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1 Summary

The objective of this work has been to produce methodologies for high speed jet noise

reduction based on natural mechanisms and enhanced feedback control to affect fre-

quencies and structures in a prescribed manner. In this effort the two-point hot wire

measurements obtained in the Langley jet facility by Ukeiley were used in conjuction

with linear stochastic estimation (LSE) [1] to implement the LSE component of the

complementary technique (v. Bonnet, Cole, Delville, Glauser and Ukeiley 1994, Ex-

periments in Fluids). This method combines the Proper Orthogonal Decomposition

(POD) [4] and LSE to provide an experimental low dimensional time depen-

dent description of the flow field. From such a description it should be possible to

identify short time high strain rate events in the jet which contribute to the noise (v.

J.M. Seiner 1997, AIAA Fluid Dynamics Conference in Snowmass Village, CO). The

main task completed for this effort is summarized below:

LSE experiments were performed at the downstream locations where the two point

hot wire measurements have been obtained by Ukeiley. These experiments involved

sampling simultaneously hot wire signals from a relatively course spatial grid in r

and 0. From this simultaneous data, coupled with the two-point measurements of

Ukeiley via the LSE components of the complementary technique, an experimental

low dimensional description of the jet at 4, 5, 6, 7 and 8 diameters downstream was

obtained for Math numbers of 0.3 and 0.6. We first present an overview of the theory

involved. We finish up with a statement of the work performed and finally provide

charts from a 1999 APS talk which summarizes the results.

2 Introduction

The complementary technique consists of projecting the POD eigenfunctions onto

an estimated velocity field obtained from application of LSE as described by Cole et



al [2] to obtain estimatedrandomcoefficients.Theseestimatedrandom coefficientsare
then usedin conjunction with the first coupleof POD eigenfunctionsto reconstruct
the estimated random field, i.e., a low dimensional description. Bonnet et al 1994
presentedaqualitative comparisonbetween,thefirst POD moderepresentationof the
estimated random velocity field, and that obtained utilizing the original measured
field, and found that the two are remarkably similar, in both the axisymmetric jet
and two dimensionalmixing layer. In order to quantitatively assessthe technique, the
root mean square(RMS) velocitieswere computed from the estimated and original
velocity fields and comparisonsmade. In both flows the RMS velocities captured
using the first POD mode of the estimated field are very close to those obtained
from the first POD modeof the unestimatedoriginal field. Theseresults showedthat
the complementary technique,which combinesLSE and POD, allows one to obtain

time dependent information from the POD while greatly reducing the amount of

instantaneous data required. Hence, it is not necessary to measure the instantaneous

velocity field at all points in space simultaneously to obtain the phase of the structures,

but only at a few select spatial positions. Hence this type of an approach can be used

to obtain experimental low dimensional descriptions of the jet. The work of Bonnet et

al 1994 applied the estimation in the radial direction only. In this study the method

was extended to include the azimuthal direction. A brief review of the POD and LSE

are included below followed by an overview of the complementary technique.

2.1 POD Theory

The POD was proposed by Lumley in 1967 as a mathematically unbiased technique

for examining coherent structures in turbulent flows. He proposed that the coherent

structure is the structure which has the largest mean square projection on the velocity

field. In the following equations £ denotes r and d:_ denotes rdr for the jet. If ¢(£, t)

is taken to be the candidate structure and then projected onto the velocity vector

field, g(:_, t), in the following manner,

¢I= (1)

a resulting structure which maximizes energy can be chosen. Equation 1 is assumed

to be normalized by the modulus of ¢(:_, t) since it is the degree of projection not the

amplitude that is of interest in this study. Through the use of variational calculus

this projection process can also be written as,

fD P_J(X'_'t't')¢_'_)(_"t')d2_dt'= A(")¢I")(:_' t) (2)

where the kernel of this integral eigenvalue problem is the cross-correlation tensor,

P_j(:_, _', t, t_). Since Rij is a symmetric function the solutions can be discussed in

terms of the Hilbert-Schmidt theory(v. Lumley[4]). This implies that there is not one,

but an infinite number of orthogonal solutions(eigenmodes) which can be normalized

such that,

cpi tx, t)¢_m)(_.,t)de = 6_m. (3)



The original random vector field canbe reconstructedin terms of ¢In) as follows:
OO

ui(_,t) = _ an(t)¢l_)(:_,t) (4)
rt=l

where the random coefficients a_(t) can be calculated from:

a,_(t) = / tti(i, t)¢_n) (i, t)d_. (5)

The contribution from each eigenmode to the turbulent stresses can be determined

as follows:

UiUj = E )_(n)rh!n)('_ t)_(n)*( _'t)' (6)
"" "t'i \_, _]w 3

n

In the jet study the spectral tensor may be defined by the following equation,

Sij(r, r', f, m,-2) = / R_j(r, r', v, O, -2)e-i(2rf) ei(m°) dTdO ' (7)

where f denotes frequency, m denotes azimuthal mode number, r is the separation in

time, 0 the separation in the azimuthal direction and g represent streamwise locations

where the correlation tensors were measured (in the Ukeiley data, 4,5,6,7,8 diameters

downstream for Mach numbers of 0.3, 0.6 and 0.85). Equation 2 now becomes

f Sig(r,r',f, rn,-2)¢J'O(r',f, rn, g)r'dr'= A('_)(f, rn)¢}n)(r,f, rn,-2), (8)

where the _p's are frequency and azimuthal mode number dependent eigenfunetions

and 1(n)(f, m) now represents the eigenspectra.

The numerical approximation, detailed by Glauser et al[3], simply consists of

replacing the integral in equation 8 by an appropriate quadrature rule (in this study a

trapezoidal rule). S,j (r, r', f, rn,-2) is then obtained from experimental measurements

of Ukeiley for the various downstream locations and utilized in equation 8 to obtain

the eigenvalues and eigenfunctions. These eigenfunctions and eigenvalues will then

be used in the complementary technique as described below.

2.2 Stochastic Estimation Theory

In the following equations x denotes r in the jet. Only estimates in r are shown

here. It is straight forward to extend the analysis to include additional directions as

shown by Cole et al (see Cole et al APS 1997 and www.clarkson.edu/_lauser) in their

application to the time dependent PIV (for this study it will be extended to include

the 0 direction). In general, the conditional average is defined as

g(u)lE=expected value of g(u) (9)

provided that the event E, the detector of coherent structure, occurs. The properties

of these coherent structures are not known beforehand, therefore it is difficult to select

reliable unambiguous and unbiased detector events. Adrian [1] suggested choosing

g(u)= (10)



and

E = e <_ u(x) < e + de. (11)

This confines the velocity vector to a small interval between e and e + de where e is

any arbitrary vector. This can be expressed as

-- (12)

which can be approximated, using a Taylor series expansion about u(x) = 0, as

(Li(X') = Aij(x')uj(x) + Bijk(X')Uj(X)Uk(X) + Cijkl(X')Uj(X)Uk(X)Ul(X) +''" (13)

"values for the estimation coefficients, A,j (x'), B,3k(x'), Cijkt(x') are selected such that

the mean square error is minimized, ie.,

ei = [?_i(x') - ui(x')lu(x)] 2 (14)

for i = 1, 2, 3. This minimization requires that

Oei = Oei _ Oei -- 0 (15)
OAij(x') OBiyk(X') OCijkl(x')

which produces the following equation

u3(x)uk(x)A,k(x') + uj(x)uk(x)u,(x)Bik,(x') (16)

=

2.2.1 Linear Stochastic Estimation

Tung and Adrian [5] have shown that linear stochastic estimation produces reasonable

qualitative estimates and little is to be gained by using second order or higher. By

applying linear stochastic estimation only the first term on the right hand side of

equation 13 is retained. As a result, equation 13 becomes

= (17)

This also reduces equation 16 to:

uj(x)uk(x)Aik(x') = uj(x)ui(x') (18)

where uj(x)uk(x) is the Reynolds stress tensor and uj(x)ui(x') is the two-point cor-
relation tensor.

Linear stochastic estimation is a useful tool for the identification of coherent struc-

tures in the axisymmetric jet mixing layer as has been demonstrated by Cole et al [2].

After applying this technique to u,v data, the matrices that are a direct result of the

expansion of equation 13 for a two wire estimate are:

4



First System:

U2efl _trefl Vrefl tlrefl _ref2 Urefl Uref2

Yrefl lZrefl Y2eft Ureft Llref2 Vrefl Vref2

2
Ltref2_refl Uref2Vrefl ?2ref2 Uref2Uref2

2
Yref2 Urefl Yref2 ?Jrefl Yref2 Uref2 ?)re f2

flrefl
"_llw

Are]l
-_12w

Are]2
:Xllw

Are]2
-_x12 w

?£refl Uw

lZrefl Vw

lZref2Uw

Ltre f 2 Uw

Yrefl Ltw

Vrefl Uw

Yref2 Uw

Vref2 Yu,

(19)

Second System:

U2refl ZLrefl Urefl lZrefl Uref2 Urefl Uref2

2
Urefl Urefl Vrefl Yrefl _ref2 Vrefl Uref2

2
Uref2 Urefl lLref2 Vrefl Uref 2 Uref2 Yref2

Vref2Urefl Vref2Vrefl Uref2?£ref2 U2re f2

jrefl
_x21 w

Are fl
22w

A_e/2
21w

Are f2
22w

(20)

where re fl and re f2 refer to reference wires 1 and 2 respectively, and w refers to

the wire number. It should be noted, that for these systems of equations, only the

two-point space-time correlation data is utilized. These systems are not a function

of the condition being investigated. The estimated velocity components for the two

wire reference case can then be found from the expansion of equation 17 ie.,

a"_:, "_:'.... "_I_ - A "_/2vc - (21)l_w = 'Xllw 1ZCrefl + "_-12w _WreJ1 + "_tllw _t'ref2 -_- 12w tel2

and

Arefl _re.ft _,_ Aref2 .... A ref2 ....
Uw _--- zX21w 2LCrefl -'v A22w "L Crefl + ,'121 w t,t,,rey2 "t- :x22 w t.,wrei2. (22)

It is in these estimated velocity equations that the condition selected plays a role

(i.e., through uc_f_, uc,_l,_, vc_i_ and vc_/2 ). A single wire estimate is obtained by

merely setting all terms containing re f2 = 0. Without much trouble this system can

easily be expanded to include addition wires distributed in the 0 direction as done in

this study.

2.3 Complementary Technique

Mathematically the stochastic estimates of the random coefficients are calculated for

a given location downstream from:

aeSt(f,m f ^est,= u, tr, f, m)¢} ")*(r, f, m)rdr (23)

where f:_t(x f, m) is either a single or multipoint linear stochastic estimate of the
.i.(71)* / , ,

random field and ._q W, :, m) is obtained from the original POD eigenvalue problem.

The estimated streamwise or radial velocity can be reproduced in Fourier space by

^esl_/ ?2 \d,u i (x,f,m)= _ a_U(: m)¢}n)(r,f,m) (24)
n----1

and then inverse transformed to obtain " _t:_ /9, t).c*i U,

In this study we have been concentrating on the first POD mode representation
(1)est:

ui /r, O, t), the low dimensional discription.



3 Work Performed

3.1 Experimental Low Dimensional Description via LSE

We ran experiments at the downstream locations where the two point hot wire mea-

surements were obtained by Ukeiley and applied the LSE. These experiments involved

sampling simultaneously hot wire signals from a relatively course spatial grid in r

and 0. From this simultaneous data, coupled with the two-point measurements of

Ukeiley via the LSE, an experimental low dimensional description of the jet at 4, 5,

6, 7 and 8 diameters downstream was obtained for Mach numbers of 0.3 and 0.6.

An APS talk is attached which summarizes the work. Also reference the web site

www.clarkson.edu/ etrl/taylorja/CompressibleJet/index.html for more details and

animations of the LSE time series.
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Introduction- Motivation

SUB-SONIC JET

NOISE _DUCTION

*** Requires ***

An Improved Understanding of the

Turbulent Jet Mixing Layer



Introduction- Some Previous Studies

Arndt, R., George, W.K.

What's the relationship between Coherent

Structures and Jet Noise? (1972)

Arndt, R., and Long, D. - University of Minnesota

George, W.K. and Glauser, M.N.- SUNY at Buffalo/Clarkson University

x/D: 3

Re # - 100,000

Ma # - 0.0

13 single component hot-wire or 4 x-wire probes

George, W.K. and Citriniti, J.H. - SUNY at Buffalo

x/D: 3

Re # - 80,000

Ma # - 0.0

138 single component hot-wire probes

Ukeiley, L.S. and Seiner, J.M. - NASA Langley/University of Mississippi

x/D: 4, 5, 6, 7, 8, 9, 10, 11, 12

Re # - 300,000; 600,000; 1,000,000

Ma # - 0.3, 0.6, 0.85

12 X-Wire probes

Current Study - Clarkson University/University of Mississippi

x/D: 4, 4.5, 5, 6, 7, 8

Re # - 300,000; 600,000

Ma # - 0.3, 0.6

15 X-Wire probes



Linear Stochastic Estimation - Brief Review

Adrian, R.J. (1977)

Proposed the use of "Stochastic Estimation" as a

means of using conditional information on a course

grid of points to estimate, or infer, the behavior of the

flow on a finer grid.

Cole, D.R., Glauser, M.N., and Guezennec,Y.G. (1992)

Proposed using the instantaneous fluctuating velocity

on a course grid as the input variable, or condition, in

the estimation as a means of reducing experimental

complexity.

Bonnet, J.E, Cole, D.R., Deville, J., Glauser, M.N.,

and Ukeiley, L.S. (1994)

Proposed the "Complementary Technique" as a
combination of the LSE and POD.

1. Obtain two-point correlation tensor

2. Solve the POD for the eigenfunctions/eigenvalues
3. Use the LSE to obtain an estimate of the

instantaneous flow field

4. Project the eigenfunctions onto the flow field to

generate an experimental low-dimensional

description of the flow



Experimental Description - Facility

Small Anechoic Jet Facility (SAJF)

Control Valve

Z

I Muffler _[Z

FanExhaust

Features:

Continuous Operation at 2 lbm/sec (0.9 kg/sec)

Electric Heat up to 1000 °F (538 °C)

Exit Turbulence Intensities --0.15%

Coflow = 2% of main flow



Experimental Description- Two-Rake Experiment

r/D = 2.00 10.0 °

r

Experimental Parameters:
2 Rakes of Probes

12 Auspex X-Wire probes

19 Azimuthal Locations (0°:10°:180°)

6 Radial Locations (r/D: 0.175, 0.339, 0.504, 0.668, 0.833, 0.999)

3 Mach Numbers (0.3, 0.6, and 0.85)

Data Acquisition Parameters:

65 kHz Sampling Frequency

31.5 kHz Low-Pass Filter Cut-Off Frequency
16 bit A/D Conversion

256 blocks with 2048 samples/block



Reynold's Stress Tensor: Mach 0.3 & Mach 0.6, x/D = 4
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Two Point Correlations" Mach = 0.3, x/D = 4
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Two Point Correlations: Mach = 0.6, x/D = 4
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Experimental Description - LSE Experiment

"\

\

\

12

' 13i / /

/
1 / /

14

11 3

\

\

Experimental Parameters:

Single Probe Holder on a Course Grid

15 Auspex X-Wires Probes

12 Azimuthal Locations (0°:30°:360 °)

2 Radial Locations (r/D: 0.175, 0.504)

Data Acquisition Parameters:

65 kHz Sampling Frequency

25 kHz Low-Pass Filter Cut-Off Frequency
16 bit A/D Conversion

100 blocks with 2048 samples/block



Results - Time Histories: Mach = 0.3, x/D = 4
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Results - Time Histories: Mach = 0.6, x/D = 4
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Results - Autospectra: Mach = 0.3, x/D = 4

100

10"1

10.2

if)

if)

10-3

10_

10°

10 -1

,¢

10 .3

10 .4

r/D: 0.175
I I

3

-5

i i _ i i i I I _ ..... I

10 2 10 3 104

Frequency Hz

I

r/D: 0.504

I -- Sll IS22

Frequency Hz

10 2 10 3 10 4



Results - Autospectra: Mach = 0.6, x/D = 4
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Results - Movies

Citriniti, J.H.: Instantaneous Velocity

Ma #-0.0

Re #--80,000

x/D: 3

Current Study: Estimated Mass-Flux
Ma #--0.3

Re #--300,000

x/D: 4

Current Study: Estimated Mass-Flux
Ma # -0.6

Re #--600,000

x/D'4

Future Work-

Experimental Low-Dimensional Description

using the Complementary Technique

Citriniti, J.H.:

1 POD Mode; 0,3,4,5

Ma # -0.6

Re #-600,000

,6 Az. Modes

x/D: 4



Summary.

Jet mixing layer has a very similar multi-point, statistical

behavior at:

Ma # _- 0.0

Ma # - 0.3

Ma #--0.6

Re # - 100,000

Re #-300,000

Re #-600,000

(i.e., Azimuthal integral length scales are similar)

Time dependent behavior also exhibits similar behavior.

(i.e., coherent in the potential region, with a higher

azimuthal mode structure towards the outside of the

shear layer)

Future Work

How does the low-dimensional description of the axi-symmetric

shear layer change with Reynold's number? Mach number?


