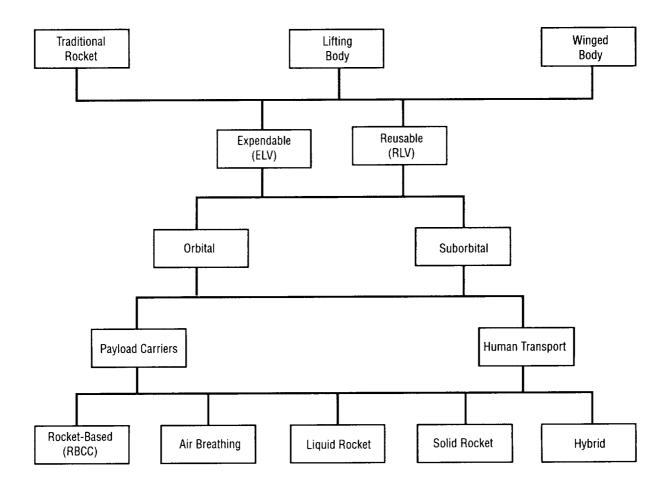


Figure 2. Vehicle configuration tree.

Second, each ED design function reviewed the vehicle configuration tree and identified those configuration characteristics that affect its design process. The configuration characteristics that were determined to be process discriminators were the ELV, RLV, and RBCC.

Finally, each ED design function revised the Bantam process templates to include the data flows and discipline interactions required for the phase C design of the ELV, RLV, and RBCC vehicle configurations.

2.1 Process Templates

Three types of templates are used to model the flow of information at a first level:

- An N×N diagram is used to show the inputs and outputs of the design disciplines
- Discipline flow diagrams
- Discipline task descriptions.

2.1.1 N×N Diagram

The N×N diagram, a functional analysis tool described in appendix A, displays the interdisciplinary interactions and interfaces among the design and analysis functions performing the detailed design phase (i.e., phase C design). To improve the readability of the diagram, it is presented as a two-part table (table 1): the first part shows the top half of the diagram, and the second part shows the bottom. The ED design functions are placed on the diagonal in the upper left partition; the remaining system design functions are placed on the diagonal in an arbitrary sequence. Unique terms used in the N×N diagram are defined in appendix B.

The basic N×N diagram is augmented here by the addition of two rows at the top, labeled External Inputs and Natural Environment Inputs. The External Input row identifies the project requirements, goals, and guidelines levied on the vehicle design functions and also includes the design databases transmitted by the Preliminary Design Review. The design functions' outputs are listed in the rows and the design functions' inputs are listed in the columns. A blank row-column intersection indicates no interface between the corresponding design functions. In addition to generating data as required inputs for other design functions, each design function also produces data required to evaluate, verify, and validate the design. These products are listed in the column on the right labeled Products. The row labeled Natural Environment Inputs identifies natural environment data items required by the design functions.

Items below the diagonal show information being fed back into the process and, hence, indicate iterations. An optimized N×N diagram is one that has been modified to resequence the diagonal functions into an arrangement that minimizes the number of iterations required to perform the design cycle and, therefore, reduces cycle time. Optimization of the N×N is required to develop a schedule of the design function tasks that achieves the shortest cycle time. The N×N diagram shown here has not been optimized. This N×N diagram is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process. It also provides design managers with a better understanding of information flow in the launch vehicle design cycle.

			9					-		— Outputs —								
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	Products
External Inputs	Project groundrules Design-to-cost goals Production operations Ground operations Critical interfaces Subsystem definition EPA and OSHA constraints Environmental operations constraints Preliminary design concept and database	Mission definition Initial performance Vehicle coordinate system Launch pad geometry Project groundrules Redundancy requirements Preliminary design concept and database Range safety constraints	Project groundrules Ossign-to-cost constraints Launch pad geometry Prelliminary design outer moldline Conceptual moldline	Project groundrules Design-to-cost constraints Factors of safety criteria and fracture control requirements Launch platform finite element model	Project groundrules Design-to-cost goals Preliminary design concept and database	Project groundrules Design-to-cost goals Launch probability requirements Preliminary design concept and database	Project groundrules Design-to-cost goals WBS Vehicle coordinate system COB directives	Project groundrules Design-to-cost goals Technology requirements (TRL Levy) Engline interface Redundancy requirements Programmatic constraints	Project groundrules Design-to-cost goals EPA and OSHA constraints	Instrumentation program and component list redundancy requirements Verification requirements Operational timeline EEE parts requirements EPA and OSHA constraints	Redundancy requirements Verification requirements Operational fimeline Operational life Operational life External interfaces EEE parts requirements EPA and OSHA constraints	Project groundrules Design-to-cost goals Facility capabilities	Project groundrules Design-to-cost goals Oritical interfaces Environmental operations constraints Range safety constraints	Project groundrules Design-to-cost goals EPA and OSHA constraints	Project groundrules Design-to-cost goals EPA and OSHA constraints	Project groundrules Design-to-cost goals Operations concept Historical data Reliability requirement	Project groundrules Design-to-cost goals Work breakdown structure Schedule Technology requirements Reliability	
Natural Environment Inputs	Ground wind profiles Launch pad environments Use and operational environments	Atmospheric model Ascent wind models Project groundrules Launch pad environments	Ground and ascent wind profiles Atmospheric models Launch stand ambient temperatures	Ground and ascent wind models	Launch pad environments	Atmospheric model Wind models (ground and ascent) Gust models Launch pad environments		Launch pad environments	Use and operational environments		Lightning Almospheric constituents Clouds - fog Precipitation Corona prevention	Atmospheric constituents Lightning Humidity Precipitation Severe weather Ground winds		7 7 8 90	Severe weather Lightning			Electro-mechanical effects plan
1	3.1 Vehicle Configuration and Structural Design	* Engine alignment tolerances *** Vehicle geometry drawing	Vehicle moidline Vehicle geometry Protuberance geometry Engine placement geometry	Vehicle geometry Vehicle and pad interface geometry Holddown and release mechanism Structural details Component installations Shock sources	Vehicle and elements configuration definition material dimensions	Overall vehicle dimension Engine alignment tolerance Feedline drawings	Component weight estimates Vehicle geometry Parts list Cross-sectional properties	- Vehicle configuration and tank geometry - Vehicle dimensions - Line routing zones - Pressurant bottle locations Prefilminary air column Profile	Construction type (honeycomb, isogrid, etc) Critical dimensions Tolerances Drawings	Vehicle dimensions Vehicle configuration	Power return through structure Component installation	Hardware design Verification requirements Transportation requirements	System definition and design description document Holddown and release mechanism Vehicle coordinate system	Drawings	Drawings Hazard analysis inputs	System definition and design description Schematics Failure mode effects analysis inputs Critical Items list inputs	Vehicle configuration Technical descriptions Test requirements to include instrumentation Production quantities Make or buy plan inputs Type of construction	Layouts Three dimensional models Detail drawings Center of gravity locations Cross-section properties
2	Staging requirements Propellant requirements Number of engines Performance updates Entry propellant weight	3.2 Performance and Trajectories	Ascent trajectory sets (albitude, velocity, time histories) and engine operating conditions Entry trajectories Airlhow history to inlet Onstraints Mach transitions	Loads trajectory data	Ascent, cruise, loading requirements	Time history Max 0 Reference trajectories Angle of attack, airflow Ascent, cruise, landing requirements	Propellant load versus time Sum times Jettison times Residuals at main engine cutoff, etc.	Vehicle mass versus time Thrust, acceleration and pressure versus time leg (flow rates) Vehicle or versus time leg (flow rates) Vehicle or vehicle or vehicle Vehicle or vehicle Vehicle or vehicle Vehicle or vehicle Vehicl		Antennae range data		Launch mission rules	Burn times Jettison times Loads trajectory data Vehicle breakup and disposal analysis Launch Commit criteria Launch Corridor Launding corridor		Dispersion Abort alternate mission analyses	Event timelines		Payload and performance Trajectory parameters Ground track Impact points Dispersion Abort alternate mission analyses
3	Pressure vent sizes and locations Moldline update including airframe and engine design	Vehicle ascent aerodynamics Heating indicators Vehicle and stage entry aerodynamics Engine inite flowfield definition Engine installed thrust throughout trajectory	3.3 Aerodynamics and Induced Environments	External aerodynamic pressure distributions Compartment pressures Protuberance airoads Acoustic and overpressure definition Fluid dynamic loads (buffeting)	Ascent aero heating histories Entry aero heating histories Compartment flow rates Plume heating environments	Vehicle aerodynamics Guidance and control instrumentation locations		Air loads on propulsion elements Engine installed thrust Forebody pressure recovery and flow field definition history	Aerothermal test requirements	Plume electron profiles Ascent and descent pressure profile Heating and pressure instrumentation requirements	Ascent and descent pressure profile				Sonic boom overpressure	Environment and loads definition	Test requirements to include instrumentation	Vehicle aerodynamics Aerothermal (ascent and re-entry aero and plume heat External acoustics Launch stand heating and pressures Compartment pressures Test requirements
4	Structural sizing Loads and deflections Margins of safety Propellant slosh baffle sizing	• O , Q constraints and structural load	Structural deflections	3.4 Structural Analysis	Temperature gradient design limits	Vehicle flex-body modes Propellant slosh modes Propellant flex modes Propellant flex modes O , O and structural load constraints		Structural analysis of lines and brackets establish dynamic envelop of feedline between line line thickness Att and forebody structures	Loads Life limit	Vibro-acoustical requirements	Vibro-acoustical requirements Review of battery cell design (pressure vessel)	Transportation loads			Structural faillure modes Failure propagation logic development Structural design analysis	Structural failure modes Failure propagation logic development Structural design analysis	Test requirements to include instrumentation	Stress analysis Fracture and fatigue assessm Pesign loads Structural dynamic models and analyses Test requirements and suppostrength, models survey, acoustical and random vibrations, shock
5	Thermal protection system sizing Cryogenic insulation sizing Active thermal control system sizing Temperature sensor locations	Wall and surface temperatures Heating rate or temperature indicators	Heating constraints Wall and surface temperatures	Structural temperatures and gradients	3.5 Thèrmal		Thermal protection system sizing (aerothermal and base heating) Cryogenic insulation sizing Active thermal control system sizing Component weight estimates Parts list	Propellant condition Temperature time history Pressure Chilldown of engine Temperatures and heating loads	Structural temperature requirements	• Thermal environment	Thermal environment for EPS Power requirements for thermal control systems	Structural temperature requirements	Subsystem definition and design description document			Environments and loads definition	Material type Technical descriptions Test requirements to include instrumentation Production quantities Make or buy plan	Thermal protection system sizing Cryogenic insulation sizing Compartment purge and conditioning analysis Active thermal control system sizing Test requirements
6	Maximum engine deflection Control sensor locations Control surface deflection requirements	Autopilot definition Guidance system inputs Modified autopilot to reflect a control law for airflow to inlet Control surface mixing logic		Slosh damping requirements Q versus Q envelopes Flex body mode frequency constraints Autopilot definition Veltilet transient response to wind disturbances		3.6 Guidance and Control		POGO suppressor requirements TVC requirements RCS requirements		Software requirements Computer requirements Sensor requirements	Power requirements for control system				Diagnostics and control logic	Diagnostics and control logic	Technical descriptions Test requirements to include instruction Production quantities Make or buy plan	Stability margins Baseline audopilot configurati Guidance algorithms Test requirements
7	Mass properties control plan Documented control weights Centers of gravity Moments of inertia	Documented control weights Weights Centers of gravity Moments of inertia	Documented control weights Centers of gravity	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia Mass versus time	3.7 Mass Properties	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia	Documented control weights Weights Centers of gravity Moments of inertia	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia	Mass properties control plan Documented control weights Weights Centers of gravity Moments of inertia		Documented control weights Weights Centers of gravity Moments of inertia				Vehicle weights by work breakdown structure Quantities	Mass properties control plan Periodical mass properties reports weight centers of gravity moments of inertia
8	Propellant inventory Propulsion system layout Tank pressures Propellant level sensor locations Forzhody (flerate required air volume) Staping requirements Propellant requirements Number of engines Petrormance updates Entry propellant weight	Propellant load Engine performance (I _{SD} , thrust) Expected engine mach transitions Interest captive volume Recovery pressures Forebody (required air volume) Body, for airflow as a function of mach number Mach transitions	* Engine dimensional and operational characteristics * Turbine exhaust definition * On-pad effluent definition * RBCC exhaust conditions ** Forebody inlet performance requirements *** Transition mach number	Ignition and shutdown thrust transients Ignition and shutdown timing sequence Steady state thrust oscillation Ullage pressure and tank fill heights versus flight time #RBCC exhaust and thrust Forebody inlet	Ground hold conditions Heat load requirements for propellant conditioning Chill down requirements Engine configuration Engine coperating characteristics Engine thermal requirements	Thrust vector control gimbal capability (degree and rates) Feedline layout Knematic analysis PU system definition a altrilow for ascent, cruise, and landing Air capture transition	Propulsion system drawings and models Component weight estimates Parts list	3.8 Propulsion	Environments Loads Life limits	Instrumentation Uplink and downlink requirements Drive electronics Thrust vector control requirements	Electrical power requirements	MPS checkout and fill Refurbishment and inspection requirements Hardware design Verification requirements Transportation requirements	Subsystem definition and design description document Vehicle control Power usage Flight rules	Drawings	Drawings Schematics Hazard analysis inputs	Functional failure modes Failure propagation logic development Diagnostics and control logic Failure mode effects analysis inputs Critical items list inputs	Technical descriptions Vendor quotes Test requirements to include instrumentation Production quantities Make or buy plan	Propallant inventory MPS design Tank fill, drain, pressure pro MPS analysis Press models Propellant conditioning mod Steady state models I est analysis support Vic system design Test requirements Test requirements

	A	В	C	0	E	F	G	Н	1	J	K	L	M	N	0	P	Q	Products
9	Material allowables Material selection consultation TPS Material thermal (required and expected)			Material properties Material allowables Material selection consultation TPS Material thermal (required and expected)	Material properties Material allowables Material selection consultation TPS Material thermal (required and expected)		Material mass density	Material compatibility Contamination analysis Material properties Thermal and cryogenic properties Temperature limits	3.9 Materials	Materials properties	Materials properties	NDE plan Contamination control plan		Material and process control plan NOE plan Contamination control plan MIUL and MUA	Material certifications	Materials definition Structural design analysis support	Material properties Material costs	Material and process contro NDE plan Contamination control plan MIUL and MUA
10	Packaging volume required	Antennae types and locations			Thermal design limits Sensor characteristics	Sensor characteristics Computational characteristics Antenna types and locations	Control and data management system drawings and models Component weight estimates Parts list	Telemetry capability Sensor characteristics		3.10 Communications and Data Handling	Black box interfaces for cable harness design Power requirement for control and data management boxes	Hardware design Verification requirements Transportation requirements	Commands and telemetry uplink and downlink database Subsystem definition and design description document Instrumentation Software design power usage		* Hazard analysis inputs	Design configuration Reliability data Fallure mode effects analysis inputs Critical items list inputs	Technical descriptions Test requirements to include instrumentation Production quantities Make or buy plan	Range safety Flight computer Data handling Instrumentation Software Link margin
11	EPS component details Packaging volume required				EPS operational environment requirements		Electrical system drawings and models Component weight estimates Parts list	Availability of power (current, voltage, phase) Budget		Power characteristics Instrumentation requirements	3.11 Electrical Power		Power system constraints Subsystem definition and design description document		Hazard analysis inputs	Design configuration Reliability data Failure mode effects analysis inputs Critical items list inputs	Technical descriptions Test requirements to include instrumentation Production quantities Make or buy plan	EPS design Cable harness design Cable interconnect diagram Electrical systems schemati EGSE design Power distributor design
12	Ground interface Access requirements Turnaround, launch, and landing facilities			Drawings for flight ground support equipment				Operational timelines Maintainability Ground support equipment capability		Instrumentation and command requirements Processing requirements	Identify need for EGSE for integrated checkout	3.12 Ground Operations	Ground test and checkout procedures Ground support equipment design and definitions	Drawings for flight ground support equipment			Ground support equipment technical descriptions of cround test requirements Operational timelines Crew sizes Facility requirements Software requirements	MGSE design Integration and test plan Transportation and logistics of Ground operations plan and processing flows Launch site support requirem Test and checkout requireme Detailled test and checkout procedures Operations and maintenance
13	Vehicle integrated operations concept and requirements On-orbit flight operations Landing gear	Launch commit criteria Launch corridor Landing corridor	Vehicle integrated operations concept and requirements	Launch sequence timelines Vehicle integrated operations concept and requirements Flight mission reserve and launch mission reserve	Vehicle integrated operations concept and requirements			Vehicle integrated operations concept and requirements Flight timeline	Vehicle integrated operations concept and requirements	Launch sequence timeline Flight sequence timeline Operations health and status requirements Flight load tanle updates (trajectory) Performance requirements for mission Vehicle integrated operations concept and requirement	Launch sequence timeline Flight sequence timeline Vehicle integrated operations concept and requirements	MST level 4 test requirements Level 1 requirements Human factors and operability assessment ground operations 'Bight operations 'Vehicle integrated operations concept and requirements Launch sequence timeline	3.13 Flight Operations		Vehicle integrated operations concept and requirements		Integrated operations concept Flight rest requirements Operational timelines Orew sizes Facility requirements Software requirements	manuals • Launch sequence procedures • Data flow analysis timeli • Ground command loads
14	Fabrication parameters							* Fabrication parameters	Manufacturing control plan Assembly and verification plan Make or buy plan	Review of avionics packaging documentation	Review of avionics packaging documentation			3,14 Manufacturing		Input to failure propagation logic	Facility and tooling requirements Manufacturing cost	Flight vehicle Flight ground support equipment
15	 Hazard analysis 	Range safety requirements Hazard analysis Fault tolerance requirements	Hazard analysis	Hazard analysis Fault tolerance requirements	Hazard analysis Fault tolerance requirements	Hazard analysis Fault tolerance requirements		Flight safety review of schematic and operations Cast and west test range interface to assure compliance Hazard analysis Fault tolerance requirements	• Hazard analysis	Hazard analysis Fault tolerance requirements	Hazard analysis Fault tolerance requirements	Hazard analysis Fault tolerance requirements	Safety constraints and guidelines Vehicle and launch facility FMEA Hazard analysis	Quality control plan Hazard analysis	3.15 Safety			Quality assurance plan Hazard analysis reports Failure mode and effects analysis Critical items list
16	Reliability estimates Trade support Failure mode effects analysis inputs Critical items list inputs System-to-subsystem reliability allocations	Failure mode effects analysis inputs Critical items list inputs	Failure mode effects analysis inputs Critical items list inputs	System and component reliability allocation and estimation Failure mode effects analysis inputs Critical Items list inputs	Failure mode effects analysis inputs Critical items list inputs	Failure mode effects analysis inputs Critical items list inputs		Reliability allocation and estimation Failure mode effects analysis inputs Critical items list inputs	Failure mode effects analysis inputs Critical times list inputs System-to-subsystem reliability allocations	Reliability estimates	Reliability estimates Failure mode effects analysis inputs Critical items list inputs	Reliability inputs to operations model Failure mode effects analysis inputs Critical items list inputs	Failure mode effects analysis inputs Critical items list inputs	Failure mode effects analysis inputs Critical items list inputs	Reliability model	3.16 Reliability	Vehicle reliability Requirements and estimates	Reliability allocations an estimates Integrated risk analysis Test input Trade support Alert process PRACA system
17	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades Procurement support	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Hardware design, development, testing, evaluation and production costs Cost trades	Ground support equipment design, development, testing, evaluation and production costs Operations costs Costs trades	Operations costs Costs trades	Facility and tooling design, development, testing, evaluation and production costs Cost trades		Cost goals, requirements and constraints	3.17 Cost	Cost trades Work breakdown structs Groundrules and assumptions Program cost estimate Commercial vehicle business analysis and p

2.1.2 Process Flow Diagrams

Figures 3–19 describe, at a first level, the process flow within each design discipline. They also indicate the information flow between the interfacing disciplines. The common generic activities and formal report products are also described in these figures.



Figure 3. WBS 2.1, Vehicle configuration and structural design process flow diagram.

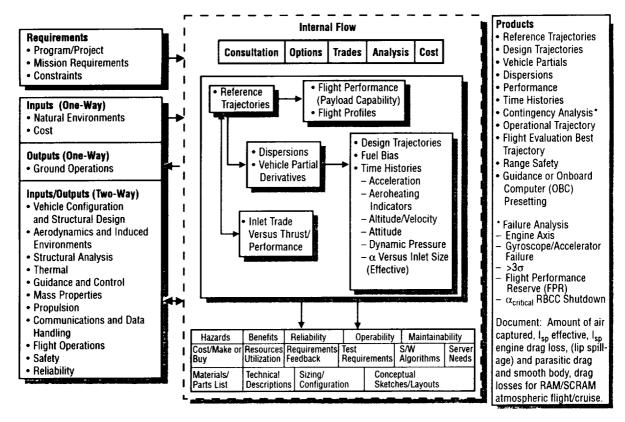


Figure 4. WBS 2.2, Performance and trajectories design process flow.

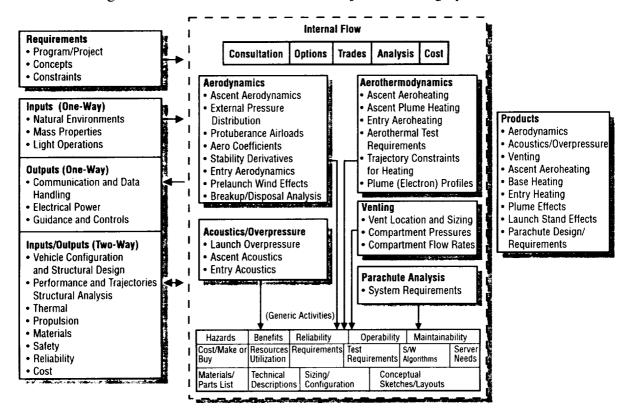


Figure 5. WBS 2.3, Aerodynamics and induced environments design process flow.

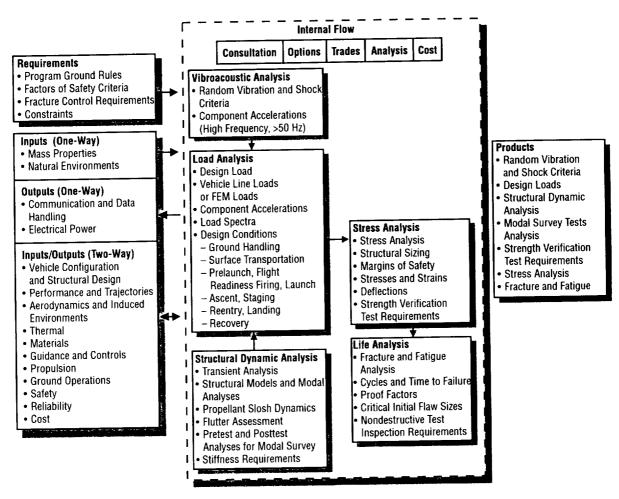


Figure 6. WBS 2.4, Structural analysis design process flow.

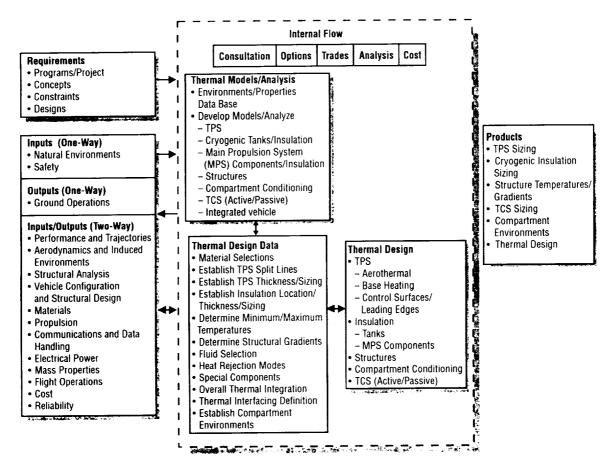


Figure 7. WBS 2.5, Thermal design process flow.

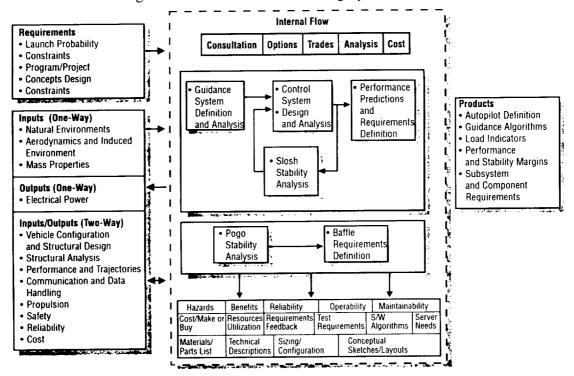


Figure 8. WBS 2.6, Guidance and control design process flow.

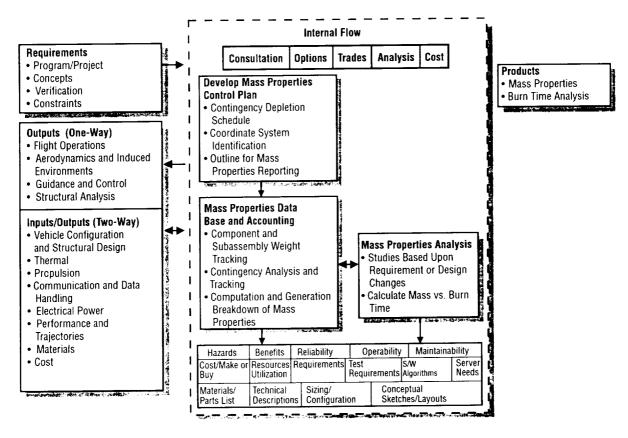


Figure 9. WBS 2.7, Mass properties design process flow.

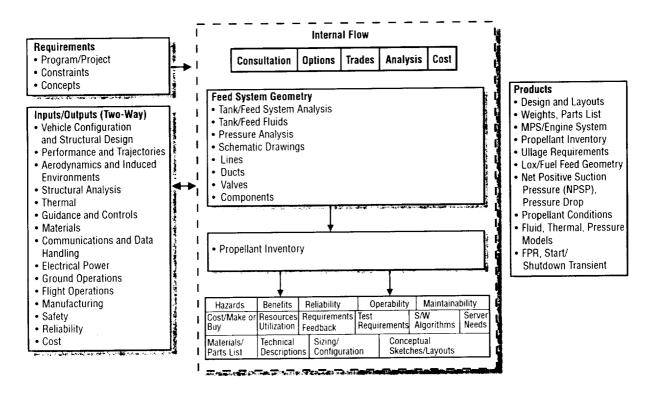


Figure 10. WBS 2.8, Propulsion systems design process flow.

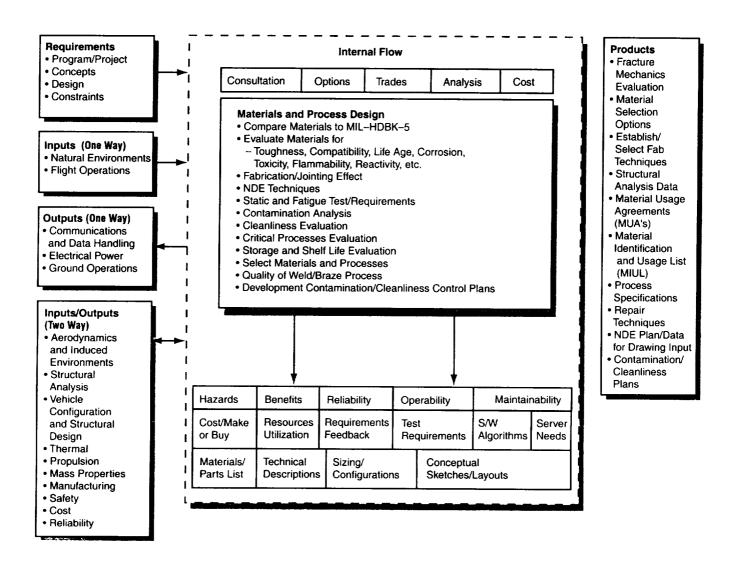


Figure 11. WBS 2.9, Materials and processes design process flow.

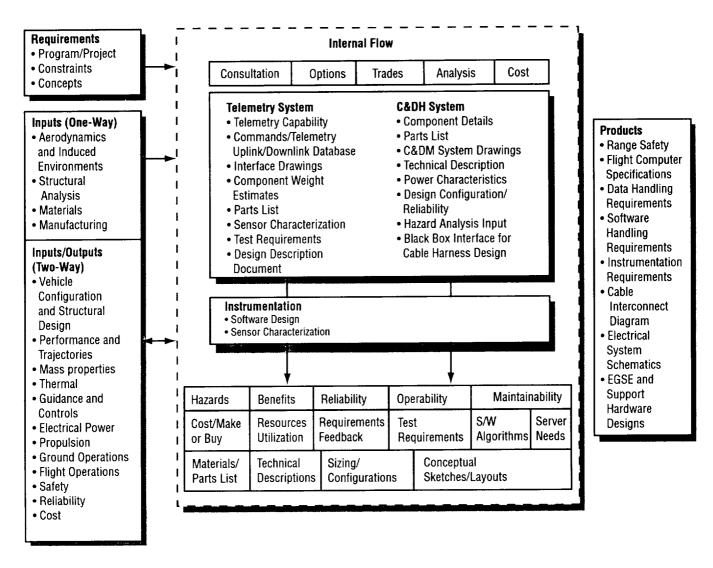


Figure 12. WBS 2.10, Communications and data handling design process flow.

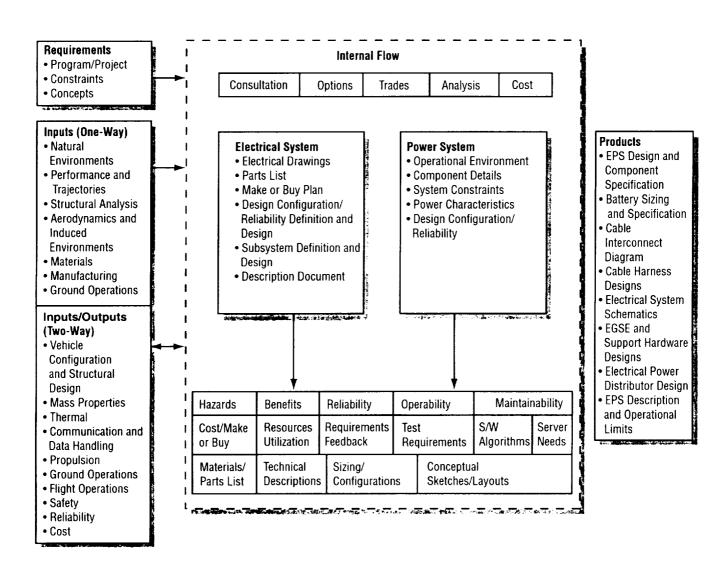


Figure 13. WBS 2.11, Electrical power design process flow.

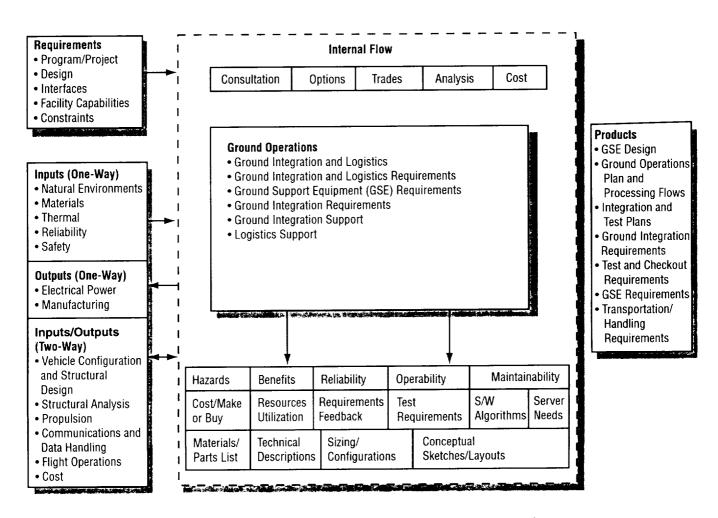


Figure 14. WBS 2.12, Ground operations design process flow.

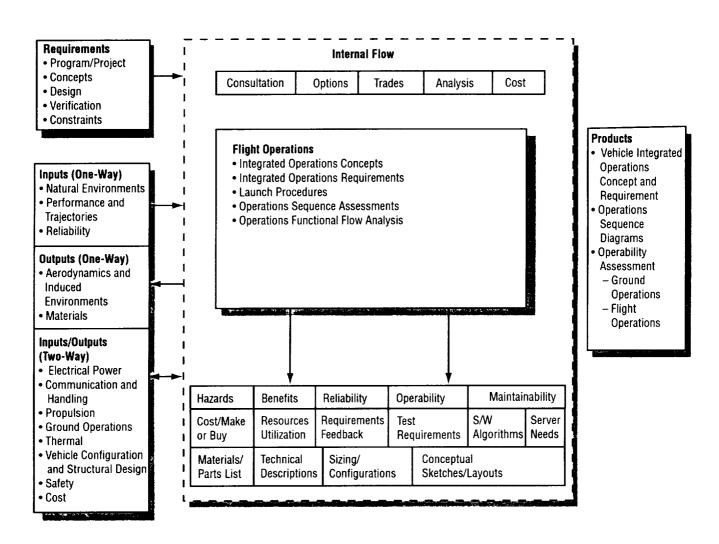


Figure 15. WBS 2.13, Flight operations design process flow.

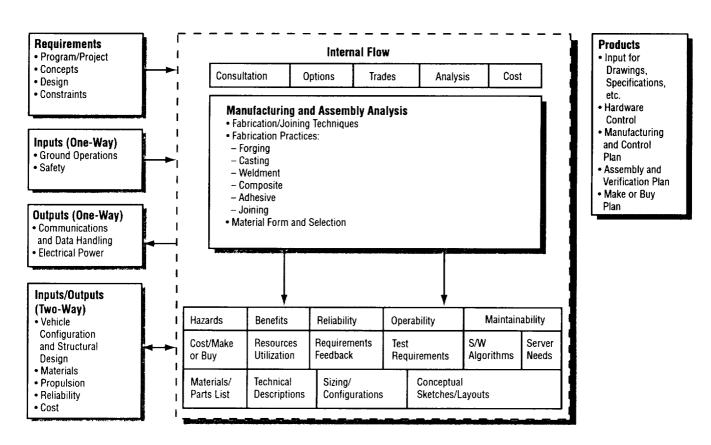


Figure 16. WBS 2.14, Manufacturing design process flow.

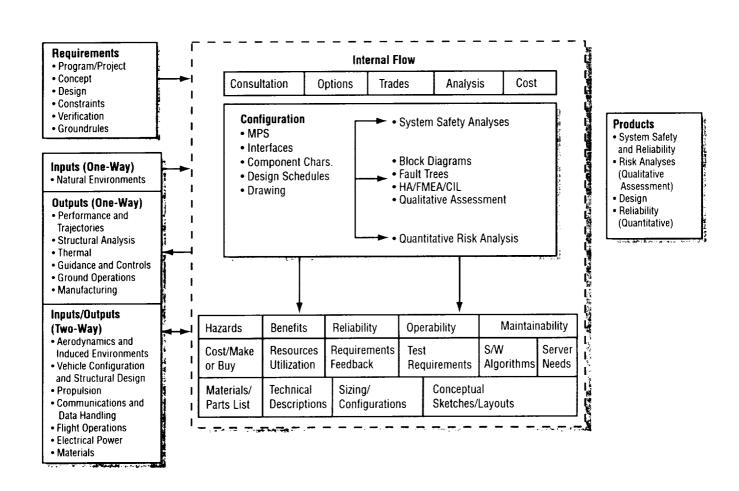


Figure 17. WBS 2.15, Safety design process flow.

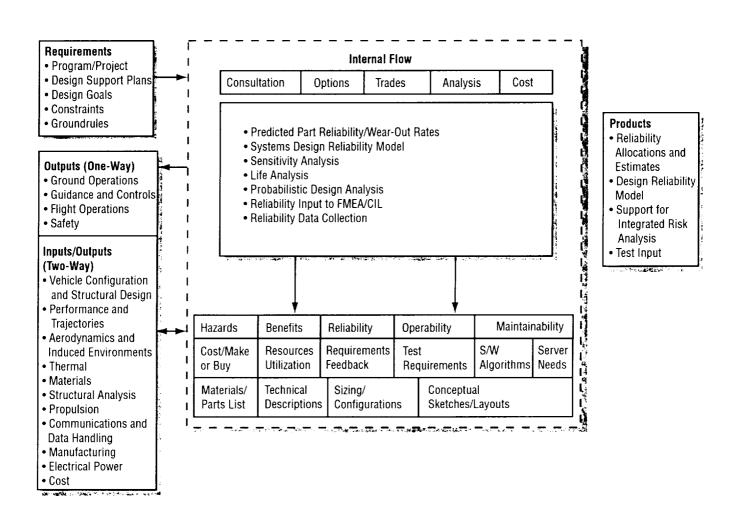


Figure 18. WBS 2.16, Reliability design process flow.

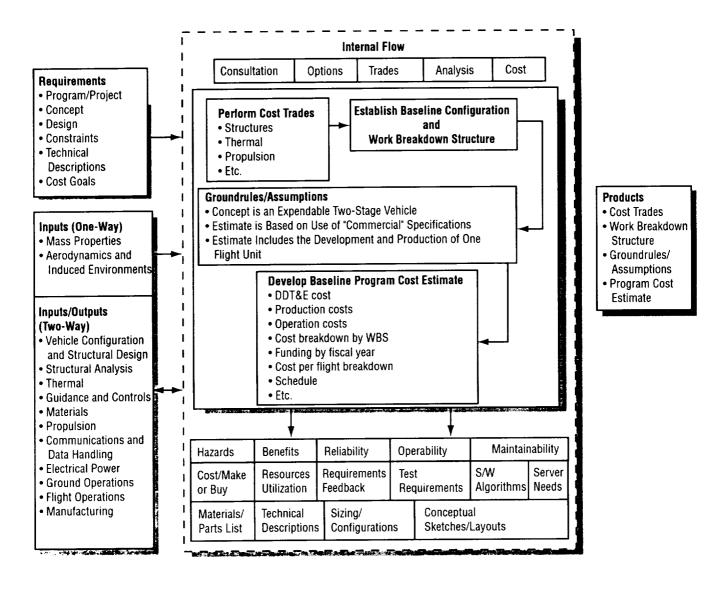


Figure 19. WBS 2.17, Cost design process flow.

2.1.3 Task Descriptions

Tables 2–18 describe, at a first level, the tasks required of each design discipline. These tables provide a "shopping list" of tasks for each discipline or function. The input information items required to accomplish the tasks and the output information items produced by the tasks are listed. These tables also uniquely list the software tools used to accomplish the tasks.

Table 2. Task description, WBS 2.1, Vehicle configuration and structural design.

Projected ground rules and goals Production and ground operations Critical interfaces Subsystems definitions EPA and OSHA constraints Preliminary design concept and databases Statigning requirements Propellant requirements Propellant requirements Propellant siosh baffle sizing Cryogenic insulation sizing Active thermal control system sizing Pemperature and propellant sensor locations Control sensor locations Control sensor locations Control sensor pocations Control sensor pocations Control sensor pocations Control sensor pocations Forpoellant requirements Propellant requirements Propellant remained pressures Forebody modiline (iterate required air volume) Type design, thermal materials required Packaging volumes v	 Production and ground operations Critical interfaces Subsystems definitions EPA and OSHA constraints Environmental operations constraints Preliminary design concept and databases Staging requirements Propellant requirements Entry propellant weight Pressure vent sizes and locations Structural sizing and margins of safety Loads and deflections Propellant slosh baffle sizing Cryogenic insulation sizing Active thermal control system sizing Temperature and propellant sensor locations Maximum engine deflection Control sensor locations Control surface deflection requirements Mass properties data—weight; e.g., inertias
requirements On-orbit flight operations Landing gear drawings Fabrication parameters Range safety requirements Hazard analysis Fault tolerance requirements Reliability estimates Failure mode effects analysis inputs Critical items list (CIL) inputs System-to-subsystem reliability, allocations hardware design, development, testing, evaluation, and production costs Cost trades Tools: Commercial software—CAD platform and translators, EMS In-house software—optimization design codes	Propulsion system layout Tank internal pressures Forebody moldline (iterate required air volume) Staging requirements Propellant requirements Material allowables Material selection consultation TPS design, thermal materials required Packaging volumes required Electrical power system (EPS) component details Access requirements Turnaround, launch, and landing facilities Vehicle integrated operations concept and requirements On-orbit flight operations Landing gear drawings Fabrication parameters Range safety requirements Hazard analysis Fault tolerance requirements Reliability estimates Failure mode effects analysis inputs Critical items list (CIL) inputs

Key: • ELV, RLV, and RBCC → RLV and RBCC → RBCC only

Table 3. Task description, WBS 2.2, Vehicle performance and trajectories.

Inputs	Tasks	Outputs
 Mission definitions Initial performance Vehicle coordination system Launch pad geometry Project ground rules and goals Redundancy requests Preliminary design concept and database Range safety constraints Atmospheric model Ascent wind models Launch pad environments Engine alignment tolerances Vehicle geometry drawing Vehicle ascent aerodynamics Heating indicators Vehicle/stage entry aerodynamics Engine inlet flow field definition Engine installed thrust throughout trajectory Qα, Qβ constraints and structural load indicators Wall/surface temperatures Heating rate or temperature indicators Autopilot definition Guidance system inputs Modified autopilot to reflect a control law for airflow to inlet Control surface mixing logic Control weights and current weights 	3.2.1 Perform trade studies on trajectory/ configuration options 3.2.2 Develop nominal trajectories 3.2.3 Develop design trajectories 3.2.4 Assess vehicle sizing, mass properties 3.2.5 Evaluate vehicle performance 3.2.6 Develop abort scenarios and trajectories Tools: Software—Dynamic simulations, program to optimize simulated trajectories (POST)	 Staging requirements Propellant requirements Number of engines Performance updates Entry propellant weight Ascent trajectory sets (altitude, velocity, X, β histories) and engine operating conditions Entry trajectories Airflow history to inlet Trajectory constraints Mach transitions Loads trajectory data Ascent, cruise, loading requirements Reference trajectories and time histories Max Q α, airflow Ascent, cruise, landing requirements Propellant load versus time Burn times Residuals at main engine cutoff, etc. Vehicle mass versus time I_{sp} (flow rates) Usable propellant requirements Flow rates System dispersions α inlet Derived air volume Antenna range data Launch mission rules Vehicle breakup and disposal analysis Launch commit criteria Launch commit criteria Launch corridor Abort alternate mission analyses Event timelines

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 4. Task description, WBS 2.3, Aerodynamics and induced environments.

Inputs	Tasks	Outputs
 Project ground rules and goals Launch pad geometry Preliminary design outer moldline Ground and ascent wind profiles Atmospheric models Launch stand ambient temperatures Protuberance geometry Engine placement geometry Ascent trajectory sets (altitude, velocity, α, β histories) and engine operating conditions Entry trajectories Airflow history to inlet Trajectory constraints Mach transitions Structural deflections Heating constraints Wall/surface temperatures Control weights, centers of gravity Engine dimensional and operational characteristics Turbine exhaust definition On-pad effluent definition Rocket-based combined launch (RBCC) exhaust conditions Forebody inlet performance 	3.3.1 Aero design consultation 3.3.2 Generate ascent aerodynamics 3.3.3 Generate external pressure distributions 3.3.4 Generate protuberance airloads 3.3.5 Generate aero coefficients 3.3.6 Generate aero stability derivatives 3.3.7 Generate vehicle/stage entry aerodynamics 3.3.8 Determine vent size and location requirements 3.3.9 Determine compartment pressures 3.3.10 Calculate compartment flow rates 3.3.11 Generate ascent aeroheating histories 3.3.12 Generate ascent plume heating histories 3.3.13 Generate entry heating histories 3.3.14 Determine aerothermal test requirements 3.3.15 Specify trajectory constraints for heating 3.3.16 Generate launch overpressure environments 3.3.17 Generate ascent acoustics environments 3.3.18 Generate entry acoustics environments 3.3.19 Determine prelaunch wind effects 3.3.20 Determine parachute system requirements 3.3.21 Perform breakup/disposal analysis 3.3.22 Generate plume electron profiles	Pressure vent sizes and locations Moldline update including airframe/ engine design Vehicle ascent aerodynamics Heating indicators Vehicle/stage entry aerodynamics Engine inlet flowfield definition External aerodynamic pressure distributions Compartment pressures Protuberance airloads Acoustic/overpressure definition Fluid dynamic loads (buffeting) Ascent aero heating histories Entry aero heating histories Entry aero heating histories Compartment flow rates Plume heating environments Guidance Control instrument. Aation locations Air loads on propulsion elements Engine installed thrust Forebody pressure recovery and flow field definition history Aerothermal test requirements Plume electron profiles
requirements Transition mach number Vehicle integrated operation concept and requirements Hazard analysis Failure mode effects analysis inputs CIL inputs	Tools: Computer codes: CEC/TRAN72, SPF/2, SIRRM, RAMP2, RAVFAC, BLIMPJ, MOC, SPP, LANMIN, MINIVER, Various CFD codes, etc. Wind tunnel data Historical ground and flight test database	Ascent and descent pressure distributions Heating and pressure instrumentation requirements Sonic boom overpressure Test requirements to include instrumentation

Key: • ELV, RLV, and RBCC • RLV and RBCC • RBCC only

Table 5. Task description, WBS 2.4, Structural analysis.

Inputs	Tasks	Outputs
 Project ground rules and goals Factors of safety criteria and fracture control requirements Launch platform finite element model Ground and ascent wind models Vehicle geometry Vehicle/pad interface geometry Holddown/release mechanism definition Structural details Component installations Shock sources External aerodynamic pressure distributions Compartment pressures Protuberance airloads Acoustic/overpressure definition Fluid dynamic loads (buffeting) Structural temperature and gradients Slosh damping requirements Q_α, Q_β envelopes Flex-body mode frequency constraints Autopilot definition Vehicle transient response to wind disturbances Weights, centers of gravity, moments of inertia Ignition and shutdown thrust transients, timing Steady state thrust oscillation Ullage pressure and tank fill heights versus flight time RBCC exhaust/thrust Forebody inlet Material properties Material selection consultation TPS design definitions Material shelection consultation TPS design definitions Material thermal (required/expected) Drawings for flight GSE Launch sequence timelines Vehicle integrated operations concept and requirements FMR and LMR Hazard analysis Fault tolerance requirements FMR and LMR Hazard analysis inputs GIL inputs 	Tools: Commercial software—NASTRAN, ABAQUS, ANSYS, PATRAN In-house software—dynamic loads analysis programs, NASGRO, bolt strength analysis software In-house vibration database	 Structural sizing, margins of safety Loads and deflections Propellant slosh baffle sizing Qα, Qβ constraints and structural load indicators Temperature gradient design limits Vehicle flex-body modes Propellant slosh modes Propellant feedline flex modes Qα, Qβ and structural load constraints Structural analysis of lines and brackets Establish dynamic envelop of feedline Aft/forebody structures Life limit Vibroacoustical design criteria Review of battery cell design (pressure vessel) Structural failure modes Failure propagation logic development Test requirements to include instrumentation

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 6. Task description, WBS 2.5, Thermal design.

Inputs	Tasks	Outputs
Project ground rules Design-to-cost goals Preliminary design concept and database Launch pad environments Configuration details, materials, dimensions Ascent, cruise, loading requirements Ascent aeroheating histories Entry aeroheating histories Entry aeroheating histories Plume heating environments Temperature gradient design limits Mass properties control plan Documented control weights Weights, centers of gravity, moments of inertia Ground hold conditions Heat load requirements for propellant conditioning Chill-down requirements Engine configuration Engine operating characteristics Engine thermal requirements Material thermal properties Material selection consultation TPS vehicle interface definition Material thermal required Thermal design limits Sensor characteristics EPS operational environment requirements Vehicle integrated operations concept and requirements Vehicle integrated operations concept and requirements Hazard analysis Fault tolerance requirements Failure mode effects analysis inputs CIL inputs Hardware design, development, testing, evaluation, and production costs Cost trades	3.5.1 Review phase A results 3.5.2 Establish properties database 3.5.3 Analyze thermal design concepts - TPS - Cryogenic insulation - Compartment thermal assessment - TCS (active/passive) - MPS 3.5.4 TPS sizing 3.5.5 Cryogenic insulation sizing 3.5.6 TCS sizing (active/passive) 3.5.7 Compartment thermal environments 3.5.8 MPS thermal sizing	Temperature sensor locations Wall/surface temperatures Heating rate or temperature indicators Heating constraints Wall/surface temperatures Structural temperatures and gradients TPS sizing (aerothermal/base heating) Cryogenic insulation sizing Active TCS sizing Component weight estimates Parts list Propellant condition Temperature time history Pressure Chill-down of engine Temperature and heating loads Structural temperature requirements Thermal environment Thermal environment Thermal environment for EPS Power requirements for thermal control system Structural temperature requirements Subsystem definition and design description document Environments and loads definition Materials type Technical descriptions Test requirements to include instrumentation Production quantities Make or buy plan

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 7. Task description, WBS 2.6, Guidance and control.

Key: • ELV, RLV, and RBCC → RLV and RBCC → RBCC only

Table 8. Task description, WBS 2.7, Mass properties.

Inputs	Tasks	Outputs	
Program and subsystem definition Vehicle coordinate system WBS Subsystem and hardware basic component mass estimates Sketches, drawings, parts list, and material identification Propellant inventory Flight profile	3.7.1 Develop a mass properties control plan 3.7.2 Set up mass properties database 3.7.3 Input component weight estimates and contingencies into database 3.7.4 Compute center of gravity (CG) and moments of inertia (MOI) 3.7.5 Perform trade studies and mass properties analysis 3.7.6 Calculate mass versus burn time	Mass properties control plan Mass properties reports: Current weights CG's MOI's Potential changes Pending changes Weight history Mass versus time Charts for review	
	Tools: • Commercial software — CAD packages • In-house software – MP03 MP Accounting System – STS MP Launch Vehicle Program – MP05 MP Launch Vehicle Program	Customized MP information	

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 9. Task description, WBS 2.8, Propulsion.

Inputs	Tasks	Outputs
Projected ground rules, design-to-cost	3.8.1 Establish baseline feed system geometry	Propellant inventory
goals	3.8.2 Analyze tank/feed system fluid, thermal issues	Propulsion system layout
 Technology requirements (TRL level) 	- Temperature profiles	Tank pressures
Engine interface	· · ·	Propellant level sensor locations
Redundancy requirements	Cryo fluid management	••• Forebody moldline (iterate req air volume)
 Programmatic constraints Launch pad environments 	 Pressure drop, NPSP availability, water 	Staging requirements
Vehicle configuration and tank geometry	hammer	••• Propellant requirements ••• Number of engines
Line routing zones	 Residuals ullage 	Performance updates
Pressurant bottle locations	 Propellant inventory 	
••• Preliminary air column	3.8.3 Pressurization system sizing and design	Propellant load
••• Profile	3.8.4 Valves, ducts, mechanisms design, and layout	 Engine performance (I_{sp}, thrust)
Vehicle mass versus time		••• Expected engine mach transitions
Thrust, acceleration, and pressure versus	drawings	Inlet captive volume
time • I _{sp} (flow rates)	3.8.5 TVC components and design	 Recovery pressures α, for inlet airflow as a function
Usable propellant requirements	3.8.6 Propulsion system schematics and layout	of mach number
Axial acceleration	drawings	Mach transitions
Dynamic pressures	3.8.7 Testing engine/propulsion component	Engine dimensional and operational
• Flow rates	5.5 Todang ongmorpropulation component	characteristics
System dispersions		Turbine exhaust definition
Wind dispersions		On-pad effluent definition
••• Air inlet constraints		RBCC exhaust conditions
Derived air volume Air loads on propulsion elements		••• Forebody inlet performance requirements
Engine installed thrust		 Ignition and shutdown thrust transients and timing sequences
••• Forebody pressure recovery and flow		Steady state thrust oscillation
field definition history		Ullage pressure and tank fill heights versus
Structural analysis of lines and brackets		flight time
 Establish dynamic envelop of feedline 		RBCC exhaust/thrust
Determine line thickness		Ground hold conditions
••• Aft/forebody structures		Heat load requirements for propellant
Propellant conditionTemperature time history		conditioning Chill down requirements
Pressure		Chill-down requirements Engine configuration
Chill-down of engine		Engine computation Engine operating characteristics
Temperatures and heating loads		Engine thermal requirements
Pogo suppressor requirements		TVC gimbal capability (degree and rates)
TVC requirements		Feedline layout
RCS requirements		Kinematic analysis
Mass properties control plan Maights, centers of gravity, moments		PU system definition Air conture transition
Weights, centers of gravity, moments of inertia		Air capture transition Propulsion system drawings and models
Material compatibility		Component weight estimates
Contamination analysis		Parts list
Material properties		• Life limits
 Thermal and cryogenic properties 		 Instrumentation
Temperature limits		Uptink/downlink requirements
Telemetry capability Sangar observatoristics		Drive electronics
Sensor characteristics Availability of power (current voltage phase)		Electrical power requirements MPS chackout and fill
 Availability of power (current, voltage, phase) Operational timelines 		MPS checkout and fill Refurbishment/inspection requirements
Maintainability		Returbishment/inspection requirements Verification requirements
GSE capability		Transportation requirements
Vehicle integrated operations concept		Subsystem definition and design
and requirements		description document
Flight timeline		Vehicle controls
Fabrication parameters Flight assists of ashare time and		Power usage
 Flight safety review of schematic and operations 		••• Flight rules
East and west test range interface		Drawings and schematics Hazard analysis inputs
Hazard analysis		Functional failure modes
Fault tolerance requirements		Failure propagation logic development
Reliability allocation and estimation	·	Diagnostics/control logic
	Tools:	Failure mode effects analysis inputs
Failure mode effects analysis inputs		CIL inputs
CIL inputs	In-house software	
••• CIL inputs • Hardware DDT&E and production costs		Technical descriptions
CIL inputs	 In-house software Fluid flow models—cryo fluid management thermal models 	Vendor quotes
••• CIL inputs • Hardware DDT&E and production costs	 Fluid flow models—cryo fluid management thermal 	Vendor quotes Test requirements to include
••• CIL inputs • Hardware DDT&E and production costs	Fluid flow models—cryo fluid management thermal models	Vendor quotes

Key: • ELV, RLV, and RBCC → RLV and RBCC → RBCC only

Table 10. Task description, WBS 2.9, Materials.

Inputs	Tasks	Outputs
Drawings Component function Load/life requirements Environment Temperature Humidity Pressure Accessibility Design engineering and strength requirements Special material requirements Material identification and usage list (MIUL) Assembly operations Environment restrictions	3.9.1 Compare candidate materials to MIL—HDBK—5 data 3.9.2 Evaluate materials per MSFC—STD—506 and NHB 8060 requirements: Including but not limited to: — Toughness — Compatibility with intended use environments — Life and aging — Corrosion, stress corrosion — Toxicity — Flammability — Reactivity — Flaw environmental and cyclic growth rates 3.9.3 Evaluate fabrication and joining effect growth rates 3.9.4 Develop NDE techniques 3.9.5 Conduct static and fatigue tests to obtain missing and needed data 3.9.6 Contamination analysis 3.9.7 Cleanliness evaluation 3.9.8 Critical processes evaluation 3.9.9 Storage and shelf life evaluation 3.9.10 Select materials and processes 3.9.11 Qualification of weld and braze specimens 3.9.12 Develop NDE techniques 3.9.13 Develop contamination and cleanline control plans Tools: • NASA and MIL databases	 Hazardous operations evaluation Process schedules Personnel certification requirements NDE plan and data for drawing input Contamination and cleanliness plans

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 11. Task description, WBS 2.10, Communication and data handling.

Inputs	Tasks	Outputs
 Induced environments Temperatures Vibration levels Radiation levels EMI requirements Materials allowable IP&CL Input power Weight and volume limits Range safety requirements 	3.10.1 Flight computer requirements analysis 3.10.2 Input/output including signal conditioning requirements 3.10.3 Software 3.10.4 Ground station coverage analysis 3.10.5 Link margin analysis 3.10.6 Flux density calculations	Component specs Software specification COTS adequacy RF systems design Ground station design Antenna coverage analysis
 RF coverage requirements Data rate Bit error rate Verification requirements 	Tools: • Commercial software — CAD packages • In-house software — CAE	

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 12. Task description, WBS 2.11, Electrical power system and electrical integration.

Inputs	Tasks	Outputs
Systems requirements document Overall project requirements for DDT&E Preliminary orbital parameters and flight profiles from phase A Preliminary architecture from phase A Mission phases and operational scenarios Thermal environment	Update architecture and specific requirements, orbital parameters and mission phases Determine component design specifications Perform electrical power/energy analysis Develop cable interconnect diagram (CID) and electrical system schematics Perform parts availability and cost analysis for design options Determine quality test requirements from program requirements Identify long lead items and potential technology show stoppers. Prepare alternative for work-arounds Formulate subsystem test plan and support test and integration activities Develop subsystem schedule to meet overall program schedule for hardware integration and test Develop avionics data list for electrical integration task including cable design	EPS design and component specification Battery sizing and specs Cable interconnect diagram Electrical system schematics Cable harness designs EGSE and support hardware designs Electrical power distributor design EPS description and operational limits

Key: • ELV, RLV, and RBCC • RLV and RBCC • RBCC only

Table 13. Task description, WBS 2.12, Ground operations.

Inputs	Tasks	Outputs
 Ground test and checkout procedure Ground operations concept and requirements GSE design information Critical interfaces System and subsystems definition and design description documents Command and telemetry uplink/downlink data Subsystem constraints including ground systems Vehicle and ground systems FMEA Vehicle coordinate reference frames Operations sequence diagram Project ground rules Environmental constraints Initial loads data Safety constraints Personnel to be trained and description of their flight-operations position 	3.12.1 Human factors analysis-task analysis 3.12.2 Define flight and ground operations sequences 3.12.3 Define critical operational decisions 3.12.4 Define specific actions and sequences 3.12.5 Define operations control personnel tasks and responsibilities 3.12.6 Develop flight table parameters 3.12.7 Develop ground command loads 3.12.8 Identify existing facilities available and new facilities requirements 3.12.9 Specify design considerations	Ground systems and ground operations human factors operability assessment Launch/flight human factors and operability assessment Operations sequence diagrams Leaunch sequence procedures Launch team definition Launch and flight rule development Integrated operations manual Launch and flight sequence timelines Data flow analysis timeline Facilities required Facility design and cost plan

Key: • ELV, RLV, and RBCC → RLV and RBCC → RBCC only

Table 14. Task description, WBS 2.13, Flight operations.

Inputs	puts Tasks	
Program guidelines, constraints, ground rules, and program approach Vehicle and ground system design concepts Subsystem and end-item design concepts Operations sequence diagram Project ground rules Burn and jettison times Trajectory constraints Aerodynamic data Environmental constraints Initial loads data Safety constraints	 3.13.1 Develop integrated operations concepts and perform trades and evaluations to arrive the baseline operations approach 3.13.2 Derive the operational requirements from the baseline integrated operations concept and document in the program level system and segment specifications 3.13.3 Perform the functional allocation of the system and segment level operations requirements to the subsystem and end-item levels 3.13.4 Launch and flight sequence scheduling 3.13.5 Data analysis — Data flow assessment 	 Baseline integrated operations approach System and segment level operations requirements Subsystem and end item operations requirements Launch and flight sequence timelines Data flow analysis timeline Flight load table updates

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 15. Task description, WBS 2.14, Manufacturing processes.

Inputs	Tasks	Outputs
 Drawings Component function Assembly operations Schedules Inspection and assurance requirements Cost restrictions NDE plan Cleanliness plan Contamination plan Quality plan 	3.14.1 Develop fabrication and joining techniques 3.14.2 Evaluate fabrication practice: - Forging - Casting - Weldment - Composite - Adhesive - Joining - Etc. 3.14.3 Evaluate material form and selection for best manufacturing practice	Input for drawings, notes, specifications, etc. Hardware control Manufacturing control plan Assembly and verification plan Make or buy plan input
	NASA and MIL databases	

Key: • ELV, RLV, and RBCC •• RLV and RBCC ••• RBCC only

Table 16. Task description, WBS 2.15, Safety processes.

Inputs	nputs Tasks	
OSHA and EPA constraints Severe weather data Lightning data Design details Schematics Hazard analysis input Material certifications Vehicle integrated operations concept and	3.15.1 Review schematics 3.15.2 Review operations concept 3.15.3 Assess test range to assure compliance 3.15.4 Develop hazard analysis document 3.15.5 Develop range safety requirements 3.15.6 Develop safety constraints and guidelines 3.15.7 Conduct vehicle and launch facility FMEA 3.15.8 Quality control plan	 Range safety requirements Hazard analysis Quality assurance Plan CIL's FMEA's Risk analysis
requirements	Tools: • Commercial software—Faultrease, CAFTA, FIRM, FTC • In-house software—FEAS-M, others • Commercial and in-house reliability databases	

Key: • ELV, RLV, and RBCC • • RLV and RBCC • • RBCC only

Table 17. Task description, WBS 2.16, Design reliability.

Inputs	Tasks	Outputs	
 Design details Schematics Structural and functional definition Environment/loads definition Structural design analysis Historical data Diagnostics/control logic 	3.16.1 FMEA/CIL 3.16.2 Failure propagation logic model development - Qualitative analysis - Single-point, dual-point failure - Degradation, fault tolerance - Quantitative - Trade support - Verification of requirements 3.16.3 Time domain analysis 3.16.4 Probabilistic design analysis	System reliability estimates Component reliability estimates FMEA/CIL inputs/ requirements Design reliability model Test input Sensitivity and trade support Integrated risk analysis support	
	Tools: • Commercial software—Faultrease, CAFTA, FIRM, FTC, others • In-house Software—FEAS-M, others • Commercial and in-house reliability databases	Operations and maintenance model input	

Key: ◆ ELV, RLV, and RBCC ◆ RLV and RBCC ◆ RBCC only

Table 18. Task description, WBS 2.17, Cost.

Inputs		Tasks	Outputs
Ground rules and assumptions WBS Schedule Design-to-cost goals Technology requirements Reliability Vehicle technical description Test requirements Vehicle weights and quantities Hardware make/buy plans Vendor quotes GSE technical descriptions Ground/flight test requirements Operational timelines Operations crew sizes Facility/tooling requirements Software requirements	3.17.1 3.17.2 3.17.3 3.17.4	Perform cost trades Develop WBS Develop ground rules/assumptions Develop vehicle DDT&E, facilities, production and operations Cost estimates - Program cost by WBS - Program cost by fiscal year Develop vehicle cost-per-flight estimates - Develop schedule - Provide procurement support	Cost trades WBS Ground rules/assumptions Program cost estimate Commercial vehicle business analysis/plan
Business analysis/plan economic parameter inputs	Tools: • Botto	ms-up, parametric, and economic models	

Key: • ELV, RLV, and RBCC • RLV and RBCC • RBCC only

3. CONCLUDING REMARKS

A concerted effort has been made to define and document, at a first level, the information flows between the design functions involved in phase C stage of the launch vehicle design process at MSFC. An N×N diagram (table 1) was created to display the flow of data items and the interdisciplinary interfaces. The complexity of the process varies with launch vehicle classification. The complexity of the process increases from ELV to RBCC. The RBCC class of vehicles adds significant interfaces between the propulsion design function and the other design functions.

The structure of the information flowing between the numerous disciplines forms a complex web. Examination of the N×N diagram reveals that the design and analysis process is complex, the process requires many actions, each action requires certain information before it can be taken, and each action produces information once it has been taken.

The design process must be optimized, and the flow of information must be controlled and tracked to achieve faster, cheaper, and better designs in today's environment of flattened organizations and paperless engineering. The right information must get to the right people at the right time. A number of design planning software tools are available to determine the optimal sequence for process execution once the couplings between the project disciplines have been defined. One such software tool is Design Manager's Aid for Intelligent Decomposition (DeMAID), described in reference 2. It is possible to significantly reduce the time per design cycle. Indeed, an example described in reference 3 shows a reduction in design cycle time from 21,340–4,570 time units.

4. RECOMMENDATIONS

The work to define the information flow between project disciplines should be continued and expanded to:

- Reduce project specific design process models for a recent project and for a current project
- Test available design planning software tools on these project specific models
- Produce optimized design programs (i.e., schedules and plans for the selected projects) and illustrate and incorporate the new design planning methods and tools into this data set.

APPENDIX A—Basic N×N Diagram

N×N diagrams are used to develop data interfaces. The basic N×N diagram is shown in figure 20. Functional blocks that describe the system or process are placed on the diagonal. The functional block describes what the system or process does and not how it is accomplished. The rows and columns of the diagram show the outputs and inputs, which interface the functional blocks. The rows contain outputs from the functional blocks and the columns contain inputs to the functional blocks. Where a blank row-column square exists there is no interface between the corresponding functional blocks. Data flows in a clockwise direction between functions; i.e., the symbol $F_1 \rightarrow F_2$ indicates data flowing from function F_1 to function F_2 . Feedback, i.e., data flowing from F_2 to F_1 , is indicated by the symbol $F_1 \leftarrow F_2$. The data being transmitted can be defined in the off-diagonal squares. The squares below the diagonal contain data being fed backward (feedback), and the squares above the diagonal contain data being fed forward.

Function 1	F ₁ > F ₂	F ₁ > F ₃	F ₁ > F ₄
F ₁ < F ₂	Function 2	F ₂ > F ₃	F ₂ > F ₄
F ₁ < F ₃	F ₂ < F ₃	Function 3	F ₃ > F ₄
F ₁ < F ₄	F ₂ < F ₄	F ₃ < F ₄	Function 4

Basic N×N Diagram Rules

- · All functions (or subfunctions) are on diagonal.
- · All outputs are horizontal (left and right).
- · All inputs are vertical (up and down).
- · Inputs and outputs are items, not functions.

Figure 20. Basic N×N description.

APPENDIX B—Glossary for the Launch Vehicle N×N Diagram

The terms defined below are found in the N×N diagram (table 1). They are listed in alphabetical order.

Abort alternate mission analyses. Potential abort trajectories footprints.

Active thermal control system sizing. Determine the sizing of the active thermal control system required to thermally protect internal vehicle components such as avionics, etc. This includes selection of the coolant and sizing of the heat rejection system (such as radiators, etc.).

Antennae range data. Line-of-sight vector to vehicle and vehicle attitude.

Ascent trajectory sets. Altitude, mach, angles of attack and sideslip, atmospheric conditions, heating rates, etc.

Ascent wind models. Model to define magnitude and direction of wind versus altitude along the ascent path.

Atmospheric model. Model to define atmospheric parameters (e.g., density, temperature) versus altitude.

Autopilot definition. Controllable flight corridors, maximum rate requirements.

Baseline autopilot configuration. Algorithms and architecture.

Bracket analysis. Structural strength and life assessments of structural brackets utilized in propulsion components.

Burn times. Times at which engines are cutoff or solid motors burn out.

Component installation. Assembly containing component installation.

Component weight estimates. Relates to the weights of active or passive thermal control system components such as pumps, thermal capacitors, etc.

Computer requirements. Required computational cycle frequency for guidance and control execution loops, and transport delay.

Construction type. Honeycomb, isogrid, etc.

Control sensor locations. Body location of rate gyros, accelerometers, GPS antenna, etc.

Control surface deflection requirements. Degrees of deflection required from each aero control surface.

Critical dimensions. Maximum dimensions.

Critical interfaces. Program requirements levied against the design (e.g., no-services tower, hold-down prior to release, etc.).

Cryogenic insulation sizing. Determine cryogenic insulation thickness using PATRAN, TRASYS, and SINDA to achieve required structural temperatures, control boil-off for required propellant quality and loading, prevent air liquefaction, and minimize ice formation.

Design loads. Those loads that the structure is expected to encounter during its life.

Determine line thickness. Establish sufficient dimensions on propulsion lines to assure adequate strength and life.

Dispersion. Failure case trajectories.

Engine placement geometry. Location, cant angle, distance between engines, propellant feed line location, actuator location gimbal envelope, bolt circle, and thermal closeout.

Entry trajectories sets. Altitude, mach, angles of attack and sideslip, atmospheric conditions, heating rates, etc.

Environmental operations constraints. Operational constraints affecting configuration and maintenance of systems (e.g., hydrazine propellant).

EPA and OSHA constraints. Operational constraints affecting configuration and maintenance of systems (e.g., access and venting).

Establish dynamic envelope of feedline. Area around the feedlines which must be maintained clear to account for dynamic deflections during flight.

Factors of safety criteria. Structural strength design and test factors as well as service life factors for space flight hardware development and verification consistent with NASA-STD-5001.

Flex body mode frequency constraints. Frequency stayout regions for vibration modes of the vehicle.

Fracture control requirements. The minimum acceptable requirements to establish an adequate fracture control program for space flight hardware. The design shall be based on these procedures to preclude a catastrophic event when failure of that hardware occurs. The requirements shall be consistent with NASA-STD-5003.

Ground and ascent wind models. Mathematical representations of the wind speed for the various altitudes of flight from ground through ascent and specific launch sites. The representation is determined from measured wind data and statistical methods.

Ground ops. Program requirements to operating from a specified launch platform (e.g., KSC, VAB, airborne launch, etc.).

Ground wind profiles. Existing wind data of specific launch sites is used to determine ground wind loads.

Guidance system inputs. Constraints on conditions at guidance loop initiation (e.g., dynamic pressure, mach number, allowable drift, and performance).

Gust models. Probability level and structure of wind gust (versus altitude).

Hardware design. Hardpoints and lifting points.

Initial performance. Initial estimate of payload performance for given configuration.

 I_{so} (flow rates). Propellant mass flow rates for each engine.

Jettison times. Times at which stage separations occur.

Launch pad environments. Existing data ranging from atmospheric conditions such as sea spray for determining applicable coatings to exhaust deflection systems to determine base loads (from Natural Environment Inputs of 3.1 Vehicle Configuration and Structural Design). Structural temperature predictions due to natural environment analysis conditions (ambient temperatures, solar input, cryogenic loading, and wind velocities) during prelaunch (from Natural Environment Inputs of 3.5 Thermal).

Launch pad geometry. Defines the location and orientation of the vehicle coordinate system when vehicle is on the pad.

Launch platform finite element model. The finite element model of the structure which the launch vehicle sits on and is launched from.

Launch probability requirements. Probability of launch within certain window (due to natural environments).

Life limit. Refers to the loading spectrum associated with hardware life assessments (fatigue, fracture, stress rupture, creep, etc.).

Line routing zones. Line locations and insulation.

Loads. Forces and moments on a structure due to transportation, prelaunch, launch, ascent, and separation/ignition.

Loads analysis on lines. Forces and moments of propellant lines.

Loads and deflections. Cases where deflection, the movement from a reference datum point, is a governing design criterion for the hardware.

Loads trajectory data. Accelerations, dynamic pressure, angles of attack and sideslip.

Margins of safety. Hardware shall be analyzed to show non-negative margins using the required factors of safety. Margin of safety is the fraction by which failure load or stress exceeds the maximum design condition load or stress that has been multiplied by the factor of safety. $MOS = (Minimum Material Strength \div Maximum Design Condition)-1.0$

Maximum Q. Reference maximum dynamic pressure.

Maximum engine deflection. Degrees of required effective TVC throw angle per engine.

Mission definition. Payload mass and required orbit (apogee, perigee, inclination, etc.).

Number of engines. Number of chosen engines for each stage.

Parts list. Required thermal control component.

Performance updates. Latest estimates of payload performance for configuration.

Periodical mass properties report. Weights, centers of gravity, and moments of inertia.

POGO suppressor requirements. Effective compliance required of the accumulator.

Power requirements for control system. Duty cycles and peak power.

Power requirements for thermal control system. Assist electrical group in determining power requirements for thermal control system components such as pumps, heaters, etc.

Pressurant bottle locations. Location, size, and attachments.

Production ops. Program requirements such as using existing tooling from other launch vehicle production lines versus new facilities (e.g., Shuttle-C, ALS/NLS, etc.); also program requirements of quantity (e.g., mass production versus one-of-a-kind).

Production quantities. Quantity needed.

Propellant feedline flex modes. Dynamic mode shapes of propellant feedline structure.

Propellant load versus time. Time history of propellant mass per tank along trajectory.

Propellant requirements. Propellant volume and tank pressure.

Propellant slosh baffle sizing. Geometric dimensions of baffle structure.

Propellant slosh modes. Dynamic mode shapes of propellant fluid surface.

Protuberance geometry. Geometry of objects that protrude from the primary contour.

 Q_{α} versus Q_{β} envelopes. Maximum product envelopes versus mach number of altitude (including dispersed cases).

QAlpha, QBeta constraints. Maximum and minimum of the dynamic pressure (Q) multiplied by both the angle of attack (Alpha) and sideslip angle (Beta).

RCS requirements. Required thrust, location, and duty cycle for RCS thrusters.

Redundancy requirements. Engine out and thrust vector control failure requirements.

Reference trajectories. Time history, altitude, mach dynamic pressure, vehicle mass, velocity, etc.

Residuals at main engine cutoff, etc. Propellant masses remaining at engine cutoff times.

Sensor requirements. Required number, type, sensitivity, bandwidth, accuracy, etc. of sensors.

Shock sources. Springs, latches, separation devices, recovery devices (e.g., parachutes).

Slosh damping requirements. Percentage damping required for each propellant tank versus time of fluid height.

Software requirements. Algorithms required to implement guidance and control system functions.

Stability margins. Achievable gain and phase margins for autopilot system.

Staging requirements. Number of stages and staging conditions (e.g., location, altitude, and velocity).

Structural design analysis. Ensure that the structure has the capability to successfully withstand the specified loads for the required life.

Structural dynamic models and analyses. Finite element models used for analysis that is concurrent with motion; i.e., dynamic analysis.

Structural failure modes. Rupture, collapse, excessive deformation, or any other phenomenon resulting in the inability of a structure to sustain specified loads, pressures, and environments, or to function as designed.

Structural sizing. Critical dimensions of structural members needed to meet the strength, stiffness, stability, and life requirements.

Structural temperature requirements. Materials group provides thermophysical properties schemes, density, specific heat, thermal conductivity, and melt temperature. Thermal test program required to verify thermal protection material adequacy for application on vehicle is established by thermal and material groups. Thermal group assess material ablation rate as function of heating from test.

Structural temperatures and gradients. Structural margin evaluation determines allowable temperatures for specific location on vehicle. Thermal group determines required thermal protection system to maintain acceptable structural temperatures.

Subsystem definition. Program-defined components (e.g., existing engine versus paper engine, proven technology versus cutting edge, solids versus no solids, etc.).

Subsystem definition and design description document. Extreme temperature ranges are -40° F to 165° F (aircraft flying at altitudes above 18,000 ft may be exposed to temperatures below -40° F, therefore, care shall be taken when shipping by air to ensure that the component is properly insulated and shipped in a conditioned compartment that does not exceed the design specification temperature limits.

System dispersions. Thrust, I_{sp}, mixture ratio, GLOW, performance sensitivities due to these.

Technical descriptions. Material type, construction, and size.

Temperature sensor locations. Determine the placement of temperature sensors to evaluate system performance and for comparison with preflight predictions.

Test requirements and support. Strength, modal survey, acoustic, random vibration, and shock.

Test requirements to include instrumentation. Develop test requirements necessary to verify strength of the design (qualification, acceptance, or proof), test to verify strength models, and tests to verify workmanship and material quality of flight articles (acceptance or proof).

Thermal environment. Perform thermal analysis to determine the thermal environments and temperature response of electrical components during prelaunch (cold/hot) ascent, mission operation, and reentry.

Thermal environment for EPS. Electrical group furnishes cable description and allowable temperatures to thermal group. Electronic component group furnishes black box drawings, heat dissipation, and allowable operating and nonoperating temperatures. Temperature ranges for black box qualification are furnished by thermal to electrical group. Thermal group determines the effective operational temperatures of electrical components during prelaunch and flight (ascent, reentry, and landing).

Thermal protections system sizing. Thermal group uses such analytical tools as ABL, PATRAN, TRASYS, SINDA and ACE/CMA along with prelaunch environmental conditions and flight heating environments to select TPS material type and thickness/weight based on maximum temperature and heat load. These data are supplied to assist designers in material selection and vehicle design.

Thermal protections system sizing (aerothermal/base heating). Use of analytical tools such as ABL, PATRAN, TRASYS, SINDA, and ACE/CMA to provide required TPS/insulation weight.

Time history. Vehicle attitude, throttle settings, burn times, jettison times, GLOW.

Transportation loads. Forces and moments of structure due to transportation.

Transportation requirements. Requirements for transporting hardware (e.g., maintaining a positive pressure, enclosed shipping container).

TVC requirements. Required gimbal angles, rates, acceleration, duty cycles for TVC actuators, throttle range, and rate requirements.

Use and operational environments. Issues such as recovery to determine required systems.

Vehicle breakup and disposal analysis. Reentry footprint and boost stage impact footprint.

Vehicle configuration and tank geometry. Two-dimensional layouts and three-dimensional models containing vehicle dimensions, line routing zones, and pressurant bottle locations.

Vehicle coordinate system. X, Y, Z axes for the vehicle (at input to 3.13 Flight Operations). Location of origin, orientation of axes, and units (at External Input for 3.7 Mass Properties).

Vehicle flex-body modes. Structural dynamic characteristics of a vehicle.

Vehicle moldline. External contour of the vehicle.

Verification requirements. Verify that no design parameters were exceeded during shipping (e.g., manufactured part equals shipped part).

Vibro-acoustical requirements. Vibration criteria used to qualify electronic hardware for launch vehicle environments.

Wind dispersions. Performance penalty due to winds.

REFERENCES

- 1. Humphries, W.R.: "Transmittal of Bantam Launch Vehicle Generic Integrated Engineering Design Process," *MSFC Memorandum ED01–97–01*, February 1997.
- 2. Rogers, J.L.: "A Knowledge-Based Tool for Multilevel Decomposition of a Complex Design Problem," *NASA Technical Paper 2903*, May 1989.
- 3. Rogers, J.L.; McCulley, C.M.; and Bloebaum, C.L.: "Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes," *NASA TM-110247*, April 1996.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operation and Reports, 1215 Jetferson Davis Hindway Suite 12(A Administry N 2/22/02.43/02 and to the Office of Management and Buddet, Paperwisk Reduction Project (0704-0188). Washington, DC 20503

collection of information, including suggestions Davis Highway, Suite 1204, Arlington, VA 2220	for reducing this burden, to Washington Headq 12-4302, and to the Office of Management and E	uarters Services, Directorate for Infor Budget, Paperwork Reduction Project	mation Operation and Reports, 1215 Jefferson (0704-0188), Washington, DC 20503	
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE		E AND DATES COVERED	
	December 1999		al Memorandum	
4. TITLE AND SUBTITLE			FUNDING NUMBERS	
Information Flow in the	Launch Vehicle Design/A	nalysis Process		
6. AUTHORS				
W.R. Humphries, Sr., W. Holland,* and R. Bishop*				
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)			PERFORMING ORGANIZATION REPORT NUMBER	
George C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812			M-955	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			SPONSORING/MONITORING AGENCY REPORT NUMBER	
National Aeronautics and Space Administration			ASA/TM-1999-209877	
Washington, DC 20546–0001			A3A/1M19992096//	
*Sverdrup Technology, I	ms Department, Flight Pro nc., Huntsville, Alabama			
12a. DISTRIBUTION/AVAILABILITY STATEMENT			b. DISTRIBUTION CODE	
Unclassified-Unlimited				
Subject Category 16				
Nonstandard Distribution				
13. ABSTRACT (Maximum 200 words)				
Marshall Space Flight Cente modeled at a first level and is and discipline task description between what they do and w	Its of a team effort aimed at der (MSFC) engaged in the design described using three types of ons. It is intended to provide here it fits in the overall design understanding of information f	gn of space launch veh templates: an N×N diag engineers with an und n process of the project.	icles. The information flow is ram, discipline flow diagrams, erstanding of the connections It is also intended to provide	
14. SUBJECT TERMS launch vehicle design process, launch vehicle design information flow,			15. NUMBER OF PAGES 56	
design process sequence	16. PRICE CODE A04			
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	ON 20. LIMITATION OF ABSTRACT	
Unclassified	Unclassified	Unclassified	Unlimited	