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Abstract

USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows

over complex geometries. The current version (version 5.0) of USM3D, however, does not

have advanced turbulence models to accurately simulate complicated flow. We have imple-

mented two modified versions of the original Jones and Launder k-c two-equation turbulence

model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been con-

ducted for three flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing.

The results are compared with those from direct numerical simulation, empirical formulae,

theoretical results and the existing Spalart-Allmaras one-equation model.

1 Introduction

The unstructured-grid methodology offers some significant advantages compared to the tra-

ditional structured-grid method for simulating flows over complex aerodynamic shapes. This

is mainly due to the promise that the construction of an unstructured grid around complex

configurations, such as aircraft, requires much less time than a comparable block-structured

grid. Furthermore, local refinement of unstructured grids can be carried out more easily to

improve the accuracy of the simulation. While more work remains to be done to fully realize

their potential, much progress has been made in modeling complicated flows on unstructured

grids (see Mavriplis [1] for a review).

One important phenomenon for complex viscous flows is turbulence, which is difficult to

simulate due to the existence of a wide range of scales. There are many types of methods

to deal with turbulence, ranging from the simplest algebraic model to the most accurate

direct numerical simulation. For most of the turbulence models, the Reynolds stress is as-

sumed to be related to the mean strain rate by the eddy viscosity. Such turbulence models

may be divided into zero-equation models (i.e., algebraic model), one-equation models, and

two-equation models depending on the number of transport equations needed to be solved

to obtain the eddy viscosity. The Reynolds stress model does not use the concept of eddy



viscosity. Instead, a transport equation for eachcomponentof the Reynoldsstresstensor
is solved directly. While the above modelsonly solve the mean flow, large eddy simula-
tions (LES) solvethe largescalefluctuations in addition to the meanflow and only model
the effectsof small subgrid scales. Finally, the most accuratemethod is direct numerical
simulation (DNS), where both the meanflow and all the fluctuations are solveddirectly.

While the Reynoldsstressmodel, LES, and DNS methodsare muchmoreaccuratethan
the eddy viscosity basedmethod, they requireprohibitive amounts of CPU time and mere-
ory. Therefore,the most widely usedturbulence models in industry arestill basedon the
conceptof eddy viscosity. This is especiallytrue for unstructured grid CFD codes.For ex-
ample,the predominantly utilized turbulence model in the finite-elementunstructured grid
codeof Mavriplis [2] is the algebraicmodel of Baldwin and Lomax [3], although extension
hasbeenmadeto include a two-equationmodel (Mavriplis and Martinelli [4]). The unstruc-
tured nodal-basedfinite volume codeFUN3D (seeAnderson [5],Andersonand Bonhaus [6])
containstwo one-equationmodels,one by Baldwin and Barth [7]and the other by Spalart
and Allmaras [8].

USM3D is a tetrahedral cell-centeredunstructured flow solver for simulating inviscid
and viscousflows overcomplexgeometries. It wasdevelopedby Frink [9 12] at the NASA
Langley ResearchCenter and is now beingwidely usedin both industry and government.
This code is part of the TetrUSS flow analysis and designpackagewhich won the 1996
NASA Softwareof the Year award. USM3D utilizes a cell-centered,upwind-biased,finite-
volume, implicit/explicit algorithm capableof solving the compressibleEuler and Navier-
Stokesequationson unstructured tetrahedral meshes.Like most other unstructured CFD
codes,however,USM3D doesnot haveadvancedturbulence models to accuratelysimulate
complexflows. The current production versionof the codehasonly the one-equationturbu-
lencemodel developedby Spalart and Allmaras [8], although a two equation k-c model was

implemented in a previous research version of USM3D (Kwon and Hah [13]). It is well known

that one-equation turbulence models are not adequate for complex flows such as separated or

shear flows. The objective of this study is to present initial performance comparisons of the

recently added advanced turbulence models with experimental data, theoretical results, DNS

data, and the results from the existing Spalart-Allmaras one-equation model implemented

by Frink [12].

2 Governing Equations

The integral form of the Navier-Stokes equations, which govern the compressible Newtonian

fluid flow in the absence of external forces, can be written as

o f/F(Q) (1)

where the first term (time changing rate) is integrated over the volume of a bounded do-

main while the second term (convection) and the third term (diffusion) are integrated over

the boundary of this domain. The quantities Q, F(Q) and G(Q) are vectors with five

components and Eq. (1) contains five equations corresponding to the conservation of mass,



momentum, and energy. The unknowns in Eq. (1) are

Q z

P
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pv

pw
e

(2)

where p, u, v, w and e are density, three velocity components, and total energy, respectively.
The inviscid flux is

p 0

pu _x

F(Q). _t = pv + p _ty (3)

pw _z

e+p 0

where p is the pressure and _tx, _ty, and _tz are Cartesian components of the exterior surface

unit normal _t on the boundary of the domain. The viscous flux is

M_
G(Q). _t (ftxC_ + _tyC2 + _tzC3) (4)

_]{e L

where

0

T,n

- (5)
Ti3

UjTij -- q,i

M_ is the free-stream Mach number an( ReL is the Reynolds number based on a typical

length scale (e.g., the total length of the flat plate).

The total stress Tij and heat flux q,i can be divided into a laminar part (denoted by

superscript L) and a turbulence part (denoted by superscript T)

(6)
L T

qi = qi + qi (7)

with the laminar part being

qL : #L OT
(7 - 1)Pr L cOx_ (9)

where #L is the molecular viscosity, T is the temperature, Pr L is the molecular Prandtl

number, and 7 - 1.4 is the ratio of specific heats. Following Eqs. (8) and (9), the Reynolds

stress and turbulent heat flux can be approximated as

T

_ _ opk6{j (10)



#T OTT
qi = (v- 1)Pr_ Ox_ (11)

Note that the last term in Eq. (10) is presented only when a transport equation for turbulent

kinetic energy k is solved.

2.1 Transport Equations for k and c

In the k-c model, two transport equations for the turbulent kinetic energy k and the dissi-

pation rate c are solved. The eddy viscosity, #T in Eqs. (10) and (11), is then calculated

based on k and c
k 2

#T _ C,f,,-- (12)
C

where f, is a damping function and C, - 0.09. The transport equation for k is

cgpk cgpkuj 0 [ cgk] M_ S k (13)0_- + Oxj Oxj _k _ t_eL

where

Sk = T M°° F' ReL

-- .T 0/ti

tD = 7ij OXj

T

#k = #L + # crk = 1.0
o- k

Similarly, the transport equation for c can be written as

(14)

(15)

(16)

Oc ] M_Ot + Oxj Oxj - & (17)

TcM°° C_2f2ct:geL [ (M_ 2] (18)

L_: 2,_ L\_-/ + \ ay / + \_S/ (19)

_T

#_=#L+ cr_=1.3 _1=1.44 G2=1.92 (20)
O'_

f2 = 1- 0.3exp(-/_) t_- pk2 (21)
#L_

In all the equations as well as all the figures shown in this paper, unless stated explicitly

otherwise, the length is normalized by a characteristic length L, the velocity by aoo, the

density by poo, the viscosity by #oo, the turbulent kinetic energy k by aoo,2 and the dissipation
4

rate c by poo aoo/#oo, where aoo is the free-stream speed of sound, poo is the free-stream

density, and #oo is the free-stream molecular viscosity.
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The compressibilitycorrectionF in Eq. (14)and the dampingfunction f, in Eq. (12) can

take different forms. The two most widely used compressibility corrections are the Sarkar et

al. [14] model

r- M? (22)

and the Wilcox [15] model

(23)

where H(z) is the Heaviside step function, the turbulent Mach number Mt - v/k/a with a

being the local speed of sound. The damping function could take one of the following three

forms:

a) Jones and Launder [16] form

f_ - exp 3.41] (24)
(1-_ 2

b) Van Driest form (Nagano and Hishida [17])

( -Tt+ /f. = 1- exp (25)

c) Speziale et al. [18] form

tanh (26)
fu= 1+ v/_t j

For the results shown in this paper, ivisc=6 refers to the Jones and Launder form of the

damping function, Eq. (24), with no compressibility correction (i.e., F - 0) and ivisc=7

refers to the Jones and Launder model modified by Carlson [19] as given in Eqs. (27-31).

-- 0.41 oz-- 1.15 C_2-- 1.9 (27)

Cel =OL(1 + 0.2174_-) (28)

C1 =OL(1 + 0.2174_-) (29)

_2

0"_ (C_2-- C1)_ (30)

6 ] (31)f, =exp (1 j 7_) 2

The k-c model discussed above is the standard model, which is also called the "linear model"

because the turbulent stress is linearly related to the mean strain rate by the eddy viscosity

as is clear from Eq.(10).



2.2 Algebraic Reynolds Stress Model

Various direct numerical simulation (DNS) data have shown that the turbulent stress does

not vary linearly with the mean strain rate. A more accurate representation is the Reynolds

stress model where a transport equation for each component of the Reynolds stress tensor

is solved directly and the concept of eddy viscosity is not used. However, the Reynolds

stress model requires a tremendous amount of CPU time and computer memory and thus,

is seldom used in complex engineering applications. The algebraic stress model, in which a

nonlinear term is added to the turbulent stress (so it is also called the "nonlinear model"),

offers a practical compromise. Following Girimaji [20], the turbulent stress in the algebraic
stress model is

J 3 *'ax_] -_,ks_j+., K17 [&_W_j- Wi_&j]+2, K27
(32)

where the mean strain rate and mean vorticity are

& = _ \axj + ax_]

w_j= _ \oxj ox_]

respectively. In Eq.(32), K1 and K2 are given by

C2
K1- //2-

C1

while C1 can be obtained from

(33)

(34)

G3

Cl (35)

-L°L2
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-LoL2 L_ = 0
2 2 1 2 2
_7"]1(L3) +(L0) +27"]2(L4)

1 1
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(o)

and C2 and Ca are

where

(36)

-L4Cl

C2- L1_ _ilLlC 1 (37)

2L3C1

Ca : L1_ ,]ILIC 1 (38)

=_ &j&j Moo (39)
711 C

_12=- WijWij (40)
C
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L2L °

r (_/1L])2 (42)

(LO)2 + _hL2L] _2 _j1 (L3)2+ 2_j2(L_)_
(_jIL])2 (43)

p2 (44)
a=q 3

1 +270 (45)
b 2 a 3

D = T + 2_ (46)

cos0 - -b/2

_27 (47)

Lo1 -- CO 1 (48)
2

L] = C_ + 2 (49)

C2 2
L_ - (50)

2 3

C3
f_ - 1 (51)

2

c_
f_ - 1 (52)

2

C°=3.4 C_=1.8 C2=0.36 C3=1.25 C4=0.4 (53)

Furthermore, instead of C. = 0.09 for the linear model, C. = -G1 is applied in the nonlinear

model, which is invoked by setting ivisc=6 with inl=7 instead of inl=0.

3 Numerical Procedure

The details of the numerical procedure for solving equation (1) are discussed in Frink [10 12]

and only a brief overview is given here. The spatial computational domain is divided into

a finite number of tetrahedral cells and a finite-volume discretization is applied to each cell.

This procedure results in a set of volume-averaged state variables Q which are in balance

with the area-averaged inviscid flux F (Q) and viscous flux G (Q). Inviscid fluxes are obtained

across each cell face using either the Roe [21] flux-difference splitting approach or the Van

Leer [22] flux-vector splitting technique. The data at nodal points could be obtained from the

cell-averaged data by either an inverse-distance weighted averaging scheme or a Laplacian-

weighted averaging scheme. The viscous fluxes are approximated at the cell-face centroids by

linear reconstruction. An implicit time integration algorithm using the linearized backward

7



Euler time differencing approach is applied to update the solution. The resulting linear
systemof equationsare solvedat eachtime step with a subiterative procedureby a point-
Jacobi method. Convergenceto the steadystate solution is acceleratedby advancingthe
equationsat eachcell in time by the maximum permissibletime stepin that cell. The CFL
number is scaledaccordingto the deviation of cell aspectratio from the ideal value of an
isotropic tetrahedron.

The solution procedure for the two turbulence transport equations (13) and (17) are
similar to that for solving the Navier-Stokesequations. Equations (13) and (17) aresolved
separatelyfrom the flow governingequationsand from eachother using the samebackward
Euler time integration scheme.The k and c equations can be solved using either first-order

or second-order schemes. For the second-order method, either Roe's SuperBee limiter or the

Minimum Modulus (Min-Mod) limiter can be applied. To allow a large CFL number, an

implicit time-stepping method is used to solve the k and c equations.

Equations (13) and (17) are written in conservative form. There are two other forms

of the transport equations: non-conservative form and incompressible form. For example,

these three forms of the k equation can be written as

conservative (i c onf =1)
Ok] M_ap_ apk_j a ffk_ t_eLat + Oxj Oxj - Sk (54)

non-conservative ( i conf =0)

incompressible ( iconf =- 1)

ok o ok] _ (55)

ok ok o ok] _ (56)

All three forms can be used to solve the k and c equations in USM3D (see § 4.1 for a

comparison of the results). In general, the conservative form of Eq. (54) yields more accurate

solutions than the other two forms, while the incompressible form of Eq. (55) is the least

accurate since it is only applicable for incompressible flow.

Two input parameters k0 and #0T are needed to specify the initial conditions and limit

the smallest values of k and c. The initial conditions are k = k0 and c = Co = C_pk_/#To •

The turbulent kinetic energy and dissipation rate are not allowed to become smaller than

k0 and G0, respectively. On solid surfaces, the boundary conditions are k - k0 and c -

Lk/p (M_//{er) 2. Far field boundary conditions are applied by extrapolating k and c from

the interior for outflow boundaries and taken from the free-stream for the inflow boundaries.

The k-c model has been coupled with wall function formulations to reduce the need for

grid-resolving the flow in the near wall region. The following three different wall functions

can be used together with the k-c model: (1) iwallf=t: the original wall function developed

by Frink [12]; (2) iwallf=2: a wall function similar to that used in PAB3D (see Abdol-

Hamid et al. [23] for details); (3) iwallf=3: same as the original wall function except the

velocity components are zero at the solid surface. For iwallf=t, a slip velocity boundary

condition is obtained by solving the Spalding formula

E (_+)2 (_+)3y+=u ++e -_B e _+-l-_u + 2 6 (57)
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with _ - 0.4and B - 5.5 using the Newton-Raphson iteration method while the velocity at

the solid boundary for ±wallf=2 and ±wallf=3 is zero.

4 Results

4.1 Flat Plate Cases: BLT2, BLT3, BLT4

Three tetrahedral grids for a simple flat plate boundary layer have been generated using the

grid generator VGRID (Pirzadeh [24]). For each of the grids, results of the newly added

k -c models are compared with the existing Spalart-Allmaras model and with experimental

and theoretical data, (including DNS data) for the "wall function" grid, BLT2, and for the

non-linear ARSM results on the near-wall resolved grids, BLT3 and BLT4. The computational

domain extends from x - -0.5 to x - 1.0 in the streamwise direction, from y - -0.02 to

y - 0.02 in the spanwise direction for BLT3 and BLT4, (--0.05 < y < 0.05 for BLT2), and from

z - 0 to z - 0.22 in the wall normal direction. The free-stream Mach number is M_ - 0.5

and Table 1 shows the Reynolds number for each case. In addition, Table 1 shows the grid

size and minimum y+ values. The grids for the flat plate cases are shown in Figures 1-3.

Table 1: Summary of flat plate cases.

Case Ceils Nodes Faces B. Nodes B. Faces ]_eL y+

BLT2 48,497 9,629 99,805 2,813 5,612 2 × 106 223

BLT3 37,483 8,038 78,328 3,364 6,724 2 × 10 6 1.8

BLT4 43,912 9,321 91,594 3,772 7,540 20 × 106 1.5

There are four ceils in the spanwise direction for BLT2 and two ceils for the BLT3 and BLT4

grids. Near the wall, the grid spacings for the BLT3 and BLT4 grids are much smaller than

that for BLT2, but the grid spacings for BLT3 and BLT4 are much larger than that for BLT2

far away from the wall. For BLT3 and BLT4, the first node point away from the wall has a

y+ _ 1.8 and 1.5 respectively, while for the BLT2 grid y+ _ 223 at x/L - 0.5. Therefore, a

wall function has to be applied for BLT2 while no wall function is needed for BLT3 or BLT4.

Sample input files for the three plate cases are in Appendices A, B, and C.

4.1.1 BLT2 Flat Plate - Wall Function Case

The CFL number and residual history of the governing equations using the Spalart-Allmaras

and linear k-c models are shown in Figure 4. The residual history for the Spalart-Allmaras

and Carlson modified k - c model both converge rapidly at nearly the same rate to a level

of 9 orders of magnitude smaller than the initial residual. The first linear model (±visc=6)

converged much slower after the 500 th time step and only decreased by less than 4 orders of

magnitude after 4,000 time steps. The CFL number is allowed to increase dynamically from

1 to 200 according to the residual; it increases when the residual is decreasing and decreases

when the residual is increasing. For each of the three models tested, the CFL number rapidly

increased to its maximum value within 40 time steps and remained at 200 for the duration

of the run indicating a robust convergence. In Figure 5, velocity profiles are compared with



the empirical formula of Spalding, Eq. (57), while the skin friction coefficientis compared
with the theoretical valuesfor fully turbulent flow.

Of - 0.0583(Rex)-1/5 (58)

It is evident that u + from the second (±vksc=7) k-c model is the closest to Spalding's formula

with the Spalart-Allmaras results the next closest. The first k-c model initially matches the

data as dictated by the wall function, but then significantly under predicts u +. The skin

friction coefficient from the first k-c model is significantly larger than the theoretical value

whereas the Spalart-Allmaras model gives a result slightly smaller than the theoretical value

and the second k-c model initially matches theory closely before predicting a slightly larger
value.

In summary, for the coarse flat plate grid using a wall function,(BLT2), the Carlson

modified linear k-c model performed the best, with the Spalart-Allmaras model nearly as

good and the first k-c model not in good agreement with empirical or theoretical data.

The CPU time per timestep per cell on an Intel Pentium II 300 MHz was 229#sec for the

Spalart-Allmaras model and 13% more for the linear k-c models.

4.1.2 BLT3 Flat Plate - Grid Resolved Case

The CFL number and the residual of the governing equations using the Spalart-Allmaras and

linear k-c models are shown in Figure 6. The residual history for all three models converge

rapidly at roughly the same rate to a level of 5 orders of magnitude smaller than the initial

residual. The temporary hump in the residual trace around n - 1000 is characteristic of

the establishment of turbulence for a non-wall function grid. For each of the three models

tested, the CFL number rapidly increased to its maximum value within 75 time steps and

remained at 200 for the duration of the run indicating a robust convergence.

Inspection of the velocity profile and skin friction plots, see Figure 7, confirms that for

the BLT3 grid a wall function is not needed. It is evident that u + from the Spalart-Allmaras

model is closer to the Spalding curve with the second k-c model under predicting u + slightly

and the first k-c model under predicting significantly. The skin friction coefficient from the

first k-c model is significantly larger than the theoretical value whereas the Spalart-Allmaras

model gives a result slightly smaller than the theoretical value and the second k-c model

matches theory the closest predicting a slightly larger value.

The turbulent kinetic energy and dissipation rate from the first k-c model (±vksc=6) at

different downstream locations are compared with those from the DNS work of Spalart [25]

in Figure 8. The turbulent kinetic energy k has been normalized by (u*) 2, where u* is the

friction velocity, while dissipation rate c has been normalized by p_(u*)4/#_. The profiles

of both k and c at different downstream locations are very similar. The turbulent kinetic

energy has a peak at y+ _ 20 since k - 0 both at the wall and at the free stream. Although

the peak value from the first k-c model is smaller than that from DNS, the overall agreement

is good. There is no peak for the dissipation rate since c is the largest at the wall. The

dissipation rate from the first k-c model also agrees well with that from DNS.

The Reynolds stress components from the first k-c model are compared with those from

the DNS of Spalart [25] in Figure 9. Similar to the turbulent kinetic energy, the Reynolds

stress components have been normalized by (u*) 2. The Reynolds shear stress from the first
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k-c model agrees well with that from DNS. The three normal stress components from the

first k-c model are almost identical whereas the streamwise component from DNS is much

larger than the other two components. This is a property of the linear model, where the

Reynolds stress is assumed to be isotropic. These three components will be different after we

implement the nonlinear model (i.e., the algebraic stress model) by adding an extra nonlinear

term in the right hand side of equation (10). Note that the normal stress components, ww +,

from k-c model in Figure 9(b) are very close to 2/3k from Figure 8(a) because the first term

in the right hand side of equation (10) is much smaller than the second term. Although not

shown here, the three normal stress components from the Spalart-Allmaras model are nearly

zero since the turbulent kinetic energy is not modeled (i.e., there is no 2/3k term in equation

(10) for this model).

As discussed in § 3, the transport equations for k and c can be solved in three different

forms: conservative, nonconservative and incompressible form. Figure 10 compares the

residual history and streamwise velocity in wall coordinates from these forms. It is clear

that the difference between the conservative and nonconservative forms is very small for this

case. The residual from the incompressible form is much larger than the other two forms

while the streamwise velocity from these three forms are similar.

Although turbulent solutions can be obtained for the linear k-c models using an initial

eddy viscosity of #T/#c _ 1, it was found that this initial condition caused the boundary

layer flow to remain laminar when used as the initial condition for the algebraic stress model.

Therefore, the initial condition of #T/#c _ 10 was used for all algebraic stress cases. Figure

11 shows the residual of the Navier-Stokes equations using the algebraic stress model with

#T/#c _ 10 for the flat plate boundary layer with the BLT3 grid. A great deal of oscillations

occur and the residual settles down at about 0.75 orders of magnitude smaller than the initial

residual after about 1,900 steps. Note that this residual is much larger than those from the

first linear k-c model as well as the Spalart-Allmaras model in Figure 6.

The skin friction coefficient and the streamwise velocity in wall coordinates from the

nonlinear algebraic stress model are compared with those from the linear k-c model in Figure

12(a). The streamwise velocity component from the nonlinear algebraic stress model agrees

with Spalding's empirical formula better than that from the first linear k-c model (±v±sc=6).

The skin friction coefficient from the algebraic stress model also has a better agreement with

the theoretical value than that from the first linear k-c model from x _ 0.1 to x _ 0.5, at

which point the linear model is more accurate.

Since the success of the algebraic stress model depends on the initial condition, we ran a

case where the algebraic stress model was restarted from the solution of the first linear k-c

model. The skin friction coefficient and the streamwise velocity in wall coordinates from this

run are shown in Figure 13. Similar to those shown in Figure 12, the streamwise velocity

component agrees better with the Spalding empirical formula than that from the first linear

k-c model while the skin friction coefficient also has a better agreement with the theoretical

value than that from the first linear k-c model from x _ 0.1 to x _ 0.5, after which, the

linear model is more accurate.

In summary, for the BLT3 refined fiat plate grid without using a wall function, the Carlson

modified linear k-c model performed best for predicting skin friction and is a close second

to Spalart-Allmaras for velocity profile. Experience with the linear models in the structured

code PAB3D [23] indicates that with grid refinement the accuracy of the linear models
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will improve significantly. The CPU time per timestep per cell on an SGI with two IP30

processors was 194#sec for the Spalart-Allmaras model and 10% more for the linear k-c

models. As discussed above, the residuals for the BLT2 and BLT3 grids using the algebraic

stress model do not drop as much as those of the first linear k-c and the Spalart-Allmaras

models. Although both skin friction coefficient and streamwise velocity distributions from

the algebraic stress model are better than those of the first linear k-c model, the results

are still not as accurate as the Spalart-Allmaras model. Furthermore, the results from the

algebraic stress model depend on the initial condition. In an effort to decrease the streamwise

distance needed for a turbulent boundary layer to develop, a high Reynolds number version

of the BLT3 grid is examined in the following section.

4.1.3 BLT4 Flat Plate

The BLT4 grid was designed as a high Reynolds number counterpart to the BLT3 grid. It has

a first nodal point normal distance of 1/10 of the BLT3 grid and was run with a Reynolds

number is 20 million instead of 2 million. The CFL number and the residual of the governing

equations using the Spalart-Allmaras, both linear k-c models and the Girimaji algebraic

Reynolds stress model are shown in Figure 14. The residual history for all cases except

for the ARSM converge rapidly down 4 orders of magnitude, with the linear k-c models

converging less robustly than the Spalart-Allmaras model. In this case, the nonlinear model

was run without using a linear solution as the initial condition, and despite setting the CFL

number to a low constant value of 50 and running it for 8,000 iterations, the residual never

settled down. The CFL number for the Spalart-Allmaras and second linear models rapidly

increased to its maximum value within 60 time steps while the first linear model initially

increased then temporarily dipped to 25 around n - 120 before reaching the maximum
allowable CFL at n - 160.

Inspection of the velocity profile and skin friction plots, see Figure 15, confirms that for

the BLT4 grid a wall function is not needed. It is evident that for this grid the Spalart-

Allmaras model is the closest to the experimental and theoretical data. The first linear

model performs the worst and the second linear model and the ARSM are positioned between

the other two, with the second linear model slightly closer to data than the ARSM. It is

expected that with grid refinement and in less ideal configurations, the performance of the

linear models and especially the nonlinear model will improve significantly. The CPU time

per timestep per cell on an Intel Pentium II 300 MHz was 213#sec for the Spalart-Allmaras

model, 13% more for the linear k-c models and 37% more for the non-linear model with

nstagek=5.

4.2 RAE2822 Airfoil

In this section results for the previously mentioned turbulence models of Spalart-Allmaras

model, linear k-c (ivisc=6), and linear k-c (ivisc=?) will be compared with the Girimaji

algebraic Reynolds stress model (ARSM), as well as, the experimental results of case 10 of

Cook et al. [26] for a transonic airfoil. A sample input file is shown in Appendix D.

The computational domain extends 6 chord lengths away from the airfoil in all directions

with a channel width of 0.2c spanning 2 ceils. The free-stream Mach number of the boundary
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layer,Reynoldsnumber, and correctedfree air angle-of-attackis M_ - 0.75, Re - 6.2 × 106

and c_ - 2.81 °, respectively. The grid contains 29,976 cells, 8,477 nodes, 66,772 faces, 6,820

boundary nodes, and 13,640 boundary faces. The distance of the first node away from the

wall corresponds to y+ _ 0.8. Full and closeup views of the grid are shown in Figure 16.

Unlike the previous flat plate cases, the residual and CFL history (Figure 17) are much

noisier, which may be due to unsteadiness in the region behind the shock. All of the models

converge between 3 and 3.5 orders of magnitude after 4,000 time steps. Initially, the ARSM

shows a great deal of oscillation since it is more dependent on the initial condition. Also,

observed is a large increase in residual for the second linear model before finally settling

down. The CFL history reveals that for the first 400 time steps each model is behaving

similarly with the exception of the ARSM whose CFL history appears to be shifted to the

left. After n - 400, the CFL number for all models oscillate periodically at high frequency.

Lift and drag coefficient histories are shown in Figure 18. From the history plots, it

is evident that the Spalart-Allmaras, first linear k-c, and Girimaji models follow the same

convergence trend while the second linear model oscillates much more before settling down

at around n - 2,500. The results at n - 4,000 along with experimental data and results

from PAB3D for the first linear model are compared in Table 2. Final results show that

the Spalart-Allmaras model is in closest agreement with experimental data. The next best

results for USM3D are produced by the first linear model, the ARSM, and finally the second

linear model. As an indicator of grid dependence for the advanced models, results in good

agreement with experimental data from PAB3D are shown for the first linear model.

In Figure 19, the predicted pressure coefficient from each model is plotted with the

experimental data of Cook [26]. All models miss the location of the first suction peak by

approximately 0.02c. This is likely due to the fact that the current implementation of the

turbulence models in USM3D does not allow for setting a trip location for the boundary layer,

while in the experiment it was set to 0.03c. Other areas of disagreement with experiment

and among the models themselves is the shock location and region aft of the shock. The

prediction of shock location by the second linear model was in excellent agreement while the

other models all predicted different locations all aft of the experimental location. Aft of the

shocL all models predicted a lower Cp than experiment with the Girimaji model in the best

agreement.

Table 2: Comparison of CL and CD with experimental data of Cook et al. [26] and PAB3D

linear k-c model (ivi c=6) [23].

Case CL % diff CD % cliff

Experiment 0.743

Spalart-Allmaras 0.732 -1.5

Linear k-c (ivisc=6) 0.691 -7.0

Linear k-c (ivisc=7) 0.649 -12.7

Girimaji ARSM 0.803 8.1

PAB3D Linear k-c (ivisc=6) 0.720 -3.1

0.0242

0.0214 -11.6

0.0199 -17.8

0.0178 -26.4

0.0293 21.1

0.0257 6.2
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4.3 ONERA M6 Wing

The tetrahedral viscous grid for the ONERA M6 wing was generated using VGRID and is

similar in construction to those in Frink [12]. The grid contains 338,417 cells, 59,496 nodes,

682,257 faces, 5,425 boundary nodes and 10,846 boundary faces. On the wing surface the

midchord y+ was approximately equal to 2 for the flow conditions of M_ = 0.8447, /_qnac =

11. T × 106 and a = 5.06 °. The computational domain is bounded by a rectangular box defined

by -6.5 _< z _< 6.5, 0 _< y _< 4, and -6.5 _< z _< 6.5, in aerodynamic coordinates relative to

a semispan length of 1. Surface and symmetry plane meshes are shown in Figure 20.

For this ONERA M6 wing case, results are presented for the Spalart-Allmaras model and

the second linear (±v±sc=7) model with varying numbers of Jacobi iterations in the solution

of the k-c equations. The current implementation of the ARSM was found to be very stiff

for the relatively coarse wing grid. Further investigations need to be performed to identify

the minimum grid density required for a stable solution in various flow regimes. A sample

input file is included in Appendix E. In Figure 21, the residual history is seen to be fairly

similar among the models with the Spalart-Allmaras being the smoothest. Both linear cases

are more noisy until n = 500. To aid solution stability, the original CFL ramping scheme in

USM3D was used to bring the CFL number to a constant value of T5, rather than letting it

vary dynamically up to 200 as in previous cases.

In Figure 22, the coefficient of lift and drag histories confirm that the reduction in the

number of iterations on the k-c equations causes no inaccuracy in the solution. This is

significant because the reduction brings a 10% time savings. While the two linear cases

agree with each other, the Spalart-Allmaras model predicts a 4% lower CL while agreeing

exactly with the linear models prediction of CD.

Limiting surface streamlines simulating "oil-flow" patterns, shown in Figure 23, depict

a significant amount of shock separated flow beyond the 7! _ 0.65 for both models with the

Spalart-Allmaras model results showing the strongest separation. The Cp plots in Figure 24

demonstrate this with the exception of the 7! = 0.90 plane where Spalart-Allmaras matches

the shock location well. It should be noted however, that the solutions in the tip region,

7! > 0.90, can be particularly sensitive to a variety of factors such as grid density and

turbulence model (see Rumsey and Vatsa [27]) and should be explored further in future

studies.

The CPU time per timestep per cell on an SGI with two IP30 processors was 216 #sec

for the Spalart-Allmaras model, 223 #sec for the second linear (±vksc=7) k-c model with 2

Jacobi iterations (nstagek=2) on the k-c equations and 249 #sec for the second linear model

with 6 Jacobi iterations.

In summary, the linear k-c model is seen to perform well in a complex three-dimensional

flow with only a small increase in CPU time required over the existing Spalart-Allmaras

model.

5 Concluding Remarks

A systematic study has been conducted to assess the accuracy of two newly implemented

turbulence models, modified versions of the standard linear two-equation k-c model and the

non-linear algebraic Reynolds stress model of Girimaji. Initial results of test cases for the
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flat plate, airfoil, and wing indicate that the new two-equation models yield comparable ac-

curacy and efficiency to that of the Spalart-Allmaras one-equation model. Work is currently

underway to further examine factors such as grid sensitivities and solution details.
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Figure 22: Coefficient of a) lift history; b) drag history. ONERA M6 wing case.
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"oil-flow" patterns and flooded pressure contours for the ONERA M6 wing.
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A BLT2 Input File

USM3D (v5.0+turb) - Flat plate BL Second Linear Model with Wall Function

Mach alpha beta KeUe,mil Tinf,dK itwall Tw/Tinf ipwall

0.50000 0.00000 0.00000 2.000000 460.0 0 -i.0 0

sref cref bref xmc ymc zmc

1.00000 1.00000 1.0000 0.00000 0.00000 0.00000

impl dt/cfll iramp cfl2 cflmin nstage iautocfl

1 -i.00 4 200. i0.00 5 1

irest mstage iresmth dqmax ptol frac_hit limiter

0 3 1 0.25 .001 1.0000 O.

nupdate nwrest ipltqn ifast idiagnos

i0 50 1 0 1

iorder lapl-avg high-bc ifds ivisc ckv

2 1 1 1 7 0.25

ncyc nengines bcfile compF&M cldes idim

4000 0 1 0 O. 1

Files: i) Connectivity/grid, 2) Face/b.c., 3) Restart, 4) Flow output (a40)

blt2.cogsg blt2.iface blt2.urest blt2.flo blt2.mapbc

Begin KE Cont

ilhg ikeord icons dtf itk icomp int ut/ul intb ut/ulb inl iwallf bke dkemax isk

-14 1 0 1.0 2 0 l.e-2 i0. l.e-2 i0. 0 1 i. 0.00 0

ratiokp nstagek

0.00 5

End KE Cont

B BLT3 Input File

USM3D (v5.0+turb) - Flat plate BL Second Linear Model without Wall Function

Mach alpha beta KeUe,mil Tinf,dK itwall Tw/Tinf ipwall

0.50000 0.00000 0.00000 2.000000 460.0 0 -i.0 0

sref cref bref xmc ymc zmc

1.00000 1.00000 1.0000 0.00000 0.00000 0.00000

impl dt/cfll iramp cfl2 cflmin nstage iautocfl

1 -i.00 4 200. i0.00 5 1

irest mstage iresmth dqmax ptol frac_hit limiter

0 3 1 0.25 .001 1.0000 O.

nupdate nwrest ipltqn ifast idiagnos

i0 50 1 0 1

iorder lapl-avg high-bc ifds ivisc ckv

2 1 1 1 7 0.25

ncyc nengines bcfile compF&M cldes idim

4000 0 1 0 O. 1

Files: i) Connectivity/grid, 2) Face/b.c., 3) Restart, 4) Flow output (a40)

blt3.cogsg blt3.iface blt3.urest blt3.flo blt3.mapbc

Begin KE Cont

ilhg ikeord icons dtf itk icomp int ut/ul intb ut/ulb inl iwallf bke dkemax isk

-14 1 0 1.0 2 0 l.e-2 i0. l.e-2 i0. 0 0 i. 0.0 0

ratiokp nstagek

O. O0 5

End KE Cont
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BLT4 Input File

(v5.0+turb) - Flat plate BL Second Linear Model without Wall Function

Mach alpha beta KeUe,mil Tinf,dK itwall Tw/Tinf ipwall

.50000 0.00000 0.00000 20.00000 460.0 0 -i.0 0

sref cref bref xmc ymc zmc

.00000 1.00000 1.0000 0.00000 0.00000 0.00000

impl dt/cfll iramp cfl2 cflmin nstage iautocfl

1 -i.00 4 200. i0.00 5 1

irest mstage iresmth dqmax ptol frac_hit limiter

0 3 1 0.25 .001 1.0000 i.

nupdate nwrest ipltqn ifast idiagnos

i0 50 1 0 1

iorder lapl-avg high-bc ifds ivisc ckv

2 1 1 1 7 0.25

ncyc nengines bcfile compF&M cldes idim

4000 0 1 0 0. 1

Files: i) Connectivity/grid, 2) Face/b.c., 3) Restart, 4) Flow output (a40)

blt4.cogsg blt4.iface blt4.urest blt4.flo blt4.mapbc

Begin KE Cont

ilhg ikeord icons dtf itk icomp int ut/ul intb ut/ulb inl iwallf bke dkemax isk

-14 1 0 1.0 2 0 l.e-2 i0. l.e-2 i0. 0 0 1.0 0.00 0

ratiokp nstagek

0.00 5

End KE Cont

D RAE2822 Input File

USM3D (v5.0+turb) - RAE2822 Airfoil Second Linear Model without Wall Function

Mach alpha beta KeUe,mil Tinf,dK itwall Tw/Tinf ipwall

0.75000 2.81000 0.00000 6.200000 460.0 0 -i.0 0

sref cref bref xmc ymc zmc

0.20000 1.00000 0.2000 0.00000 0.00000 0.00000

impl dt/cfll iramp cfl2 cflmin nstage

1 -i.00 4 200. i0.00 5

irest mstage iresmth dqmax ptol frac_hit

0 3 1 0.25 .001 1.0000

nupdate nwrest ipltqn ifast idiagnos

i0 50 1 0 1

iorder lapl-avg high-bc ifds ivisc ckv

2 1 1 1 7 0.25

ncyc nengines bcfile compF&M cldes idim

4000 0 1 0 0. 1

iautocfl

1

limiter

0.

Files: i) Connectivity/grid, 2) Face/b.c., 3) Restart, 4) Flow output (a40)

rae3.cogsg rae3.iface rae3.urest rae3.flo rae3.mapbc

Begin KE Cont

ilhg ikeord icons dtf itk icomp int ut/ul intb ut/ulb inl iwallf bke dkemax isk

-14 1 0 1.0 2 0 l.e-2 1.0 l.e-2 1.0 0 0 1.0 0.25 0

ratiokp nstagek

0.05 5

End KE Cont
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E ONERA M6 Wing Input File

USM3D (v5+turb) - ONERA M6 wing

Mach alpha beta ReUe,mil Tinf,dR itwall

0.84470 5.06000 0.00000 21.191770 460.0 1

sref cref bref xmc ymc zmc

0.52550 0.66700 1.00000 0.00000 0.00000 0.00000

impl dt/cfll iramp cfl2 cflmin nstage

1 -75.0000 1 75. 10.0 6

irest mstage iresmth dgmax ptol frac_hit

1 3 1 0.25 0.001 0.001

nupdate nwrest ipltqn ifast idiagnos nodeypl

i0 i00 2 0 2 0

iorder lapl-avg high-bc ifds ivisc ckv

2 1 1 1 7 0.25

ncyc nengines bcfile compF_M cldes idim

500 0 1 0 O. 1

Tw/Tinf ipwall

-i.0 0

autocfl

0

limiter

O.

Files: i) Connectivity/grid, 2) Face/b.c., 3) Restart, 4) Flow output (a40)

om6ke_c.cogsg

om6ke_c.iface

om6ke_c.urest

om6ke_c.flo

om6ke_c.mapbc

Begin KE Cont

ilhg ikeord icons dtf itk icomp int

-14 1 0 i. 2

ratiokp nstagek

0.i0 6

End KE Cont

ut/ul intb ut/ulb inl iwallf bke dkemax isk

0 l.e-2 i0. l.e-2 i0. 0 0 i. 0.25 0
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