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Abstract

In this paper we combine finite difference approximations (for spatial derivatives) and
collocation techniques (for the time component) to numerically solve the two dimensional
heat equation. We employ respectively a second-order and a fourth-order schemes for t.he
spatial derivatives and the discretization method gives rise to a linear system of equations.
We show that the matrix of the system is non-singular. Numerical experiments carried
out on serial computers, show the unconditional stability of the proposed method and

the high accuracy achieved by the fourth-order scheme.
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1 Introduction

We consider the two dimensional heat equation:

Ou /O2u 02u.
-_(x,y,t) = ,_ _y-_2(x,y,t)+ -_(_,y,t)] ,

i'

where _ = [0, 1] x [0, 1], and with the initial condition

(_,y,t) c _ × [0,_) (1)

_(_,y,0) = ¢(x, y), (x,y) c _,

and the boundary conditions

u(O,y,t) = fo(y,t), u(1,y,t) = fl(y,t), _(x,O,t) = go(x,t), and _(x, 1, t) : gl(x,t) for t _ 0.
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We assume that f0, f_, go and gl are smooth functions in the variable t, i.e., their first

derivatives with respect to t exist and are continuous.

If (1) is discretized with standard or high-order finite difference approximations, the

resulting method leads to a stability condition. For a reasonable number of mesh points in

the spatial direction, this typically requires a very small time step to satisfy the stability

requirement. Even if the approximations produce implicit methods, the computational com-

plexity considerably increases, especially if high-order formulas are employed [5]. In addition,

these techniques, when implemented on parallel computers can only allow the parallelization

in space, i.e., at each time step, spatial grid points are partitioned and assigned to processors;

the solution is then computed before we move to the next time step.

Recently, J_z_quel [3] combined the standard finite difference approximation for the

spatial derivative and collocation technique for the time component to numerically solve the

one dimensional heat equation. The method (called implicit collocation method) is uncon-

ditionally stable. Its principle is as follows: after discretization in space of the problem, the

solution is approximated at each spatial grid point by a polynomial depending on time. The

resulting derivation produces a linear system of equations. The order of the method is in

space the order of difference approximation and in time the degree of the polynomial.

In this paper, we extend Jdz_quel's work [3] to the two dimensional heat equation. In

addition to the spatial discretization with the standard second-order formula, we also pre_ent

discretization based on a fourth-order formula. For the two formulas, we show that the

matrix arising from the system of equations is non-singular and we present their respective

accuracies. Our numerical experiments are carried out on a serial computer.

An outline of the paper is as follows. In Section 2, we explain the basic principle behind

the implicit collocation method. Section 3 presents the derivation of the system of linear

equations when the fourth-order and the second-order formulas are respectively utilized for

the spatial derivatives. Numerical results are given in Section 4. In Section 5, we discuss some
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issuesrelatedto the implicit collocationmethod.Finally,someconclusionsareformulatedin

Section6.

2 Principle of the Implicit Collocation Technique

The idea behind the technique can be described as follows:

1. We start with a time dependent partial differential equation (PDE).

2. The PDE is discretized in space, giving rise to a system of ordinary differential equations

with unknown functions at each spatial grid point.

3. The implicit collocation method consists of approximating at each spatial grid point

the solution by a polynomial that depends on time. To solve the PDE with implicit

collocation method is to determine the coefficients of all polynomials.

4. Depending of the PDE, we obtain a linear or non-linear system of equations (where the

unknowns are the coefficients) that can be solved by a direct or iterative method.

5. Once the coefficients of the polynomials are determined, the ,approximated solution

of the PDE is computed on a given time interval that depends on the degTee of the

Jr

polynomials, i '

One of the main advantages of the implicit collocation method is that if it is efficiently

implemented on distributed memory computers, the parallelization is carried out both across

time and space [3].

In the next section we use this description to derive the system of equations. The

main presentation focuses on the fourth-order finite difference approximations for spatial

derivatives.



3 Derivation of the System of Equations

3.1 Discretization Procedure

Let h = 1In and At be the spatial and time mesh-widths respectively. We can subdivide the

spatial domain and consider the time step as follows:

xi=ih, yj=jh, i,j=0,1,...,n

tk = kAt, k = O, 1,...

For simplicity we write the approximated solution of u and its time derivative at the spatial

grid points (xi, yj) as:

Ou

vi,j(t) = ,4x.yj, t), and U_,j(t)= -_(x_,yj,t).

At any given time t, if we use the discretization of the steady state Poisson equation

with a fourth-order (FO) scheme [1], we can approximate the spatial derivatives of (1). We

obtain for any grid point (xi,yj) , i, j = 1,... ,n- 1:

! [v'÷l,j(t)+ +v,_l,j(t)+ +8v,2

o_2

-- h2 [4 (Ui+l,j(t) q- Ui,j+l(t) + Ui-l,j(t) + Ui,j-l(t)) (2)

+ (Ui+lS+l(t) + Vi-l,j+l(t) + Ui-l,j-l(t) + Ui+l,j-1 (t)) -: 20Ui,j(t)],

with the conditions

u_,j(o) = ¢(x_, uj),

Uoj(t) = fo(yj, t),

Un,j(t) = fl(Yj, t),

U,,o(t) = go(=_,t),

u,,_ (t) = g_(x_, t),

" t

u;j(t) = -_-t°(y_,t),

u',j(t) = -_(yj, t),

U',o(t) = -_(_,,t),

u',_(t) = Og__x t).o-7-_,,

Eq. 2 is a system of (n - 1) x (n - 1) ordinary differential equations and for any value

of t, it is fourth-order in space.
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Remark 1 In case the spatial derivative in (I) is discretized with the standard second-order

(SO) finite difference approximation, we obtain the system:

012

V_,j(t) ---- -_ [Vi+l,j(t) + Ui,j+l ( t) + Vi-l,j(t) + Vi,j-l (t) - 4Vi,j(t)] . (3)

Here the conditions on the time derivatives on boundary points are not employed.

Now it remains to introduce the concept of implicit collocation methods in our deriva-

tions.

Let Pis(t) be the polynomial of degree r satisfying the system (2) at the spatial grid

point (xi,yj) and at times t k ---- kAt (k = 0,... ,r - 1). Then for any i,j = 1,... ,n - 1 and

k = 0,...,r- 1, we have

Pis(tk) = ai,j,rtrk + ai,j,r-ltrk -1 + "'" + ai,j,ltk + ai,j,o.

The coefficients ai,j,o are determined from the initial condition:

ai,j,o = Pi,j (0) = Ui,j (0) = ¢(xi, yj).

To solve the system (2) by the collocation method is to determine the coefficients aij,o, ai5,1, • ••, aij,r,

for i,j = 1,... ,n - 1. After some algebraic manipulations (see [3] for details on the one di-

mensional heat equation) we obtain the linear system of r x (n - 1) x (n - 1) equations
?

AX = S, (4)

where A is a block-tridiagonal matrix given by
- !

A = tri [Aj-1, Aj, Aj+l]n_ 1 .

Aj-1, A 1 and Aj+I are square matrices (with r × (n - 1) rows) defined as

!h2E, ,Aj-1 = tri -E, 2 a 2 n-1

Ol2 2 012 n--1

]Aj+I = tri -E,-_--_E - 4E,-E .
n--1
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The subscript n - 1 determines the number of block-rows. E and E' are r × r nonsymmetric

matrices

(o / (. Ol)t_ t_-_ ,-t[-_ (r 1)t7-2 ... 2t_ 1
E = t E' =

• • • _ • • • • )

_-I rt I-1 (r _-2r 1)tr_ 1 "'" 2tr-I 1tr_ 1 tr_ 1 "'" tr-1 r-1

the vector X of r × (n - 1) × (n - 1) unknowns and the right hand side S are

Z

al'l'r I

al,l,1

an--2_n- 1,1

an-l,n-l,r

S

4(a2,1,0 + al,2,0) + a2,2,o -- 20alj,o + 4(Ul,o(to) + Uo,l(to))
__ 1 2+Vo,_(to)+ Uo,oCto)+ V2,oCto)_(v{,o(to)+ v_,_(to))

4(a2,1,o + al,2,o) + a2,2,o -- 20a1,1,o + 4(Ul,o(tr--1 + Uo,l(tr-1)
±h21U' It+Vo,2(to)+ Uo,o(tr-1)+ U2,o(tr-1)- 2_ _,o_r-lj + v_,l(tr-1))

4 ( ai + l ,j,O -4- ai,j + l ,O -t- ai- l,j,o 4-it/,i,]-1,0) "4- ai+l,j+l,0

--I-ai_i,j+l, 0 --I- ai-l,j-l,0 --t- ai+l,j-l,O Z 20aij,O

4(ai+1,],0 --I- ai,j+l,o -I- ai-l,j,o -t- ai,j-l,0) -t- ai+lj+l,O

-t-ai-lj+l,0 + ai-l,j-l,O '_ o4+1,]-1,0 -- 20ai,j,O

4(a,_-2,n-l,o + _-1,n-2,o) + a,_-2,n-2,o - 20a.-1,.-1,o + 4(U.__,n(to) + U.,.-l(to))
_1 2 t I+u.,._2(to) + u.,.(to) + u.__,.(to) _(u:,__,.(to) + u:,,._l(to))

4(a_-2,.-1,o + an-l,n-2,o) + a.-2,n-2,0 - 20a.-1,n-Lo + 4(Un-L.(tr-1) + U.,n-1(tr-1))

+u.,,,-2(t_-d + v.,,_(t._1) + u,,_2,.(tr-1) - _"'_(u'._1,.(t_-1) + u:_,.__(t__1))



Remark 2 With the SO scheme, the matrix A is still block-tridiagonal and

Aj-1 = diag[-E]n-1,

Aj = tri -E, as + 4E,-E ,
n--1

Aj+I = diag[-E]n-1.

The vector of unknowns remains the same and the right hand side S does not involve time

derivatives at boundary points.

Remark 3 A is a matrix with bandwith equal to (2n- 2)r and (2n + 1)r for the SO and FO

spatial schemes respectively. The block structure of the matrix A for the SO or FO scheme, is

similar to the one obtained from the discretization of the two dimensional steady-state Poisson

equation with the SO or FO scheme. In the latter, instead of having the block matrices E and

E I, we have constant coe.O_cients.

Remark 4 To obtain the solution, the coefficients aij,k (i,j = 1,... ,n- 1 and k = 1,... ,r)

are first evaluated and then the approximated values Ui,j(tk) (i,j = 1,...,n -- 1 and k =

1,...,r - 1) are calculated. Each of these two steps can be carried out in parallel. In addi-

tion, the collocation method does not only consist of determining the Ui,j(tk) only, but also

calculates coe O_eients of polynomials approaching the solution in the;interval [to, tr-t].

3.2 Non-Singularity of the Matrix A "'-

If we focus on the FO spatial approximation, Eq. 4 t_as a solution only if the matrix A is

non-singular. To determine the non-singularity of A, it is enough to study its block-diagonal

elements.

Ah2 E ILet D -- -_-_ + 20E be the block-diagonal of the matrix Ai defined above. We can

state the following theorem.

Theorem 1 The determinant of the matrix D is zero if and only if two values tt-t and tin-1

are identical.
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Proof: D is a r x r matrix where

Dio= + l - j) + 2Oti_t tr-_>0, i,j = l,...,r.

For a given i, it is impossible that Di,j = 0 for all values of j. Indeed the cofficients of the

last column of the matrix D are all non zero: Di,r = 4h_-_' + 20ti-1 _ O. D can be seen as a

Vandermonde-like matrix. Since all the ti-1 are all different, D is a non-singular matrix. []

Conjecture 1 The determinant of the matrix A is non zero and the linear system (3) has

a unique solution.

The same conclusion can be obtained if we employ the SO spatial scheme.

4 Numerical Experiments

Consider Eq. 1 with the conditions

1
OL_

7r

u(x, y, O) = sin rx + sin _ry,

fo(Y, t) = fl(Y, t) = e -t sin _ry, go (x, t) = gt (x, t) = e -t sin Irx.

The exact solution is given by u(x, y, t) = (sin rx + sin _ry)e -_.

For the second-order (SO) and the fourth-order (FO) spatial discret[zations respectively,

the implicit collocation technique was implemented an SGI 02 Workstation in Fortran 77.

To solve the linear system of equations, we used the deco_mposition algorithm for inverting
J

asymmetric and indefinite matrices proposed by Luo [4]. The method is easy to programmed,

requires only the storage of the matrix and the right hand side of Eq. 4 and was chosen for

its parallelization potential.

To test the accuracy and stability of the implicit collocation technique, we present for

At -----0.1 and At = 0.01 and for different values of r and n, the absolute maximum error

(obtained by comparing the true solution with the approximated one) achieved in the interval

[0, (r - 1)At]. We compare errors obtained with the second-order (SO) and the fourth-order



(FO) spatialschemes.Wedonot report the timing resultsbecausethetwoschemesgivethe

sameelapsedtime. This is dueto thefact that in the implementationof Luo'salgorithm,we

did not takeadvantageof the respectivematrix bandwidths;evenif wedid, the differencein

elapsedtimeswouldbenegligiblesincetheir bandwidthsarecomparable.

To providean ideaonhowlargethe systemof equationsis,we first presentin Tablel,

the dimensionof the matrix A in (4) for different values of n and r.

I n I r=3 r=4 r=5

4 27 x 27 36 x 36 45 x 45

8 147x147 196x 196 245x245

16 675x675 900x900 1125 x1125

Table 1: Dimension of the matrix A for different values of n and r.

We report in Tables 2, 3 and 4 absolute maximum errors for r = 3, 4, 5 respectively

when the spatial mesh-width varies. The maximum error in the interval [0, (r - 1)At] was

At-- 0.1 At = O.oin SO [ FO SO FO

4 1.61(-2)

8 4.14(-3)

16 1.04(-3)

5.35(-4) 1.97(-3)

3.33(-5) 5.01(-4)

1.89(-6) 1.25(-4)

6.27(-5)

3.90(-6)

2.43(-7)

Table 2: Maximum error obtained with the second-order (SO) and fourth-order (FO) spatial
schemes for different values of At when r = 3.

obtained for t = (r - 1)At and the error increases as t does within the interval. This result is

consistent with the one achieved by J_z_quel while solving the one dimensional heat equation

using the second order scheme and collocation technique [3].

We observe that for given r and At, SO indeed produces solutions of second-order

accuracy and FO of fourth-order accuracy. In addition, with FO the accuracy is far more

better. These findings are consistent with the ones obtained by Gupta et al. [2] and Zhang

et aI. [6] while solving the steady state Poisson equation with the two schemes.



At = 0.1 At = 0.01

n I SO

4 2.14(-2)

86 5.52(-3)1.39(-3)

FO I1 SO FO
7.10(-4) 2.93(-3) 9.35(-5)

4.28(-5) 7.44(-4) 5.80(-6)

2.16(-6) 1.86(-4) 3.61(-7)

Table 3: Maximum error obtained with the second-order (SO) and fourth-order (FO) spatial
schemes for different values of At when r = 4.

At = 0.1 At = 0.01

n [ SO FO [ SO FO

4 2.51(-2) 8.34(-4) 3.86(-3) 1.23(-4)

8 6.49(-3) 5.10(-5) 9.82(-4) 7.66(-6)

16 1.63(-3) 3.18(-6) 2.46(-4) 4.76(-7)

Table 4: Maximum error obtained with the second-order (SO) and fourth-order (FO) spatial
schemes for different values of At when r = 5.

5 Discussion

5.1 Degree of the Polynomials

The order of the implicit collocation technique is the order of the difference scheme in space

and the order of the polynomial in time (namely r). The question that arises is how do we

choose r in order to obtain high accurate approximated solutions of (1)? By increasing the

value of r, we dot not only increase the lenght of the time interval where the solution is to

be found but also the size of the linear system of equations. In [3], J_z_quel studied the

numerical validity of the coefficients of the polynomials. She defined the optimal degree ropt

of the polynomials to be the highest integer for which all the coefficients of the polynomials

and the approximated solution remain significant. She found that the degree ropt increases

as the time and spatial mesh sizes increase but ropt is not arbitrary large.
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5.2 Merit of the Method

Herewe attempt to computationallycomparethe implicit collocationmethod and other

standardimplicit methods(arisingfrom classicalfinite differenceapproximationsin both

spaceandtime).

Assumethat thespatialdomainhas(n-1) × (n-1) interior grid points. The derivations

with a standard implicit method (SI) produces a system of equations with Nsi = (n - 1) ×

(n - 1) unknowns whereas with the implicit collocation (IC) method, we obtain a system

with Nic = r x (n - 1) x (n - 1) unknowns, where r is the degree of the polynomials.

Let Atic be the time step used for IC. The solution using IC, can be determined at

any point in the interval [0, (r - 1)Atic]. Let (r - 1)m be the number of equidistant points

where the solution is to be computed in this time interval. To determine the solution at

the same points of the interval with SI, (r - 1)m time iterations must be carried out. The

corresponding time step is Atsi = Atic/m.

The implementation of IC requires the solution of a linear system of Nic equations; its

computational cost is Cic _ N3c. For SI, we need to find the solution of a linear system of

Nsi equations (r - 1)m times; the cost is then Csi _ (r - 1)mN3i . If we assume that Cic and

Csi are equal, then r 3 = (r - 1)m or m = r 2 + r + 1 + l/(r - 1). We can conclude that if

m < r 2 + r + 2, then SI is computationally less expensive than IC, and if m > r 2 + r + 2, IC

is cheaper.

To summarize, the implicit collocation method is benefitial with respect to standard

implicit methods, if for given r and At, the number of equidistant time points in the interval

[0, (r - 1)At] is at least greater than r 3 + r.

6 Conclusions

We have carried out the numerical approximation of the two dimensional heat equation by

using finite difference schemes (for spatial derivatives) and implicit collocation technique (for
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time component).The proposedmethodis unconditionallystable. We employedsecond-

orderand a fourth-orderspatialschemesrespectivelyand showedthat both havethe same

computationalcomplexityandthat the fourth-orderoneclearlyproducesmoreaccurateso-

lutions.

The main advantageof the implicit collocationtechniqueis not only its stability condition

but alsothe fact that it canbe implementedon distributedmemorycomputerswherethe

parallelizationstrategyis performedboth acrosstime and space.In future works,weplan

to implementthe methodon parallel computersand to extendour analysisto the three

dimensionalheatequation.
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