ACCEPTANCE DATA PACKAGE NASA CONTRACT NAS8-39409 SXI STEPPER MOTOR/ENCODER AEROFLEX P/N 16187

C- QUALIFICATION TEST REPORT

۰.

÷.

<u>.</u>

- -

£

QUALIFICATION TEST REPORT MOTOR/ENCODER P/N 16187 DRD Nº 763QE-001

Qualification testing was not part of this contract and was therefore not performed. Joint Qualification/Acceptance Test was performed in accordance with approved Acceptance Test Procedure.

TABLE OF CONTENTS

SECTION C

- I Hardware Identification & Configuration
- II Qualification Summary
- III Qualification Test Data Results
- IV Special Test Data
- V Engineering Rationale to support Analysis vs Testing
- VI Qualification Failure & Corrective Action
- VII Qualification Certificate

SECTION I

_

_

1

)

 \Box

HARDWARE IDENTIFICATION & CONFIGURATION

GEROFLEX-

١

DRAWING LIST

Motor/Encoder Documentation P/N 16187

Document No	Rev	Description
16187	В	Motor/Encoder
PL16187	В	Motor/Encoder
200-88	С	Drawing Tree
200-89	E	Motor/Encoder Assy
PL200-89	E	Motor/Encoder Assy
301-60	E	Housing
PL301-60	E	Housing
301-61	Α	Cover
303-216	В	Temp Xducer Filter Cir Assy
PL303-216	В	Temp Xducer Filter Cir Assy
303-217	Α	P.W. Board
400-29-6	C	Rotor Assy
PL400-29-6	С	Rotor Assy
402-29-9	В	Rotor Hub & Shaft
403-1-7	В	Bearing, Duplex
404-13-61	В	Liner, Bearing
411-291-2&3	В	Magnet
500-29-9	С	Stator Assy
PL500-29-9	С	Stator Assy
502-29 - 9	С	Stator Core
PL502-29-9	С	Stator Core
512-11-14	В	Lamination
520-248	A	Inspection Data
521-425	C	Coil Winding
522-472	A	Finish Data
531-56	A	Schematic Temp Xducer Filter Cir
532-2	C	Connection Diagram
607-448	В	Bearing Retainer
607-449	В	Bearing Retainer
607-450	B	Pin, Locking
110E381	В	Encoder, Optical

-

-

DRAWING LIST

-

. . .

_

1

. .

Motor/Encoder Documentation P/N 16187

Documentation	Rev	Description
5-068-0	Ā	Bonding Proc - 2650
5-071-0	С	Bonding Proc - 280
5-125-0	-	Bonding Proc - 2651
5-128-0	В	Cleaning Procedure
5-129-0	Α	Cleaning Procedure
5-130-0	В	Cleaning Procedure
5-134-0	Α	Cleaning Procedure
5-222-0	Α	Fluidize Bed Coat Proc
5-258-0	В	Magnet Inspect Proc
5-283-0	Α	Bonding Proc - 1564
5-284-0	Α	Cleaning Procedure
5-294-0	В	Bond/Staking Procedure
5-296-0	Α	Vacuum Bake Procedure
5-297-0	В	Encoder Align. Procedure
5-298-0	В	Vacuum Bake Procedure
5-305-0	Α	Cleanliness Control
5-316-0	Α	Cleaning Procedure
960-229	В	Bonding Procedure - M620
960-251	С	Bonding Procedure - E645
960-295	C	Assembly Flow Chart
110P371	B	Contamination Control
110P374	B	Packaging Procedure
ATP20049	В	Acceptance Test
612-3	Α	Bondmaster E645
612-20	Α	Bondmaster M620
612-38-2	D	Stycast Resin
612-54	Ā	Scotchcast 5230

Motor/Encoder Documentation P/N 16187 Sequential P/N's - Part of 110E381

<u>Document No.</u>	Rev	Description
19868-21664	D	PW Bd Assy -Encoder
19868-21665	В	PW Board
19868-21667	D	Schematic
19868-21666	A	Reticle, Carrier
19868-21668	A	Isometric
19868-21670	Α	Plate
19868-21672	Α	Readout Holder
19868-21680	Α	Disc. Hub
19868-21759	A	Shield
19868-21760	А	Shield
19868-21761	Α	Shield
19868-21764	Α	Readout Holder Assy
19868-21765	-	Encoder Mtg Plate Assy
19868-21766	В	Disc & Hub Assy
19868-21770	-	Encoder Assy
19868-21788	D	Disc
19868-21763	Α	Reticle & Carrier Assy
19868-21774	D	PW80 Assy Led
19868-21775	В	PW Board
19868-21781	-	Outline - Encoder
19868-21787	D	Reticle
19868-21796	A	Shield
19868-21819	A	Shield
19868-21785	A	Encoder Bd Test Procedure
19868-21786	A	LED Bd Test Procedure

ţ

E E -

_

. .

.

•

.

SECTION II

7.6.07

QUALIFICATION SUMMARY

(a) RECORDED MEASUREMENTS

All measurements made during testing are recorded in ATP 20049 - DS data sheets and are included in this log.

(b) TEST SUMMARY

The motor/encoder (henceforth referred to as the UUT) test sequence began with a baseline functional evaluation, which demonstrated that the motor satisfied the operating torque, cogging torque, winding resistance, and mechanical requirements of SOW. In addition, the encoder electrical requirements were verified, as well as the alignment of the encoder outputs relative to the motor shaft position. There were no discrepancies observed in this portion of the test.

The UUT was then exposed to a number of environments, including thermal vacuum, thermal cycling, random and sine vibration, and mechanical shock. During the thermal environments, the performance of the UUT under load was verified at specified points in the cycles, as described in ATP 20049. In addition, the UUT was bench tested between the two thermal environments. No anomalies were observed during the thermal tests.

The vibration and shock tests were performed by East-West Technology Corporation, West Babylon, New York. The UUT was delivered to the lab in a sealed vibration fixture in order to maintain the cleanliness levels required by the SOW. In addition, a three ounce load was attached to the motor shaft. The attachment method of this load caused damage to the shaft and bearing during random vibration of S/N 0003 on April 28,1995, and is described further in NCR 00168.

The load attachment method was subsequently corrected, and vibration of S/N 0002 began while 0003 was being repaired. The performance of the UUT was verified at Aeroflex after each environment was completed, as shown in ATP 20049. No additional failures were noted.

The final test of the UUT was a repeat of the baseline functional tests. Again, no anomalies were observed.

(c) UNACCOMPLISHED TESTS

This section is not applicable.

d) RETEST STATUS

Serial number 0003 was retested after repair on June 1,1995 according to the following paragraphs in ATP -20049 - DS:

1.1 COGGING TORQUE

- 1.2 OPERATING TORQUE
- 1.3 STALL TORQUE
- 3.1 ENCODER POSITION 1 AND OUTPUT VOLTAGE
- 3.2 ENCODER POSITION VERIFICATION
- 4.3 RADIAL DEFLECTION

No anomalies were observed, and environmental testing resumed.

(e) SPECIAL TESTING PROBLEMS

_

The major difficulty encountered during testing was in securing the UUT inside the vibration fixture without causing damage to the wires, shaft, and bearing. These fixturing problems were anticipated prior to vibration, with the exception of the previously mentioned load attachment to the shaft.

(f) FAILURE AND CORRECTIVE ACTION DATA

Refer to NCR 00168 and Corrective Action Report M13640.

SECTION III

-

÷....

-

.

QUALIFICATION TEST DATA RESULTS

AEROFLEX-

APPLI					R	EVISI	ONS			
NEXT ASSY	USED ON	LTR		C	ESCRIPTIC	DN N			DATE	APPROVED
		B	INITI	nL	RELE	ASE		9-	1-94	MA
	+		•					1.	.,	
	+									
	A									
			400501							,
			ACCEPT		TEST DA1	a she	-15			
			-	P/	'N 16187					
			51		TOR/ENC	JUER				
DAT	A REVIEW AN	D APPROV	AL:							
				- 1						
			T.	$\left(\right) \left(\right)$						
AER	OFLEX QUALI	TY ASSUR	ANCE My	<u>V[N</u>	ing a					
					/	1.				
	DCAS	1	De	un	main	:				
						_	~~~~~			
				1	//	//	h 61	lube		
AER	DFLEX TEST	ENGINEER		no	_ \t	ch	- 61	50/95		
								5/1	V O	002
ALL PAGES ARE										
ORIGINAL ISS		1 2 3 4 9 8 8 8 8 1	BBBBB		13 14 15 16 D D D	1/1819	20 21 22	73 24 20	A 2 1 A 1	9 30 31 32 33 34
NLESS OTHERWIS	E SPECIFIED OR	IG. DATE			\wedge					
LL DIMENSIONS AI TOLERANC	E IN INCHES OF	DWG.		-	(-)E	RO	LEX	INCORPO	MATED N	NCVIEW. 11000
FRAC. DEC.	ANG.			┢──	7	NI AR COM				
ATERIAL			1/101		Farp	gard	19			
		SIGN	1-1-0	1						
		AFF F		SIZE	CAGE C	DDE				296 N. A
INISH	0		- 1	A	8837	79	ATP	2001	1.1.1	Container and

•••

1 - TOPOUE AND OPERATING FOILT 1 DETENT TOPQUE Cogging through three detent positions 0.25 oz-in min Wili m______ 04,27.95 1. 2.0 oz-in. 2. 3.1 oz-in. 3. 2.3 oz-in. 1.0 OPERATING TORDUE Seli's Motor rotates 6 RPM min when 4.8 pps at 22 VDC to 25 VDC is applied 04.27.95 with 5.5 oz-in load. 6 RPM 1.3 STALL TOROUE 16 Delia m. 04.27.9 ____oz-in 6 oz-in minimum at 22 VDC - Detent torque in 1.1= Stall torque 13.7 oz-in 2.0 MOTOR ELECTRICAL CHARACTERISTICS 2.1 STEF ANGLE Delin m 04.27,95 Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75 degrees Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 ± -0.75 degrees 2.2 WINDING RESISTANCE AT 20 DEG C Selin m Room ambient temperature ______ deg C 04.27.95 Resistance between wires 1 and 3 82.4 ohms Pesistance calculated for 20 degrees C $\frac{80.8}{77.6 \text{ ohms}}$ ohms CAGE CODE SIZE ATP 20049 AS 88379 A

SCALE

в

REV.

SHEET

2

ALLOW HANDER N. U. WALE WILLS ... 1

Peristance between works 2 and 4 $\frac{82.1}{77.6}$ ohms Resistance calculated for 20 degrees 0 $\frac{81.1}{77.6}$ ohms minimum

2.3 WINDING INDUCTANCE

.

: --

ji ning

Inductance between wires 1 and 3 $\frac{19.0}{19.0}$ mH Inductance between wires 2 and 4 $\frac{19.0}{19.0}$ mH These values are for reference only.

2.4 INSULATION RESISTANCE AND DIELECTRIC STRENGTH POST-IMPREGNATION

Tie together motor leads 1 and 2, 2 and 4

2.4.1 INSULATION RESISTANCE

100 VDC between 1,3 and 2,4

100 VDC between 1,3 and housing

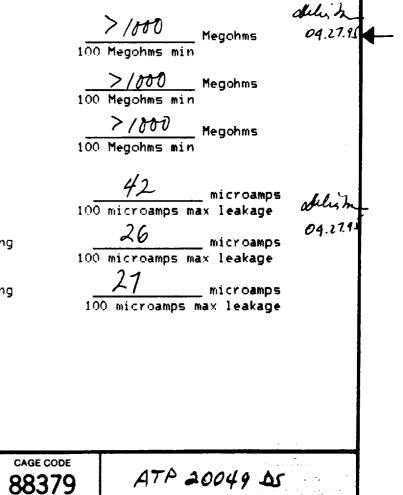
100 VDC between 2,4 and housing

2.4.2 DIELECTRIC STRENGTH

125 VRMS between 1,3 and 2,4

125 VRMS between 1,3 and housing

125 VRMS between 2,4 and housing


SIZE

Α

SCALE

REV.

8

SHEET

3

- 1	FUCADER ELECTRICAL CHARACTERISTICS
-1. <u>†</u>	ENCODER POSITION & AND OUTPUT VOLTAGE
	Finander position 1 is according to Table 1 check 04.27.95
	Output voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max
3.2	ENCODER POSITION VERIFICATION
	Encoder position 2 through 12 is according to Table 1 check 04.2
4.5	MOTOF (ENCODER PHYSICAL CHARACTERISTICS
4.1	SIZE AND CONFIGURATION
	Check that critical dimensions from MSFC drawing SXI-201 and Aeroflex drawing 200-38 are satisfied
4.0	WEIGHT
	Motor/Encoder weight Lead wire weight $= \frac{14.85}{2.8}$ ounces $= \frac{12.05}{15}$ ounces 04.24
4.2	PADIAL DEFLECTION
	9.0 +/- 0.1 lb force applied on the shaft in accordance with MSFC drawing SXI-201, Proof Load 0.0014 inches
	0.0015 inches max
	1 2 1 95 1 2 1 95

L

Đ

-

_

--->

_

CO, H LE, N JILVIE 10

-

1002 5.0 ENVIRONMENTAL TESTS 5.1 THERMAL VACUUM 5.1.1 AMBIENT TEMPERATURE AND PRESSURE Connect AD590 temperature sensor to the trim <u>295</u> mv circuit in Figure 3. Record the output. Calculate the ambient temperature : 22°C mv output - 273 = temperature in degrees C Verify step rotation cw from zero position with wire # 1 (+ 22 VDC) and wire #3 (RTN) _____ check Verify encoder output at step 4 in table 1 _____ check Seal the vacuum container and remove from 1. Hohler 4/28/95 the clean room. 5.1.2 THERMAL VACUUM FUNCTIONAL TESTS 5.1.2.1 OPERATION UNDER LOAD 11 VDC min, 12.5 VDC max to the motor drive circuit. 5 VDC +/- 0.2 V to the encoder input wires. a. Baseline, 25 degrees C recorder trace: No interruptions in motor or encoder traces $___$ check ____ check D. Hach & 3.5 V minimum encoder output b. Cycle 1, 50 degrees C recorder trace: No interruptions in motor or encoder traces $___V_$ check _____ check 3.5 V minimum encoder output 5/4/95 SIZE CAGE CODE ATP 20049 DS 88379 A SCALE REV. B SHEET 5

÷

CO. HI LE, N. C. LVIE

c. Cycle 1, -40 degrees C recorder trace: No interruptions in motor or encoder traces ______ check check Hald 5/8/8 3.5 V minimum encoder output d. Cycle 2, 50 degrees C recorder trace : No interruptions in motor or encoder traces ______ check V check 3.5 V minimum encoder output e. Cycle 2, -40 degrees C recorder trace : No interruptions in motor or encoder traces _____ check _ check、 3.5 V minimum encoder output f. Cycle 3, 50 degrees C recorder trace : _____ check No interruptions in motor or encoder traces - check 6.4.4. 5/12/95 3.5 V minimum encoder output g. Cycle 3, -40 degrees C recorder trace : No interruptions in motor or encoder traces $______$ check $\underline{\prime}$ check 3.5 V minimum encoder output h. Final test, 25 degrees C recorder trace: No interruptions in motor or encoder traces _____ check ____ check 3.5 V minimum encoder output 5.1.2.2 STALL OPERATION, THERMAL VACUUM Disconnect the motor from the test circuit. Apply 200 ma through wires #1 and #3 for 30 seconds. Repeat according to paragraph 4.1.3.2 of the test procedure. SIZE CAGE CODE ATP 20049 DS 88379 Α

в

SHEET

6

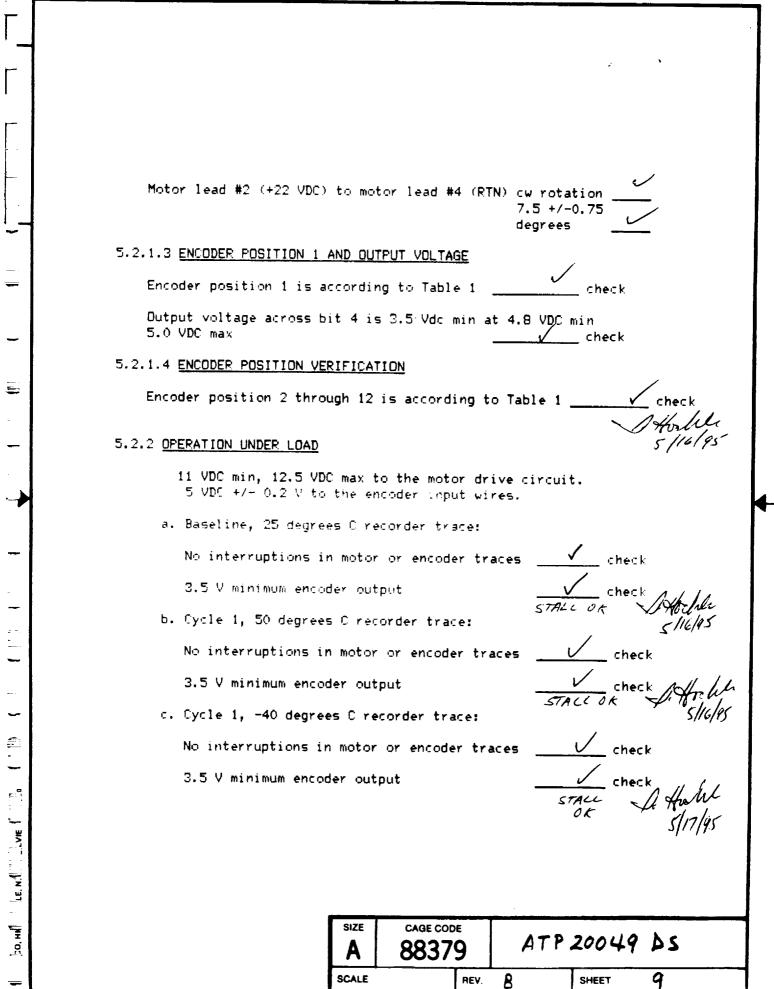
REV.

SCALE

Ŧ

ò,

a. Baseline, 25 degrees C recorder trace: No interruptions in motor or encoder traces ______ check . check D. Hally 5/1/95 3.5 V minimum encoder output b. Cycle 1, 50 degrees C recorder trace: No interruptions in motor or encoder traces 🗹 ____ check 3.5 V minimum encoder output check 5/4/95 c. Cycle 1, -40 degrees C recorder trace: _____ check No interruptions in motor or encoder traces 3.5 V minimum encoder output check d. Cycle 2, 50 degrees C recorder trace : _____ check No interruptions in motor or encoder traces Check 3.5 V minimum encoder output CO.H() CLE.N CLUE (10 4 SIZE CAGE CODE ATP 20049 DS 88379 Α SCALE REV. B SHEET 7


	T	00 0 2
		•
ė	e. Cycle 2, -40 degrees C recorder trace :	<i>i</i>
	No interruptions in motor or encoder traces	1 check
	3.5 V minimum encoder output	V check
1	f. Cycle 3, 50 degrees C recorder trace :	S. An U. 5/12
	No interruptions in motor or encoder traces	<u> </u>
	3.5 V minimum encoder output	Check J. Kon
ç	3. Cycle 3, -40 degrees C recorder trace :	5/12/2
	No interruptions in motor or encoder traces	Check
	3.5 V minimum encoder output	check
٢	n. Final test, 25 degrees C recorder trace:	stista
	No interruptions in motor or encoder traces	check
	3.5 V minimum encoder output	check
5.2 <u>TH</u>	ERMAL CYCLING TO CAMBIENT PRESSURE	5/15/95
5.2.1 <u>E</u>	RE-THERMAL CYCLING PERFORMANCE TEST	
5.2.1.1	STALL TORQUE	
6 0	oz-in minimum at 22 VDC - Detent torque i	in n 1.1= 2.3 07, ⁷ 4 <u>, 2</u> oz-in
5.2.1.2	2 <u>STEP ANGLE</u> Stall torque <u>/</u> S	2 oz-in
Mot	or lead #1(+22 VDC) to motor lead #3 (RTN) cw rotat	
	7.5 +/ degrees	0.75
	SIZE CAGE CODE	-
		P 20049 bs

. ---

~

1

0

- d. Cycle 24, 50 degrees C recorder trace :
 No interruptions in motor or encoder traces
 3.5 V minimum encoder output
 e. Cycle 24, -40 degrees C recorder trace :
 No interruptions in motor or encoder traces
 3.5 V minimum encoder output
 5740
 f. Final Test, 25 degree C recorder trace :
 - No interruptions in motor or encoder traces 3.5 V minimum encoder output

check check STALL OK _____ check STALL OK Check And _____ check

STALL OK SISTIS

5.3 VIBRATION AND SHOCK

5.3.1 SINE VIBRATION

Date(s) performed

Visual Inspection

5.3.1.1 STALL TOROUE

5 oz-in minimum at 22 VDC

5.3.1.2 STEP ANGLE

ш

The High The N.Y.

16-6/7 1995 1/45 A Hochen

 $\frac{19.0}{\text{oz-in}}$ - Detent torque in 1.1= 2.3 Stall torque <u>16.7</u> oz-in

Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation _ 7.5 +/- 0.75 degrees

size A	CAGE COD 8837	-	ATP 20049 bs			
SCALE		REV.	R	SHEET	10	

1002 Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees 5.3.1.3 ENCODER POSITION 1 AND OUTPUT VOLTAGE Encoder position 1 is according to Table 1 _____ check Dutput voltage across bit 4 is 3.5.Vdc min at 4.8 VDC min 5.3.1.4 ENCODER POSITION VERIFICATION check Encoder position 2 through 12 is according to Table 1 5.3.2 RANDOM VIBRATION 5/30/95 V Diffuli 5/31/95 Date(s) performed Visual Inspection 5.3.2.1 STALL_TORDUE 18.0 oz-in 6 oz-in minimum at 22 VDC Detent torque in 1.1= 2.3 of in Stall torque 15.7 oz-in 5.3.2.2 STEP ANGLE Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75 degrees Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation _ 7.5 +/-0.75 degrees 1. Hull CAGE CODE SIZE ATP 20049 bs 88379 Α SCALE ß REV. SHEET 11

ж. И. 🗍 🔤 vie 🖿 🤚 🥇 🗍 📔

DIH 'O'

	0002
T	
_ (
Ĩ	5.3.2.3 ENCODER POSITION 1 AND OUTPUT VOLTAGE
	Encoder position 1 is according to Table 1 check
_ I	Dutput voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max check
٦	5.3.2.4 ENCODER POSITION VERIFICATION
- - 1	Encoder position 2 through 12 is according to Table 1 check
.	5.3.3 MECHANICAL SHOCK 5/31/45
Ĩ	Date(s) performed $\frac{6/12 - 6/16}{2} \frac{1995}{6}$
	Visual Inspection
	5.3.3.1 STALL TORQUE
4	5 oz-in minimum at 22 VDC $-\frac{18.0}{\text{Detent torque in } 1.1= 2.3 \text{ or } i^{4}}$
l -	Stall torque <u>15-7</u> oz-in Stall torque <u>16-7</u> oz-in Stall torque <u>06.19.95</u>
Ţ	Motor lead #1(+22 VDC) to motor lead #3 (PTN) cw rotation 06.19.95 7.5 +/- 0 '3 degrees
] T	Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees
	5.3.3.3 ENCODER POSITION 1 AND OUTPUT VOLTAGE
T	Encoder position 1 is according to Table 1 check dehim 66.19.95
; T	Dutput voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max check
	SIZE CAGE CODE ATP 20049 DS A 88379
	SCALE REV. B SHEET 12

•

متوالوكلورية اللحا فليجاكموا كمعا والالام

0002

and the second

			÷
5.3.3.4 ENCODER POSITION			Selin). 06.19.9
Encoder position 2 th	-	ding to Table 1 _	check
5.3.3.5 DIELECTRIC STRENG	<u>TH</u>	• • • •	All S
100 VRMS between 1,	,3 and 2,4	<u> </u>	microamps 06.14. max leakage 06.14.
100 VRMS between 1,	,3 and housing	25 100 microamps	microamps max leakage
100 VRMS between 2,	4 and housing	25 100 microamp	microamps s max leakage
5.4 FINAL FUNCTIONAL TEST	-		
5.4.1 TORQUE AND OPERATI	ING POINT		
5.4.1.1 <u>DETENT TOROUE</u>	e detent position	5 0.25 oz~in min	Selist
5.4.1.1 <u>DETENT TOROUE</u> Cogging through thre	e detent position	1. $\frac{2.5}{2.5}$	Selicom 06.19.95 z-in. z-in. z-in.
	e detent position	1. $\frac{2.5}{2.5}$	z-in. z-in.
Cogging through thrs 5.4.1.2 <u>OPERATING TORQUE</u>		1. $\frac{2.5}{2.5}$ 0 2. $\frac{2.5}{2.5}$ 0 3. $\frac{2.0}{2.0}$ 0	z-in. z-in.
Cogging through thro 5.4.1.2 <u>OPERATING TORQUE</u> Motor rotates 6 RPM m		$\begin{array}{c} 1. 2.5 \\ 2. 2.5 \\ 3. 2.0 \\ \end{array} \\ t 22 \ VDC \ to \ 25 \ VDC \\ \end{array}$	z-in. z-in. z-in. C is applied <i>Sklu</i> d
Cogging through thro 5.4.1.2 <u>OPERATING TORQUE</u> Motor rotates & RPM m with 5.5 oz-in load.	nin when 4.8 pps a	$\begin{array}{c} 1. & 2.5 \\ 2. & 2.5 \\ 3. & 2.0 \\ \end{array} \\ t 22 \ VDC \ to \ 25 \ VDC \\ \underline{6.5} \\ \end{array} \\ \begin{array}{c} RPM \end{array}$	z-in. z-in. z-in. C is applied <i>Sklu</i> d
Cogging through thre 5.4.1.2 <u>OPERATING TORQUE</u> Motor rotates 6 RPM m with 5.5 oz-in load. 5.4.1.3 <u>STALL TORQUE</u>	nin when 4.8 pps a	$\begin{array}{c} 1. & 2.5 \\ 2. & 2.5 \\ 3. & 2.0 \\ \end{array} \\ t 22 \ VDC \ to \ 25 \ VDC \\ \underline{6.5} \\ \end{array} \\ \begin{array}{c} RPM \end{array}$	z-in. z-in. Z-is applied <i>Sklu</i> An <i>06.19.9</i>
Cogging through thre 5.4.1.2 <u>OPERATING TORQUE</u> Motor rotates 6 RPM m with 5.5 oz-in load. 5.4.1.3 <u>STALL TORQUE</u>	nin when 4.8 pps a	$\begin{array}{c} 1. & 2.5 \\ 2. & 2.5 \\ 3. & 2.0 \\ \end{array} \\ t 22 \ VDC \ to \ 25 \ VDC \\ \underline{6.5} \\ \end{array} \\ \begin{array}{c} RPM \end{array}$	z-in. z-in. Z-is applied <i>Sklu</i> An <i>06.19.9</i>
Cogging through thre 5.4.1.2 <u>OPERATING TORQUE</u> Motor rotates 6 RPM m with 5.5 oz-in load. 5.4.1.3 <u>STALL TORQUE</u>	nin when 4.8 pps a	$\begin{array}{c} 1. & 2.5 \\ 2. & 2.5 \\ 3. & 2.0 \\ \end{array} \\ t 22 \ VDC \ to \ 25 \ VDC \\ \underline{6.5} \\ \end{array} \\ \begin{array}{c} RPM \end{array}$	z-in. z-in. Z-is applied <i>Sklu</i> An <i>06.19.9</i>

-

ς.

.

			• •
5.4.2 MOTOR ELECTRICAL CHARACTERI	ISTICS		
5.4.2.1 <u>STEP ANGLE</u>			Ju
Motor lead #1(+22 VDC) to mot	or lead #3 (RTN)	cw rotation 7.5 +/- 0.75 degrees	Ju. 06
Motor lead #2 (+22 VDC) to mo	otor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees	-
5.4.2.2 WINDING RESISTANCE AT 20	DEG C		
Room ambient temperature	74 deg C		<i>.</i>
Resistance between wires 1 an			Sel. 06.,
Resistance calculated for 20		_ ohms hms minimum	06.,
Pesistance between wires 2 an	d 4 82.0 ohms		
Resistance calculated for 20	degrees C <u>807</u> 77.6 of	Zohms hms minimum	
5.4.2.3 WINDING INDUCTANCE			
Inductance between wires 1 an	id 3 18.7 mH	a	Jel) 06. 19.9
Inductance between wires 2 an	1d 4 <u>18.6</u> mH		06.19.9
These values are for refer en c	e only.		

: •

_

Ξ

. .

~

. .

E.N.

ю, ни

-

002 5.4.3 ENCODER ELECTRICAL CHARACTERISTICS Delie dan 06.19.95 5.4.3.1 ENCODER POSITION 1 AND OUTPUT VOLTAGE Encoder position 1 is according to Table 1 check Dutput voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max 5.0 VDC max _____ check 5.4.3.2 ENCODER POSITION VERIFICATION Leli'h 06.19.95 check Encoder position 2 through 12 is according to Table 1 5.4.4 RADIAL DEFLECTION 9.0 +/- 0.1 lb force applied on the shaft in accordance with MSFC drawing SXI-201, Proof Load Diagram 9,0014 0.0015 inches max Torque at 12.0 VDC = 10-2.5= 7.5 02-in 06.19.95 SIZE CAGE CODE

REV.

в

Α

SCALE

ATP 20049 DS

15

SHEET

-

=

AP. HIC, HICKIE, N. Y. N. Y. VIE JIE

				`
1.3 TOPOUE AND OPERATING P	זאיר			
1 1 DETENT TOPOUE	and a second sec			
Cogging through three a	detent positio		-in win 7oz-in. 7oz-in. 7oz-in.	Jelie m 04.26.9
1.2 OPEPATING TOROUE			(7	
Motor rotates 6 RPM min with 5.5 oz-in load.	when 4.8 pps	at $\frac{12}{52}$ VDC to 6.5	72 p 25 VDC is appl RPM	ied Selie 04.26.
1.3 STALL TOPOUE				• • • • • • • • •
6 oc-in minimum at 22 VI	5) 0 0	15.5 Detent tor tall torque		deli 2 04.16.
2.0 MOTOP ELECTRICAL CHARACT				
2.1 STEP ANGLE				
Motor lead #1(+22 VDE) t	o motor lead :	7.5	rotation 5 +/- 0.75 grees	Sili) 04.26.
Motor lead #2 (+22 VDC)	to motor lead	7.	v rotation 55 +/-0.75 egrees	-
2.2 WINDING RESISTANCE AT 20	DEG C			
Poom ambient temperature	. <u>25</u> dec	; C		Lelii Z 04.26.9
Resistance between wires	: 1 and 3 <u>82</u>	.8 ohms		09.26.9
Pesistance calculated fo	or 20 degrees (2 <u>\$1.2</u> of 77.6 ohms		

분문

- - -

-

÷

--

÷

Silies m 04.76.95

Seli'n

Resistance between write 2 and 4 $\underbrace{83.3}_{77.6}$ ohms Resistance calculated for 20 degrees 0 $\underbrace{8/.6}_{77.6}$ ohms minimum

2.3 WINDING INDUCTANCE

Inductance between wires 1 and 3 $\frac{19.0}{19.0}$ mH Inductance between wires 2 and 4 $\frac{19.0}{19.0}$ mH These values are for reference only.

2.4 INSULATION PESISTANCE AND DIELECTRIC STRENGTH POST-IMPREGNATION

Tie together motor leads 1 and 2, 2 and 4

2.4.1 INSULATION RESISTANCE

100 VDC between 1,3 and 2,4

100 VDC between 1,3 and housing

100 VDC between 2,4 and housing

2.4.2 DIELECTRIC STRENGTH

125 VRMS between 1,3 and 2,4

125 VRMS between 1,3 and housing

125 VRMS between 2,4 and housing

>/870 Megohms	04.28.95	H
7/880 Megohms		
7/070 Megohms 100 Megohms min		
37 microamps 100 microamps max leakage		
25 microamps 100 microamps max leakage		
as microamps 100 microamps max leakage		

size	CAGE COD	₅	ATP 20049 DS				
A	8837	9					
SCALE		REV.	ß	SHEET	3		

				0	003	
7 .0	ENCODER ELECTRICAL CHARACTI	EPISTICS				REA
0.1	ENCODER POSITION 1 AND OUT	PUT VOLTAGE			,	Silie Ju 01.26.9
	Encoder position 1 is account	rding to Table	e 1		check	
	Output voltage across bit - 5.0 VDC max	4 is 3.5 Vdc n	nin at 4.6 	P VDC m	in check	
3.2	ENCODER POSITION VERIFICAT	ION				
	Encoder position 2 through	12 is accordi	ng to Tal	ble 1 _		check &u 04.26.9
4.0	MOTOP/ENCODER PHYSICAL CH	ARACTERISTICS				04,00.75
4.1	SIZE AND CONFIGURATION					
	Check that critical dimens drawing 200-38 are satisfi		[drawing	SXI-20	1 and Aer	oflex A
4.2	WEIGHT				. .	
	Motor/Encoder weight Lead wire weight				<u>2-8</u> our	ices Juli ices 04,8 ices
4.3	PADIAL DEFLECTION					
	9.0 +/- 0.1 lb force appli- accordance with MSEC drawi Dragram			0.0	014_ir	ches
				0.0015	inches m	hh hh
					151	
	Γ	size cage co A 8837		ATP	20049	٥s

Γ

. •••••

-

.__

I T I I I I I I I I I I I I A ARESCO, HICKSVILLE, N Y. OGILVIE 075400

·	0003 RETEST
-	NOR COLES
-	
-	
-	
<u> </u>	
-	1.0 TORQUE AND OPERATING POINT
-	1.1. DETENT TORQUE
-	Cogging through three detent positions 0.25 oz-in min $filis m$ 06.01.95
~	1. $\frac{2.5}{1.5}$ oz-in. 2. $\frac{7.5}{1.5}$ oz-in. 3. $\frac{2.0}{2.5}$ oz-in.
	1.2 OPERATING TORQUE
اليو	Motor rotates 6 RPM min when 4.8 pps at 22 VDC to 25 VDC is applied delicities with 5.5 oz-in load. Checked at $12 \vee$ <u>6.5</u> RPM
	1.3 STALL TORQUE
_	$\frac{18.0}{\text{Detent torque in 1.1=}} \text{ of } 0.01.73$
-	6 oz-in minimum at 22 VDC - Detent torque in 1.1= 2-5 06.01.75 Stall torque <u>15-5</u> oz-in
7	
	2.0 MOTOR ELECTRICAL CHARACTERISTICS
	2.1 STEP ANGLE
-	Motor lead #1(+22 VDi to motor lead #3 (RTN) cw rotation dulic 7.5 +/- 0.75 dulic degrees 06.0.3.
	Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees
	2.2 WINDING RESISTANCE AT 20 DEG C
	Room ambient temperature $\frac{22}{06.01.95}$ deg C delum Benistanse between wines 1 and 2 821 abus
~	Resistance between wires I and 3 $\Delta A^{\prime \prime}$ orms
	Resistance calculated for 20 degrees C $\frac{81.5}{77.6}$ ohms 77.6 ohms minimum
<u></u>	
ž	
, Е. N. 1	
О. ніd	SIZE CAGE CODE A 88379 A7P 20049 AS
<u>.</u> -	N 00073
<u> </u>	SCALE REV. B SHEET 2 THE REV. C SHEET A C SHEE

<u>`--</u>

NOR ODIGR • • -Resistance between wires 2 and 4 $\frac{83.5}{}$ ohms Resistance calculated for 20 degrees C $\frac{g_{2,0}}{77.6}$ ohms minimum * 2.3 WINDING INDUCTANCE Seliim_ 06.01.95 Inductance between wires 1 and 3 $\underline{19.0}$ mH Inductance between wires 2 and 4 $\frac{14.0}{mH}$ mH These values are for reference only. * 2.4 INSULATION RESISTANCE AND DIELECTRIC STRENGTH POST-IMPREGNATION Tie together motor leads 1 and 3, 2 and 4 X 2.4.1 INSULATION RESISTANCE アノシアン 100 Megohms min -100 VDC between 1,3 and 2,4 $\frac{2}{100 \text{ Megohms min}}$ Megohms 100 VDC between 1,3 and housing $\frac{77000}{100 \text{ Megohms min}} \text{ Megohms}$ 100 VDC between 2,4 and housing × 2.4.2 DIELECTRIC STRENGTH 37 microamps 100 microamps max leakage 125 VRMS between 1,3 and 2,4 25 microamp 100 microamps max leakage 125 VRMS between 1,3 and housing microamps 25 125 VRMS between 2,4 and housing microamos 100 microamps max leakage * PERFORMED DURING ORIGINAL FUNCTIONAL TEST ٩ E. N. Y CAGE CODE Å SIZE ATA 20049 55 88379 Ö A SCALE 3 REV. 3 SHEET

	-	ابرهمان الذاري المتغنية الفاتية	_		0	003 RE UCR 00	TEST
					/	VCK 00	168
							, ,
3.0	ENCODER ELECTRICAL CHARA						
	ENCODER POSITION 1 AND 0						
	Encoder position 1 is ac			e 1	ν'	check	Achi de of
	Output voltage across bi 5.0 VDC max		-		4.8 VDC	-	06 . 01
3.2	ENCODER POSITION VERIFIC	ATION				-	
	Encoder position 2 throu	igh 12	is accord	ing to	Table i	V	check
4.0	MOTOR/ENCODER PHYSICAL	CHARAC	TERISTICS				
4.1	SIZE AND CONFIGURATION						
	Check that critical dime drawing 200-38 are satis	nsions fied	from MSF() draw	ing SXI-20	1 and Aer	_ check
4.2	WEIGHT						Ali
	Motor/Encoder weight Lead wire weight				$= \frac{1}{\frac{1}{\sqrt{2}}}$ $= \frac{1}{15}$	4.6 oun 2.3 oun 2.3 oun 2.3 oun 2.3 oun 2.3 oun	ces 06.0
4.3	RADIAL DEFLECTION						
	9.0 +/~ 0.1 lb force app accordance with MSFC dra Diagram	lied or wing Si	n the shaf XI-201, Pr	t in oof Lo	oad 0.0	0//in	ches
					0.0015 Dittor	inches m	X
					D:40-1 6 1 1	15	
							-
		SIZE	0102 00-	<u> </u>			
		A	CAGE COL 8837	- 1	ATP	20049	<u>s</u>
				J			

,

-

.

مطحددک۵۲ HICKShim YE, N. ۲ مستر العالم

L

5.0 ENVIRONMENTAL TESTS

5.1 THERMAL VACUUM

5.1.1 AMBIENT TEMPERATURE AND PRESSURE

Connect AD590 temperature sensor to the trim circuit in Figure 3. Record the output. $\frac{295}{295}$ mv

Calculate the ambient temperature : mv output - 273 = temperature in degrees C

Verify step rotation cw from zero position with wire # 1 (+ 22 VDC) and wire #3 (RTN)

Verify encoder output at step 4 in table 1

Seal the vacuum container and remove from the clean room.

5.1.2 THERMAL VACUUM FUNCTIONAL TESTS

5.1.2.1 OPERATION UNDER LOAD

11 VDC min, 12.5 VDC max to the motor drive circuit. 5 VDC +/- 0.2 V to the encoder input wires.

a. Baseline, 25 degrees 0 recorder trace:

No interruptions in motor or encoder traces _______ check

3.5 V minimum encoder output

b. Cycle 1, 50 degrees C recorder trace:

No interruptions in motor or encoder traces ______ check during

3.5 V minimum encoder output

size A	ZE CAGE CODE 88379		ATP 20	049	DS .	
SCALE		REV.	B	SHEET	5	

0003

22 °C

____ check

_____ check

Alim

_____ check 6/12/45

_____ check 6/13/95

ľ		
]
	-	
	: Far	
	1000	
	÷	
		I
	_	
	ाः (हा	
	B	
	ł	
	Ļ	
		I
		I
	 u	
	, VIE	
	E, N. 1	
	ų.	
	О, НЦ	
	0	

VIE

. Ε, Ν, Υ

ğ

ç

` `

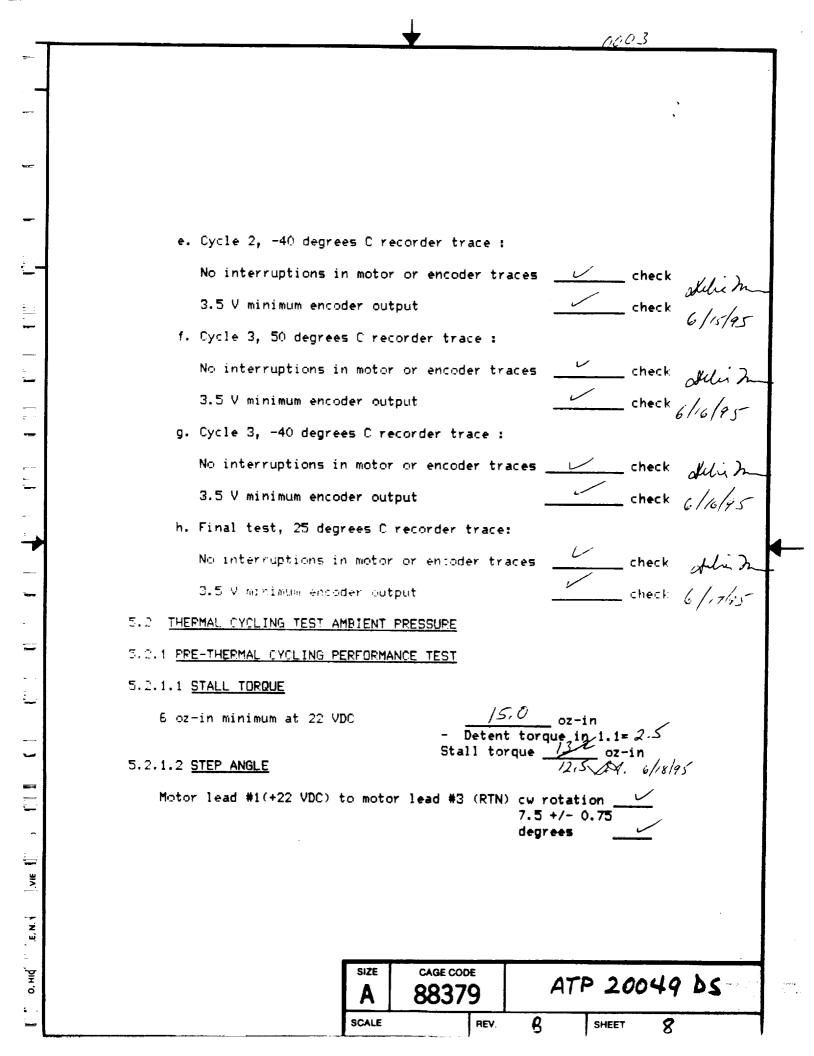
$\frac{1}{2}$ / 2 2
a. Baseline, 25 degrees C recorder trace:
No interruptions in motor or encoder traces check
3.5 V minimum encoder output check
b. Cycle 1, 50 degrees C recorder trace:
No interruptions in motor or encoder traces check fills h
No interruptions in motor or encoder traces check film m 3.5 V minimum encoder output check 6/13/45
c. Cycle 1, -40 degrees C recorder trace:
No interruptions in motor or encoder traces check thinks
3.5 V minimum encoder output check 6/14/95
d. Cycle 2, 50 degrees C recorder trace :
No interruptions in motor or encoder traces check
3.5 V minimum encoder output check 6/15/35

. . .

-

. .

-


VIE

E, N. J

0, HIQ

1.

size A	CAGE COD 8837	-	ATP 20049		DS	
SCALE		REV.	B	SHEET	7	

·····			EC.03	
			,	
Motor lead #2 (+22 VDC)	to motor lead #		/-0.75	
5.2.1.3 ENCODER POSITION 1	AND OUTPUT VOLTA	-	6 /18/9	hla
Encoder position 1 is a			check	
Output voltage across b 5.0 VDC max	it 4 is 3.5 Vdc	min at 4.8 VD	C min check	
5.2.1.4 ENCODER POSITION VE	RIFICATION		An 12 6/18/15	7
Encoder position 2 thro	ugh 12 is accord	ling to Table	1 check	
5,2,2 OPERATION UNDER LOAD				
11 VDC min, 12.5 VDC 5 VDC +/- 0.2 V to	C max to the mot the encoder inp	or drive circu out wires.	uit.	
a. Baseline, 25 degree	es C recorder tr	ace:		
No interruptions i	n motor or <mark>en</mark> cod	ler traces	check dutie.	m
3.5 V minimum encom STALL TEST OK	der output		$-$ check $\frac{1}{6/2}$	1.45
b. Cycle 1, 50 degree	s C recorder tra	ce:		,
No interruptions in	n motor o <mark>r encod</mark>	er traces	check dubi?	m
3.5 V minimum encod STALL TEST CK	der output		check 6/2/	95
c. Cycle 1, ∼40 degree	es C recorder tr	ace:		
No interruptions in	n motor or encod	er traces	check	Ъ.
3.5 V minimum encod STALL TEST OK	•		check allow 6/5/95	-
	SIZE CAGE CO	DE		
	A 8837	5	P 20049 DS	
	SCALE	REV.	SHEET 9	

-

--

-

-

-ني-

[_ Э. НЮ[_ Е. N. Y. " VIE [

 d. Cycle 24, 50 degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check d. l/2/25 e. Cycle 24, -40 degrees C recorder trace : No interruptions in motor or encoder traces Check ch		000 ?
No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{5.3.1 = 1000} = 0$ degree C recorder trace = $\frac{5.3.11 = 1000}{5100000000000000000000000000000000$		
No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{5.3.1 = 1000} = 0$ degree C recorder trace = $\frac{5.3.11 = 1000}{5100000000000000000000000000000000$, ,
No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{5.3.1 = 1000} = 0$ degree C recorder trace = $\frac{5.3.11 = 1000}{5100000000000000000000000000000000$		
No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{6K} = 0$ degree C recorder trace : No interruptions in motor or encoder traces check duith $\frac{3.5 V = 7657}{5.3.1 = 1000} = 0$ degree C recorder trace = $\frac{5.3.11 = 1000}{5100000000000000000000000000000000$		
3.5 V minimum encoder output STALL TEST OK e. Cycle 24, -40 degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check 3.5 V minimum encoder output check duith STALL TEST OK f. Final Test, 25 degree C recorder trace : No interruptions in motor or encoder traces check duith STALL TEST OK 5.3 V IBRATION AND SHOCK 5.3.1 SINE VIBRATION Date(s) performed Check duith STALL TOPDUE 5 oz-in minimum at 22 VDC $\frac{18 \cdot S}{Detent torque in 1.1 = 1.8} 2.5$ Stall torque Oz-in 16.0 DAH 6/2/45	d. Cycle 24, 50 degrees C reco	rder trace :
3.5 V minimum encoder output 3.7 ALC TEST OK e. Cycle 24, -40 degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check 3.5 V minimum encoder output check duith 5.7 ALC TEST OK f. Final Test, 25 degree C recorder trace : No interruptions in motor or encoder traces check duith 5.3 VIBRATION AND SHOCK 5.3.1 SINE VIBRATION Date(s) performed Check check check 5.3.1.1 STALL TOPDUE 5 oz-in minimum at 22 VDC $\frac{18.5}{Detent torque in 1.1 = 1.8} 2.5$ Stall torque oz-in for Joint = 1.5 2.5 Stall torque for Joint = 1.5 2.5 Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75	No interruptions in motor o	r encoder traces check
 e. Cycle 24, -40 degrees C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output check during f. Final Test, 25 degree C recorder trace : No interruptions in motor or encoder traces check during 3.5 V minimum encoder output check during 5.3 VIBRATION AND SHOCK 5.3.1 SINE VIBRATION check during Date(s) performed for an infimum at 22 VDC [8.5] oz=in oz=in cordinate to construct to cordinate to cordi	3.5 V minimum encoder output	
3.5 V minimum encoder output STACC TEST OK f. Final Test, 25 degree C recorder trace : No interruptions in motor or encoder traces check 3.5 V minimum encoder output STACC TEST OK 5.3 VIBRATION AND SHOCK 5.3 VIBRATION AND SHOCK 5.3.1 SINE VIBRATION Date(s) performed $STACC TEST OK$ 5.3.1.1 STALL TOPOUE 6 oz-in minimum at 22 VDC $I8.5$ oz-in - Detent torque in 1.1= $I.8$ 2-5 Stall torque $I2.7$ stall stall torque $I2.7$ stall torque $I2.7$ stall stall stall torque $I2.7$ stall stall stall torque $I2.7$ stall stall torque $I2.7$ stall s		order trace : $6/12/95$
No interruptions in motor or encoder traces check 3.5 V minimum encoder output STALL TEST OK check durin 5.3 VIBRATION AND SHOCK 5.3.1 SINE VIBRATION Date(s) performed $6/19 - 6/21$ 1995 Visual Inspection 18.5 oz-in 5.3.1.1 STALL TOPOUE 6 oz-in minimum at 22 VDC 18.5 oz-in - Detent torque in 1.1= 1.8 2-5 Stall torque $02-in$ 6.3.1.2 STEP ANGLE 16.0 $02+in$ Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75	No interruptions in motor or	r encoder traces check
No interruptions in motor or encoder traces check 3.5 V minimum encoder output STACL TEST OX check duby 5.3 <u>VIBRATION AND SHOCK</u> 5.3.1 <u>SINE VIBRATION</u> Date(s) performed $G/19 - G/21$ 1995 Visual Inspection MMM 5.3.1.1 <u>STALL TOPOUE</u> 5 oz-in minimum at 22 VDC $I8.5$ oz-in - Detent torque in 1.1= $I.8$ 2-5 Stall torque $OZ-in$ 6.0 MM 5.3.1.2 <u>STEP ANGLE</u> $I8.7$ oz-in Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75	3.5 V minimum encoder output	
No interruptions in motor or encoder traces check 3.5 V minimum encoder output STALL TEST OK check duin 5.3 <u>VIBRATION AND SHOCK</u> 5.3.1 <u>SINE VIBRATION</u> Date(s) performed $6/19 - 6/21$ 1995 Visual Inspection 18.5 oz-in 5.3.1.1 <u>STALL TOPDUE</u> 6 oz-in minimum at 22 VDC 18.5 oz-in Detent torque in 1.1= 1.8 2-5 Stall torque 6.0 0.0 = 1.1 5.3.1.2 <u>STEP ANGLE</u> 16.0 0.0 = 1.1 Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75		order trace :
3.5 V minimum encoder output STALL TEST OX 5.3 <u>VIBRATION AND SHOCK</u> 5.3.1 <u>SINE VIBRATION</u> Date(s) performed Visual Inspection 5.3.1.1 <u>STALL TOPOUE</u> 6 oz-in minimum at 22 VDC 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75		
5.3. <u>VIBRATION</u> 5.3.1 <u>SINE VIBRATION</u> Date(s) performed <u>$6/19 - 6/21$ 1995</u> Visual Inspection 5.3.1.1 <u>STALL TOPOUE</u> 6 oz-in minimum at 22 VDC <u>18.5 oz-in</u> - Detent torque in 1.1= 1.8 2-5 Stall torque <u>16.7 oz-in</u> 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation <u>7.5 +/- 0.75</u>	3.5 V minimum encoder output	
5.3.1 <u>SINE VIBRATION</u> Date(s) performed <u>$6/19 - 6/21$ 1995</u> Visual Inspection <u>$7.5 +/- 0.75$</u> 5.3.1.1 <u>STALL TOPOUE</u> 6 oz-in minimum at 22 VDC <u>18.5 oz-in</u> - Detent torque in 1.1= 1.8 2.5 Stall torque <u>16.7 oz-in</u> 7.5 +/- 0.75	STALL TEST	0x 6/12/95
5.3.1.1 <u>STALL TOPOUE</u> 6 oz-in minimum at 22 VDC $-\frac{8.5}{\text{Detent torque in 1.1=}} $ 2-5 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation $-\frac{16.7}{7.5}$ +/- 0.75	5.3.1 SINE VIBRATION	
5.3.1.1 <u>STALL TOPOUE</u> 6 oz-in minimum at 22 VDC $-\frac{8.5}{\text{Detent torque in 1.1=}} $ 2-5 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation $-\frac{16.7}{7.5}$ +/- 0.75	Date(s) performed	6/19-6/21 1995
E oz-in minimum at 22 VDC - Detent torque in 1.1= 1.8 2-5 Stall torque $-$ Detent torque $-$ Det	Visual Inspection	D. Hall
- Detent torque in 1.1= 1.8 2-5 Stall torque 16.7 oz-in 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation -7.5 +/- 0.75	5.3.1.1 STALL TOPOUE	
- Detent torque in 1.1= 1.8 2-5 Stall torque 16.7 oz-in 5.3.1.2 <u>STEP ANGLE</u> Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation -7.5 +/- 0.75	6 oz-in minimum at 22 VDC	18.5 oz-in
Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75		- Detent torque in 1 1= $1\mathcal{L}$
7.5 +/- 0.75		
	Motor lead #1(+22 VDC) to motor 1	
	617E	CAGE CODE
		= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
SIZE CAGE CODE ATP 20049 DS		

èria Tari

. _____

:

-

-

с. и у с. и у

٩

Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation
7.5 +/-0.75 degrees
5.3.1.3 ENCODER POSITION 1 AND OUTPUT VOLTAGE
Encoder position 1 is according to Table 1 check
Output voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max check
5.3.1.4 ENCODER POSITION VERIFICATION
Encoder position 2 through 12 is according to Table 1 check
Attaller 6/21/95
5.3.2 RANDOM VIBRATION Date(s) performed $\frac{6/22 - 6/23/95}{6/23}$ RETEST
Date(s) performed $\frac{6/22 - 6/23/95}{NCR 00168}$
Visual Inspection And WAS FIRST PERFORMED 4/28/95
5.3.2.1 STALL TORDUE
6 oz-in minimum at 22 VDC $-\frac{8.5}{\text{Detent torque in } 1.1=2.5}$ Stall torque $-\frac{6.0}{\text{Detent torque } 1.1=2.5}$
5.3.2.2 <u>STEP ANGLE</u> Stall torque <u>16.0</u> oz-in
Motor lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75
degrees
Motor lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees
SIZE CAGE CODE
A 88379 ATP 20049 bs
SCALE REV. B SHEET /1

.

-

. . .

: -

-

-

/IE

№. ... руню [_ Е. N. 4

5.3.2.	B ENCODER POSITION 1	AND OUTPUT	VOLTAGE		
En	oder position 1 is	according to	Table i	checl	¢
	tput voltage across () VDC max	bit 4 is 3.5	5 Vdc min at 	4.8 VDC min check	
5.3.2.	4 ENCODER POSITION V	ERIFICATION		¥	6/26/
En	oder position 2 thr	ough 12 is a	according to	Table 1	chec
5.3.3	MECHANICAL SHOCK		1	/ /	
	Date(s) performed		6/26	- 6/27/95	-
	Visual Inspection			file	
5.3.3.	1 STALL TORQUE				
6	oz-in minimum at 22	VDC	- Detent	$\frac{0}{1000}$ oz-in torque in 1.1= que $\frac{1500}{1000}$ oz-:	2.5
5.3.3.	2 STEP ANGLE		Stall tort	ue <u>, , , , , , , , , , , , , , , , , , ,</u>	L N
Mo	tor 1⇔ad #1(+22 VDC)	to motor le	ad #3 (RTN) _.	cw rotation 7.5 +/- 0.75 degrees	_ _
Mo	tor lead #2 (+22 VDC) to motor l	lead #4 (RTN)	cw rotation _ 7.5 +/-0.75 degrees _	/
5.3.3.	3 ENCODER POSITION 1	AND OUTPUT	VOLTAGE		
En	coder position 1 is	according to	o Table 1 🔄	chec	k
	tput voltage across O VDC max	bit 4 is 3.	5 Vdc min at 	4.8 VDC min chec	k

-

-

-

-

مي

([``` :0.Hid __E.N. (__VIE [__ 2

Encoder position 2 throug	gh 12 is accom	rding to Table 1	check	
5.3.3.5 DIELECTRIC STRENGTH		2 -		
100 VRMS between 1,3 am	nd 2,4	32 100 microamp	microamps s max leakage	
100 VRMS between 1,3 am	nd housing	21	microamps s max leakage	
100 VRMS between 2,4 ar	d houring	22	-	
100 VKHS Detween 2,4 ar	in nodsing		microamps ps max leakage L. Artic C/2	slas
.4 FINAL FUNCTIONAL TEST 6	12.8/45			0, 7.7
.4.1 TORQUE AND OPERATING P	POINT			
.4.1.1 DETENT TORDUE				
Cogging through three de	etent position	ns 0.25 oz-in mi	n dil	• •
			oz-in. 06.2 oz-in. oz-in.	28.95
5.4.1.2 OPERATING TORQUE		12		
Motor rotates 6 RPM min w	when 4.8 pps a		DC is applied	
with 5.5 oz-in load.		6.5 RP	m at	(h,).
5.4.1.3 STALL TORQUE /2			U.	<i>p, c</i> o. 1
5 oz-in minimum at 22 VD(2	<u></u> oz-	in - 2.5	'li) 06.28.
	-	<u>11,0</u> oz- Detent torque i tall torque <u>8.5</u>	n 1.1= 00 oz-in 00	06.28.

VIE

E. N. Y

0. HIQ

į.

	RACTERISTICS		
· · · · · · · · · · · · · · · · · · ·			Jelu 1 06.2
or lead #1(+22 VDC)	to motor lead #3	(RTN) cw rotation _ 7.5 +/- 0.75 degrees _	V 06.2
or lead #2 (+22 VDC)) to motor lead #4	(RTN) cw rotation 7.5 +/-0.75 degrees	
WINDING RESISTANCE	AT 20 DEG C		
m ambient temperatur	re <u>20</u> deg 0	;	` `
istance between wire	es 1 and 3 81.4	ohms	Selve 7 06.2
	7	7.6 ohms minimum	
		•	
istance calculated f			
WINDING INDUCTANCE		-	
uctance between wire	$1 \text{ and } 3 - \frac{18.5}{18.5}$, mH	Selie m. 06-28-9
uctance between wire se values are for re	ference only.	mH	06-28-7
	or lead #2 (+22 VDC) <u>WINDING RESISTANCE</u> m ambient temperatur istance between wire istance calculated f istance calculated f <u>WINDING INDUCTANCE</u> uctance between wire uctance between wire	or lead #1(+22 VDC) to motor lead #3 or lead #2 (+22 VDC) to motor lead #4 <u>WINDING RESISTANCE AT 20 DEG C</u> m ambient temperature <u>20</u> deg C istance between wires 1 and 3 <u>81.4</u> istance calculated for 20 degrees C $\frac{7}{7}$ istance between wires 2 and 4 <u>82.0</u> istance calculated for 20 degrees C $\frac{7}{7}$ <u>WINDING INDUCTANCE</u> uctance between wires 1 and 3 <u>18.5</u>	or lead #1(+22 VDC) to motor lead #3 (RTN) cw rotation 7.5 +/- 0.75 degrees or lead #2 (+22 VDC) to motor lead #4 (RTN) cw rotation 7.5 +/-0.75 degrees <u>WINDING RESISTANCE AT 20 DE6 C</u> m ambient temperature <u>20</u> deg C istance between wires 1 and 3 <u>8/.4</u> ohms istance calculated for 20 degrees C <u>$3/.4$</u> ohms istance between wires 2 and 4 <u>82.0</u> ohms istance talculated for 20 degrees C <u>72.0</u> ohm

۳,

_

÷

~

	0003
	·
5.4.3 ENCODER ELECTRICAL CHARACTERISTICS	
5.4.3.1 ENCODER POSITION 1 AND OUTPUT VOLTAGE	Jelis m. 06.28.45
Encoder position 1 is according to Table 1 check	06.78.4s
Dutput voltage across bit 4 is 3.5 Vdc min at 4.8 VDC min 5.0 VDC max	
5.4.3.2 ENCODER POSITION VERIFICATION	
Encoder position 2 through 12 is according to Table 1	_ check
5.4.4 RADIAL DEFLECTION	
9.0 +/- 0.1 lb force applied on the shaft in accordance with MSFC drawing SXI-201, Proof Load	
(170.0015 inches	max
$\frac{1}{169}$ $\frac{1}$	v/wires v/o

-

.

0.HIQ E.N.1 VIE I I

size A	CAGE COD 8837		ATP	20049	20
SCALE		REV.	B	SHEET 15	•

SECTION IV SPECIAL TEST DATA

AEROFLEX-

-

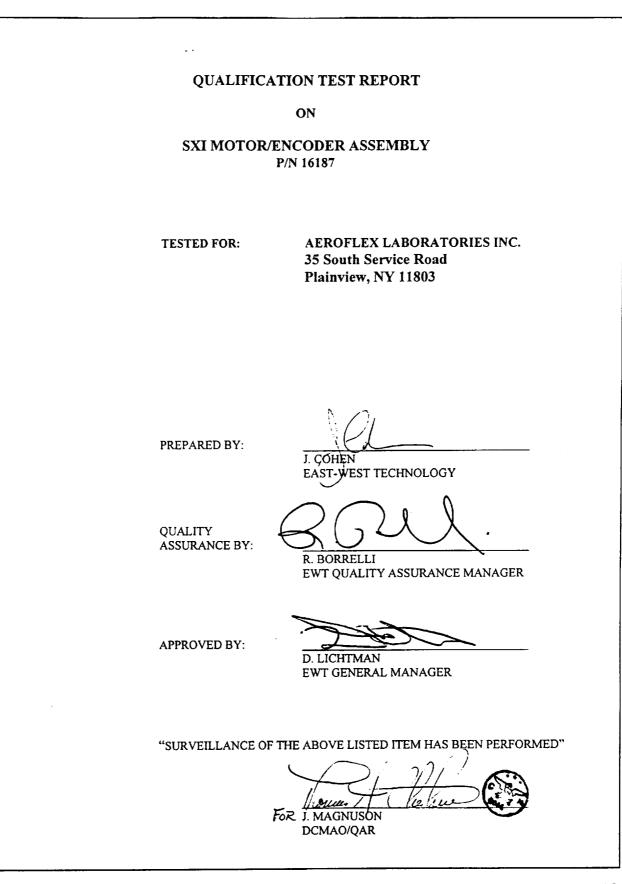
_

- - -

--

- -

-


-

-

-8-- 4

EAST-WEST TECHNOLOGY CORP. 119 Cabot Street West Babylon, NY 11704 (516) 420 0530 • Fax (516) 420 8067

ADMINISTRATIVE DATA

. .

5

TEST PERFORMED FOR:	Aeroflex Laboratories Inc. 35 South Service Road Plainview, NY 11803
TESTING PERFORMED:	Fixture Survey Sine Vibration Random Vibration Pyrotechnical Shock
TEST ITEM:	SXI Motor/Encoder Assembly
PART NUMBER:	16187
SERIAL NUMBERS:	0002; 0003
PRIMARY SPECIFICATION:	N/A
TEST PROCEDURE:	ATP 20049 REV B
PURCHASE ORDER NOS.:	99593; 10901
GOVERNMENT CONTRACT NO.;	NAS9-39408
EWT JOB NOS.:	8286 8363 (Random Vibration Rerun)
TEST REPORT NO .:	33622
TEST REPORT FILE NO .:	8286.DOC Disk 144
TEST COMPLETION DATE:	26 June 1995
TEST REPORT DATE:	8 August 1995

TABLE OF CONTENTS

. .

منيه

_

`___

PARAGRAPH	DESCRIPTION	PAGE
1.0	INTRODUCTION	1
2.0	APPLICABLE DOCUMENTS	1
3.0	GENERAL INFORMATION	2
4.0	TEST EQUIPMENT	3
5.0	FIXTURE SURVEY	7
6.0	SINE VIBRATION TEST	9
7.0	RANDOM VIBRATION TEST	11
8.0	PYROTECHNICAL SHOCK TEST	12
	APPENDIX A: PHOTOGRAPHS	13
	APPENDIX B: TEST DATA	14

1.0 INTRODUCTION

1.1 Scope

1.1.1 This document describes procedures and results of the Fixture Survey; and Sine Vibration, Random Vibration and Pyrotechnical Shock tests performed on two (2) SXI Motor/Encoder Assemblies, P/N 16187, S/N 0002 and 0003, as submitted for testing by Aeroflex Laboratories Inc.. Testing was performed in accordance with ATP 20049 REV B. A Random Vibration retest of test unit S/N 0003 was conducted as per P.O. 10901, and is reflected herein.

1.2 Purpose

1.2.1 The purpose of this test is to demonstrate that the test specimen meets or exceeds the design specification requirements, during and/or upon completion of exposure to the environmental stresses outlined herein.

2.0 APPLICABLE DOCUMENTS

- 2.1 Military
- 2.1.1 MIL-STD-45662A Calibration System Requirements
- 2.2 Aeroflex Laboratories Inc.
- 2.2.1ATP 20049 REV B- Acceptance Test Procedure Motor/Encoder -
161872.3.1P.O. Nos. 99593;
10901- Aeroflex Laboratories Inc. Purchase Orders
Dated 04/04/95 and 06/09/95, respectively

- 3.0 GENERAL INFORMATION
- 3.1 Test Equipment Calibration
- 3.1.1 All test instrumentation was calibrated in accordance with MIL-STD-45662A "Calibration System Requirements" and is traceable to the National Institute of Standards and Technology (NIST).

3.2 Test Conditions

3.2.1 Unless specified herein, all tests and measurements were performed at the room ambient conditions existing at the laboratory during testing:

Temperature: Barometric Pressure: Relative Humidity: 23°C ± 10°C Prevailing site pressure Room ambient up to 90%

3.3 Test Tolerances

3.3.1 All test conditions were maintained within the tolerances specified in the detailed test procedure or in accordance with the referenced test specification.

3.4 Test Witnessing / Monitoring

3.4.1 All testing was conducted by a qualified EWT technician under the direction and cognizance of a EWT Quality Assurance test engineer. Test surveillance was provided by a DCMAO Quality Assurance representative.

3.5 Recommendation

3.5.1 All recorded data and observations made by East-West Technology personnel during the testing described herein are submitted for your own evaluation.

4.0	TEST EQUIPMENT		
	The following is a list of test	equipment used	d to perform the test outlined herein:
4.1	FIXTURE SURVEY Test date:04/19/95		1
4.1.1	Exciter Mfr.: Ling Model: 335 S/N: 40 EWT Control No.: 218 Calibration not required	4.1.6	Accelerometer Mfr.: CRL Model: 330S S/N: 409 EWT Control No.: 123 Last Calibration: 02/06/95
4.1.2	Power Amplifier Mfr.: Ling Model: 8024 S/N: N/A EWT Control No.: 219 Calibration not required	· ·	Calibration Interval: 1 year
4.1.3	Accelerometer Mfr.: CRL Model: 330S S/N: 279 EWT Control No.: 117 Last Calibration: 07/31/94 Calibration Interval: 1 year		
4.1.4	Charge Amplifier Mfr.: Trig Tek Model: 203M S/N: 804 EWT Control No.: 1135-06 Last Calibration: 05/31/94 Calibration Interval: 1 year		
4.1.5	Charge Amplifier Mfr.: Trig Tek Model: 203M S/N: 840 EWT Control No.: 1135-05 Last Calibration: 05/31/94 Calibration Interval: 1 year		

-

5

=

Accelerometer

4.0 TEST EQUIPMENT (continued)

4.2 SINE VIBRATION

Test dates: 06/07/95 (Test Unit S/N 0002); 06/20/95 (Test Unit S/N 0003) *Used during test conducted 06/07/95 **Used during test conducted 06/20/95

4.2.6

4.2.1 Exciter Mfr.: Ling Model: 335 S/N: 40 EWT Control No.: 218 Calibration not required

4.2.2 Accelerometer** Mfr.: CRL Model: 5011

S/N: 1119 EWT Control No.: 2274 Last Calibration: 01/09/95 Calibration Interval: 1 year

4.2.3 Charge Amplifier** Mfr.: Trig Tek

Model: 203M S/N: 840 EWT Control No.: 1135-05 Last Calibration: 06/13/95 Calibration Interval: 1 year

4.2.4 Auto Vibration Control

Mfr.: Spectral Dynamics Model: SD1201 S/N: 1067 EWT Control No.: 1052 Last Calibration: 11/19/93 Calibration Interval: 2 years

4.2.5 **Power Amplifier**

Mfr.: Ling Model: 8024 S/N: N/A EWT Control No.: 219 Calibration not required Accelerometer* Mfr.: CRL Model: 330S S/N: 102 EWT Control No.: 395 Last Calibration: 02/06/95

Calibration Interval: 1 year

4.2.7 Charge Amplifier*

Mfr.: Trig Tek Model: 203M S/N: 1289 EWT Control No.: 1135-07 Last Calibration: 05/26/94 Calibration extended 30 days Calibration Interval: 1 year

4.0	TEST EQUIPMENT (continued)		
4.3	RANDOM VIBRATION Test dates: 04/28/95 (Test Unit S Retest of test unit S/N 0003: 06/2 *Used during test conducted 04/28/95 **Used during test conducted 05/30/9 ***Used during retest conducted 06/22	22/95 5	05/30/95 (Test Unit S/N 0002)
4.3.1	Exciter Mfr.: Ling Model: 335 S/N: 40 EWT Control No.: 218 Last Calibration: Not required	4.3.6	Charge Amplifier*** Mfr.: Trig Tek Model: 203M S/N: 840 EWT Control No.: 1135-05 Last Calibration: 06/13/95 Calibration Interval: 1 year
4.3.2	Power Amplifier Mfr.: Ling Model: 8024 S/N: N/A EWT Control No.: 219 Last Calibration: Not required	4.3.7	Accelerometer*** Mfr.: CRL Model: 5011 S/N: 1119 EWT Control No.: 2274 Last Calibration: 01/09/95 Calibration Interval: 1 year
4.3.3	Accelerometer* Mfr.: CRL Model: 330S S/N: 409 EWT Control No.: 123 Last Calibration: 02/06/95 Calibration Interval: 1 year	4.3.8	Charge Amplifier** Mfr.: Trig Tek Model: 203M S/N: 804 EWT Control No.: 1135-06 Last Calibration: 05/31/94 Calibration Interval: 1 year
4.3.4	Charge Amplifier* Mfr.: Trig Tek Model: 203M S/N: 769 EWT Control No.: 1135-02 Last Calibration: 05/26/94 Calibration Interval: 1 year	4.3.9	Accelerometer** Mfr.: CRL Model: 330S S/N: 395 EWT Control No.: 102 Last Calibration: 02/06/95 Calibration Interval: 1 year
4.3.5	Auto Random Control Mfr.: Spectral Dynamics Model: SD1200 S/N: 29 EWT Control No.: 1300 Last Calibration: 08/22/94 Calibration Interval: 2 years		

=

4.0 TEST EQUIPMENT (continued)

4.4 PYROTECHNICAL SHOCK

Test dates: 06/14/95 (Test Unit S/N 0002); 06/26/95 (Test Unit S/N 0003) *Used during test conducted 06/14/95 **Used during test conducted 06/26/95

4.4.1 Exciter 4.4.6 Mfr.: Ling Model: 335 S/N: 40 EWT Control No.: 218 Last Calibration: Not required

4.4.2

Power Amplifier Mfr.: Ling Model: 8024 S/N: N/A EWT Control No.: 219 Last Calibration: Not required

4.4.3 Accelerometer*

Mfr.: CRL Model: 5011 S/N: 1119 EWT Control No.: 2274 Last Calibration: 01/09/95 Calibration Interval: 1 year

4.4.4 Charge Amplifier*

Mfr.: Trig Tek Model: 203M S/N: 804 EWT Control No.: 1135-06 Last Calibration: 05/31/94 Calibration extended 30 days Calibration Interval: 1 year

4.4.5 Shock Control

Mfr.: Data Physics Model: 1919 S/N: N/A EWT Control No.: 2313 Last Calibration: 05/18/95 Calibration Interval: 2 years

> Report No. 33622 Job No. 8286 Page 6

4.4.7 Char

Charge Amplifier** Mfr.: Trig Tek Model: 203M S/N: 1289 EWT Control No.: 1135-07 Last Calibration: 06/16/95 Calibration Interval: 1 year

Accelerometer**

EWT Control No.: 2273

Last Calibration: 01/09/95 Calibration Interval: 1 year

Mfr.: CRL

S/N: 1118

Model: 5011

5.0 FIXTURE SURVEY ATP 20049 REV B

- 5.1 Test Set-Up
- 5.1.1 Visual inspection of the test fixture was performed to verify the pre-test condition.
- 5.1.2 The test fixture was mounted to the vibration shaker table.
- 5.1.3 Two accelerometers were installed, one for vibration input control and one for monitoring the test fixture response. The control accelerometer was attached to the vibration table near a test fixture mounting point. The response accelerometer was attached directly to the side of the test fixture.
- 5.1.4 Photographs of a typical set-up along with the axis definitions are included in Appendix A.

5.2 Test Procedure

5.2.1 The test fixture was subjected to a resonance search test performed individually in each of its three (3) orthoganol axes; followed by a resonance dwell test (where applicable). The resonance search was conducted in untimed frequency sweeps from **20** to **2,000** Hz with a random vibration input as defined in the table below:

Frequency	Amplitude
20 - 60 Hz	0.04 g²/hz rising to 2.56
60 - 200 Hz	2.56 g²/hz
200 - 300 Hz	2.56 g ² /hz falling to 0.256
300 - 600 Hz	0.256 g²/hz
600 - 2000	0.256 g ² /hz falling to 0.04
Ove	rall gRMS: 26.6

- 5.2.2 All resonances were recorded on the appropriate data sheets which are contained in appendix B herein.
- 5.2.3 Where necessary, a resonance dwell test was conducted.

5.0 FIXTURE SURVEY (continued)

5.3 Test Results

=

- 5.3.1 During mounting of the fixture to the vibration table, it was noted that the fixture was slightly off center in axis, due to the location of the fixture mounting holes.
- 5.3.2 Results of the resonance search, in the form of either transmissibility or measured output plots with marked resonant points (Q>2) are included in Appendix B. **No** resonances were noted.
- 5.3.3 No physical damage to the fixture was noticed at the end of this test.

6.0 SINE VIBRATION TEST ATP 20049 REV B

6.1 Test Set-Up

- 6.1.1 A visual inspection of each test item's exterior was performed to verify the pretest condition.
- 6.1.2 The test unit was mounted to the fixture plate described in Section 5.0, which was then rigidly mounted to the vibration shaker in the appropriate axis, as shown in the photographs of the typical set-up included in Appendix A.
- 6.1.3 A vibration control accelerometer was mounted to the fixture plate to control and monitor the vibration input.
- 6.1.4 The Sine Vibration test was performed on each unit individually.

6.2 Test Procedure

6.2.1 The test unit was subjected to **one (1)** minute of sinusoidal vibration in each of its **three (3)** orthoganol axes at the levels specified in the table below. The vibration frequency was varied from **5** to **100** Hz at the rate of **two (2)** octaves/minute.

Axis	Frequency (Hz)	Amplitude
X	5 - 22.3*	0.5 in. D.A.
X	22.3 - 40**	12.7 g
X	40 - 100	5.0 g
Y	5 - 24*	0.5 in. D.A.
Ŷ	24 - 40**	14.7g
Ŷ	40 - 100	5.0g
Z	5 - 16.8	0.5 in. D.A.
Z	16.8 - 40	7.2g
Z	40 -100	5.0g

*Substitute the values "5 - 24.0" for the unit tested 06/20/95 (S/N 0003) **Substitute the values "24 - 40" for the unit tested 06/20/95 (S/N 0003)

6.2.2

Upon completion of the Sine Vibration testing, the test sample was inspected for any evidence of exterior physical damage.

6.0 SINE VIBRATION TEST (continued)

6.3 Test Results

....

-

- 6.3.1 **No** damage to the exterior of the test items was visible during or upon completion of this tests.
- 6.3.2 Input vibration level plots for each test unit can be be found in Appendix B.
- 6.3.3 The test units were returned to Aeroflex Laboratories for functional testing and further evaluation.

7.0 RANDOM VIBRATION TEST ATP 20049 REV B

- 7.1 Test Set-Up
- 7.1.1 The mounting and the shaker installation of the test unit for the random vibration test, was the same as in the sine vibration test described previously in Para 6.1.

7.2 Test Procedure

7.2.1 The test units were individually subjected to **one (1)** minute of random vibration in **each** of the **3** orthogonal axes with the vibration spectrum and G-level defined in the table below:

20 - 60 Hz @ 0.04 g²/Hz rising to 2.5 60 - 200 Hz @ 2.5 g²/Hz 200 - 300 Hz @ 2.5 g²/Hz falling to 0.25 300 - 600 Hz @ 0.25 g²/Hz 600 - 2000 Hz @ 0.25 g²/Hz falling to 0.04 Overall gRMS: 26.6

- 7.2.2 Test unit S/N 0003 was retested 06/22/95, and was subjected to the same set-up and test as described in Section 7.1 and step 7.2.1, with the following exception: Overall gRMS was 26.1.
- 7.2.3 Upon completion of the Random Vibration testing, the test samples were inspected for any evidence of exterior physical damage.

7.3 Test Results

- 7.3.1 **No** damage to the test items' exterior was visible during or upon completion of this test.
- 7.3.2 Plots of the actual spectrum applied are included in Appendix B.
- 7.3.3 The test units were returned to Aeroflex Laboratories for functional testing and further evaluation.

8.0 PYROTECHNICAL SHOCK TEST ATP 20049 REV B

8.1 Test Set-Up

- 8.1.1 Visual inspections of the test samples' exteriors were performed to verify the pretest condition. No anomalies were noted.
- 8.1.2 Each test unit was individually mounted to the fixture plate described in Section 5.0, which was then rigidly mounted to the shock table in the appropriate axis, as shown in the photographs of the typical set-up included in Appendix A.
- 8.1.3 An accelerometer was mounted to the test fixture to control and monitor the shock input.

8.2 Test Procedure

8.2.1 Each test unit was subjected to **one (1) bi-directional** shock pulse in each of the **three (3)** orthogonal axis. The shock spectrum and levels were as defined in the following table:

200 Hz @	57g	····*
400 Hz @	225g	
1400 Hz @	225g	
1600 Hz @	300g	tituti onici Tituti onici
4000 Hz @	300g	

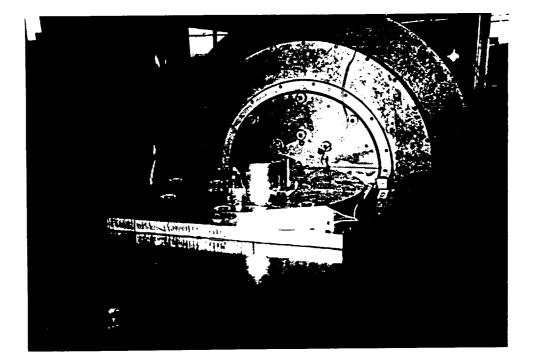
- 8.2.2 Plots of the actual shock spectrum of each shock applied are included in the Appendix B.
- 8.2.3 Upon completion of shock application in each axis, each test unit was visually inspected for any evidence of exterior physical damage.

8.3 Test Results

- 8.3.1 There was no visible exterior physical damage to either test unit.
- 8.3.2 The test units were returned to Aeroflex Laboratories for further evaluation and dissemination.

APPENDIX A: PHOTOGRAPHS

. .



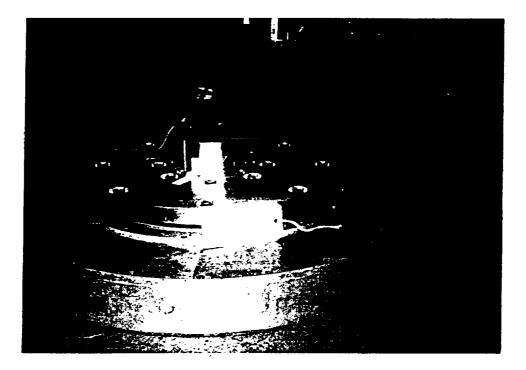
- -- -

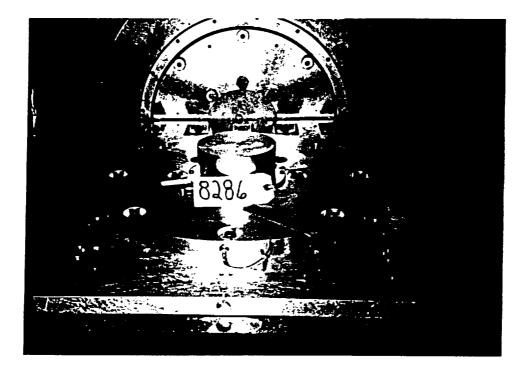
.

Typical Test Fixture, Sine and Random Vibration, and Pyrotechnical Shock Test Set-Up "X" Axis

=----

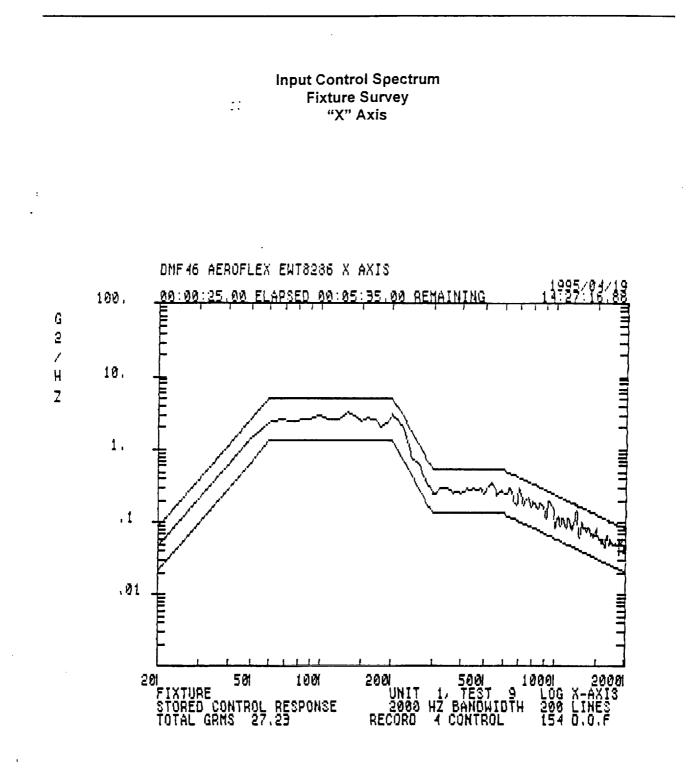
Typical Test Fixture, Sine and Random Vibration, and Pyrotechnical Shock Test Set-Up "Y" Axis


-



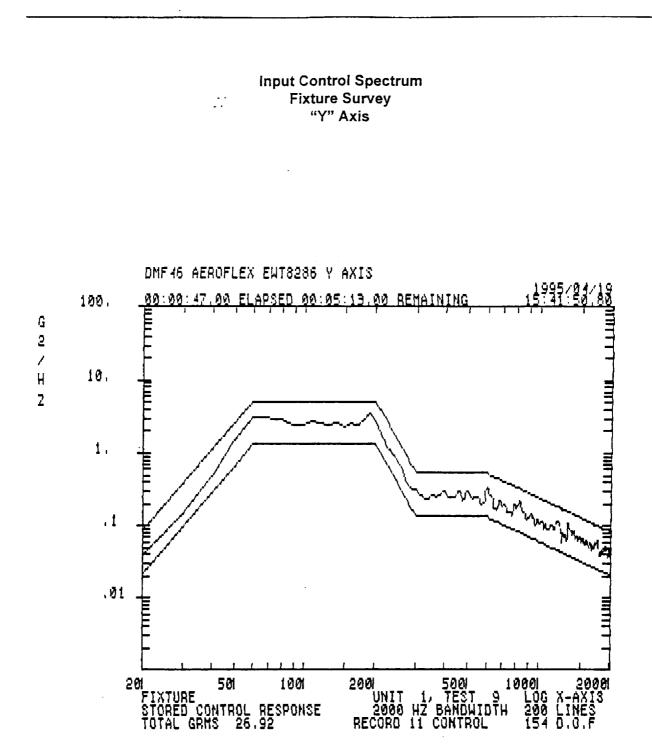
Typical Test Fixture, Sine and Random Vibration, and Pyrotechnical Shock Test Set-Up "Z" Axis

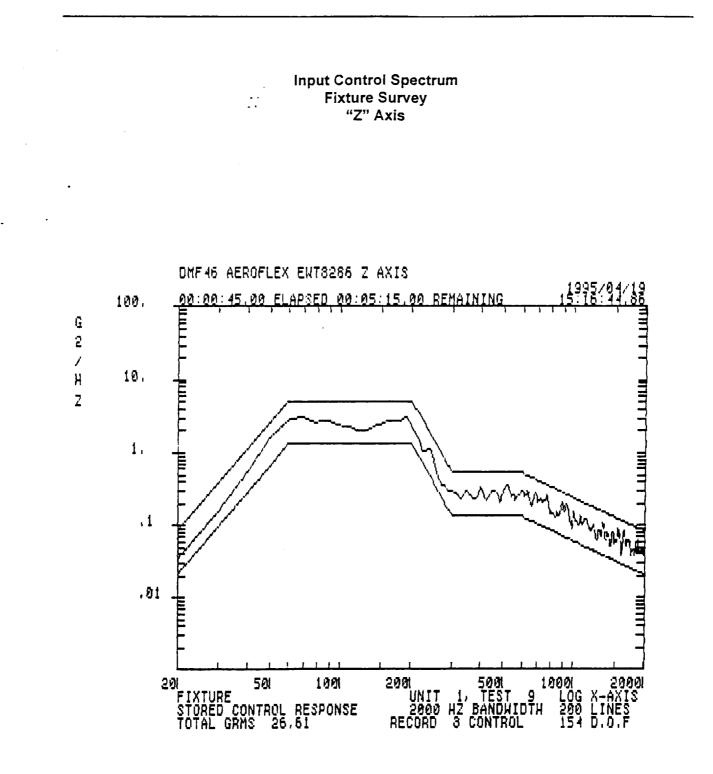
-

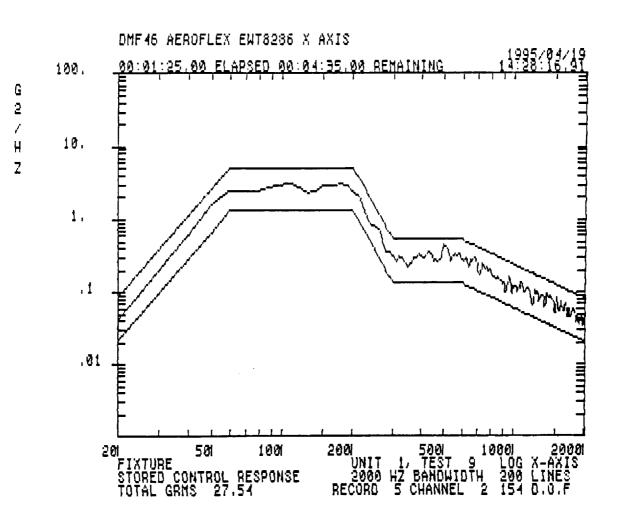

APPENDIX B: TEST DATA

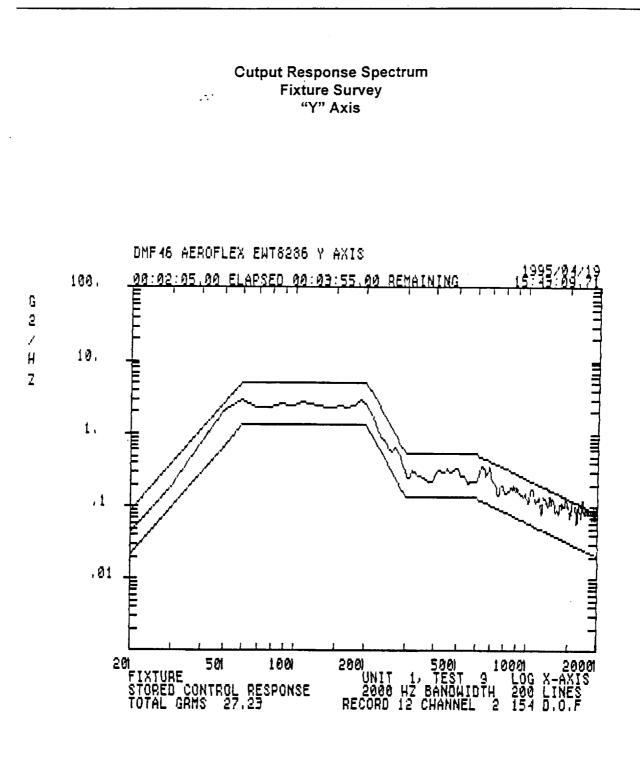
• •

:

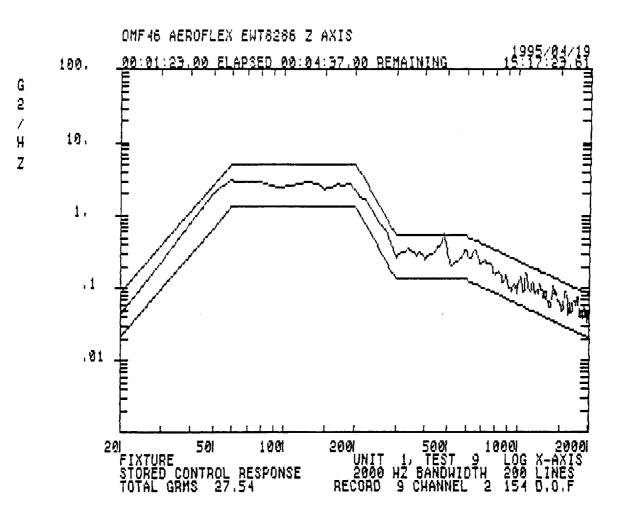


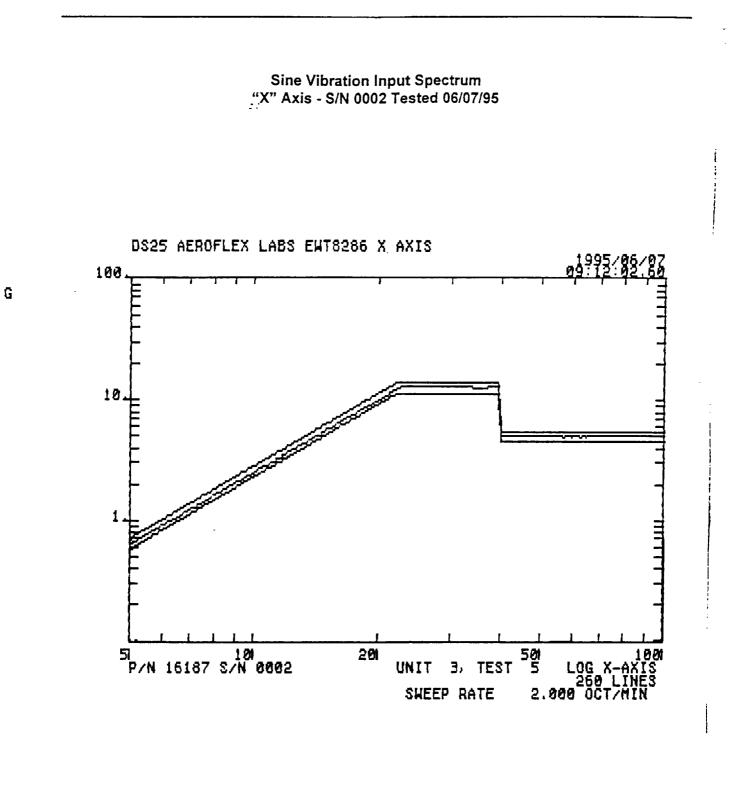

╤


Report No. 33622 Job No. 8286 Page B 1

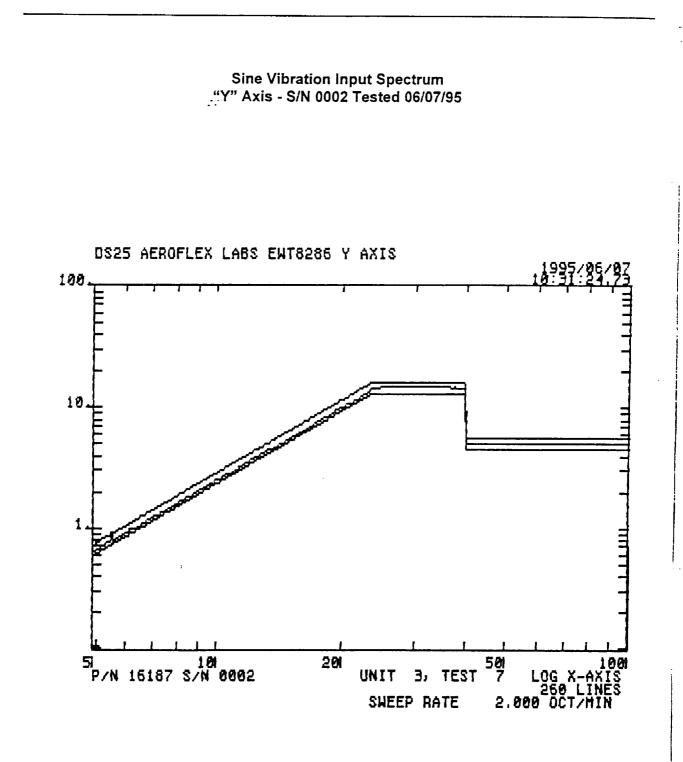

5

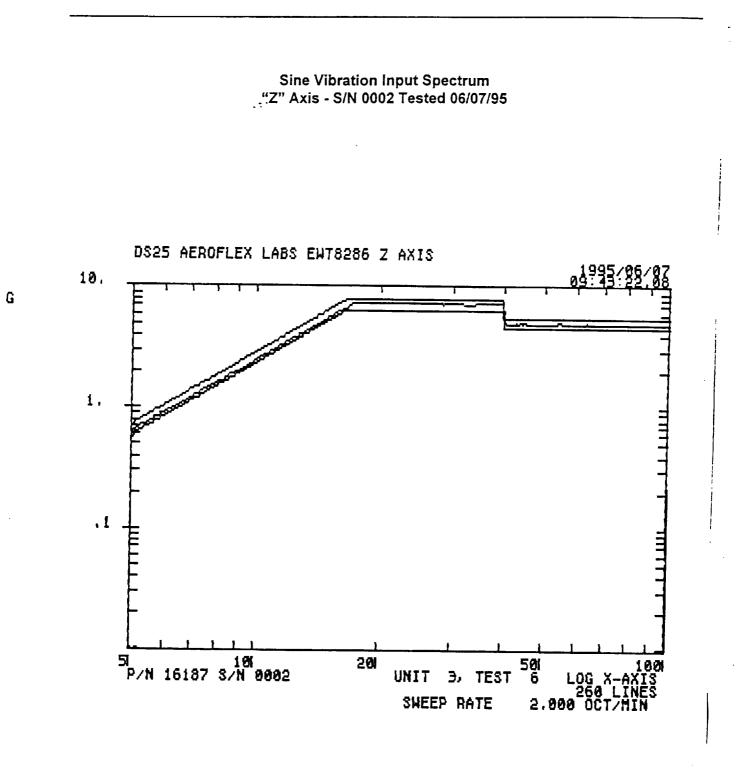
Output Response Spectrum ... Fixture Survey "X" Axis

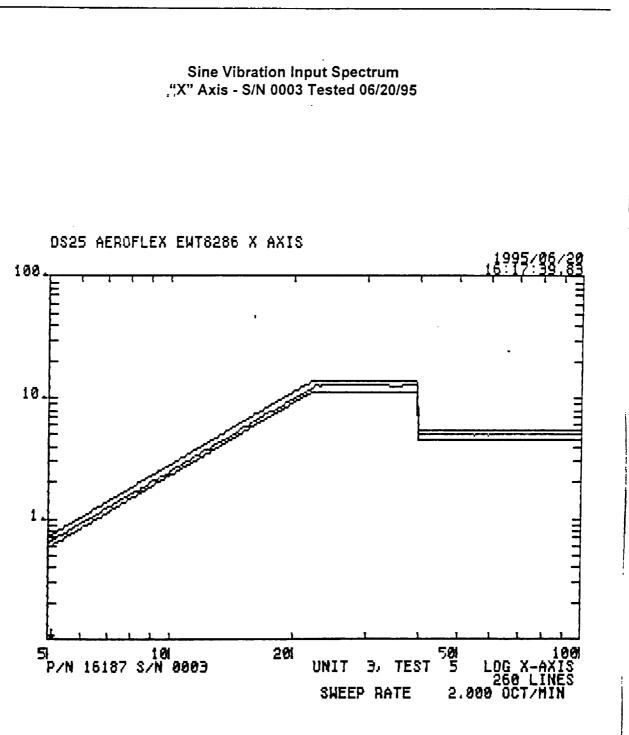




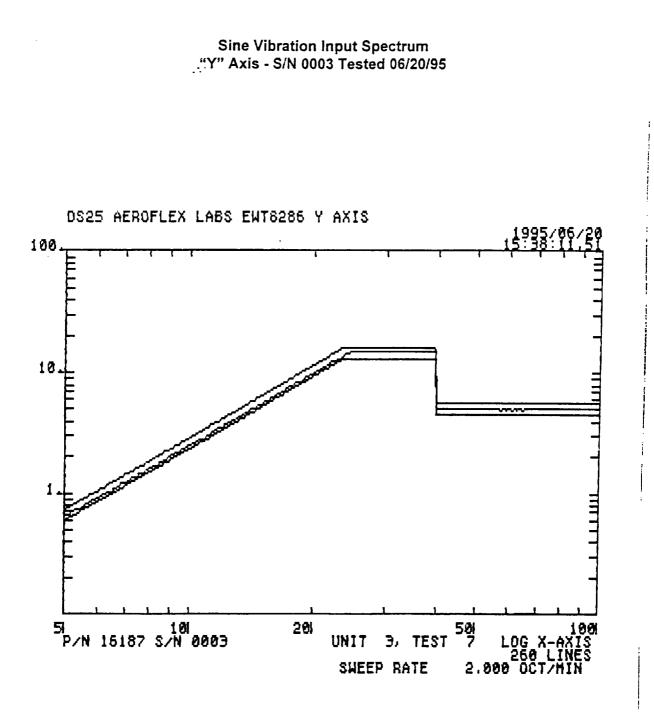
-

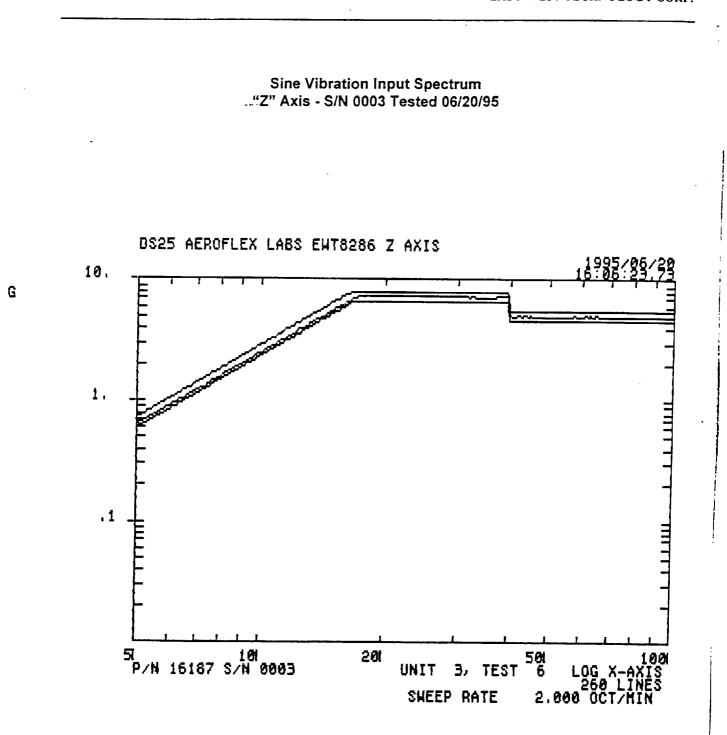


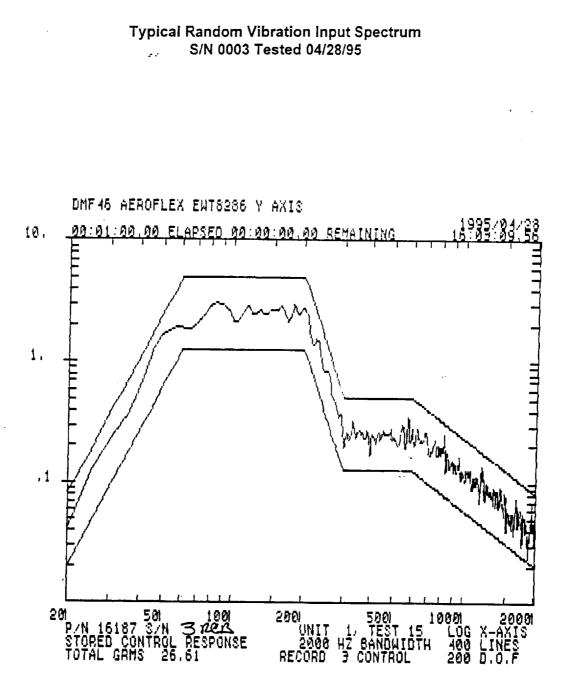

1.1


G

F128


_


_


G

Report No. 33622 Job No. 8286 Page B 11

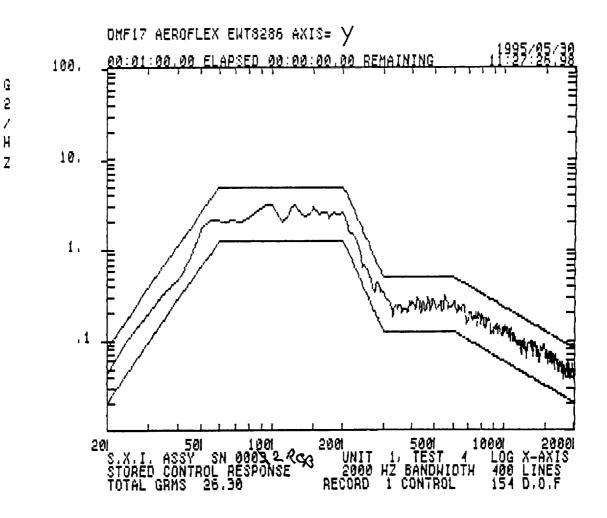
Report No. 33622 Job No. 8286 Page B 13

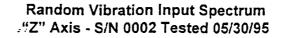
627 H

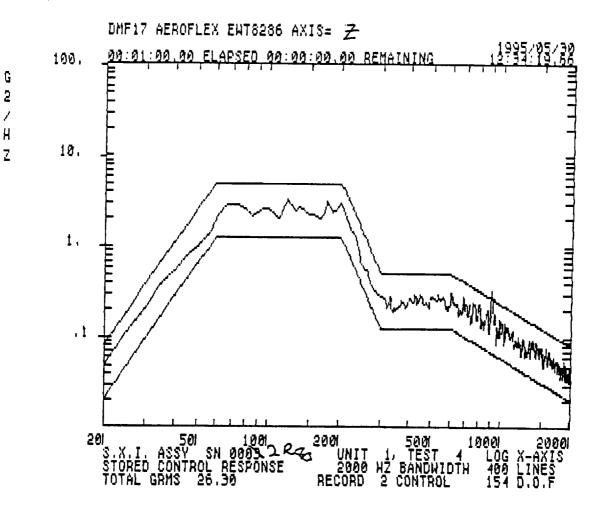
Z

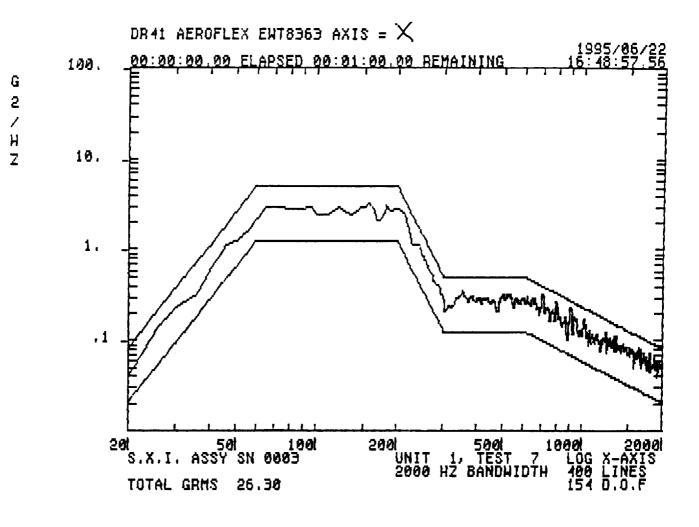
=

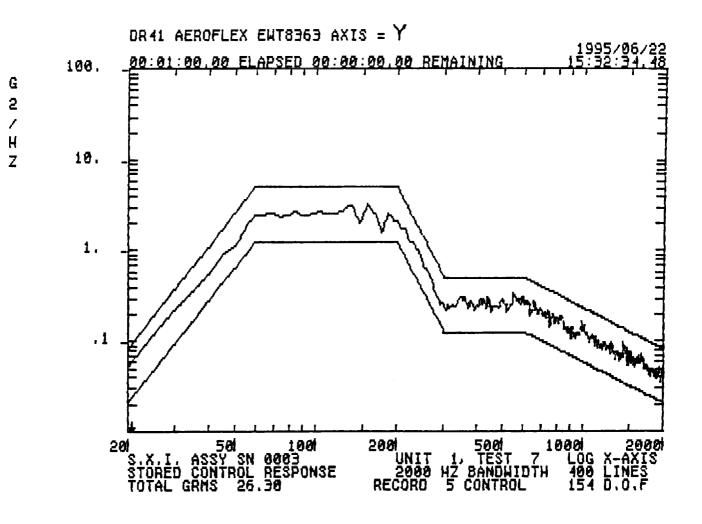
Ξ

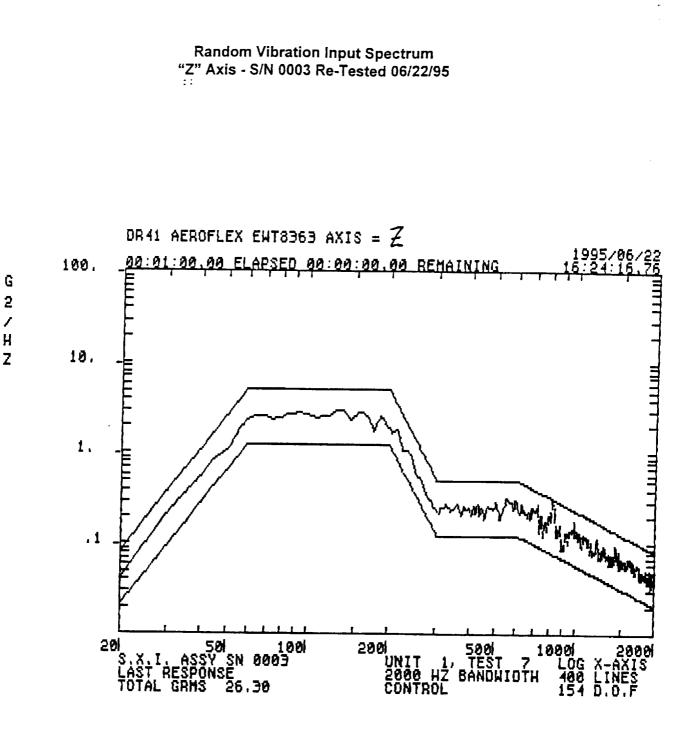

-



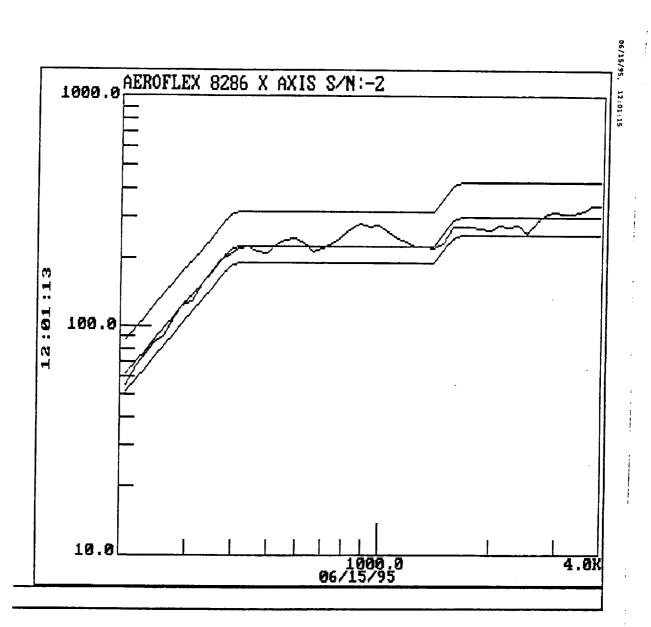

Random Vibration Input Spectrum "X" Axis - S/N 0002 Tested 05/30/95


Random Vibration Input Spectrum "Y" Axis - S/N 0002 Tested 05/30/95


Random Vibration Input Spectrum "X" Axis - S/N 0003 Re-Tested 06/22/95



- 0.18

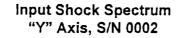

Random Vibration Input Spectrum "Y" Axis - S/N 0003 Re-Tested 06/22/95

.....

t .:

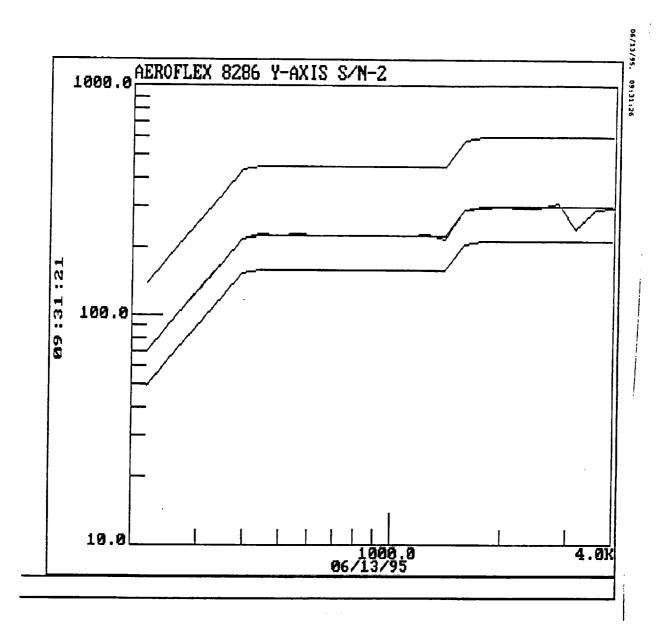
Input Shock Spectrum "X" Axis, S/N 0002

. . .


.....

-

-


:::

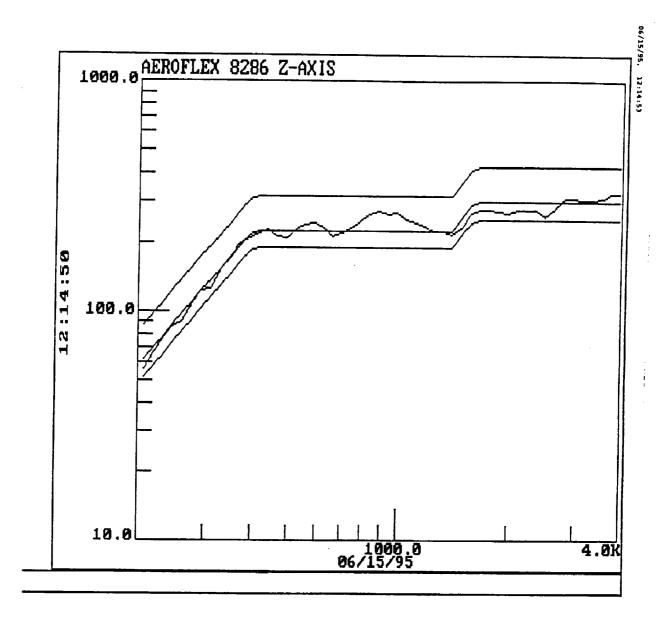
1

1.2

-

10 5

Report No. 33622 Job No. 8286 Page B 21


.

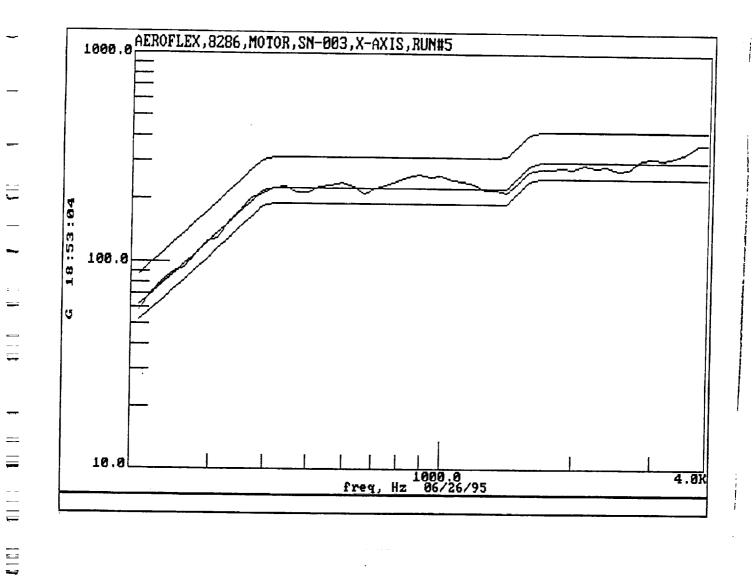
Input Shock Spectrum "Z" Axis, S/N 0002

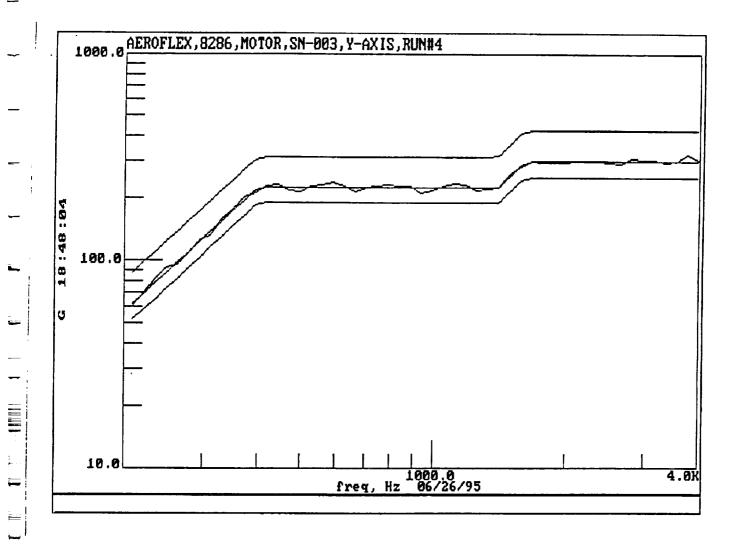
.....

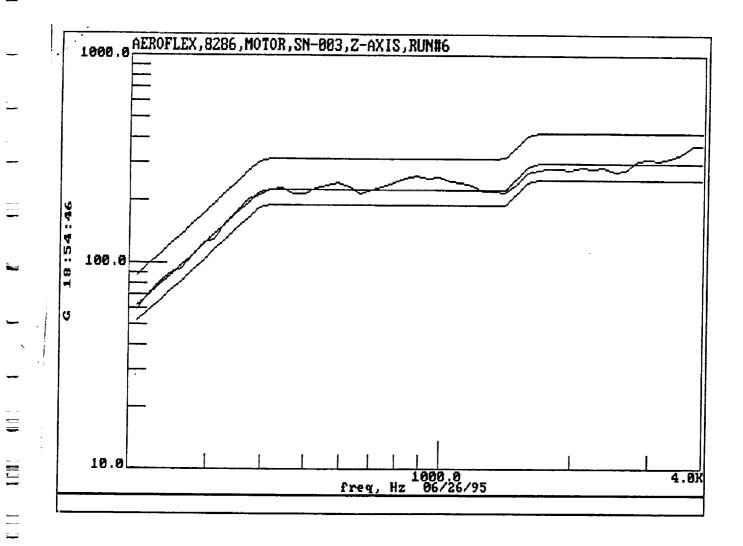
-

Input Shock Spectrum "X" Axis, S/N 0003

::




.... ___ _



Ę

Input Shock Spectrum "Z" Axis, S/N 0003

•

_

-

1.						REVI	SIONS			7
.` 	NEXT ASSY	USED ON			DESC	RIPTION			DATE	APPROVED
T '		16187	$\neg \beta$	Jasiria	- Reco	F456		8-	22.91	PR
1										<u>// </u>
-										
1										
~										
_										
->										
-										
=										
-										
158300						·····				
1583	ALL PAGES ARE O ORIGINAL ISSUE		2345	6 7 8 9 10	11 12 13 14	15 16 17 18	19 20 21 22	23 24 25 2	6 27 28 29	30 31 32 33 34
	EXCEPT AS NOTED	D REV. 🔗		533338	8888					
OGIL	UNLESS OTHERWISE ALL DIMENSIONS ARE	IN INCHES OF D	.DATE WG.					LABORA	TORIES	PLANVIEW
- 1	TOLERANCES FRAC. DEC.	ANG. DRAV		2.1-94			FLEX	INCORP	DRATED	N Y 11803
		~ СНЕС			Acco	5PTAN 10TOR	ce Te	ST M	00000	URE .
		ENG		n 8.72-94	1	10 TOR	/Enco	っうごん	- 16	187
Jesco	FINISH	DESU			SIZE	FSCM NO.		PZ		
<u></u>	FINISH ~		yere	- <u>8-29-94</u>		38379				-
<u> </u>		MFG.	mbro	8/12/94	SCALE ~	WEIGHT	~	SHE		of 14

1.0 SCOPE

1.1 INTRODUCTION

This procedure describes the tests and environments required to establish acceptance of the Aeroflex Brushless Step Motor/Encoder, Part Number 16187 in accordance with MSFC Drawing SXI-201 and NASB-39409, Appendix A.

1.2 APPLICABLE DOCUMENTS

NASB-39409 Appendix A All referenced documents in Par. 2.1 Aeroflex Procedure 5-297-0 Procedure for Alignment of Motor and Encoder

2.0 TEST EQUIPMENT

Waters 1.2 in-oz full scale bidirectional Torque Watch Waters 20 in-oz full scale bidirectional Torque Watch Leeds and Northrup resistance Bridge Hewlett Packard LCR meter Model 4251A General Radio Model 1864 megohmmeter AR Hypot Model 4006 Digital Multimeter HP 3466A DC Power Supply Hewlett Packard Model 6111A Lambda regulated Power Supply Model LH124BFM Tektronix 2445 oscilloscope Gould Model RS 3200 Chart Recorders Tenney TTRG Environmental Chamber Veeco Diffusion Pump Vibration,Noise, and Shock Equipment TBD by Testing Labs

size A	fscm no. 8837		ÂĬ	P20049
SCALE		REV.	B	SHEET Z

3.0 MECHANICAL AND ELECTRICAL CHARACTERISTICS

3.1 TORQUE AND OPERATING POINT

3.1.1 DETENT TORQUE

Using a torque watch with a 0-40 oz-in. range, measure the detent torque of the motor through three cogging positions, rotating ccw. The detent torque shall be 0.25 oz-in minimum at each position.

3.1.2 OPERATING TORQUE

Connect the motor as per Figure 1. Using an oscilloscope, adjust the test circuit until it is operating at 4.8 pulses per second at 22 VDC minimum, 25 VDC maximum, measured at the motor leads. Attach a thin thread to the motor shaft, and attach weights equivalent to 5.5 oz-in to the other end of the thread. The weight equivalent is determined by dividing the 5.5 oz-in requirement by the shaft radius in inches.Apply the proper voltage to the test circuit, and count the number of shaft revolutions in one minute. The motor shall lift the weights and rotate at 6 rpm minimum.

3.1.3 STALL TORQUE

Andro, Hicksvince, N. M. Juhrvie, Sleidi

Apply the required voltage to the test circuit, and using a torque watch with a 0-40 oz-in range, measure the torque required to stall the motor. The stall torque shall be 6.0 oz-in minimum at 22 VDC.

3.2 MOTOR ELECTRICAL CHARACTERISTICS

3.2.1 STEP ANGLE

Attach fixture 527-191-1 to the motor housing mounting screws. Attach indicator arm 527-191-2 to the motor shaft. Align the indicator arm with the zero degree position on the fixture. Apply 22 VDC to the winding labeled #1 (+22 VDC) and #3 (RTN). The motor shall step 7.5 degrees +/-0.75 degrees clockwise when viewed from the indicator arm. Repeat with wires #2 and #4, and verify clockwise rotation 7.5 degrees +/- 0.75 degrees. Continue with reverse polarity on #1 and # 3, #2 and #4.Repeat procedure for one full rotation cw. The angle indicator shall return to the zero position +/- 0.75 degrees.

3.2.2 WINDING RESISTANCE AT 20 DEGREES C.

Using a Wheatstone bridge , measure the winding resistance between wires #1 and #3 and between wires #2 and #4. Record these readings and the room temperature. The resistance for each phase shall then be calculated to verify 77.6 ohms

size A	FSCM NO 8837		ATI	° 200 °	19
SCALE		REV.	8	SHEET 3	

minimum at 20 degrees C.

3.2.3 WINDING INDUCTANCE

Using a digital LOR bridge, measure the inductance between wires #1 and #3, and between wires #2 and #4. This value shall be recorded for reference only.

3.2.4 INSULATION RESISTANCE AND DIELECTRIC STRENGTH

3.2.4.1 STATOR WINDING TEST PRE-IMPREGNATION

Tie together wires 1 and 3,2 and 4. Using a megohmmeter, apply 100 VDC between the tied together motor windings and the stator core for one minute. The insulation resistance shall be 100 Megohms minimum.Measure the insulation resistance (100 Megohms minimum) between the tied together motor windings. Using a Hypot, apply 250 VRMS, 60 Hz between the tied together motor leads and the stator core for one minute. Next, apply 250 VRMS 60 Hz between the tied together motor leads. The leakage current shall not exceed 100 microamperes for both cases.

3.2.4.2 MOTOR TEST POST-IMPREGNATION

Tie together wires 1 and 3,2 and 4. Using a megohmmeter, apply 100 VDC between the tied together motor windings and the housing for one minute. Next, apply 100 VDC between the tied together motor windings for 1 minute. The insulation resistance shall be 100 Megohms minimum for both cases. Using a Hypot, apply 125 VRMS, 60 Hz between the tied together motor leads and the stator for one minute. Next, apply 125 VRMS, 60 Hz between the tied together motor leads for one minute. The leakage current shall not exceed 100 microamperes for both cases.

3.3 ENCODER ELECTRICAL CHARACTERISTICS

3.3.1 ENCODER POSITION 1 AND OUTPUT VOLTAGE

Realign the indicator arm to the zero position. Connect test circuit to the encoder output wires, as shown in Figure 2. Apply +5 VDC +/- 0.2 V to the input wires and verify the output is according to Table 1 for encoder position 1. In addition, measure the output voltage across bit 4 and verify this voltage is not less than 3.5 VDC with 4.8 VDC at the input.

3.3.2 ENCODER POSITION VERIFICATION

Ш.П.П.У. ніс**і** І.І. х**ії** л. з.С.

With the encoder input voltage as in 3.3.1, apply 22 VDC to alternating phases according to the Table 1, and stop at step 4 .The encoder output shall be in accordance with

size A	FSCM NO. 88379		ATP	2004	19	
SCALE		REV.	8	SHEET	4	

Table 1 at this step. Verify the remaining encoder outputs according to Table 1. The requirement that the encoder position shall be +/- one half the motor's step angle has been verified in procedure 5-297-0.

3.4 MOTOR/ENCODER PHYSICAL CHARACTERISTICS

3.4.1 SIZE AND CONFIGURATION

The size and configuration of the motor/encoder shall be in accordance with MSFC Drawing SXI- 201 and Aeroflex Drawing 200-38. These dimensions shall be verified at final inspection.

3.4.2 WEIGHT

J. HICK. J.L. N. VI J.L. VIE S.

The weight of the motor/encoder shall not exceed 15 ounces.

3.4.3 RADIAL DEFLECTION

Assemble the motor/encoder in fixture 527-192. Adjust a dial indicator capable of reading 0.0001 inch deflection to its zero reading on the motor shaft. Using a force gauge, apply a 9.0 +/- 0.1 lb. force on the shaft, in accordance with Drawing SXI-201, Proof Load Diagram. The resulting deflection shall be 0.0015 inches maximum.

4.0 ENVIRONMENTAL TESTS

4.1 CHARACTERISTICS AT THERMAL VACUUM CONDITIONS

4.1.1 MOTOR/ENCODER CONNECTIONS

Attach a three oz-in^2 load simulator to the motor shaft. Place the motor/encoder in a clean thermal vacuum container. Connect the motor windings and encoder wires to the feedthrough connections in the container and connect the test circuits to the outside, as per Figure 3. In addition, connect the AD590 temperature sensor leads to a feedthrough connection and connect a trim circuit to the outside, as per Figure 3. Verify step rotation of the motor as per paragraph 3.2.1, and verify encoder output, as per paragraph 3.3.2. In addition, check the room ambient temperature in degrees Kelvin (Degrees C + 273) is equivalent to the temperature sensor mv output. Once this is done, the container can be sealed and transported to the thermal vacuum location.

4.1.2 THERMAL VACUUM OPERATION

Set a controlled temperature environmental chamber to 25

size A	FSCM NO. 88379	ATP	200.49
SCALE	REV.	8	SHEET 5

Table 1 at this step. Verify the remaining encoder outputs according to Table 1. The requirement that the encoder position shall be +/- one half the motor's step angle has been verified in procedure 5-297-0.

3.4 MOTOR/ENCODER PHYSICAL CHARACTERISTICS

3.4.1 SIZE AND CONFIGURATION

The size and configuration of the motor encoder shall be in accordance with MSFC Drawing SXI- 201 and Aeroflex Drawing 200-38. These dimensions shall be verified at final inspection.

3.4.2 WEIGHT

∕≡ ×C

т. 5 N. Ч

ΗC

The weight of the motor/encoder shall not exceed 15 ounces.

3.4.3 RADIAL DEFLECTION

Assemble the motor/encoder in fixture 527-192. Adjust a dial indicator capable of reading 0.0001 inch deflection to its zero reading on the mator shaft. Using a force gauge, apply a 9.0 +/- 0.1 lb. force on the shaft, in accordance with Drawing SXI-201, Front Load Diagram. The resulting deflection shall be 0.0015 inches maximum.

- 4.0 ENVIRONMENTAL TESTS
- 4.1 CHARACTERISTICS AT THERMAL VACUUM CONDITIONS
- 4.1.1 MOTOR/ENCODER CONNECTIONS

Attach a three oz-in^2 load simulator to the motor shaft. Place the motor/encoder in a clean thermal vacuum container. Connect the motor windings and encoder wires to the feedthrough connections in the container and connect the test circuits to the outside, as per Figure 3. In addition, connect the AD590 temperature sensor leads to a feedthrough connection and connect a trim circuit to the outside, as per Figure 3. Verify step rotation of the motor as per paragraph 3.2.1, and verify encoder output, as per paragraph 3.3.2. In addition, check the room ambient temperature in degrees Kelvin (Degrees C + 273) is equivalent to the temperature sensor mv output. Once this is done, the container can be sealed and transported to the thermal vacuum location.

4.1.2 THERMAL VACUUM OPERATION

Set a controlled temperature environmental chamber to 25

size A	FSCM NO 8837		ATP	2000	49	
SCALE		REV.	в	SHEET	6	

degrees C. Place a humidity indicator in the chamber. Seal the porthole, and fill the chamber with dry nitrogen gas. When the relative humidity (RH) goes below 70 %, place the vacuum container in the temperature chamber. Verify the RH is still < 70%. Connect the container pipe to a diffusion pump, and begin mechanical roughing. Follow the manufacturer's operation sequence for the diffusion pump in order to achieve 1 x 10 -5 torr. Follow the cycle and test points in Figure 4. Verify temperature soaks using the AD590 sensor. Perform all functional tests after one hour soak at the indicated temperatures.

4.1.3 MOTOR/ ENCODER FUNCTIONAL TESTS AT THERMAL VACUUM CYCLES

4.1.3.1 VERIFICATION OF OPERATION UNDER LOAD

Connect chart recorder channels across current sensing shunts in series with the motor leads, as shown in Figure 3. In addition, connect one recorder channel to each encoder output. Apply the operating voltage to the test circuits for motor and encoder, and record the motor current and encoder output "high" voltage (3.5 VDC minimum) for one minute. There shall be no interruptions in the recorder traces during this time.

4.1.3.2 STALL OPERATION

MULLS HICK VILL, N. Y. U. L. VIE S. J.

Disconnect the motor from the test circuit. Apply 200 mA through wires #1 and #3 for 30 seconds. This current corresponds to the current at stall. Keep the power off for 60 seconds, repeat power on, and continue this sequence ten times. After this cycle, check operation as per paragraph 4.1.3.1 .

4.1.3.3 PROCEDURE FOR ENDING THERMAL VACUUM CYCLE

Soak the container at 25 C for 1 hour minimum. Verify RH < 70%, and proceed to shut down the diffusion pump and mechanical roughing according to the manufacturer's operating sequence. When the input gauge reads 450-760 torr, the container can be vented and disconnected from the pump. Return the sealed container to the clean room.

4.2 THERMAL CYCLING TEST AMBIENT PRESSURE

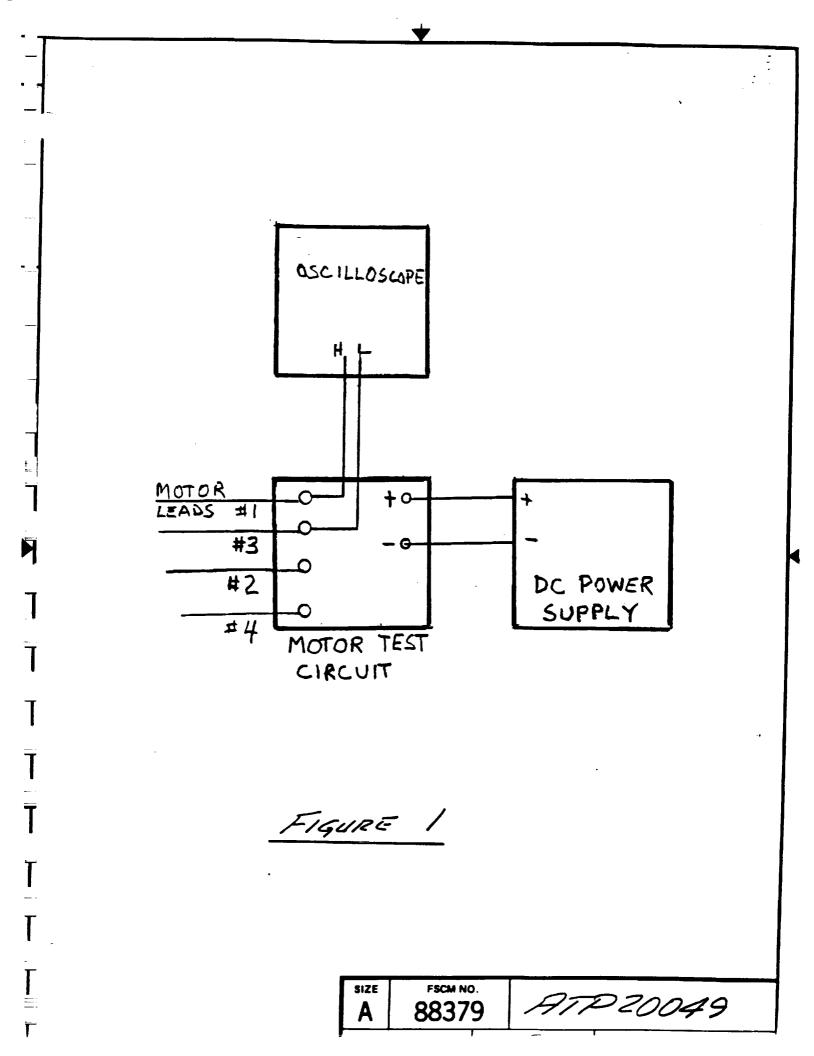
Perform a preliminary functional test at ambient temperature in a Class 100 environment in accordance with paragraphs 3.1.3, 3.2.1, 3.3.1 and 3.3.2. Place the motor (in a clean sealed container) in a air convection environmental chamber. The container and connections shall be per Figure 3. Fill the chamber with dry nitrogen. Ramp the temperature up to 50 degrees C at a rate of 3 degree C per hour, allow the motor to stabilize at this temperature for 1 hour minimum, and perform the functional

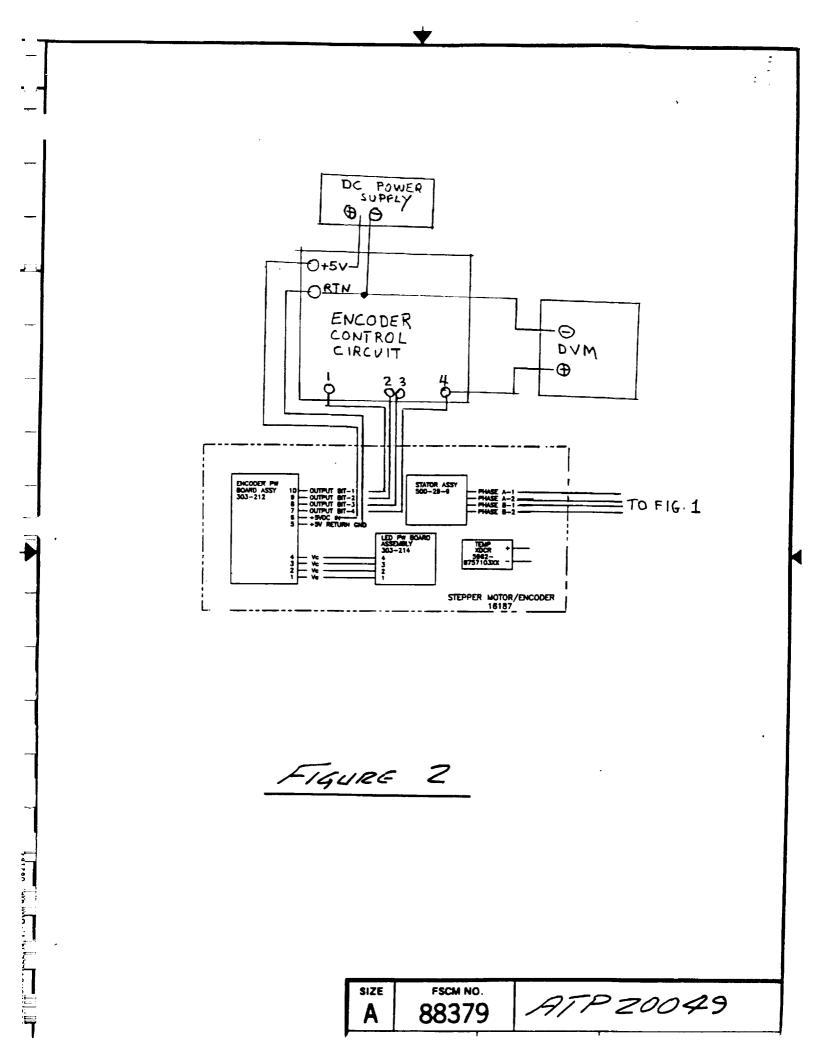
size A	FSCM NO		ATP	200	49	
SCALE		REV.	В	SHEET	7	

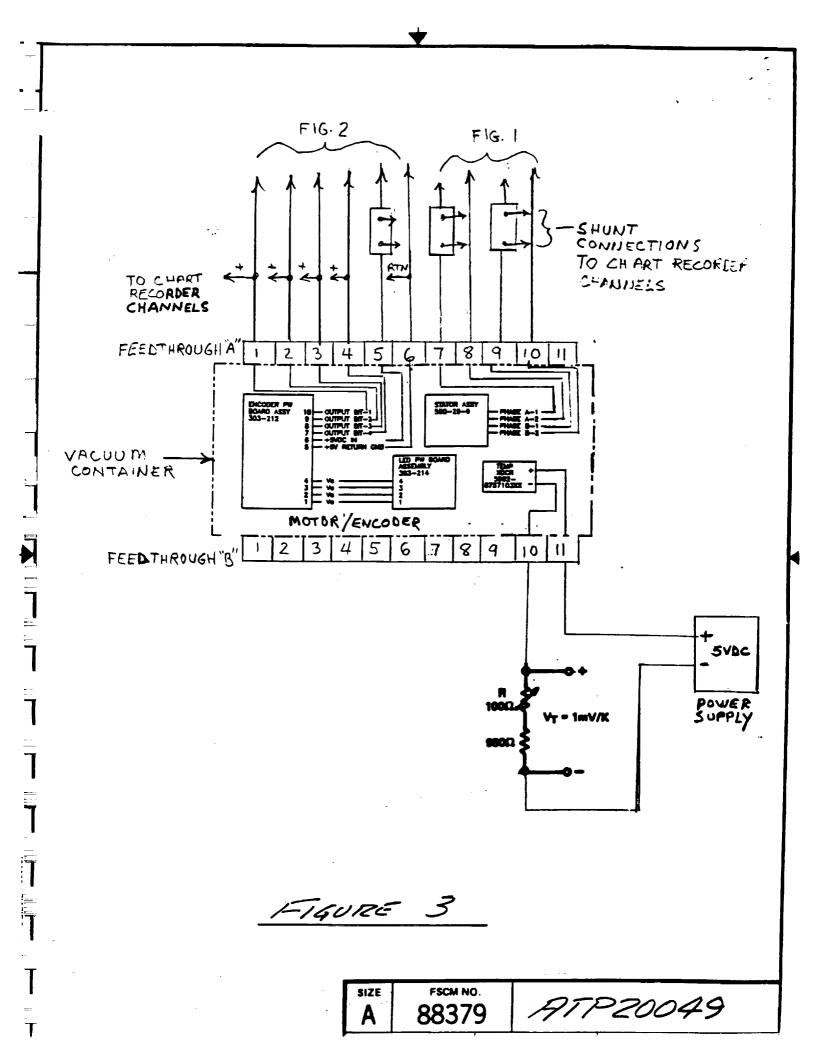
tests as in 4.1.3.1 and 4.1.3.2. After this test, ramp the temperature down to -40 degrees C. Stabilize and test the unit in the same manner as in the hot cycle. Repeat for 24 cycles, performing functional tests at the final cycle.

4.3 TEST SEQUENCE FOR VIBRATION AND SHOCK

Ţ




- --


AMESCO, HICKSVILI - 4, V. - OGILVIE 062167

Check that the load simulation disk is securely attached to the motor shaft. Fasten the motor to the base of container 527-193 and seal the container cover. Transport the container to the environmental testing facility, and perform the sine ,random vibration, and shock according to Table 2. The functional tests after each environment must be done in a class 100 clean area. The noise test must also be conducted in a class 100 clean room with the cover off. In addition to the functional tests, visually inspect the motor for any damage.

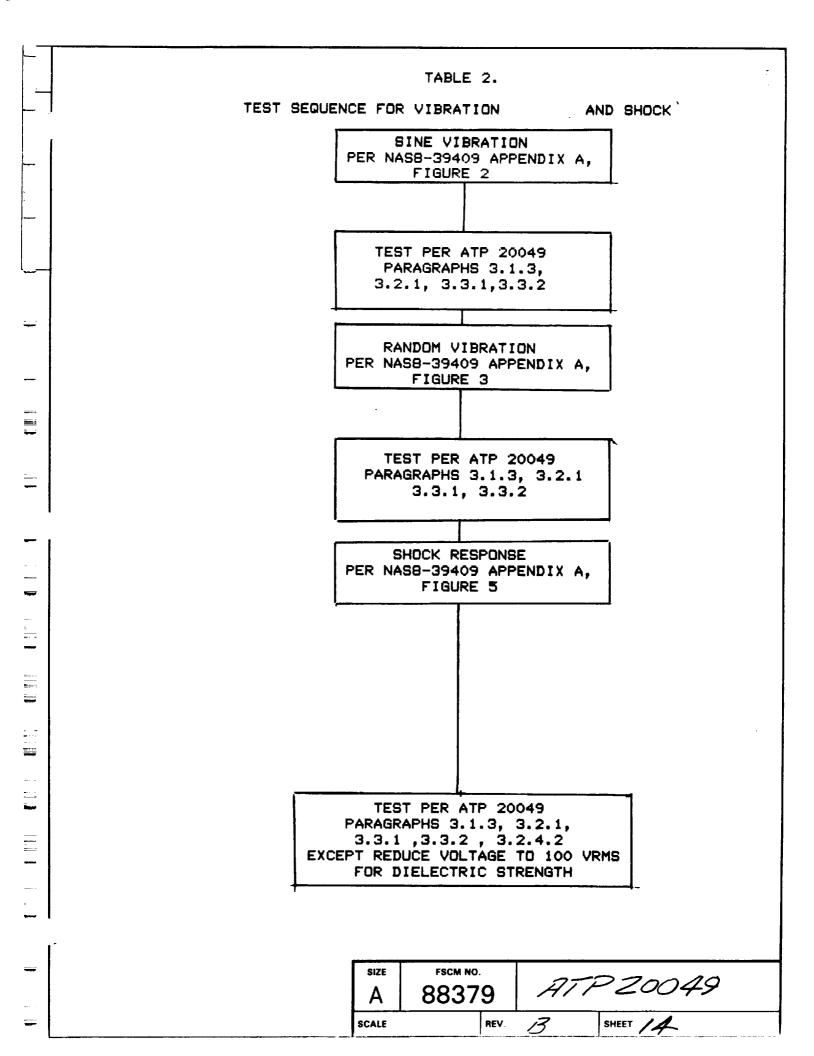
size A	FSCM NO. 88379	AT	1 200	49	
SCALE	REV.	В	SHEET	8	

AS DETERMINED BY DATA FROM CYCLE NO. 1 OR 1 HR. MIN. 12 HRS. 50°C MIN. TEMPERATURE CYCLE CYCLE NO. 2 CYCLE NO. 3 NO. 1 -AMBIENT 25°C -40°C 12 HRS. MIN. AS DETERMINED BY DATA FROM CYCLE NO. 1 OR 1 HR. MIN. FUNCTIONAL FUNCTIONAL TEST FUNCTIONAL TEST FUNCTIONAL TEST FUNCTIONAL TEST FUNCTIONAL TEST FUNCTIONAL TEST FUNCTIONA TEST ____ TIME ----FIGURE COMPONENT QUALIFICATION TEST 4 (THERMAL/VACUUM) -÷., SIZE FSCM NO. 77720049 88379 A

SCALE

REV.

8


SHEET 12

NOTO Step	1	2	з	4	ENCO Pos.		2	3	4	1
1	+	+	RTN	+	-	0	0		0	1
2	1	+	KIN	RTN		0	0	0	0	1
3	RTN		+			0	0			
4		RTN	<u>├</u>	+		0	0		0	ł
5	+		RTN	+	2	+	- "	1	0	1
 6	1	+		RTN			\pm		-	
7	RTN	<u> </u>		1 2.00		┢╼╸	$ \longrightarrow $	+		
			+	<u> </u>	<u> </u>	+				
8	<u> </u>	RTN		+	3	0	0	1		
9	0,0	PEAT	-		+	\rightarrow	\leftarrow	\rightarrow	-	
10	Ke	PEAL					\uparrow	+		
11							-			
12	ļ	RTN		+	4	0	1	<u> </u>	- °	
13	-			ļ		\rightarrow	\leftarrow	\rightarrow		
14	/	PEAT			<u> </u>		+	+	\downarrow	
15					\vdash	╉────				
16		RTN		+	5	0	1	•	1	
17		0.5.5		 	\vdash	<u> </u>			+	
18	RE	PEAT			ļ		$\neq \geq$	+		
19						Į		+		1
20		RTN		+	6	0	1	1	0	1
21						5				
22	RE	PEAT					\geq			
23						「	<u> </u>			
24		RTN		+	7	0	1	1	1	
25									=	
26	RE	PEAT					$\geq \leq$	L		
27		_								
28		RTN		+	8	1	0	0	0	
29										
30	RE	PEAT					>	K		
31										
32		RTN		+	9	1	0	0	1	
33						\geq				
34	RE	PEAT					\geq	\leq		
15						/				
16		RTN		+	10	1	0	1	•	
17						\geq				
19	RE	PEAT					\geq	\leq		
9						\leq	L			
0		RTN		+	11	1	0	1	1	
1										
2	RE	EAT					\geq	\leq		
з						\leq				
4		RTN		•	12	1	1	0	•	
5					[\leq				
6	RE	PEAT					\geq	\leq		
7						\square				
8		RTN		+	1	0	0	0	1	

Α MOTOR STEP SEQUENCE AND ENCODED DESTIN 10.10

T

ATP 20049

SECTION V

ENGINEERING RATIONALE TO SUPPORT ANALYSIS VS TESTING

. —

-: **)**

-

-

15.3 d. Verification Plan

The verification plan outlines the methods used to prove the motor/encoder meets the characteristics of Appendix A, paragraph 3 of the SOW for contract NAS8-39409.

PARAGRAPH NUMBER AND CHARACTERISTIC METHOD OF VERIFICATION

3.2.1.1 3.2.1.2-3.2.1.2.2 Operating Duty, Continuous Duty, and Intermittent Duty.....Analysis 3.2.1.2.3 Stall Operation.....Test 3.2.1.3 Stepper Motor Power.....Test 3.2.1.4 Encoder Power.....Test 3.2.2.1 Size and Configuration.....Inspection 3.2.2.2 Weight.....Inspection 3.2.2.3 Mounting.....Inspection 3.2.2.4 Electrical Interface.....Inspection 3.2.2.4.1 Insulation Resistance and Dielectric Strength......Test 3.2.2.5 Thermal Design.....Analysis

، سرید جو مربعہ	SCALE	REV.	SHEET 12
	size A	CAGE CODE 88379	1108370

3.2.2.6 Lubrication.....Verification of records 3.2.2.7.1 Step angle.....Test 3.2.2.7.2 Number of Phases.....Test 3.2.2.7.3 Winding Resistance.....Test 3.2.2.7.4 Winding Inductance.....Test 3.2.2.7.5 Encoder.....Test Bearings.....Verification of 3.2.2.7.8 records 3.2.2.9 Output Shaft.....Inspection 3.2.2.9.1 Radial Deflection.....Inspection 3.2.2.9.2 Alignment.....Test 3.2.2.10 Magnets.....Verification of records 3.2.3 Reliability.....Verification of records, Inspection 3.2.4.1 and 3.2.4.2 Storage and Operating Life..... Analysis and Test

SIZE	CAGE CODE 88379		110P370
SCALE	REV		SHEET 13 COMPANY AND

_

3.2.4.2.1 Storage and handling environments (Non-operating).....Test 3.2.4.2.2 Prelaunch environment.....Test 3.2.4.2.3 Launch and ascent environment......Analysis(Survival Load) Test (Sine, random vibration, acoustic noise, shock) 3.2.4.2.4 Orbital Operation..... (Radiation) Test (Pressure, Temp) 3.2.5

J.2.5 Transportability..... verification

	-	size	cage code 88379	110P370	
		SCALE	REV.	SHEET 14	
x-12-85			↑	Υ	

EAST-WEST TECHNOLOGY CORP. 119 Cabot Street West Babylon, NY 11704 (516) 420 0530 + Fax (516) 420 8067

LETTER OF CERTIFICATION

Prepared For:	AEROFLEX LABORATORIES, INCORPORATED
	35 South Service Road
	Plainview, New York 11803

This is to certify that items listed herein were subjected to Random Vibration, Sine Vibration, and Pyroshock testing in accordance with the Aerofiex Laboratories Acceptance Test Procedure 20049, Revision B, as required by the referenced Purchase Orders. The test items were subjected to all of the tests in each of the 3 orthogonal axes.

Test Results:		leterioration of the test ion of the referenced te	iterns was noted during esting.		
Test Specimens:	cimens: Motor/Encoder Assembly - 16187, Serial number 0003 (Subjected to Random Vibration only)				
	Assembly - 16187, Seria tests)	al number 0002			
	Motor/Encoder Assembly - 16187 Test Fixture (subjected to Survey only using Random Vibration profile)				
EWT Job No.: 8363/828	6	Certificate No.:	8363.CRT		
Purchase Order No.: 10901 and 99593		Certificate File No.;	8363.CRT Disk 143		
Test Completion Date:	26 June 199 5	Certificate Issue Date	e: 19 July 1995		

CERTIFIED BY R. Borrelli, Quality Assurance Manager EAST-WEST TECHNOLOGY

-

SECTION VI

- · ·

_

-

_

•

QUALIFICATION FAILURE & CORRECTIVE ACTION

AEROFLEX

		DErecoDES	
Martices	B MOTELEV CI BLA	1 SLOFEMU WEING 1 MARKESCARE 1 MARKESCARE 1 MARKESCARE 1 MARKESCARE 2 MARKESCARE 2 MARKESCARE	2~
60 00 S	COLUMENT Column Column Column Column Column Column 0003 A7-20049 B 4.3 POINT N-PROCESS OTHER N-NUMOR	2 DAMAGE PART 4 DA DIA OT 2 DAMAGE PART 4 DATAGOAN 2 MISSNG PART 4 DATAGOAN 2 MISSNG PART 4 DATAGOAN 3 MATERIAL 4 DAMAGES	51. EXPREDUESE WG 52. DOCUMENTATION 53. PACKAGNG 54. DRAWINGSPEC 61. ELEC PARA OUT 62. COMPFAU.
11(13) 0.1 (14)-1 11(11) 11(11) NO HELD ADD	REASONS FOR WITHHOLDING	HESP FHEQ DEFECT DEFECT	71 GEN APPEAR DISPOSITION USE RE RET MIB
1 1 1028		14 mu yl L	VIORK CZ
	- random vibration portion of the ATP, the vibration fixture cover was removed to expose the shaft end to the Motor / Encoder in preparation to remove the Mater / First / First / Encoder in preparation to remove the Mater / First / Fir		
	functional test of the unit. At this point, it was observed that the retaining ring which holds the		
	dummy load to the shaft, had become loose and permitted the dummy load to travel on the shaft		
	- united vibration. The fixture cover prevented the dummy load from coming completely off the shaft.		
	- whisker like magnetic particles to become attached to the magnetic field in the shaft and the two		
	bearing retainer units. The above anomaly was coused by the mis-application of the AIP fixture		
	hardware.		
			A set of the Anne
DPFR DPFR LCPT	OIV SET TOT ANY RUNK RUNK INSTRUCTIONS DISPOSITION RATIONALE	Mrs. Be com eres con	- Milling
		RRENCE ON	(SHOSHONS)
	CORRETIVE ACTION REQUEST & REPORT	2	
		der, 16187, will be	
	accomplished in accordance with Assembly Flow Chart 960–295. As indicated on the flow chart, all the rework will be accomplished in a Class 100 environment.	dicated on the flow chart,	al
AEROFLEX LABORATORIES, INC.			
FORM CALARY (19/24)	E.		

TRAVELER

AEROFLEX LABORATORIES INCORPORATED SOUTH SERVICE ROAD, PLAINVIEW, L.I., NEW YORK

NG. M13640

CORRECTIVE ACTION REQUEST AND REPORT

TO EMO DIVISION AEROFIEX LABORATORIES ATTN. A FERRI - PROGRAM MANAGER DISCREPANCY OR CONDITION:	FROM	0/68
<u> </u>	DC/68.	
CAUSE OF DISCREPANCY OR CONDITION: The root cause of	PLY the vibration fixture failure was t which secures the dummy load to the	
end play. corrective action: (NOTE EFFECTIVE DATES AND REFERENCE DOCUMENTS) a) Shim clearances between retaining ring b) Install retaining ring per manufacturer stops on installation tool.	and dummy load to eliminate end play	
DO NOT WRITE BELOW THIS LINE EVALUATION OF CO CORRECTIVE ACTION FOLLOW SATISFACTORY YES NO YES	DRRECTIVE ACTION	EW C.A.R.R. NO.
REMARKS	DATE	ARX-072

MAY 15 '95 15:27

Attachment No.00168

_

After subjecting the Motor / Encoder Assembly port number 16187, serial number 0003 to the random vibration portion of the ATP, the vibration fixture cover was removed to expose the shaft end of the Motor / Encoder in preparation to remove the Motor / Encoder from the fixture to run a functional test of the unit. At this point, it was observed that the retaining ring which holds the dummy load to the shaft, had become loose and permitted the dummy load to travel on the shaft during vibration. The fixture cover prevented the dummy load from coming completely off the shaft. This up and down movement of the dummy load caused o scraping of the shaft which left small whisker like magnetic particles to become attached to the magnetic field in the shaft and the two bearing retainer units. The above anomaly was caused by the mis-application of the ATP fixture hardware.

P.1

All rework for the disassembly and the reassembly of the Motor / Encoder, 16187, will be accomplished in accordance with Assembly Flow Chart 960-295. As indicated on the flow chart, all the rework will be accomplished in a Class 100 environment.

Dis-assemble the Motor/Encoder to permit the replacement of the Rotor Assembly 400-29-6 and the Duplex Bearings (403-1-7) SSRI-8516LLDB10RA7P68LY328UB. Re-assemble the Motor/Encoder in accordance with assembly flow chart 960-295 storting with housing and bearing assembly 200-89.

SECTION VII

_

-

- .

-

. . تت

QUALIFICATION CERTIFICATE

AEROFLEX-

The qualification certificate is not applicable, as the units were tested in a Joint Qualification/ Acceptance mode.

- - -

l, i