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Abstract

The space-time conservation clement and solution

clcment(CE/SE) method is used to study tile sound-
shock interaction problem. Tile order of accuracy of

numerical schemes is investigatcd. The linear model

problem governed by tile 1-D scalar convection equa-

tion, sound-shock interaction problcln governed by

tile 1-D Euler equations, and tile 1-D shock-tube

problem which involves moving shock waves and
contact surfaces are solved to investigate the order

of accuracy of numerical schemes. It is concluded

that the accuracy of file CE/SE numerical scheme

with designed 2n(t-order accuracy becomes 1st or-
(let" when a moving shock wave exists. However. the

absolute error in the CE/SE solution downstream
of the shock wave is on the same order as that ob-

tained using a fourth-order accurate essentially non-
oscillatory(ENO) scheme. No special tedmiques are

used for either high-frequency low-amplitude waves
or shock waves.

1. Introduction

In tile computational acroacoustic problem, the

propagation of (tist urbances of small amplitude

needs to be captured. Thus a stringent requirement

is placed on a numerical algorithm. And further.
when a shock wave and acoustic waves Pxis_ at tile

same time. it becomes more challenging for a nu-
merical simulation. In the current fieht of CAA,

tile high-order accuracy finite-difference method is
popularly used fi)r tlie propagation of high-frequency

low-amplitude waves because a traditional 2nd-order
accurate scheme is not accurate enough for this kind

of prol_lem. When a shock wave exists, the lmmer-

ical scheme also has to be able to accurately cap-
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lure tile shock wave without oscillations. Tradi-

tional high-order accurate shock-capturing methods
are classified into linear and nonlinear methods. The

ENO schemes belong to the latter class. The order
of accuracy of an ENO scheme is investigazed for a

sound-shock interaction problem in [1]. A very in-

teresting conclusion drawn in [1] is that tile accuracy
of zhe solution downstream of the shock wave drops
to first order if the shock wave is not located at a

mesh point. The designed accuracy downstream of

tile shock wave can be achieved by using subcell res-

olution in a numerical algorithm such that the shock

wave is located exactly on a mesh point. However,
such a strategy is not practical for general multi-

dimensional problems, since tile shock wave eotfld be

curved and moving in the entire domain. Therefore.

the advantage of using high-order accurate methods
in the study of unsteady flows with shocks is ques-
tionable.

-file space-time CE/SE method is an innovative

numerical method for solving conservation laws. It
is different in both concept and methodology from
the well-established traditional methods such as the
finite difference, finite volume, finite elem(,m and

spectral methods. I_ is designed froln a physicist's
perspective to overcome several key limitations of
the traditional numerical methods.

Simplicity, generality and accuracy are pursued in

the development of tile CE/SE method. Its salient
properties are summarized briefly as follows. First,

the concepts of conservation element and solution
element are introduced to enforce both local and

global flux conservations in space and time instead
of in space only. Second, all the dependent variables

and their spatial derivatives are considered as indi-
vidual unknowns to be solved for simultaneously at

each grid point. Third. no approximation techniques

other than Taylor's series expansion, no monotonic-

ity constraints, and no characteristic-based tech-

niques are used in tile design of tile scheme. A de-
tailed description of this method and the accompa-

nying analysis are set forth in [2-4].
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A varietyof numericaltestshave beenper-
formedpreviouslyto illustratetherobusmcssofthis
method. For the CE/SEEulcrsoh,cr,highlyac-
curatenumericalsolutionshavebeenobtainedfor
variousflowproblemsinvolvingdiscontinuities,such
asshockwaves,contactsurfacesandeventheir in-
teractions[5.6].Moreover,applicmionsof tile same
Eulersoh,erto computationalaeroacoustics(CAA)
problemsrevealthat the accuracyof tile results
is comparableto that of a 4th-ordcr compact dif-

ference scheme even though tile current solver is

only 2nd-order accurate. Further, the non-reflecting
boundary conditions can be implememed in a simple

way without involving characteristic variables. Tile

solver can be applied to subsonic, transonic, and su-

personic flows in _he same form without using the
characteristic-based techniques. Results show that

the present solver can handle both continuous and

discontinuous flows very well [7-14].

In this paper, the test problems used in [1] are
solved by using the CE/SE method. Problems gov-
erned by the linear convection equation and the Eu-

ler equations are studied. The order of accuracy of

tile CE/SE numerical schemes is investigated. Nu-
merical solutions are compared with those obtained

by using the ENO scheme.

2. Numerical Test Problems

2.1. A linear model problem.

Consider the scalar equation

Ou &_

0---/+ e,_-x =0 (1)

where the wave speed a is

2. x_< x_, (2)
el= 1, X>Xs

where Xs = 0.5 given in [1]. The initial conditions
are described as

1/2. x<x,, (3)u(x.O)= 1, x>x_

The domain is 0 _< x < 1. The inflow boundary
condition is

u(0. t) = (1 - esin,.ot)/2 (4)

where _ = 0.001 and ¢z = 87r. The period of the

acoustic wave Tx is define as 2vile. The outflow
boundary condition is imposed by using tile ana-

lytical solution given in [1]. The 1D CE/SE a-e-c_

scheme constructed for Eq. (1) is used here with

e = 0.5, a = 1. and Couram number 0.8. Tim de-

tails of the sdleme are given in [2] and won't be
repeated here.

First, an even number cells with 64, 128. 256. 512,

1024 uniform mesh intervals is used. The computed

perturbation u'(x, t) = u(x. t) - u(x. 0) at t = 10T,,,

and its log10 error for different cell numbers are
shown in Fig. 1. It can be seen tha_ the scheme

is 2nd-order accurate in tit(, entire domain except at

the shock location. In Fig. 2, tile same results are

shown for an odd number cells with 65.129,257.513
uniform mesh intervals. It is still 2nd-order accurate

in tit(' entire domain since the space-time CE/SE
method uses a staggered mesh. There is a grid point
located at x_ = 0.5 no matter whether an even or

an odd number cells is used. An ENO-4-3 scheme,
which is fourth-order accurate in space and ttfird-

order accurate in time, is used in [1]. For this linear
problem, the accuracy of tile ENO-4-3 solutions re-
mains 4th order for an even number cells because

there is a mesh point at tile shock location, while

the accuracy drops to first-order downstream of the
shock wave for an odd number cells because the
shock wave is within a cell.

Second, x_ = 0.5 is replaced 1)3"z, = 0.5 + ds with

ds = 0.00035, which results in no mesh poims co-

inciding with the shock location even on the finest

mesh used. Tile solution is shown in Fig. 3. The ac-
curacy downstream of tile shock wave drops to first
or zeroth order. It was found that the dominant

error is from the phase error due to ds which can
not be resolved. From this test result, it can be

concluded that tile designed 2nd-ordcr accuracy can
not be achieved if a shock is within a cell for the

CE/SE scheme applied to linear problems. In order

to obtain more relevant conclusion about the perfor-

mance of tile CE/SE method, the physical problem

governed bv the Euler equations is considered next.

2.2. Shock-Sound Interaction

Tile shock-sound interaction problem described in

[1] is governed by the 1-D Euler equations, whose

conservative form is expressed as

Ou,_, Of,_,
0--/-+ _ = 0, m = 1.2,3 (5)

in which

_,_= p, u2 = pr. ua = p/(" - 1) + pv'-'/2 (6)

and

f, = u2 (7")

f2 = (^/- 1)Ua + (3 - ")(u.,.)=/(2u,) (8)

£ = ")1/2//3/l/1 -- (1/2)(7- l)(u=)a/(ul) 2 (9)

2
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wherep,v,p, and 2 are tile mass density, velocity,

static pressure, and constant specific heat ratio, re-

spectively.

The spatial domain is 0 _< z _< 1. The main flow
is from left to right. A shock wave is initially lo-
cated at x = 0.5. The initial conditions of main

flow variables at the left side(upstream) and right

side(downstream) of the shock wave are described
as follows:

(p.r.p)L=(1.0.2.0.1.O/1.4) x<0.5 (10)

(p. r.p)n = (2.6666.0.75.4.5/1.4) x > 0.5 (11)

The acoustic disturbance is introduced at x = 0.

The flow variables at the inlet arc defined as

p(0, t) = pL(1 - e sinwt) (12)

p(O, t) = pL[p(O, t)/pL] 1/_ (13)

2
r(0. t) = vL - --(c(0, t) - c'L) (14)

'7-1

where _z = 36=, _ = 0.001, and c = _ being the

local sound speed, thus cz = _/'7_/p£ is the sound

speed upstream of the shock wave. At the outlet(x =

1). the non-reflecting boundary condition is imposed
to let flow propagate out the computational domain.

In this problcln, the shock wave moves around the
initial location due to the interaction with the acous-

tic wave. Titus. the shock wave is not located at

a mesh point. Therefore, the first-order accuracy
was achieved downstream of the shock wave using

the ENO-4-3 scheme, which is shown in Fig. 4.

However, in this problem, the shock wave °does not

move outside the cell in which it is initially located.
Thus, inclusion of subccll resolution in the ENO-

4-3 scheme can be done within this cell to exactly
resolve the shock location. The 4th order accuracy
downstream of the shock wave was achieved, which is

shown in Fig. 5. Subcell resolution can be achieved
more casity for the linear model problem described

in 2.1, since the shock wave does not move and re-
mains at x = 0.5. However. if shock waves are mov-

ing across the cells as the solution evolves, the use of
subccll resolution in a scheme would be impractical

due to its cost and complexity.

This problem is soh'e(t here again using the 1D

CE/SE Eulcr solver. The same initial conditions
and the boundary condition at the inlet arc used,

At the outlet(x = 1). the non-reflecting boundary
condition which is not based on the characteristic

theory is imposed as

= )j-_/2" ( ._x)j = 0 (15)

The boundary condition at the outlet is not men-

tioned for ENO scheme in [1]. Two parameters ¢

and (t for controlling numerical dissipations in the

CE/SE Euler solver are set as 0.5 and 1, and the
Courant number is 0.8 in the calculations. The com-

puted acoustic wave solutions p'(x, t) = p(x, t) -

p(x. 0) and p'(x, t) = p(x, t) - p(x, 0) at t = 30T_ are

shown in Fig. 6 along with the exact solutions. The
loglo errors of both p'(x, t) and p'(x. t) are shown in

Fig. 7. It can be concluded that the accuracy of the

CE/SE solution is first order in the entire domain

except at the shock location. The absolute error of
the CE/SE solution downstream of the shock wave
is on the same order as tha_ of the ENO-4-3 solution

shown in Fig. 4 using the same 512 uniform mesh
intervals.

2.3. 1-D Shock-Tube Problem

Finally. the 1-D shock-tube problem named Sod's

problem [2] is solved here in an accuracy study us-

ing the same solver mentioned in 2.2. In _his prob-
lem. the shock wave and contact surface propagat(,

through the entire spatial domain during the time

interval of computation. The numerically computed
solutions of pressure and density at t = 0.24 with

CFL = 0.44 are shown in Fig. 8 along with the ex-

act solution. The log_o errors of pressure and density

are shown in Fig. 9. respectively. It can be seen that
the solution is first-order accurate in the entire do-

lnain except at the shock wave and contac_ surface

locations. No solution obtained by an ENO scheme

is available in [1].

3. Conclusions

Three test problems have been solved to inves-

tigate the accuracy of the CE/SE method for un-
steady compressible flows with shock waves. Gener-

all 5- speaking, first-order accuracy can be obtained

for the CE/SE method without using any special
techniques for either high-frequency low-amplitude
waves or shock waves. The absolute error in the

CE/SE solution downstream of the shock wave is
on the same order as that obtained by using fourth-
order accurate ENO scheme for sound-shock inter-

action problem. It can be concluded that CE/SE

method can produce accurate solutions for aeroa-

coustic problems involving shock waves in a simple

way.
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