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Abstract

A low-energy neutron transport algorithm for use in space radi-
ation protection is developed. The algorithm is based upon a multi-
group analysis of the straight-ahead Boltzmann equalion by using a
mean value theorem for integral_. This analysis is accomplished by
solvzng a realistic but simplified neutron transport test problem. The
lest problem is analyzed by using numerical and analytical proce-
dure.s to obtain an accurate solution within specified error bounds.
Results from the test problem are then used for determining mean
values associated with rescallering terms that are associated with a
multigroup solution of the straight-ahead Boltzmann equation. The

algovithm is then coupled to the Langley HZETRN code through the
evaporation source term. Evaluation of the neutron fluence gener-
ated by the solar particle event of February 23, 1956, for a waler and

an alu rain urn-ware r sh ie Id-ta rget configu _ lion i.s th eu compa red wit h
LAHET and MCNPX Monte Carlo code calculations for the same

shield-target configuration. Th.e algorithm developed showed a great
improvement in results over the unmodified HZETRN solution. In

addition, a two-dwectional solution of the evaporation sourc_ sho wed
even further improvement of the fluence near the front of the water
target where diffusion from the front surface is important.

Introduction

The purpose of this paper is to present an improved algorithm for the analysis ofthe transport "

of low-energy neutrons arising in space radiation protection studies. The design and operational

processes in space radiation shMding and protection require higtfly efficient, computational

procedures to adequately characterize time-dependent environments, time-dependent geometric
factors, and to address shield evaluation issues in a nmltidisciplinary integrated engineering

design environment. One example is the recent study of the biological response in e.xposures

to .space solar particle events (SPE's) in which the changing quality of the radiation fields at
specific tissue sites is followed over 50 hours of satellite data. to evaluate time-dependent fac|ors

in biological respon._ of the hematopoietic system (ref. 1). Similarly, the study of cellular
repair dependent effects on the neopla.stic cell transformation of a C3HIOT½ population in low

Earth orbit, where trapped radiations and galactic cosmic raysvary continuously in intel_sity and

spectral content about the orbital path (ref. 2), requires computationally efficient codes to match
time-dependent boundary conditions around the orbital path. But. even in a steady environment

which is homogeneous and isotropic, the radiation fields within a spacecraft have large spatial

gradients and highly anisotropic factors so that. the mapping of the radiation fields wittfin the
astronaut's tissues depends on the astronaut, timeline of location and orientation within the

spacecraft, hltefior where large differences in exposure patterns that depend on the activity of

the astronaut have been found (ref. 3). Obvious cases exist where rapid evaluation of exposure
fields of specific tissues are required to describe the effects of variations in the time-dependent

exterior environment or changing geometric arrangement. A recent study of the time-dependent

response factors for 50 hours of exposure to the SPE of August ,I, 1972, required 18 CPU hours

on a VAX 4000/500 computer by using the nucleon-light ion section of the deterministic high

charge and energy transport code HZETRN. The related calclflation with a standard Monte
Carlo code such as HETC or LAHET, which only handles neutrons, protons, pions, and alphas,

would have required approximately 2 years of computer time to complete the study. The design
environment alto requires rapid evaluation of the radiation fields to adequately determine effects

of multiparameter design changes on system performance (reg. 4 and 5). These effects are the



drivingfactorsin thedevelopmentandu_ of determiltisticcodesandinparticulartheHZETRN
codesystemthat handlesall naturallyoccurringatomic ionsandneutrons.

Thebasicphilosophyfor the developmen!of tile deterministictIZET_N codebeganwith the
study by Msmiller et al. (ref. 6) with an early version of IIETC, wherein they dexnonstrated
that the straight-ahead appro_mation for broad beam exposures was adequate for evaluation of

exposure quantities. Wilson and Khandelwal (ref. 7) examined the effects of beam divergence
on the estimation of exposure in arbitrary convex geometries and demonstrated thai the errors

in the straight.ahead a.pproxfimation are proportional to the square of the ratio of the beam

divergence to the radius of curvature, which is small in typical space applications. From a
shielding perspective, the straight-ahead approximation overestimates the transmitted flux, and

the error is found to be small in space radiation exposure quantities. Our first implementation
of a numerical procedure was performed by Wilson and Lamkin (ref. 8) as a numerical iterative

procedure of the charged components perturbation series expansion of the Boltzmann transport

equation and showed good agreement with Monte Carlo calculations for modest penetratio_s to

where neutrons play an important role. The neutron component was added by Lamkin (ref. 9);

this closed the gap betw_n the deterministic code and the Monte Carlo code. The resulting

code was fast compared with the Monte Carlo codes but still lacked efficiency in generating and

handling large data arrays, wtfich would be solved in the next generation of codes.

The transport of high-energy ions is well adapted to tile straight-ahead approximation. In

fact., a more common assmnption that secondary ion fragments are produced with tile same

velocity as the primary initial ion (ref. 10) is inferior to the straight-ahead approximation

contrary to intuition (ref. 11). The Boltzmann transport, equation for the particle fields _j(x, E)
_s given in the straight-ahead and continuous slowing down approximations as

[_ C_T2b'j(E)-I-o'j(E)] q_)j(a:,E) = J50"jk(E'L_) 4)k(x'Er) dE_ (1)

where x is the depth of penetration, E is the particle kinetic energy, ,S'j(E) is the particle

stopping power, cj(E) is the macroscopic interaction cro_ section, and o'j_.(E,E') is the
macroscopic cross_ section for particle k of energy E _ produced as a result of the interaction

with a particle j of energy E. At Langley Research Center for all the code development, it.

has been customary to invert the differential operator and implement it exactly as a marching
procedure 0yr. 12), and the remaining issue has been in approximating the integral t_rm on the

right.hand side of equation (1). The implementation for the heavy fragments was facilitated by
the assumption that, the fragment velocity ks the _me as the primary ion which is inadequate

for the description of the coupled nucleonic and light ion components. A compatible nucleonic
transport procedure was developed by Wilson et al. (ref. 13) and showed good agreement with

expomlre quantities evaluated by Monte Carlo transport procedures (ref. 14). The traILsport of

the nucleonic component, was developed by assuming that the nfidpohlt energy within the step

was the appropriate energy to evaluate the integral term. Thus, the residual range of the proton
will reduce by h/2 before the interaction and the secondary proton residual range will reduce

by h/2 before arriving at the next marching step. Neut.roi_ show no loss in residual range as
their stopping power is zero. Tiffs choice was shown to minimize the second-order corrections to

the marching procedure (ref. 15). Although reasonable agreement on exposure quantities from
Monte Carlo calculations was obtained, the resultant neutron flux at the lowest energies was

substantially below the Monte Carlo result in the range of 0.01 to several MeV and required

improvement (ref. 16). Analysis concluded that the problem was in the rescattering terms in
wtfich the number of elastic scattered neutrons was underestimated numerically, which must be

addressed as suggesiJed by Slfilm et al. (ref. 16).
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Theissueofevaluationoftheintegraltern,oftheBoltzmannequationfor tileelasticscattering
ksthe next issueto be resolvedin thedevelopmentof the tIZETRN deterministiccode.Once
the elasticscatteringeventsareadequatelyrepresentedandtheassociatedimprovementsin the
neutronflux aremade,onestill needsto addresstheissueof tile adequacyofthenucleardatabase
for nucleonictransport,in the HZETRNcodesystem(ref. 13).

Formulation of Transport Equations

Define the differential operator B as

o sj(F)+ _j(E)] 0(.,E)cgE

o_(x,E) o
0. oE ['%(E) 4(.,z)] + _;(E) O(.,E) (2)

and consider the following one-dilneltsional Bollzlnann equation from reference 17

k

where %j is the differential flux spectrum for the type j particles, Sj(E) is the stopping power
of the type j particles, and crj(E) is the total macroscopic cross section. The term ajt,(E,E'),
a macroscopic differential energy cross section for redistribution of particle type and energy, is
written as

,_j k(U,E') = y]_ Pd _v(E') & ,._(E,E')

_3

where fjk,.3(E,E _) is the spectral redistribution, o'fl is a micro_opic cross section, and p3 is the
number density of fl type atoms per unit mass. The spectral terms are expressed as

el r dsj .j = + +

where fief.,9 represents the elastic redistribution in energy, f]'k,d represenl.s evaporation terms,

and fat,,, 3 represents direct knockout temas. The elastic tern1 is generally linfited to a. small
energy range near that of the primary particle. The evaporation process donfinates over the low

energies (/?7 < 25 MeV) and the direct cascading effect, dominates over lhe high energy range

(E > 25MeV) as illustrated in figure 1.

Equation (3) is then written for j = n as

t_a[ l el e du{o,,]: _ _ pe_ (u)(I,,e+ +t3 _ ,._., f,,.k,3 f,,£d) 0k(x, E') dE_
JE

(4)

wtfich is expanded to the form

r-x),/ r el e dB[O,,] : E Pd a_(E )(fm,,a + f.r,,d + f,,,,.,,3) O,,(x,E') dE'
JE

3

'/E _'
(rff(E )(f,&3 + f.,k,,d q- f.k,J) Or,(x,E') dE'

1_.¢,, 13

(s)

3



Definethe integraloperatorsI as

i(_) £__[_] =

i,I:)[,,]:

t,,3_a(U) _ dUf,,k.,J_(. ,E')

_Q p.a_v(E') I,;_.,aO(_,r') dE'

p..o(L') ,,L,_-,,,34,(x,E') _E'
a

where k = n denotes coupling to neutron collisions and k = p denotes the neutron source from

proton collisions. When considering only neutrons and protons, equation (,5) can be written in

the linear operator form as

_") /;')[0,,]+ ;_"_[_.1+ I,_')[o.] (6)B[4,.]= I_')[4,,,]÷ i!:'.)[0,,]+/_l [_"]÷ .I

Note that l_')[&p] does not contribute to the neutron field; therefore, equation (6), with &,,.

replaced by _, is written as

Assume asolution to equa.tion (7) of the form _ = _b¢+0d, where Ot is the solution for evaporation
sources and contributes over the low-energy range and 0d is the solution for t.he direct, knockout

sources and contributes mainly over the high-energy range as suggested by figure 1. Substitute

this assumed solution into equation (7) and find

-(")r__ 1B[0] = /314,_]+ B[qJd] = l.l topeI + I_i')[0d] + I[n)[_be] + I_n)[Od ]

+4'% 1+ I0.1+ +4"'I .l (*)
(.) , (.) ,

The terms I_ [0el and Ia [0_] are near zero and are _gnored because evaporat.ion neutrons at.
low energies do not produce additional evaporation neutrons, and the direct, cascade effects hax,e

very small cross sections over the low-energy range of .be. and hence does not contribute- any
pl_oduction over the low- or high-energy range, Further asstmle t.hat 4_8 is calculated by the

IIZETILN program so that Od is a solution of tile equation

B[0d] = 'el tq)dJ--k

This assumption simplifies equation (8) to the form

B[¢,_] = I[[')[_,:1 + I/")[0,/1 + I_")[4,v] (10)

Define the elastic seatt.ering temas

O's, d PJ O.,d(_t) el !, = , /]_.,a(_,_ )

with units of cm2/g-MeV, and note that for neutrons the stopping power @(E) [s zero and

equation (10) reduces to the integro-differential transport, equation with source term

[0 ] /:_+ _(_) _.:(.,e) = _ _.,_(_,s') _(_,,_') aE' + _(_,.) (1_)

4



Equation(11) representsthe steady-statelow-energyneutronfluenceCe(x,E) at depth x and
energy E. The various terms in equation (11) are energy E with unit.s of M eV, depth ill medium

is x with units of g/era 2, Ce(x,E) (in particles/cm2-MeV) ks the evaporation neutron fluence,

and g(E, x) = I('_)r_ I+I(P)e tV'dJ e' [¢p] (in particles/g-MeV) is a volume source term to be eva.htal.ed by

the HZETR.N algorithm. Equation (11) is further reduced by considering the neutron energies
before and after a collision. The neutron energy E,, after an elastic collision with a nucleus of

mass number .4T3, initiMly at. rest, is, from reference 18,

+ 1)2 (12)

where E is the neutron energy' before the collision, AT.,. is t.he atomic weighl of the ith type of

atom being bombarded, and 0 is the angle ofscatl.er. Define the ratio

2

(13)

a.s a constant less than 1 and note t.hat when 0 = 0, E, = E, and when 0 = 7r, E, = Eag.

Therefore, change the limits of integration in equation (11) to (E, E/_:d) which represent the
kinetically allowed energies for the scatt.ered neutron to result, in an energy E. Equation (1 1)
then is written as

(14)

The quantity a in cm2/g is a macroscopic cross section given by

,a

where Pd is the number of atoms per gram and crd is a microscopic cross section in cm2/atom.
Reference 19 provides approximate Maxwellian averages of cross-section values in barns which

are used herein for studies of solution tectmiques. These values are listed in table 1 Mong wilh

other parameters of interest for selected elements. Other units for equation (11) are obtained

from the previous units by ttsing the scale factor representing the density of the material in units
of g/era 3 .

5



Table1. ParameterValuesfor SelectedElements

Elastic
crosssection,

Element AT3 ba.rns a

Lithium, Li 7 1.050

Carbon, C 12 4.739

Aluminuna, AI 27 1.348

Calcium, Ca 40 2.99

Iron, Fe 56 11.40

Lead, Pb 207 11.19,1

Density,

g/cm 3 a tJ

0.534 0.563

0.352 0.716

2.7 0.862

1.54 0.905

7.85 0.931

11.342 0.981

_'Maxwellian averages (ref. 19).

Mean Value Theorem

Throughout. the remaining discu_im_s, the following mean value theorem is used for integrals.

Mean Value Theorem: For O(x,E) and f(E) continuous over an interval a _< E _< b such

that (1) _(x,E) does not change sign over the interval (a, b), (2) O(x,E) is integrable over the
inter_aal (a, b), and (3) f(E) is bounded over the interval (a, b), there exists at least one point c
such that

b _,bI"

/. I(E),(,,,E)dr.: l o(.,z) _<b)
Ja g(/

In particle tralzsport, this mean value approach is not. commonly used. In reactor neutron
calculations, an assumed spectral dependence for (_(,,E) is used to approximate the integral over

energy groups. The present use of the mean value theorem is free of these assumptions; thus,
more flexibility is allowed in the HZETRN code, and the result, is a fast. and efficient algorithm

for low neutron analysis.

Multigroup Method

Consider the case where there is only one value of/3 wtfich represents neutron penetration

into a single element material and let Ce be denoted by ¢. Equation (14) is integrated from Ei

to Ei+ 1 with respect to the energy E to obtain

f [Ei+ tE;+_06(.,E) aE + _.(E) 0(.,F) aE : r_+ _,.
JE i Oa: ,lEt

(10)

wtie r e

I_= [E_+, "f_/_'__,_._(E,E' O(.,E') at:' dE (17)
J Ei

an d

f Ei+ I
_ : _,z_ g(E,_) aE (18)

As a test, case for developing solution techniques, we u_ the approximate source and scattering
terms taken from subroutine FBERT of the HZETRN code (ref. 5), g = g(E,x) = KEe -E/T

6



with K and T constants, and the elastic scattering term from subroutine ELSPEC of the

HZETILN code (ref. 5),

:
1 - C(l-n)rEl

with r con_.ant, so thal equation (18) is easily integrated to obtain

(19)

The quantity

*,'(x) _ --[Ei+l 0('_', E) dE (20)
-- dE i

is associated with the ith energy group, so t,hal 1 _i(x) represents an average fluence for
El+ 1 -- Ei

each energy group. Then equation (16) can be written in t.enns of q_i(x) as follows. In the first

term of equation (16), interchange the order of integration and differentiation to obtain

Ei+ I &)(x,E) d E _ dq_i(x)
i O* dx

('21)

With the previously stated mean value theorem for. integrals, the second term in equation (16)

can be expressed as

u + dE = a"¢,.(x) (22)
i

where a" = or[El + O(Ei+l - Ei)], for some value of 0 between 0 and 1.

For the term I i in equation (17), the order of integration is interchanged. Various partitioning

schemes are illustrated in figure 2. The integration of equation (17) depends upon the energy
partition _lected. For example, figure 2(b) illustrates an energy partition where Ei+ 1 < Ei/a,

and hi this ease, equation (17)can be written as

Ii [Ei+ 1 fEi+ [ wLi+I/t_ f&+l= HdEdE _+ HdEdE r+ HdEdE r (23)
JEt=El =Ki dEt=Ei+l dE=El JEt=Ella JE=aE t

where H = as(E,E') q_(x,E'). Figure 2(c) depicts the case where E;+t = E,:/a exactly for all i.

In this special cam, equation (17) reduces to

Ii H dE dE'+ H dEdE I (24)
aU=Ei Ei ,/U=Ei+l dE=_U

The selection of an energy partition can lead to two or more distinct groups associated with
each interchange in the order of integration (for example, see fig. 3). The integrand H can be

integrated with respect to E and the results expressed in terms of the quantities

and

j[abF(b, a) = r c rE dE = e rb - e

a(E') =
1 - e-(1-") rE'

T(1



and equation (24) call be written in the form

Ii -- i Ei+l
JE'=Zi G(E') F(#,E D ¢(x,#) d/T'

I Ei+ 1/o:+ G(/7') dE'
J Et =El+ 1

(25)

To illustrate tile basic idea behixld the multigmup method, tLse the same mean value theorem

for integrals and write equation (25) in tlle form

where/7i < E.[ < Ei/a and Ei+ 1 < /7_+1 < /7i+1/c'" The special partitioning of the energy as
illustrated in figure 2(c) enables us to obtain from equation (16) a system of ordinary differential
equations as follows:

d _1 a22 a23

Ta. @_-2 -O-

k4,)_;_l J

--O--

aN-1,N-I aN-1,N

aN N

v-2 _N-2
L4';V-lJ G-,

(26)

where ai,i = G(/7[) F(ld_,Ei) --# and ai, i+l = (7(/7"+i) F(/Ti+l,ol=Ti*+l). Fm'ther assume that
for large values of N, q'i = 0 for all i > N. This assuniption gives rise to the following system of
ordinary differential equations:

d-2= ,47+
dx

subject, to the initial conditions g(0) = 0". IIere _" is the cohmm vector of q_i values,
col ((I) 0, _1,"', (I)N-1), the matrix A is an N by N upper triangular matrix, and b-is the column

vector col (_0,_1,... ,_:v-l). In a similar manner, the integrals in equation (23) can be evaluated

for other kin4s of energy partitioning and a system of equations having the form of equation
(26) obtained. However, for the_ other energy partitions, the structure of the N by N _uare

matrLx ,4 will change. It remains upper triangular but with more off-diagonal elements wliieh

depend upon the type of energy partition. (See, for example fig. 3.) For our purposes the system

of equations (eq. (26)) is used to discum mine of the problems associated with the multigroup
method.

Of prime concern is how an energy' grid is to be constructed and how this energy grid controls

the size of the matrix in equation (26). Cottsider the construction of the energy partition

{Eo,eo Eo Eolc_ ' c_2 '" " a,N J

where /70 = 0.1 MeV, for the selected elements of lithium, aluminum, and lead. Table 2
illustrat_ integer values of N necemary to achieve energies greater than 30 MeV. These ,"a.lues

of N repre_nt the size of the matrLx associated with the number of energy groups. The value
/70 = 0.1 MeV, in temas of htmaan exposure, represents a lower bomad where lower energies are

not. important. The value of 30 MeV represents an upper limit for the evaporation particles.

8



Table2.EnergyPartition Size N

Element a N 0.1/o ,N

Lithium

AI u minu m

Lead

0.563

0.862

0.981

10

39

298

31.53

32.75

30.38

Observe that for energy partitions where Ei+l < Ei/o the values of N are larger, and if

Ei+l > Ei/a' the values of N are smaller. Tile cases where Ei+l > Ei/a give rise to problems
associated with the integration over the areas A 1 and A 2 of figure 2(d) when tile order of

integration is interchanged. In this figure, the area A1 is associated with the integral defining
Oi, and the area A 2 is a remaining area amociated with an integral that is some fraction of the

integral defining q_i+l which is outside the range of integration. Therefore, some approximation
must be made to define this fractional part. Tlfis type of partitioning produces errors, due to any

approximations, but it. has the advantage of greatly reducing the size of the N by N matrkx A

at the cost of h_troducing errors into the system of equations. A more detailed analysis of the

energy partition can be found in reference 20.

The ca_ of neutron penetration into a composite material gives rise to the case where fl > 1

in equation (11). In this special case, equation (17)becomes

h= £ El'b• aEi E o',j(E,E ) ¢(x,E') dE' dE'
.I.

Select. a = max (al, o_2.... , a j) and construct the energy partition where El+ 1 = E'i/o. Then
obtain a system of differential equations having the upper triangular form:

[.][11a1213O1 a22 a23 a 2N • 1

d : z : : "
+ (27)

• -1 aNN • -1 k( -1

Observe that for some arbitrary energy grouping we have, for the element hydrogen, a ce._

where the value of oj is zero• In this situation we nmst integrate over many energy groups as
illustrated in figure 3. Some type of approximations umst be made when the order of integration
ks hlterchanged, depending upon the selected energy partitioning. Also the problem of .selecting

the mean values associated with each of these integrations extsts.

Mean Value Determination

Consider the case of neutron fluence in a single shield material with the energy partitioning as

illustrated hi figure 2@). This case is where successive energy values are given by Ei+l = El�o*
for all values of the index i as it ranges fi'om 0 to N. Select a finite value for N large enough

that the assumption ON = 0 holds true. The system of equations in equation (26) is then
a closed system and we can solve for the last term O N and then march backwards to solve

ON-l, ON-2 .....



The nonzero elements ai,j for matrix A in equation (26) consists of the diagonal elements
and the first diagonal above the main diagonal. This gives the values

aii =G(E*) F(E* Ei) - _"

ai,i+l =G(Ei*+I) F(Ei+I,OE*+I )

for i = 1,..., N, where E* and El+ 1 are selected mean values associated with the lower and
upper triangles illustrated in figure 2(c). These mean values vary with energy and were selected

so that the multigroup ,solution agrees with the numerical solution of the test problem. The

values determined empirically were

_" he r e

and

whe re

E._ = E_ + O_(E_+_ - E_)

E*+I = Ei+ 1 -4-02(Ei+2 - Fi+I)

71 + roll(E- Ell)- 51

71 -4-ml2(E- Ell) - 51

")3 + ml3(E- E2"2) - 51

(E > Ell )

(E22 < E < E11)

(E < E22)

72 + m21(E-- Ell)

_'2 -4-m22(E- Ell)

(E > Ell)

(E22 < E' < Ell)

(E < E22)

3"rI = 0.93

72 = 0.90

73 = 0.30

74 = 0.27

r/ill = 0.0030485

mr2 = 0.2490258

ml3 = -0.3937186

El1 = 3.037829

rn21 = 0.004355

m22 = 0.249026

m23 = -0.255920

E22 = 0.5079704

and _1 is 0.0 for lead, 0.02 for aluminum, and 0.075 for lithium. These values of 0 for the mean

value theorems were determined by trial and error so that the muMgroup curves_ would have the

correct shape and agree with the numerical solution. These selections for the mean values are

not, unique.

Solution Method in Shield Materials

Consider the energy partition Ei+I = Ei/a and the resulting system of differential equations

(eq. (26)). The solution ofth_s system of equations is obtained by first, solving the last equation

of the system. This equation has the form

d_N_l
dx - aNNr_N-1 + _N-l(X) (¢x_l(o) = o)

and ha.s the solution

[ /0 ]_N-I(X) = e aNNa" _N-l(O) + _N-l(S) c -aNNs ds

which implies

x0+Ax¢N_l(X0 + 2._x) = e ctN/vAx (I)N-1 (x0) + ¢ aNN(x0+Ax) _N-1 (s) e -aNNs d8
,z x 0
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Now consider each of the reinaining equations above the last equation in equation (26). A typical

equation from this stack has the form

d(b i- 1
- aiie_i-1 + fi(x) ((I'i-1 (0) = O) (28)

dx

where fi(x) = _i(x)+ai, i+lOi(x) is known, since (I)i(x) is calculated before Oi-l(X). This typical
equation has the solution

• i_l(X)=eaiix [d2i_l(O)+_oXfi(_) e-aiisds]

which implies

_/_l(X0-[- _x) eaii-Mc @i-1 (xo) + eaii(xO+'hx) f x0+'-kx f() c--aiis ds= . _is
a x 0

Observe that for the system of equa.tions in equation (27), the solution technique is essenl.ially

the same with the exception that the right-hand side of equation (28) is replaced by a summation

of the previously calculated terms, so that fi(x) = 4i(x) + _ aid q'j-l(x).

j=i+l

Numerical Solution

The solulions obtained from the system of equat.io_rs (eq. (26) or (27)) depend upon the

. selection of metal values associated with each energy interval. The selection of l.hew mean

values is determined by examining the numerical solution in certain special cases. We obtain a

numerical solution of equation (1 1) in the special case given by

g = .q(E, .) = KEe -E/T

where K (particles/cma-MeV) and T (Meg) are constants. We construct the solution over the

spatial domain x >__0 and energy range 0.1 _< E _< 80 Me\7. This domain is discretized by

const.ructing a set of grid points x i = i Ax and Ej = j AN for some grid spacing defined by

Ax and AE va.hles being used. For i,j integers, define uij = O(xi,Ej), then the transport
differential-integrM equation (11) can be written in a discrete form as follows, with the starting

values u0, j = 0 and v0, j = 0 being used. For the first, step in Ax, approximate the flux by the
accumulation of the source over the first, intervM as

'Ul,j = AxKEj e-EJ/T (29)

followed by the numerical calculation of the rescattering term

[Za/', _(£')r e-"(E'-Za )
vi,j = JEj 1 -- e -(1-°)rE, u(xi,E t) dE'

(30)

for i = 1. After this first, and each successive step, integrals of the type vi, j given by equation (30)

are evaluated with Simpson's one-third rule. Evaluate equation (30) for all energies j = 0, 1,...,
and then ltse a two-step Mgorithm in a repetitive fashion to advance the solution. For _Tdues of a

near 1, the numerical solution of equation (11) requires that _E become small. The low-energy

spectrum then becomes difficult to cMculate without special procedures, as cited in reference 17.

In this case, a two-step modified Euler prediclor-corrector scheme is used (refs. 21 and 22), which

ks defined 1)3"
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_cond step:

Third step:

fl,j -- Vl,j q- Ej e-Ej -- CrUl,j

Ul,j -I- Ax fl,ju2,j = ½ (ul,j_ 1 + Ulj+l ) + Ax fl0"

/
(j = 0)

(j >o) J
(31a)

f2j = v2j + Ej e-KJ - cru2d "_ (31b)
u3j Ulj + 2Ax f2,j J

Tile second step is an adoption of the Fredrichs method from reference 21. The third step is a

central difference second-order step in Ax. Afl.er 100 applications of this two-step a.lgorithm, we

apply the following stat)ility correction as suggested in reference 22:

faj = va'Jl + Ej e-gJ -- eru3,j }
uad = _" (uad + u2,j) + Ax f3j"

(32)

Note equations (32) are to be tmderstood in an iterative sense and not strictly algebraic sense.

Recursive S oluti on

In the special case g(E,x)= g(E), a, solution t.o equation equation (11) is assumed of the
form

¢(x,E) = E On(E) f,,(x) =¢l(E) fl(x) + 02(E) f2(x)+ " "" (33)
TI: 1

Substitute this series into equation (ll) and obtain a solution by requiring that ¢ an(] f satksfy

CITE) -- g(L-_

/Ed,+I(E) = f.(E,E') ¢.(E') dE'
(34)

f_(x) + (_ fl(x) = 1

f_,(x)-l- cr f,(x)= fn-l(X)

for r_ = 1,2,3, .... where the differential equations are subject, to the initial condition that

f,,(0) = 0 for all ,,. _ere the terms for ¢,,(E) are defined recursively aim take a great deal of
computational time for large values of n. The differential equations have the solutions given by
the recursive relations

1 (1- e-qX) }

fl(x) =7 (35)

/0"f.(x) = f,,-1 (u) e-'(x-u) du

which are easily evaluated for as large a value of n as desired. We find numerically that If,(x)l

decrea_s with increasing _ for x < 1 and increases for x > 1 so that the series solution does

not converge in 1.hks case. For I*1_< 1, we calculated the solution given by equation (35) for

terms through n = 5 and n = 6 and compared them with the numerical solution. The mean
values associated with the multigroup method were then adjusted so that the muMgroup method

agreed with the numerical solution and recursive solution for this special test. problem. We then
used these same mean va.lues which where associated with numerical source temls as provided

by the HZETRN code.

12



Comparison of Multigroup and Other Solutions

Thenumericalsolutionsandrecursivesolutionsof tile testproblemwerethencomparedwith
the multigroupsolutionfor neutronpenetrationin lithium, aluminum,andleadmediums.Tile
resultsare illustrated in figures4, 5, and 6. Excellentagreementis obtainedin thesethree
cases.In thesefigures,thesolidline representsthe numericalsolution.The circlesrepresentlhe
recursivesolutionandthe trianglesrepresent,the multigroupsolution.The variouscurves were
calculated for depths x of 0.1, 0.5, 1.0, 5.0, 10:0, 50.0 and 100.0 g/cm 2.

" The multigroup method h_s huge advantage in its very short computational time needed to

calculate the solution without loss of accuracy. The nmltigroup method takes less than 1 rain

of computational tilne, whereas the Monte Carlo methods require many hours of computa-
tional time.

Application for A1-H20 Shield-Target Configuration

The previous development is now applied to an application of the multigroup method

associated with an aluminum-water shield-target configuration. In particular, consider the case

where the source term g(E,x) in equation (11) represents evaporation neutrons produced per unit
mass per MeV and is specified as a numerical array of values corresponding to various shield-

target, thicknesses and energies. The numerical array of va.lues is produced by the radiation
code HZETRN &veloped by Wilson et al. (ref. 23). The ntmlerical array of values are actually

given in the fore1 g(Ei,xj,yt. ) in milts of particles/g-MeV, where y/,. represents di_rete values

for various target thicknesses of water in g/cm 2, xj represents discrete values for various shield

ttficknesses of aluminum, also in units of g/cIn 2, and Ei represents ¢fiscrete energy values in

units of MeV. These discrete source term values are used in the following way. Consider flint

the solution of equation (11) by the multigroup method for an all-aluminum shield with no

target material; i.e., target, thickness Yr. = 0. The HZETRN program was run to sinmlate the

solar particle event of February 23, 1956, and the source term .g(Ei,xj,yt.) associated with an
aluminum-water shield was generated for these conditions. With this source term, equation (11)

was solved by the nmltigroup method.

For a single shield material, _ = 1, equation (11) becomes

[° ] :F"+ ¢(x,E) .E o-.,.,(E,r') ¢(.,E') dE' + .u(E, (36)

where an integration of equation (36)from E i to El+ 1 produces

Ei + I Ei+ 1

O.e j Ei

[Ki+l [ E/al= tr, j (E,E') ¢(x,E') dE' dE+ [ Ei+l
J Ei d E d E i

.q(E,.) dE (37)

D,_ define the quantities

:: [ <+' g(z,. )O(*'z) aF}
JE i

(38)
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and interchangethe order of integrationof the doubleintegral termsin equation(37). Then
apply the meanvaluetheoremto obtaintile restllt

(E,E') JE dE'
J E i Ei

fEi+2fEi+ 1+ a_I(E,E')dE %(x,E') dE' + bi
JEt+ t JE={_I Er

(39)

over the energy group E i < E t < Ei+ 1. For the energy spacing El+ 1 = Ei/o , the first, double

hategral in equation (39) represents integration over the lower triangle illustrated in figure 2(c).

The second double integral in equation (39) represents integration over the upper triangle

illustrated in figure 2(c). Define

=fie °bl(E'E')dEgl ( El ) :Ei

g2(E') =[ Ei+l (E,E')dE
jE:o I Er O'sl

(40)

and then employ another application of a mean value theorem for integrals to _n'ite equation (39)
in the form

d_id7 + _q)i = gl[Ei + 01(Ei+I - Ei)]_i + 92[Ei+1 + 02(Ei+2 - Ei+l)]q)i+l + bi (41)

This produces the coefficients associated with the energy group Ei to El+l, which are given by

aii = .ql (42)
ai,i+l = g2

In tiffs way, the diagonal and off-diagonal elements of the coefficient nmtrkx in equation (26) are

cal cu lat ed.

For a compound target material, comprised of material 1 and material 2, there are two "_'alues

of a. A value o I is selected for material 1 and a value cr2 is selected for material 2 of the

compound material. In this case, equation (36) takes on the form

[0 ] j:/cH e_(x,E ) dEr+ ,,( F) : ,% (E,E') ' '

j:+ c_2(E,E') O(x,E')dE'+ g(E,x) (43)

where _ and rr,._ are scattering terms associated with the respective materials. These terms
are calculated in the tIZETRN code. Two cases are considered. The first case requires that

the E/_2 line be above the E/nl line. (See fig. 2(d).) The second ease is where _2 = 0 (the

hydrogen case) and the limits of integration for the second integral goes to infinity. Each ca._

is considered _pa.rately.

For the first, case, assume that _1 > ct2 > 0 and select the exact energy spacing dictated

by the E/c_ 2 line. Then proceed as for the single shield material. Integrate equation (43)

14



from Ei to Ei+l and interchange the order of integration on the double integral terms. Define

bi rEi+l g(E,x) dE and obtain the equation
_-- JEi

d(I)_...j.i+ _'_i = I11 + I12 + I21 +/22 + bi (44)
dx

where now the 121 and I22 integrMs have, because of the exact spacings, the forms

Ei+ I j_t121 = ob2(E,E' ) dE ¢(x,E') dE'
Ei =gi

(45)

JEt+ I J E=_2 EI

Defining the t,erms

t
_i(E,E') dE (i = 1,2)

hl(i)(/_" ) = =Ei

f Ei+1 c%i(E, lff)dE (i 1,2)
1_2(.i) (E/) jE=a.2E t

and ttsing the mean vMue theorem for integrals gives from equations (45)

/21 = h,l(2)[Ei + 01(Ei+I - Fi)]@i

an (t

/22 = h2(2)[Ei+l + 02(Ei+2 -- Fi+I)]_i+I

where 01 and 02 define intermediaJe energy values associated with the mean value theorem.

The integrals [ H and I12 are associated with integration limits (E, E/al) and energy intervals

dictated by the selection of a2 for determining the exact, energy spacings. These integrals are

associated with the trapezoidal area. 1 (A1) and triangular area 2 (A2) illustrated in figure 2(d).

These areas are a fraction of the triangle areas associated with the line E I = E/_2. The._.

fractions are given by

k = ½(E,.+_.- -E")2- ½(Ei+_-](E,.---_I -7:i_---- .,,- E,./(u)(E_+I --1E_+l) ]
(46)fI_ = (Ei+ff,_l - &'+0(E,+l -- o'lE;+l)

(E'i+ 1 -- Ei)(E'i+ 2 - Ei+I)

and we write

Ill =flhl(1)@i }
I12 = f2h2(1)(I'i+l

The coefficient_ for the system of differential equations in equation (27) are then gwen

all =hl(2) + flhl(1) - _'/

/a12 =h2(2) + f2h2(.1)
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For the second case, of hydrogen, a2 equals 0; therefore one of the linfits of integration be-

comes infinite. Let a, 1 determine tile energy spacing in this ease. Again integrate equations (45)

over the energy interval (El,El+l), which is determined by t]le E I -- E/Ctl line. With the def-

initions given by equations (38), integrate equation (43) over the interval (El,El+l) and then

interchange the order of integration in the resulting double integrals to obtain

dOi
d--7+ "_'_ = s_ + I._ + _

where

I.;+,j[It = _r_ =Ei _.l(E,#) de ¢(.,U) dU+ J E;+_ J E=<,_E' _._(E,#) de ¢(_,#) dff

and

i.,+,l;' ki?+,+,i.,+,: _.._(E,#) dE ¢(x,E') de'+ _,._(E,#) de ¢(.,_)Ur.'
J Ei i j =1 Ei +j a Ei

and for all N* greater than some integer N > 0, it is known that ¢(x,E) will be zero. Define

E I

Da(E_) =iE[ °'sl(E'E') dE

_ i Ei+l oL,.l(E,E') dE
h4 (E#) --dale'

E #

#,s(U) :j; %(E,#) de
i

- / E;+/+l cr,2(E,E' ) de
ho(J) -- a El+ j

(E i < E' < Ei+l)

(Ei+l < E' < Ei+2)

(E,: < L" < E,+l)

(Ei+j < L_ < Ei +j+ 1)

and then write the coefficients associated with the system of differential equations as

aid= h3 + h5- "_

ai,i+ 1= h 4 + h6(1)

ai,i+2 = h6(2)

ai,i+3 = h6(3 )

ai,i+ n = ho(n)

hi this way a system of equations is generated that has the triangular form given by the

system of equations in equation (27).

Again use the source term g(Ei,xj,yk) obtained from the HZETRN simulation of the
solar particle event of February 23, 1956, associated with an aluminum-water shield-target

configuration. Note that now the multigroup system of equations (eq. (27)) associated with

equation (39) must be solved for the nmltiple atom target material of water. Comider the
cases of discrete shield thickness x2, x3 .... and apply the multigroup method to the solution of
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equation(11) appliedto all targetmaterialy > 0. For each value of xi considered, the initial

conditions are obtained from the previous solutions generated where y = 0. This represents the

application of the nmltigroup lnethod to two different regioi_s: region 1 of all shield material
and region 2 of all target material. Then continue to apply the multigroup method to region 2

for each discrete value of shield thickness, where the initial conditions on the start of tlle second

region represents exit conditions from the shield region 1. This provides for continuity of the

sohitions for the fluence between the two regions.

Results and Discussion

The present formalism was used to evaluate the neutron fluence for various Muminmn shield

and water target combinations. Figure 7 ilhtst.rates the low-energy neutron fluence due to the

scattering of evaporation neutrolts in an aluminum shield for various thicknesses with yl, = 0

(i.e., no target material). Figure 8 illustrates the total neutron fluence for various aluminum
shield thicknesses. This fluence consists of the tlZETRN-generated neutron fluence phls the

multigroup-generated low-energy neutron fluence. Figures 9, 10, and 11 are graphs of the neutron
fluence in depths of 1, 10, and 100 g/cm 2 of Muminum generated from the HZETRN code both

with and without the addition of the multigroup evaporation neutrons.

Typical results for no shield before the water target, are illuslrated in figures 12, 13, and 14

where a comparimn of the multigroup method wMl the previous IIZETRN results for thicknesses

of 1, 10, and 30 g/cm 2 can be made. Note that in the calculations of the multigroup method, the.

source terms g(E,x), the scattering term o'_(E,E_), and cro._ section or(E) of equation (11) are

all given as numerical output from the IIZETRN code for the solar particle event of February 23,
1956. AI_ note that these calculations were compared with the LAttET MonW Carlo results

from reference 24. Figures 12, 13, and 14 illustrate this comparison for neutron fluences versus
energy at. water depths of 1, 10, and 30 g/era 2, respectively. Figure 15 is a graph of neutron
fluence versus depth in a shMd-target configuration of 100 g/era 2 of Muminnm followed by

100 g/cm 2 of water. Observe the incream in the low-energy neutron fluence at the alunainum-

water boundary. This increase is caused by high-energy neutrons colliding with hydrogen a.toms,

which results in large energy lomes. In these types of collisions, the neutrons of modest energies

give up one half of their energy on the average; thus, the lower energy neutron fluence is increased.

In figures 12, 13, and 14, note the distinct improvement of the fluence by using the nmltigroup

evaporation neutrons over that of the previous HZETRN resull.s. These improved results are
still a little lower than the results predicted by the Monte Carlo simulation. These figures

show that the multigroup method is more accurate at. the higher target, depths compared with

results at the lower depths. This is due to the straight-ahead approximation assumptions
used in the one-dimeI_sional Boltzmann equation, where all secondaries produced by nuclear

collisiol_s are assumed to move in the same direction as the primary nucleon which caused the

collision. This assumption is true for secondaries which are high-energy particles. This straight-

ahead approximation is not true for low-energy neutrons produced by evaporation because these

neutrons are generally isotropically distributed. The_ neutrons make up the source tenns in the

multigroup method. The straight-ahead assumption causes errors at the smaller target depths
because it=fails to accounl for all the low-energy neutrons trartsported back from larger depths of

the material. In an attempt to improve the performance of the multigroup method for simulating
low-energy neutrons, the assumption was made thai. only one half the source terms moved in
the forward direction while the other half moved in the backward direction. The solution of the

multigroup system of equations (eq. (27)) was then modified. Using one half the source terms

g(Ei,xj,yk), system of equations (eq. (27)) was marched first through the shield material and
then through the target material. By using the end boundary condition generated, the equations
were then marched backwards through the target, and then the shield material. The fluences

from the forward and backward marching were then added to obtain a total fluence. Tlfis process
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is referred to in the figures as the two-dimensional multigroup method. Figures 16, 17, and 18

illustrate the results of the two-directional multigmup method applied to the case of no shield

and a target of water only for nominal dept.trs for an exposure to the solar particle event of

February 23, 1956. Figure 19 ilhrstrates the fluence in a depth of 10 g/cm 2 of water when t,he

two-dimensional method was applied to a 100 g/cm 2 a.luminun_ shield followed by a 100 g/cm 2

target of water when exposed to the solar particle event of February 23, 1956. Observe that the

two-directional nmltigroup method greatly improves the low-energy fluence predictions at the

smaller depths.

Research is contilming to clo_, the remaining gap between transport, code predictions and

Monte Carlo results. Possible errors from various sources are being investigated. The nuclear

cross sections u_d are believed to be one source of error because only elastic cross sections

were used in the muMgroup simulation. The elastic cross ,sections are much larger than the

nonelastic cross sections at low energies. Nonelastic cascading does occur and il is believed

that the muMgroup method would be improved by incorporating both types of cross sections.

Other sources of errors reside in the IIZETRN program itself. The nuclear cross sections used

by ttZETRN are interpolated from a large database that was developed experimentally many

years ago; this database needs to be updated. The ttZETRN code is a one-dimensional tra.i;sport

code using the straight-ahead approximation. The improvement of the nmltigmup method in

going from the straight-ahead approximation to the two-directional nmMgroup appm_mat.ion

suggests that similar type changes be incorporated into the HZETRN code in order to reflect

the nonisotropic character oft.he events.

Con cluding Remarks

These preliminary studies have shown that the multigroup method developed for the study of

low-energy neutron transport has made significant improvements ill and is compatil_le with the

current ttZETRN code developed at Langley Research Center. It. has proven to be a fast. and

efficient, algorithm for the inclusion of low-energy neutrons into the HZETRN code. The addition

of nonelastic processes in the low-energy neutron transport is expected to further improve the

result,.
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