

1998 NASA High-Speed Research Program Aerodynamic Performance Workshop
 Volume II—High Lift

Edited by
S. Naomi McMillin

Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM.

Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- Email your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Telephone the NASA STI Help Desk at (301) 621-0390
- Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

1998 NASA High-Speed Research Program Aerodynamic Performance Workshop

Volume II—High Lift

Edited by
S. Naomi McMillin

Langley Research Center, Hampton, Virginia

Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held in Los Angeles, California February 9-13, 1998

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-2199

Available from:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road
Springfield, VA 22161-2171
(703) 605-6000

PREFACE

The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 9-13, 1998 in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single-and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program.

The workshop was organized in three sections as follows:
Section I Independent Sessions
Section II Plenary Session

Section III Executive Summaries

The work performed in the Configuration Aerodynamics element of the High-Speed Research Program during 1997 was presented in the following sessions:

Analysis Methods and CFD Validation
Viscous Drag Predictions and Testing Methods
Aerodynamic Design Optimization Capability
Nacelle/Diverter Design and Airplane Integration
Configuration Assessments and Fundamental Studies
Technology Integration (TI) Studies related to Configuration Aerodynamics (CA / TI Joint Session)

The work performed in the High Lift (HL) element of the High-Speed Research Program during 1997 was presented in the following sessions:

Concept Development
Test Programs and Techniques
Analytical Methods

The proceedings for the Aerodynamic Performance Annual Review are published in two volumes:

Volume I, Parts 1 and 2 Configuration Aerodynamics
Volume II High Lift
AP Review Chairperson: Naomi McMillin
NASA Langley Research Center

CONTENTS

Preface iii
Volume 1, Part 1 .- Configuration Aerodynamics
Configuration Aerodynamics ITD Summary 1
Propulsion Airframe Integration Working Group Summary 31
Analysis Methods and CFD Validation
Overview of Analysis Methods and CFD Validation 41
Shreekant Agrawal, The Boeing Company
Cycle 2 Nonlinear Design Optimization Analytical Cross Checks 45
Dan Bencze, NASA Ames Research Center
AIRPLANE Mesh Development with Grid Density Studies 75
Susan Cliff and Scott Lawrence, NASA Ames Research Center, Timothy Baker, Princeton University, Scott Thomas and Mark Rimlinger, Sterling Software Inc.
High Reynolds Number Predictions for the Baseline Arrow Wing at Mach 2.48 147
Melissa Rivers and Richard Wahls, NASA Langley Research Center
Applications of Parallel Processing in Configuration Analyses 171
Pichuraman Sundaram and James Hager, The Boeing Company, and Robert Biedron, NASA
Langley Research Center
TCA Full Configuration Performance and S\&C Characteristics 205
Grant Martin, Raul Mendoza, Paul Kubiatko, and Shreekant Agrawal, The Boeing Company
Unstructured Grid Euler Method Assessment for Aerodynamic Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed 287
Farhad Ghaffari, NASA Langley Research Center
Unstructured Navier-Stokes Analysis of Full TCA Configuration 309
Neal Frink and Shahyar Pirzadeh, NASA Langley Research Center
Viscous Drag Predictions and Testing Methods
Overview of Viscous Drag Predictions and Testing Methods 329
Robert Kulfan, The Boeing Company
Skin Friction Drag Predictions: Summary of CFD Cross Checks, Wing/Body 333
Scott Lawrence and Goetz Klopfer, NASA Ames Research Center
TCA and Symmetric Model Viscous Drag Predictions 355
Max Kandula, Dynacs Engineering Co. Inc.
Feasibility Study of a TCA Symmetric Model for Accurate Skin-Friction Measurements 427
Raul Mendoza and Pichuraman Sundaram, The Boeing Company
Historic Background on Flat Plate Turbulent Flow Skin Friction and Boundary Layer Growth 477
Robert Kulfan, The Boeing Company
CA Testing Workshops: Process, Issues, Results 515
Robert Kennelly, NASA Ames Research Center
High Reynolds Number Assessment of Boundary Layer Transition Trip Drag at Mach 2.48 on an HSCT Configuration 539
Richard Wahls and Melissa Rivers, NASA Langley Research Center, and Todd Magee and Michael Novean, The Boeing Company
Experimental Bias and Precision Errors: Requirements, Analysis \& Recommendations 571
Michael Novean and Todd Magee, The Boeing Company
Aerodynamic Design Optimization Capability
Overview of Aerodynamic Design Optimization Capability 621
Dan Bencze, NASA Ames Research Center
BCAG Design Optimization Activities 625
Roy S. Conner, The Boeing Company
SYN107-MB Aerodynamic Shape Optimization Method: Recent Improvements and Current Status 693
James Reuther, RIACS, Mark Rimlinger and David Saunders, Sterling Software Inc., and Raymond Hicks, MCAT
The AEROSHOP (AEROdynamic Shape OPtimization) Toolkit. 777
Eric Unger, Robert Narducci, James Hager, Peter Hartwich, Raul Mendoza, and Geojoe Kuruvila, The Boeing Company837TCA6 Configuration OptimizationRaymond Hicks, MCAT, Mark Rimlinger, Sterling Software Inc., andJames Reuther, RIACS
Volume 1, Part 2 .. Configuration Aerodynamics
Aerodynamic Design Optimization Capability - continued
Aerodynamic Gradients Using Three Methods 931
Geojoe Kuruvila, James Hager, and Pichuraman Sundaram, The Boeing CompanyCFD-Based Flap Optimization for the TCA in Transonic Flight Conditions979Robert Narducci, Eric Unger, David Yeh, Michael Novean, Pichuraman Sundaram, Todd Magee,Geojoe Kuruvila, Grant Martin, Alan Arslan, and Shreekant Agrawal, The Boeing CompanyViscous Design of TCA Configurations1043Steven Krist, Steven Bauer, and Richard Campbell, NASA Langley Research Center
Progress Towards a Multipoint Optimization Procedure 1071
Robert Narducci and Shreekant Agrawal, The Boeing Company
Nacelle/Diverter Design and Airplane Integration
Overview of Nacelle/Diverter Design and Airplane Integration 1139
Francis Capone, NASA Langley Research Center
Rigid Power Effects: Inlet Bleed, Spillage, and Bypass 1143
Mike Malone, Bryan Westra, Arsenio Dimanlig, Bill Bard, and Charlie Peavey,Northrop Grumman
Propulsion Induced Effects (PIE) Test Program 1187
Gelsomina Cappuccio and Mark Won, NASA Ames Research Center
Transonic Installed Nacelle Analyses. 1241
Steve Chaney and Gordon Blom, The Boeing Company
Nacelle Diverter Design and Nozzle Boattail Drag Studies 1365
Pichuraman Sundaram, Chih Shieh, Alan Arslan, Hoyt Wallace, and Shreekant Agrawal, The Boeing Company
Configuration Assessments and Fundamental Studies
Overview of Configuration Assessments and Fundamental Studies 1457
Doug Wilson, The Boeing Company
Model 2b Test Results. 1461
Aga Goodsell, NASA Ames Research Center
Nonlinear Cruise-pt. Validation (NCV) Model Wind Tunnel Test Summary and Posttest Analysis 1505
Kevin Mejia, The Boeing Company
Aftbody Closure Model Design - Lessons Learned. 1545
Francis Capone, NASA Langley Research Center
HSR Model Deformation Measurements from Subsonic to Supersonic Speeds 1569Al Burner, Gary Erickson, Wes Goodman, and G. Flemming, NASA Langley Research Center
The Effect of Aeroelasticity on the Aerodynamic Performance of the TCA. 1589
Geojoe Kuruvila, Peter Hartwich, and Myles Baker, The Boeing Company
Initial TCA Stability and Control Assessment 1649
David Blake, Paul Glessner, Paul Kubiatko, Brian Nishida, and Douglas Wilson, The Boeing Company
Initial Predictions of Canard Integration 1671Todd Magee, James Hager, and David Yeh, The Boeing Company, andTim Haynes, Dynacs Engineering Co. Inc.
Technology Integration (TI) Studies related to Configuration Aerodynamics (CA / TI Joint Session)
Overview of Technology Integration Activities Related to Configuration Aerodynamics 1757
Chester Nelson, The Boeing Company
Cross-Discipline Evaluation of Optimized Designs and Features 1777
Chris Vegter and Greg Stanislaw, The Boeing Company
TRANAIR Applications for Technology Integration Propulsion Trades 1797
Paul Dees, The Boeing Company
CFD Data Generation Process for Nonlinear Loads 1817
Alan Arslan, Todd Magee, Eric Unger, Peter Hartwich, Shreekant Agrawal, Joseph Giesing, andBala Bharadvaj, The Boeing Company, and Neal Chaderjian and Scott Murman, NASA AmesResearch Center
Volume 2 -- High Lift
High Lift ITD Summary 1873
Concept Development
TCA High Lift Preliminary Assessment 1897
Paul Meredith, Gregory Wyatt, Mike Elzey, John Tran, David Yeh, and Ryan Polito, The Boeing Company
TCA Planform and Leading-Edge Study at High-Lift Conditions 1933
David Yeh and Roger Clark, The Boeing Company
Prediction of High-Lift Characteristics of the Preliminary Technology Concept (PTC) 2005
Keith Ebner, The Boeing Company
Correlation of CFD Calculations and Wind Tunnel Measurements for the M2.4-7A Arrow Wing Configuration 2055
C. J. Woan, The Boeing Company
Test Programs and Techniques
4\% Arrow Wing Model Test in NASA Ames 12 Ft. Pressure Tunnel 2107
Robin Edwards, Ryan Polito, and Roger Clark, The Boeing Company
Power Effects on the High-Lift S \& C Characteristics of the TCA Model Tested in the LaRC 14x22 Wind Tunnel 2161
Paul Glessner, The Boeing Company
Assessment of Boundary-Layer Transition Detection and Fixing Techniques 2187
Marvine Hamner and Roger Clark, The Boeing Company
Experimental Study of Static and Dynamic Ground Effects for Low Aspect Ratio Wings 2233
Lewis Owens, NASA Langley Research Center, Arthur Powell, The Boeing Company,and Robert Curry, NASA Ames Research Center
Analytical Methods
Potential Flow Analysis of Dynamic Ground Effect 2299
Winfried Feifel, The Boeing Company
Dynamic Ground Effects Simulation Using OVERFLOW-D 2387
Bill Dwyer, Northrop Grumman
Recent Results in the Study of Static Ground Effect Using an Inviscid Unstructured Grid Code 2471
Steve Yaros, NASA Langley Research Center
Potential Flow Analysis of the Mark-XVI Flow Survey Probe 2509
Eric Roth, The Boeing Company
Aerodynamic Design of Inboard Sealed Slats for the TCA-3 Wind Tunnel Test. 2545
Robert Griffiths, The Boeing Company
Navier-Stokes Results for HSCT High-Lift Configurations 2585
Anthony Saladino, Dynacs Engineering Co. Inc, and Allen Chen, The Boeing Company
Code Calibration Applied to the TCA High-Lift Model in the 14×22 Wind Tunnel (Simulation With and Without Model Post-Mount) 2691
Wendy Lessard, NASA Langley Research Center
Aerodynamic Analysis of TCA Wing/Body/Nacelle High-Lift Configurations 2735
Xuetong Fan and Paul Hickey, ASE Technologies, Inc.
Canard Integration for CFD Analysis of HSCT High Lift Configurations 2765
David Yeh, The Boeing Company
Comparison of CFL3D Results using Alternative Grid Interfacing Schemes 2831Xuetong Fan and Paul Hickey, ASE Technologies, Inc.
HSR
High Speed Research
High Lift Aerodynamics
Technology Development
High Lift Aerodynamics ITD Team
presented by Paul Meredith
Airframe Annual Review
February 12, 1998

ITD Team Membership
\square

Phone	e-mail
(757) 864-3022	I.s.bangert@larc.nasa.gov
(562) 982-5334	roger.w.clark@boeing.com
(757) 864-5991	p.g.coen@larc.nasa.gov
(425) 965-2767	michael.b.elzey@boeing.com
(425) 965-3468	paul.t.meredith@boeing.com
(650) 604-6669	besmith@mail.arc.nasa.gov

Greatly increase L/D relative to SST Technology (Suction Parameter $\geq \mathbf{9 2 \%}$)
Establish \& Validate Analysis/Design Methodology
PTC Sensitivity to Climbout UD

\% Change in LD
Define Preferred High Lift System
Technology Readiness Level ≥ 6
echnical Challenges
Aggressive Technology Projection
Aggressive Technology Projection

Assumes turbulent boundary layer with fully attached flow
Unknown if it can be met with practical high lift system
Obtain Necessary Parametric and Validation Data
Canard Effects
Ground Effects
Planform Effects
Scale (Rn) Effects
Technical Approach
Three Major Thrusts
High Lift System Concept Development
Test Programs and Techniques

PCD II Milestone Schedule

Shaded items are completed
Summary of FY97 Accomplishments
Good Progress, but High Lift PD Method Found to be Unreliable

TCA preliminary assessment - poorer L/D than PD prediction
modified Ref. H in the LaRC NTF
TCA-1 test in the LaRC 14'x22'
LE flap span, outboard sealed slat studies
Supported PTC development, 3-surface technology projection

Test Programs and Techniques

Upflow \& support interference (U\&I) test in the LaRC 14'x22'
First Ames 12 ' test - Arrow Wing model
TCA-2, powered test in the LaRC 14'x22'
plume/tail interaction - no show stoppers
First dynamic ground effect test in the LaRC 14'x22'
HEAT 1A parts 60% complete, on schedule, on budget
Concept Development

Analytical Methods

ID Ratio Variation with Lift

12° Angle of Attack

CFD Solution for TCA wing/body with
full- and part-span l.e. flaps

Concept Development - Outboard Sealed Slat
LE Flap Hingeline Curvature is Very Important

L/D increased by nearly 4\% for both TCA \& REF. H
Test Program - First HSR Test in ARC 12'
4% Scale Arrow Wing Model
Arrow Wing - 40/10 Flaps

Lift Coefficient, C_{L}

Hy

Angle of Attack, α deg. - 5% TCA Model with powered ejector nozzles

- Aft fuselage balance to directly measure tail loads
- No main model balance
- Power induced effects within acceptable limits
 Test Program -
New Capability in the
Sketch of Plunging Rig for LaRC

New Capability in the LaRC 14'x22' Tunnel	
Sketch of Plunging Rig for LaRC	Tu-144 Lift Increase in Ground Effect
14'x22' Tunnel	Nominal Descent Angle $=0.25$ deg.

Tu-144 \& TCA planforms tested
No significant dynamic effects
observed

Conclusions
(1) Technology Projection is aggressive
TCA climb-out L/D significantly less than predicted Also happened with Arrow Wing predictions
Need more parametric data to better calibrate PD process (2)
(3) Plume/Tail interaction not a show stopper
(3)
(4)
ISSUES
Much work remains to achieve Technology Projection \& TRL of 6

[^0]This page is intentionally left blank.

The Boeing Company
NASA HSR II Contract No. NAS $1-20220$

This page is intentionally left blank.

This page intentionally blank.

[^1]- Full Scale Build-ups
- Conclusions
\rightarrow
Model Description

This page describes the 5\% TCA model geometry

Model Mounting These pictures show the 5% TCA model mounted in the NASA LaRC 14×22 tunnel.
The model was post mounted on model cart \# 2 in the forward bay of the 14×22 test
section. Forces and moments were measured with the NASA 1629 internal strain gage
balance. The post mount moves vertically on the cart to provide different ground
heights. Angle of attack variations are provided by a sliding pitch arm mounted aft of
the post. Yaw variations are provided by rotating the cart turntable.

HSCT High Lift Aerodyna

4.3.2.1 deliverable

h^{4} $\underset{\text { 95\% Prediction and } 95 \% \text { confidence interval }}{\text { Data Repeatability (Drag) }}$ HSCT High Lift Aerodynamics

- Drag repeatability is not good

increased leading edge
span flap in terms of L / D at the climb－out $C L$ ．

4.3.2.1 deliverable

As can be seen by this chart the full span leading edge flap provides more desirable
pitching moment characteristics. There is a slight $C_{M_{o}}$ shift and pitchup is delayed and
reduced at higher C_{L} 's.

This chart shows a comparison of the 5% TCA data to the 2.2% modified Ref H
data from NTF test 089 . The correlation is remarkable considering the different
models, tunnels, and mount systems.

Q- batine
Hscrigh Lit Aerodynamics
Comparison of 14'x22' TCA-1 With NTF Modified Ref. H This chart shows a comparison of the 5% TCA-1 data to the 2.2% modified Ref. H
data from NTF test 089 . The NTF drag was adjusted by 12 drag counts to account for
the missing aft body and vertical tail. The TCA- 1 data on the curve was inadvertently over
corrected for upflow $\left(0.25^{\circ}\right.$ instead of $\left.0.14^{\circ}\right)$. The star indicates the L/D for a 0° upflow
correction. At $\mathrm{CL}=0.5, \mathrm{~L} / \mathrm{D}$ is down about 1.2 units relative to the modified Ref. H
NTF results. This is surprising since the lift curves were in good agreement.

Ref. H

This chart shows a comparison of the 5% TCA data to the 2.2% modified $\operatorname{Ref} \mathrm{H}$ data from NTF test 089. The pitching mom curves have the same shape up through with only a slight $\mathrm{C}_{\mathrm{M}_{\mathrm{O}}}$ mismatch.
 This chart shows a comparison of full scale lift curve estimates based on 6% Ref. H 14'x22' and 2.2% Re. ${ }^{\prime}$ ' 22^{\prime} data with suitable Tail polars and downwash used for trimming were based on 14'x22' data with suitable adjustments for Reynolds number.

This chart shows a comparison of full scale status L/D estimates based on 6% Ref. H $14^{\prime} \mathrm{x} 22^{\prime}$ and 2.2% Ref. H NTF data for $30 / 0$ flaps. coefficiens (rorgh data with suitable Tail polars and downwash used for trimming were based on 14×22 data wiald bolars are optimistic so both build adjustments for Reynolds number. Theptimistic at CL=0.50. The NTF drag was adjusted by 12 drag counts to account for the missing aft body and vertical tail.

This chart shows the L/D benefit available from a sealed slat on the outboard leading edge. This chart shows thain at $\mathrm{C}_{\mathrm{L}}=0.5$ is 0.22 units, or 18 drag counts, relative to the baseline simply hinged plain flap.

4.3.2.1 deliverable

This slide shows the two methods used to predict full scale aerodynamic

characteristics.
a bottom up build-up

$$
\begin{aligned}
& \text { When wind tunnel data is available for the study configuration, a bottom up build-up } \\
& \text { process is used. Essentially, the reference database }+ \text { AERO2S increments are replaced } \\
& \text { by the wind tunnel database for the study configuration. } \\
& \text { If the tool used to estimate the increments } \\
& \text { (AERO2S in this case) is perfect, the two build-ups will be identical. }
\end{aligned}
$$

HSCT Stabity
HSCT Stability and Control

TCA Full Scale Touchdown Lift Curves

- The TCA cannot meet 155 kt Vappr with a 3° contact margin
TCA-1 14x22 Test Data
0 deg. upflow
Flaps $00 / 30$
Sref $=8500$ sq. ft.
Approach:
MLW $=470,000 \mathrm{lbs}$.
Vappr= $=155 \mathrm{kts}$.

Ground effect data: no T\&I correction Free air data: T\&I corrected
Conclusions
This page intentionally blank.
(1) Current PD tools underpredict the effect of planform changes on L/D.
Impacts the validity of TT trade studies, especially planform selection.
(2) There are large differences in drag between 14' $\mathbf{x 2 2}$ ' TCA and NTF
modified Ref.
modified Ref. H.

This page is intentionally left blank.

This page is intentionally left blank.

Outline This report starts with the description of the objectives for the HSCT high-lift
aerodynamics, followed by the numerical approach. Numerical results will be presented
and comparison will be made with available test data or another CFD code. The basic
flow characteristics for the TCA configuration will be first described, followed by the
discussions of the effects of spanwise extent of the leading-edge flaps, inboard leading-
edge camber increase and the planform variation of the TCA2.8-28 from the baseline TCA
configuration. This report concludes with a summary and future plans.

Objective - HSCT High Lift Aerodynamics

To design and analyze the high lift devices, it is necessary to apply and validate the
numerical methods in order to support the wind tunnel tests and to provide a better
numerical simulations will also be used to complement the wind-tunnel results in deriving
optimum high lift systems through parametric studies.
OBJECTIVE - HSCT High Lift Aerodynamics
HSCT Aerodynamics, Long Beach
Increase Performance (Maximize L/D)

- LE Flaps: Promote Attached Flow
- TE Flaps : Optimize Span Loading
Current Study Focus
The current study is focused on the geometric variation of the TCA configuration and its effects on the high lift performance. Specifically, the emphasis will be focused in the following 3 areas:
> 1. Spanwise extent of the leading-edge flaps. TCA configurations with part span and full span LE flaps will be analyzed with flap deflection of (LE/TE) 30/10. The comparison between the numerical solutions and test results based on TCA-1 test will be presented.

2. Inboard leading-edge camber increase:

The effect of inboard leading-edge camber on the part span leading edge flap
 Two modified inboard camber are studied including the drooped and cambered configurations that are currently being tested (TCA-3 test) in the 12-ft tunnel at NASA Ames.

3. Planform Variation

Pre-test analysis of TCA2.8-28 configuration has been conducted to assess the effect of planform variation on the high lift performance and to support the upcoming TCA-4 test. The geometric difference between the TCA2.8-28 and the baseline TCA occurs in the outboard wing panel with a lower leading edge sweep and a higher aspect ratio.
Approach
The approach is to utilize the recent development of the automated flap deflection
procedures and the CFL3D code developed at NASA LaRC for high-lift flow simulations.
The numerical results are compared with available test data for code validation as well as
load estimation for test support and wind-tunnel model design. The effects of planform
and leading-edge variation on the flow are analyzed through detailed graphical illustration
and the associated impact on the high lift performance will be evaluated.
APPROACH

Q eoteine

Effects of Flaps on TCA Flow Field
Some of the basic flow features for the TCA configurations are illustrated in this chart
which includes the clean (flaps up) and a $30 / 10$ (LE/TE) configurations. For the clean
configuration, the leading edge vortex is formed along the leading edge which induces a
low pressure region on the wing. A separate vortex originated from the wing break is also
visible. The flow condition is at $M=0.3, \alpha=10$ degrees with the Reynolds number of 8
million based on the mean aerodynamic chord (MAC). The upper surface limiting
streamlines are plotted on the right of the configuration where separation (converging) and
attachment (diverging) streamlines are both visible as a result of leading edge separation
and the resulting vortices.

[^2]
Lower Surface Limiting Streamlines for TCA
Configuration

[^3]Lower Surface Limiting Streamlines for TCA Configurations
$$
M=0.3, \alpha=10 \text { deg, Re= } 8 \text { million (MAC) }
$$
HSCT Aerodynamics, Long Beach
Clean (Flaps Up)

Pressure Tap Locations for the TCA Configuration
Surface pressure comparison between the CFD solution and the TCA- 1 test data has been
made at 6 buttlines and 8 fuselage stations for code validation. This chart shows the
planform locations for the buttine and fuselage stations. All the dimensions have been
converted from the 5% model size to the full scale.
Pressure Tap Locations for the TCA Configuration
HSCT Aerodynamics, Long Beach

Chordwise Pressure Comparison for TCA 30/10 (Part Span)
This chart shows the chordwise pressure comparison for the 6 buttlines at $M=0.3, \alpha=10$
degrees, Reynolds number of 8 million with the part span LE flap deflection of 30 degrees
and TE flap deflection of 10 degrees. The comparison shows a good agreement between
the CFL3D solution and the measured test data. It is also interesting to note the
discrepancy on the lower surface at $Y=120$ may be caused by the flow acceleration
around the post that supports the model resulting a lower pressure on the model lower
surface. As a consequence, the numerical predicted lift could be higher than the test data.
Since the leading edge flaps have a strong influence on the wing flow field, it would be
desirable to put additional pressure ports on the leading edge flap region in order to verify the numerical solution in the region.
Spanwise Pressure Comparison for TCA 30/10 (Part Span)
This chart shows the spanwise pressure comparison for the 8 fuselage stations at the
same flow conditions. A favorable comparison is observed between the numerical
prediction and the test data. The vortex induced suction peaks downstream of $x=2010$
show good agreement both in the location and magnitude which indicates an accurate
prediction of the vortex location and strength.

 The effect of the leading edge flap angle on the surface pressure is illustrated in this chart
where 2 LE flap deflections (30 and 35) are plotted against each other. A higher leading
edge flap deflection reduces the leading edge suction peak which would create a more
favorable attached flow environment. However, higher leading edge flap deflection
increases the curvature around the hinge line resulting a higher suction which increases
the probability of hinge line separation.
Effect of LE Flap Angle on Surface Pressure
$M=0.3, A o A=10 \mathrm{deg}, \mathrm{Re}=8$ million (MAC)

Q eneine
Spanwise Extent of the LE Flaps for TCA Configurations
The effect of the spanwise extent of the leading edge flaps on the flow field has been
studied. Computational models of a part span leading edge flap and a full span have been
generated for the TCA configuration at the flap deflection of (LE/TE) $30 / 10$ degrees.

Q : $2=2 \times F$

Effects of the LE Flap Extent on the Vortical Flow
This chart shows the normalized total pressure contours for the part span and full span
leading edge flaps. The total pressure is used for tracking the vortical flow because there
is a total pressure loss across the boundary layer and the shear layers in the subsonic
flows.
It clearly shows that the part span flap leads to a stronger leading edge vortex due to a
premature leading edge separation just inboard of the part span leading edge flap.
Effects of the LE Flap Extent on the Vortical Flow
HSCT Aerodynamics, Long Beach
TCA 30/10 Configurations
Total Pressure

8
8
4
8
8
8
8
Effect of Inboard LE Flaps on the Flow Characteristics
The effect of inboard leading edge flaps on the flow separation is illustrated through the
releasing of the limiting streamlines from the leading edge. At 10 degrees angle of
attack, the separation starts just inboard of the part span flap, whereas as an attached flow
is attained on the deflected inboard leading edge flaps. As a result, the full span flap
promotes attached flow inboard and delays a premature leading edge separation.
Effect of Inboard LE Flaps on the Flow Characteristics
TCA 30/10 Configuration at $M=0.3, \alpha=10^{\circ}$, Re $=8$ Million
Limiting Streamlines Part Span LE Flap

Effect of Spanwise Extent of LE Flaps on Force and Moment

The results for the part span leading edge flap show higher lift than the full span flap
configuration which indicates the presence of premature leading edge separation resulting
a stronger leading edge vortex. As a result, a significantly more nose-up pitching moment
is generated for the part span than the full span flap configuration.

Effect of Spanwise Extent of LE Flaps on Force and Moment TCA 30/10 (LE/TE) Configurations at $\mathrm{M}=.3, \mathrm{Re}=8$ million
 3
3
3
8
8
Effect of Spanwise Extent of LE Flaps on Drag and This figure shows the comparison of drag and lift-to-drag ratio between CFL3D solutions and TCA- test results for part- and full-span leading-edge configurations. Since the part span flap configuration generates a stronger leading edge vortex as compared with the full span flap configuration, the part span flap results show a higher drag and lower lift-to-drag ratio.
Inboard LE Droop/Camber Variation for Performance Study

[^4]Inboard LE Droop/Camber Variation for Performance Study
HSCT Aerodynamics, Long Beach
TCA Configurations

TCA Inboard LE Modifications
This chart shows the TCA inboard leading edge modification process.

For the drooped configuration, the modification was performed in the streamwise direction The leading edge point was sheared downward to provide the desirable camber, while the upper and lower surfaces were blended into the original wing through quadratic curves. Linear interpolation was performed for the transition pieces to match with the original definition.
It is noted that the chordwise extent of the modified region for the cambered configuration is significantly larger than that of the dropped configuration. Therefore, this study will also provide some insight for the future study on the effect of the chordwise extent of the
leading edge flaps on the flow.
TCA Inboard LE Modifications

- Cambered

Effects of Inboard Droop/Camber on Flow Separation The effect of inboard droop/camber on the flow separation is illustrated through the
releasing the limiting streamlines along the leading edge. The flow condition was chosen
to be at $\alpha=12$ degrees, so that the flow separation and associated vortex flow will be
clearly visible just inboard of part span leading edge flap. The inboard drooped geometry
shows some improvement on the leading edge flow separation but limited to the small
region that has been modified. The cambered geometry shows a greater extent of the
attached flow region as compared to the drooped configuration.
Effects of Inboard Droop/Camber on Flow Separation
Aerodynamics, Long Beach

Effects of Inboard Droop Camber on TCA Flow Solutions

[^5]Effects of Inboard Droop/Camber on TCA Flow Solutions
HSCT Aerodynamics, Long Beach

$\mathrm{M}=0.3, \alpha=12^{\circ}, \operatorname{Re}=8$ million
 $\delta(L E / T E)=30^{\circ} / 10^{\circ}$

Camber

Chordwise Pressure Variation due to Inboard Droop/Camber
This chart shows the effect of inboard geometries on the chordwise pressures. The
drooped geometry reduces the the leading suction peak due to the downward camber but
has a similar vortex induced suction near the leading edge as compared to the baseline.

[^6]Chordwise Pressure Variation due to Inboard Droop/Camber
$\mathrm{M}=0.3, \alpha=10 \mathrm{deg}, \mathrm{Re}=8$ million

TCA2.8-28 Flow Analysis
Numerical study of the effect of planform change has been conducted. One of the benefits
of increasing the wing AR is to achieve a higher lift at a lower angle of attack. However,
lower stall angle and flow unsteadiness associated a lower LE sweep angle and higher AR
may have an adverse impact on the aerodynamic performance and control quality.
The objective of this study is to utility CFD analysis to provide a better understanding of
the flow characteristics for the TCA2.8-28 configuration. The effect of the lower leading
edge sweep and a higher aspect ratio on the outboard trailing edge flap effectiveness is
also evaluated.
TCA2.8-28 Flow Analysis

Planform Comparison for the TCA Configurations This figure shows the planform comparison for the baseline and TCA2.8-28 configurations. The planform change occurs only in the outboard wing panel with a lower LE sweep (28 degrees) and a higher aspect ratio (AR=2.8). The inboard geometry (inboard of the wing leading edge break) was kept the same for both configurations.

AERO2S Flap Optimization Results for TCA2.8-28
To simulate the TCA2.8-28 at a typical high lift condition, the AERO2S linear code was
used to determine the optimum flap setting. The optimum LE flap setting of 25 degrees
was determined based on the maximum leading edge suction level in the region of CL=. 5
corresponding to the design condition. Therefore, the flap setting of (LE/TE) $25 / 10$
degrees has been used in the current study to represent a typical TCA2.8-28 high lift
configuration.
It is noted that the hingewise deflection required to achieve the optimum performance is less for the wing with a lower leading edge sweep. As a result, the optimum leading edge flap deflection for the TCA2.8-28 (25 deg) is less than that of the baseline (30 deg) due to the lower outboard leading edge sweep.
AERO2S Flap Optimization Results for TCA2.8-28

- Optimum Flap Setting $(L E / T E)=25 / 10$ degrees (at $C L=0.5)$

Computational Surface Grid for the TCA2.8-28 25/10
This figure shows the surface grid of the TCA2.8-28 $25 / 10$ wing/body configuration with a
part span leading edge flap. The computational model started with a clean (no flaps)
configuration. The flaps are then modeled using the available automated flap deflection
procedures. Due to the lack of the hingeline definition in the outboard region, the
hingelines are modeled on the lower surface for both leading- and trailing-edge flaps.
The flap effectiveness of the outboard trailing edge flap is also evaluated by perturbing the deflection angle from 8 degrees to 15 degrees while keeping the leading edge flap
deflection at 25 degrees and the inboard and middle trailing edge flaps at 10 degrees.
Computational Surface Grid for the TCA2.8-28 25/10 configuration

- For Flap Effective Study : $\delta_{o / b T E}=8,10,15$ degrees
Flow Solution for the TCA2.8-28 25/00 Configuration
The flow solution for the TCA2.8-28 $25 / 00$ configuration at $\alpha=10$ degrees is illustrated in
this figure which shows the surface pressure and some particle traces released along the
LE and the wing tip. Flow acceleration around the inboard rounded LE and the outboard
hinge line is clearly visible as indicated by the low pressure regions (colored by blue and
green). The formation of the leading edge vortex just inboard of the part span flap as well
as the wing tip vortex are visible through the releasing of particle traces.
TCA2.8-28 25/10 Flow Solutions at α-sweep This figure shows the plan view of the surface pressure and the limiting streamlines for the TCA2.8-28 25/10 configuration at alpha-sweep. The footprint of the inboard leading edge vortex is clearly visible as indicated by the vortex induced low pressure region and the associated spanwise flow. The inboard leading edge vortex is seen to move upstream toward the apex as the angle of attack increases. In the outboard region the flow remains somewhat attached up to $\alpha=10$ degrees. At higher angles of attack, a leading edge.
TCA2.8-28 25/10 Flow Solutions at α-sweep

Lift \& Drag Comparison for TCA2.8-28
Since there is no test data available for the TCA2.8-28 configuration, the CFL3D solutions
are compared with the linear AERO2S results.
This figure shows the lift variation as a function of angle of attack. The comparison for the
$25 / 00$ case at alpha= 8 deg. shows a good agreement. This is to be expected since the
flow is primarily attached under this condition. On the other hand, the linear code probably
over predicts the lift when the trailing edge flaps are modeled since the viscous effect of
boundary layer becomes important when the trailing edge flaps are modeled. In addition,
the outboard stall phenomena predicted by the CFL3D code at high angle of attack further
drives the linear and nonlinear solutions apart.
The drag variation as a function of angle of attack is also illustrated in the figure. A skin
 account for the viscous effects at low to moderate angles of attack. As a result, the numerical results agree quite well for the alpha=8 degrees cases with and without the TE flaps. However, the deviation of the solutions arises as the outboard wing panel becomes separated, and the discrepancy magnifies at higher angles of attack.
Lift \& Drag Comparison for TCA2.8-28
HSCT Aerodynamics, Long Beach

Counts to AERO2S
QEDEINE

Pitching Moment comparison for TCA2.8-28 This chart shows the pitching moment comparison. A good agreement is shown for the 25/ 00 case in the linear region. For the $25 / 10$ cases, however, some discrepancies are difference in the solutions increases at higher angles of attack when the flow condition is in fact dominated by the viscous (nonlinear) phenomena. The rapid decrease in nosedown pitching moment at higher angles of attack is a result of the leading edge vortex that moves further upstream and the outboard flow separation. Clearly, the linear method does not capture the break in the pitching moment curve due to vortex separation.
Pitching Moment Comparison for TCA2.8-28
, Long Beach
AERO2S: $25 / 00$
AERO2S: $25 / 10$
CFL3D : $25 / 00$
CFL3D $: 25 / 10$

TCA2.8-28 Outboard TE Flap Characteristics In an effort to better understand the control authority of the outboard trailing edge flap,
numerical simulation of variable outboard trailing edge flap deflection has been conducted
for the TCA2.8-28 configuration. The flow solutions have been obtained for flap (LE/TE)
deflection of $25 / 10$ degrees while varying the outboard trailing edge flap at 8,10 and 15
degrees. The total lift variation as a function of the outboard trailing edge flap deflection
for alpha=10 and 15 degrees are shown in the figure. The upper surface flow patterns
corresponding to the upper and lower bound of the outboard trailing edge flap settings are
inserted in the figure for illustration.
At $\alpha=10$ degrees, the flow pattern on the outboard trailing edge flap is seen to be attached
at $\delta=8$ degrees and the flow becomes separated at $\delta=15$ degrees. The control
effectiveness of the flap upper surface decreases as the flow becomes separated on the
flap surface. As a result, there is an drop in the lift slope at higher flap deflection angles.
At $\alpha=15$ degrees, the flow is virtually separated along the leading edge. A similar flow
pattern on the outboard trailing edge flap for the upper and lower bound of the flap
deflections implies that the flap effectiveness due to the upper surface vanishes when the
outboard wing is completely separated. The additional flap control power at a higher
deflection angle is primarily attributed to the higher pressure acting on the flap lower
surface and varies linearly with the deflection angle.
Baseline TCA Outboard TE Flap Characteristics
For comparison, this chart shows the lift variation as a function of the outboard trailing
edge flap deflection for the baseline TCA $30 / 10$ configuration. For both of the angle-of-
attack cases, the lift is shown to increase linearly with the increase of the outboard trailing
edge flap deflection. At $\alpha=10$, the outboard trailing edge flap is dominated by a spanwise
flow and the linear lift increase at a higher flap deflection is primarily attributed to the
higher pressure acting on the lower surface. Similarly, the formation of the outboard
leading edge vortex at $\alpha=15$ degrees induces separated flow on the upper surface and the
linear increase in lift is also due to the contribution from the lower surface.

Surface Flow Patterns at an Off-Design Condition
The effect of leading edge sweep on the surface flow pattern at a high angle of attack
condition is presented in the figure. The solutions are obtained for TCA2.8-28 $25 / 10$ and
TCA2.0-52 $30 / 10$ configuration, at the same free stream condition of $M=0.3, \alpha=15$
degrees, with Reynolds number of 8 million. A similar vortex dominated flow pattern is
observed for both configurations since the inboard geometries for the both configurations
are the same. For the higher outboard leading edge sweep case (baseline TCA), the
outboard is dominated with vortical flow that originates near the wing break. As the
outboard leading edge sweep decreases, the flow pattern gradually becomes chordwise
separation. The chordwise separation often creates potentially unsteady flows.

Summary - 1
In summary, numerical study of the planform variation and leading edge geometries has
been performed to better understand their impact on the high lift performance. The
numerical solutions have shown to compare favorably with the available test data. favorable attached flow environment. However, large leading edge flap deflection creates a higher suction around the hingeline which increases the probability of hingeline leading edge flap surpass the part span in performance and in pitching characteristics. The inboard camber increase promotes attached flow, but its effectiveness would be a function of degree of camber, chordwise extent, upper surface curvature and the leading edge radius.
SUMMARY - 1
- Sensitivity studies of TCA planform and LE variation have been
conducted to provide a better physical understanding of the flow
favorably with test data and associated flow physics
(1) LE flap deflection reduces the pressure peak near LE
- promotes attached flow
(2) Higher flap deflection creates higher hingeline suction
- promotes hingeline separation
(3) Full span LE flap surpasses part span performance
- suppresses inboard LE separation
(4) Inboard camber promote attached flow, effectiveness=
f(degree of camber, chordwise extent, curvature, LE radius)
Summary - 2
The numerical results obtained for the TCA2.8-28 configuration have shown that the increase in aspect ratio results in a higher lift at low angle of attack. The benefit is

 growth for trailing edge flap modeling, and when the flow is massively separated.
The outboard trailing edge flap for the TCA2.8-28 should perform as well as or better than that of the baseline TCA, partially due to the outboard attached flow at a similar CL.
The outboard flow separation characteristics change from a normally stable vortex to somewhat chordwise separation at high angle-of-attack conditions as the leading edge sweep decreases. A chordwise separation typically produces potentially unsteady flows.

High Lift CFD Activities
The current CFD activities at Long Beach primarily involve in the pre-test analyses for the ongoing TCA-3 test and the upcoming TCA-4 test. The numerical studies are focused in the inboard leading edge camber increase, variable leading edge flap deflection, TCA planform variation as well as canard integration for high lift performance assessment. Post-test validation will be conducted once the test data becomes available. Additional parametric studies will be initiated to optimize the aerodynamic performance for various high lift systems.

This page is intentionally left blank.

Keith Ebner
Boeing Commercial Airplane Group
February 9, 1998

Q ETOENNE:

HSCT High Lift Aerodynamics
The topics included in this presentation are:

- A brief look at the differences between the TCA and the PTC that are important to high lift aerodynamics.
- An overview of the process that is used to evaluate the high lift characteristics. This process has evolved
through discussions and agreements reached in the TI ADP work including representatives from NASA and
industry.
- A brief discussion of the baseline data that is used in configuration assessments.
- A detailed look at the major steps included in the buildup from the baseline data to the PTC untrimmed data. - A discussion of the method used to trim the PTC data using both the canard and the tail. - A summary of the method used to generate programmed flap data
- A brief look at the technology projection application to the programmed flap data
- A discussion of the touchdown requirements and performance

- PTC vs. TCA configuration aspects
- Common process overview
- Baseline wind tunnel data
- Buildup to PTC
- 3-surface optimization
- Programmed flap
- Technology projection
- Touchdown performance
HSCT High Lift Aerodynamics

TCA vs. PTC

HSCT High Lift Aerodynamics
There were two changes that were made to the TCA in the layout of the PTC that significantly affect the high lift performance.
The outboard wing span was increased giving both a larger wing area and a higher aspect ratio. The higher aspect
ratio will provide a high lift-to-drag ratio, thereby significantly contributing to improved noise performance at
cut-back.
A canard has been added to the PTC. Canards offer the benefit of trimming with positive lift, thereby allowing the wing and tail to fly at lower lift-coefficients for the same total trimmed lift-coefficient as a 2 -surface airplane. In addition to the small lift-to-drag ratio improvement, the canard offers an airplane attitude reduction at constant trimmed lift-coefficient.
 candidate configurations. The flow chart summarizes the steps used to build up from wind tunnel data the trimmed lift curves and drag polars of new configurations.
The steps to the left of the dashed line are not routinely performed. These steps are only required when a new wind tunnel database is obtained.
The steps to the right of the dashed line are performed for each flap setting with the exception of calculation of $\Delta C_{D_{o}}$ in A389. Depending on what baseline data is available, AERO2s may be used to predict not only the effects of the planform changes from the baseline configuration to the new configuration, but also the effects of flap deflection changes.
In the case of the PTC buildup, the Ref H baseline data set only includes the LE/TE flap combinations of 00/00, $00 / 30$, and $30 / 10$. Any other flap settings for the PTC are predicted using AERO2s to increment from one of these available baseline settings. In the case of the programmed flap, the process is used 169 times (13 leading edges and 13 trailing edges) to create 169 different polars that are interpolated to find the LE/TE combination giving the best L/D.
Common Process

\section*{| $\stackrel{\Im}{3}$ |
| :--- |
| | Ref H}

HSCT High Lift Aerodynamics
The plots show the wind tunnel data used as the basis of the PTC buildup. The data were obtained in the 14×22
LaRC wind tunnel on the Ref H configuration. The appropriate wall corrections have been applied along with
tare and interference corrections. Nacelle internal forces and nacelle base drag corrections have been made. All
data is gear up.
The Ref H data shown is for LE/TE flap combinations: $00 / 00,00 / 30$, and $30 / 10$.
Due to the remaining uncertainty about upflow in the 14×22, upflow corrections have not been applied to the wind tunnel data.

Q acane: Wind Tunnel to Flight (Ref H)
The large difference in Reynolds number between the 14×22 model and the flight vehicle requires accounting for the skin friction changes. The table shows the buildup of the skin friction adjustment using NTF data to obtain a major portion of the adjustment. A389 is used for the adjustment from the maximum NTF Reynolds number to the flight Reynolds number.
Full scale vehicles typically have excrescences that do not exist at wind tunnel model scales. The excrescence
portion of the build up is also shown in the table.

Adjustments
HSCT High Lift Aerodynamics
After the Ref H data is adjusted to the Flight level drag, an additional skin friction correction is made to account
for the configuration differences between the Ref H and the PTC. The table shows how the increment is
obtained.

 Skin Friction

ents
70.9 counts
$\frac{-(72.1 \text { counts })}{\Delta C_{D}=-1.2 \text { counts }}$
Skin Friction Drag adjustments
from $\begin{aligned} & \text { Ref } \mathrm{H} \text { (flight) } \\ & \text { to } \quad \text { PTC (flight) }\end{aligned}$
PTC C $_{\mathrm{D} 0}$ (A389)
Ref H C $\mathrm{C}_{\mathrm{D} 0}$ (A389)
Includes excrescence factor
AERO2s Lift Increments
HSCT High Lift Aerodynamics
AERO2s is used to calculate the effects planform and flap setting changes on lift, drag, and pitching moment between the reference configuration and the new configuration. The following three figures show these effects for the change from the Ref H configuration to the PTC.
Intentionally blank.
Pitching Moment Incs.

$$
\begin{aligned}
& \text { Ioment Incs. } \\
& \hline \\
& \text { Pitching Moment } \\
& \text { increments } \\
& \text { calculated by } \\
& \text { AERO2s from Ref H } \\
& \text { to PTC } \\
& \Delta C_{M}=C_{\text {Mrc }}-C_{\text {Mrest }}
\end{aligned}
$$

HSCT High Litt Aerodynamics
For the gear down configurations gear effects are added to the PTC gear up build up. The gear effects shown in
the figure are wind tunnel based with a correction made for reference area differences.
The presence of the gear influences lift only slightly, while the drag impact is rather large.

Gear Effects
$\longrightarrow-1$

$\stackrel{\ddots}{E}$

The effects of all of the increments discussed thus far are shown in the plots. The 00/30 data includes the gear
effects.

HSCT High Lift Aerodynamics
A method has been developed in the common process discussions that can be used to determine the optimum trim
settings for the canard on a 3-surface airplane. The method achieves an optimum by expressing the additional
drag created by trimming the wing/body pitching moment in terms of the individual drag contributions of the
canard, wing, and tail. An equation representing this trim drag is then minimized and simplified to provide the
best canard lift as a function of wing/body C_{L} and C_{M}.
Once the best canard lift is determined for a particular wing/body C_{L} and C_{M}, the effects of the canard (lift, drag,
and pitching moment) on the airplane are added to the wing/body alone data. This wing/body/canard data is then
trimmed with the tail.
The table of data above the flow chart lists the values used for the PTC 3-surface method of determining the
optimum canard lift.

3-Surface Trimming
The plots show the optimum canard lift-coefficient as a function of wing/body C_{L} and C_{M} for the PTC.
The method has an option to limit the canard lift-coefficient. The effects of this option can be seen on the $00 / 30$
data where the max canard lift-coefficient was set to be 1.0 .

HSCT High Lift Aerodynamics

$$
\begin{aligned}
& \text { The results of the } 3 \text {-surface trimming for the } 30 / 10 \text { flap setting are shown in the plots. The wing/body data is } \\
& \text { plotted with the short-dashed line. After the optimum canard lift-coefficient is calculated, the canard effect is } \\
& \text { added to the lift curve - solid line. The best canard setting, however, is not one that completely trims the airplane. } \\
& \text { The tail is used to trim the remaining wing/body/canard pitching moment resulting in a slight lift reduction from } \\
& \text { the wing/body/canard lift level- long dashes. } \\
& \text { The plot to the right magnifies the area of interest. }
\end{aligned}
$$

Trim Effects on Drag

$$
\begin{aligned}
& \text { HSCT High Lift Aerodynamics } \\
& \text { The results of the 3-surface trimming for the 30/10 flap setting are shown in the plots. The wing/body data is } \\
& \text { plotted with the short-dashed line. After the optimum canard lift-coefficient is calculated, the canard effect is } \\
& \text { added to the lift curve - solid line. For clarity only the non-elliptic portion of drag is shown in the plots. } \\
& \text { The canard does not completely trim the airplane. The remainder of the trimming is done with the tail, which } \\
& \text { also adds drag. } \\
& \text { The dot-dash line represents the trimmed polar if there were no canard. This data, however, is somewhat } \\
& \text { pessimistic because the tail size on the PTC would not be large enough without the canard. A larger tail would } \\
& \text { improve the trim drag characteristics of the tail-only airplane. }
\end{aligned}
$$

HSCT High Lift Aerodynamics
30 counts
$\sim 20,000$ lbs MTOW

Flaps $30 / 10$

Trim
For the climbout segment of flight, the programmed flap system adjusts the leading edge and trailing edge flap settings to obtain the best L / D for the current airplane lift-coefficient. This maximizes climb gradient for a given thrust setting, which provides the highest cut-back altitude to minimize community noise.
To predict the programmed flap lift curve and drag polar for a particular configuration the process illustrated in the figure is followed. A matrix of 169 separate polars is created representing the high lift characteristics of various leading edge and traling edge combinations. These polars (using the current common process) all determined by AERO2s to account for both the configuration change and the flap setting changes. Each of these 169 polars are created separately by running through the buildup process mentioned previously. Each of these polars is then interpolated at a series of lift-coefficients to determine which flap combination offers the best L/D at each lift-coefficient. The resulting polar is termed the "status" programmed flap polar.
At each of the lift-coefficients the angle-of-attack for the best flap combination is also determined.

Qaseser Programmed Flap (Status)
HSCT High Lift Aerodynamics
The plots show the resulting status programmed flap lift cuve and flap schedule for the PTC. Each plot contains
two sets of data. The dashed line data represents the programmed flap setting and lift curve that result from
selecting from only the 169 polars of the matrix. The solid line data represents the programmed flap setting and
lift u the that result from interpolating through the large matrix giving a smoothly varying flap setting throughout
the polar and lift curve.

The plots show the status programmed flap L/D and suction parameter. The 3-surface target (projected technology) suction level of 93% is also indicated.

Technology Projection

HSCT High Lift Aerodynamics
To obtain the targetted suction level of 93% at $\mathrm{C}_{\mathrm{L}}=.5$ a drag reducing increment must be applied to the status level data. The plot on the right shows the required drag increment to increase the suction level to 93% from the status level. At $\mathrm{C}_{\mathrm{L}}=.5$ the drag reduction is about 7.5 counts or about 2% of total drag.

The drag increment applied is washed out to zero at low and high C_{L} values.
Projection
drag do we need?

A0
How much less

HSCT High Lift Aerodynamics
PTC vs TCA

HSCT High Lift Aerodynamics The previous slide detailed the method used to determine the required minimum flap setting to meet the
touchdown requirements. What is not shown is that there is a family of leading edge and trailing edge flap
combinations that will meet the requirements. If the leading edge flap is set to 25 degrees, the trailing edge flap
only needs to increase to 18 degrees.
The plot shows the penalty if the approach were flown at the $25 / 18$ touchdown flap setting rather than the
programmed flap setting. The penalty is about 4% in L / D.
Q BOENNE Landing

Conclusions
HSCT High Lift Aerodynamics
Intentionally blank.

Q FaENE
HSCT High Lift Aerodynamics
Conclusions:

But ...
HSCT High Lift Aerodynamics
Intentionally blank.

This page is intentionally left blank.

This page is intentionally left blank.

-

[^7]
OUTLINE The presentation of this paper is divided into five sections:

4) Concluding remarks, and
5) current plans
ヨNilıno

> OBJECTIVES
> The objectives of this study are:

1) to develop an integrated wind-tunnel/free-air CFD process to speed up CFD turnaround time in HSCT

 high-lift configuration development,2) to study the effects of wind-tunnel wall and supports on the model aerodynamic characteristics, and
3) to validate/evaluate the CFD results by comparison with experimental data.
SヨNIIつヨ「g0

Develop an integrated wind－tunnel／free－air CFD process
to speed up CFD turnaround time in HSCT high－lift
configuration development Investigate the effects of wind tunnel wall and model
supports on the model aerodynamic characteristics Validate／evaluate the CFD resluts by comparison with experimental data
ACCOMPLISHMENTS IN1997
During FY 1997, a working CFD procedure has been developed and tested for wind tunnel flow simulation starting from

force and moment integrations. The procedure will be discussed in the next two view graphs

A report, Boeing NA-97-1289, has been written to document the works performed in 1996-1997. Most of the materials presented in this paper are extracted directly from this report.

Developed a CFD process for wind tunnel CFD flow
simulation
Developed a CFD process for wind tunnel CFD flow
simulation
Obtained a Navier-Stokes CFD solution for the 4\%-scale
M2.4-7A Arrow Wing inside the NASA/Ames 12-ft wind
tunnel with model supporting posts Documented CFD process, results, and comparison with ,
wind tunnel test data as a Boeing report, NA-97-1289

$$
\text { \} }
$$

$$
\ldots
$$

L66 L NI SLNヨWHSI7dWOO9V

都
PROCEDURE FOR CFD SIMULATION OF WIND TUNNEL FLOW
This is a self-contained working CFD procedure for wind tunnel flow simulations. Programs are provided at every stage in the process to perform various tasks.
The procedure has effectively coupled the widely used NASA/LaRC's CFL3D/MAGGIE package with the NASA/Ames' FOMOCO package for overset grid flow simulations and force and moment integrations. As shown in the flow chart, he linkage between the two sotiware packages is estabished by two utilities MKIB and MERGEGIB. NKIB RERGEGIB MKIB into the PLOT3D/FAST gid il produced by CFL 3D to recreate combines ine connectivity informaitor FOMOCO code. This recreated PLOT3D/FAST grid file and the CFL3D produced PLOT3D/FAST Q file can then be fed into FOMOCO for force and moment integrations with consideration of grid overlapping.
Also used are the NASA/Ames' FAST and XYPLOT. BROWSF is a PLOT3D/FAST grid and Q data based postprocessor. It's capabilities include listing and outputting various flow properties at user-specified grid points and/or at intersection between grids and any user-specified space plane. In addition, coordinate scaling and various coordinate transformations may be performed. It is of particular useful in processing CFD results to compare for models of varying scales.

[^8]
FOMOCO ZIPPER GRIDS
The top figure shows two overlapping surface grid regions. To account for grid overlapping, FOMOCO constructs a hybrid surface grid with zipper grids filling in each of the overlapping regions as shown in the lower figure. Force and moment integrations are performed on the non-overlapping hybrid grid.
HSCT ARROW WING M2.4-7A
The three CFD solutions to be presented are:

1) the full-scale free-air case,
2) the 4%-scale model/tunnel case, and
3) the 4%-scale model/tunnel/posts case.
The full-scale free-air solution was provided by Dr. Yeh of Boeing. The solution of the 4\%-scale model/tunnel case
 tunnel wall geometry is the NASA/Ames 12-ft wind tunnel cross section.
All the flows were calculated at Mach $=0.3, \alpha=10$ degrees, and $\mathrm{Re}=8$ million.
The airplane has a 40-degree deflected LE flap and three 10-degree deflected TE flaps. A wing cross section is shown in the figure.
OVERSET GRID
The key to speeding up CFD turnaround time is to employ overset grid technique, where a computational grid may be
constructed from a series of simple, independently generated component grids. the overset grid in the plane of symmetry. The CFD grid consists of 9 blocks with a total of $6,214,873$ grid points.

MAGGIE CALCULATED OVERSET GRID
This figure shows the overlappings of the 9-block grid in the plane of symmetry.

CFD PARTICLE TRACES
Comparison of the lower left picture with the other two shows clearly that the model supporting posts have altered the
over-wing vortex flow. In fact, the over-wing vortex flow has been suppressed and the flow became attached.
Wind-tunnel wall alone does not alter the over-wing vortex flow structure as shown in the upper and the lower left figures.

There is a low pressure pocket on the wing upper surface in the free-air and mode/tunnel cases as shown in the upper
two pictures. This low pressure pocket is due to the over-wing vortex flow as shown in the previous figure.
The patterns of the surface pressures for the free-air and model/tunnel cases are very similar as shown in the two upper pictures. However, the pattern of the surface pressure contours for the model/tunnel/posts case is very much different from those for the free-air and model/tunnel cases as shown in the figure.
The flow is unsteady due to the shedding of vortices from the two supporting posts as shown in the figure.
The current CFD grid was not intended to accurately capture the details of the unsteady flow phenomenon.

This figure shows two 3-D views of the CFD calculated surface pressure contours for the model/tunnel/posts case.
LOCATION OF THE MOMENT AXIS
The location of the center of the moment axis is shown in this figure for $\alpha=10$ degrees configuration. Also shown is the CFD coordinate system which has it's origin located at the pivot point and the x, y, and z axes pointing downstream, vertical, and spanwise directions, respectively.

COMPARISONS OF FORCES AND MOMENT
Here, the CFD calculated and wind tunnel measured C_{L}, C_{D}, and C_{M} are compared. The test data are from the
NASA/Ames 12-ft wind tunnel test run 125. The test data are given at $\alpha=9.894$ degrees and 10.916 degrees and have
been corrected with the effects of tunnel wall, posts, and angle of attack
 the free-air case. The effect of the model supporting posts is to lower the values of C_{L}, C_{D}, and C_{M} as compared with the model/tunnel case. Both CFD wind tunnel cases predict pitch up while pitch down was calculated by the free-air case and measured by the wind tunnel test.
Except C_{M}, the calculated free-air C_{L}, and C_{D} are correlated very well with the test data. Since the test data are in
corrected form, a quantitative comparison can not be made between the test data and the two CFD wind tunnel cases.

THE SPAN STATIONS
It is regrettable that at the time this paper was written, the measured surface pressure data from the NASA/Ames $12-\mathrm{ft}$
wind tunnel tests were not available for correlation with CFD results. Therefore, in the following, the pressure comparisons
of the CFD results will be made with the measured pressure data from NASALLaRC $14^{\prime} \times 22^{\prime}$ wind tunnel test run 152 at
$\alpha=9.92$ degrees.
This figure shows the five span stations where the measured pressure data are available. They are, in the full-scale
dimensions: $115.25^{\prime \prime}$ (model, $4.61^{\prime \prime}$), $119.75^{\prime \prime}$ (model $\left.7.67^{\prime \prime}\right), 372.25^{\prime \prime}$ (model, $14.89^{\prime \prime}$), $602.25^{\prime \prime}$ (model, $24.09^{\prime \prime}$) and
$715.00^{\prime \prime}\left(\right.$ model $\left.28.60^{\prime \prime}\right)$.
COMPARISON OF CHORDWISE C_{p}
The pressure distributions of the free-air and model/tunnel cases are very similar. In most of the comparisons that follow the model/tunnel case will not be presented.
This figure shows the chordwise pressure comparisons for the two inboard wing sections. The solid lines represent the CFD calculated pressures for the model/tunnel/posts case, the chaindot for the free-air case, and the symbols for the test data from the NASA/LaRC $14^{\prime} \times 22^{\prime}$ wind tunnel test run 152.
In general, the characteristics of the pressure distributions are very similar for all the cases. The lower pressures on the ower surface for the model/tunnel/posts case as compared with the free-air case are due to the accelerated air flow due to the model supporting posts.

COMPARISON OF CHORDWISE C $_{\text {p }}$ (Continued)
Again, the low pressure pocket in $0.4<\mathrm{x} / \mathrm{c}<0.8$ for the free-air and model/tunnel cases is due the the over-wing vortex
The test data seems to confirm the CFD calculated effect of the model supporting posts on the over-wing flow when the solid line is compared with the symbols.

COMPARISON OF CHORDWISE C_{p} (Concluded)
The chordwise pressures for the two outboard sections are shown in this figure. The lower surface pressures are

THE AXIAL STATIONS

COMPARISON OF SPANWISE C ${ }_{p}$
The discrepancies between the two CFD results are due mainly to the over-wing vortex flow existing in the free-air case.

COMPARISON OF SPANWISE C_{p} (Concluded)
Again, the discrepancies between the two CFD results are due mainly to the over-wing vortex flow existing in the free-air

COMPUTER USAGE
The computer usage is summarized in this figure. All the computations were performed on the NASA/NAS Cray C90.

CONCLUDING REMARKS
A self-contained working CFD procedure has been presented for wind tunnel flow simulations.
The procedure has been applied to obtain two Navier-Stokes solutions for the 4%-scale M2.4-7A model inside the NASA/Ames 12-ft wind tunnel with and without posts.
The effect of the tunnel wall alone was found to give larger values in forces and moment as compared with the
free-air case. However, tunnel wall alone did not change the over-wing vortex flow structure existing in the free-air case.
The effect of the model supporting posts has been found to eliminate the over-wing vortex flow existing in the free-air case. The test data from NASA/LaRC 14'x22' wind tunnel tests seemed to support this observation.
Good quality test data are in need to further validate CFD solutions.
In order to provide adequate and valuable data for CFD validation, it is recommended to use CFD to identify locations of pressure ports for wind tunnel data measurement.

CURRENT PLANS The current plans consist of the following three tasks:
4) Compare the existing CFD solution for the M2.4-7A Arrow Wing in NASA/Ames 12-ft wind tunnel with experimental
data.
5) Evaluate the the agreement with the test data and refine the computational model if necessary.
6) Apply the established computational model to the Technology Concept Aircraft (TCA) model in the NASA/Ames
12-ft wind tunnel and compare the CFD results with the experimental data to be obtained.

				8 8 8 8

This page is intentionally left blank.
86,
Technical Review Feb.

Robin Edwards, Ryan Polito, and
Roger Clark
Boeing, Long Beach
HSR Airframe Technical Review
Los Angeles, California February $9-13,1998$

This figure shows the overview of the high lift program
Q AOEINE• HSR Aiframe Technical Review Feb. '98 HSCT High Lift Aerodynamics
Increase L/D, Develop Analysis/Design Methodology

Demonstrate Greatly Increased L/D Relative to
SST Technology (Suction Parameter $\geq 92 \%$)

$\mathrm{el} \geq 6$
Pla
Ground

Powered Testing
Dynamic GE Testing
Pressure \& Temp. Validation

Aggressive
Tech Projection

Goals
Objectives
Approaches

This figure shows an outline of the presentation
Q BOEINE' HSR Aifframe Technical Review Feb. '98
Outline

HSCT High Lifi Aerodynamics
This figure shows the test objectives for the test of the M2.4-7A
Arrow Wing Model in the Ames 12' Pressure Tunnel
Q botine' HSR Airframe Technical Review Feb. '98
Test Objectives

- Compare results with previous test in Langley 14'x22' tunnel
- Investigate effect of increased le radius
- Investigate Re no effects on an alternate planform
- Optimize le/te flap deflection for climb
- Gather wing deformation data (LaRC)
- Gather flow visualization data - mini-tufts (Boeing)
- pressure sensitive paint (ARC)
This figure shows the main details of the test of the M2.4-7A Arrow
Wing Model in the Ames 12' Pressure Tunnel
Q EOENNE' HSR Airframe Technical Review Feb. '98
TEST DETAILS

$$
\begin{aligned}
& \text { - 1.88-8.51 Million/ft } \\
& \text { - } 7.06-31.96 \text { Million/MAC } \\
& \text { - Pressure range 1-6 atmospheres. } \\
& \text { - Supported by - MDC, BCAG, LMAS, ARC, LaRC. }
\end{aligned}
$$

This figure shows the main details of the 4% M2.4-7A Arrow Wing
Model

Q emejne' HSR Airframe Technical Review Feb. '98 4\% M2.4-7A Arrow Wing Model | Reference Quantities | |
| :--- | :--- |
| Sref | 14.32 sq. ft. |
| CMAC | $45.0^{\prime \prime}$ |
| LE Sweep | $710^{1 / 61.5^{\circ}}$ |
| LE Sweep | $0^{\circ} / 31.2^{\circ}$ |
| AR | 1.84 |

HSR Airframe Technical Review Feb. ‘98
This page is intentionally blank

Comparison with LaRC 14'x22' Test
'98
Technical Review Feb.

HSCT High Lit Aerodynamics Comparison with LaRC 14×22 Data Lift Curve $\begin{gathered}\text { Tail off, } 40^{\circ} / 10^{\circ} \text { Flaps } \\ \text { Lift Va }\end{gathered}$ Lift Curve
 Angle of Attack, α (deg.)
HSR Airframe Technical Review Feb. '98

$$
\begin{aligned}
& \text { This figure shows a test to test comparison of the data obtained in } \\
& \text { the ARC } 12^{\prime} \text { tunnel with that obtained in the LaRC } 144^{\prime \times 22} \text { ' low speed } \\
& \text { wind tunnel. This figure shows the drag polar comparison. In the } \\
& \text { expanded plot shown on the right, it can be seen that there is a shift } \\
& \text { in measured minimum drag with the } 12^{\prime} \text { data indicating slightly higher } \\
& \text { drag. At higher lift conditions, the } 12^{\prime} \text { data indicates a lower drag. } \\
& \text { However, between zero CL and CL }=0.5 \text {, the variation in drag } \\
& \text { between the two tests is only } 10 \text { counts. }
\end{aligned}
$$

Q BOEENNE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
Comparison with LaRC 14x22 Data
Tail off, $40^{\circ} / 10^{\circ}$ Flaps - Variation of Lift with Drag

า

Drag Polar
Drag Polar

HSR Airframe Technical Review Feb. '98
This page is intentionally blank
Q ETEINE' HSR Airframe Technical Review Feb. '98
Leading-Edge Radius Modification
Q HEDEINE: HSR Airframe Technical Review Feb. '98
attachment line occurs on the lower surface, a modified leading-edge
was designed to smooth out this region.
‘98
Feb.
Modified to increase
l.e. radius
CFD analysis of 0/0
flaps configuration
used in design

HSCT

H

HSR Airframe Technical Review Feb. '98 $=$
HSCT High Lift Aerodynamics

$$
\begin{aligned}
& \text { The leading-edge modification was developed with the aid of CFD. } \\
& \text { At the time this work was undertaken, the grid generation capability } \\
& \text { did not permit an extensive computational evaluation of the high-lift } \\
& \text { configuration, and so the geometry modifications were evaluated at } \\
& \text { lower lift conditions with the leading-edge flap undeflected. The } \\
& \text { lift/drag ratio shown here verifies that a small increase in L/D was } \\
& \text { achieved up to about } 6^{\circ} \text { angle of attack. At higher angles, the } \\
& \text { leading-edge separation is well established, and small changes in } \\
& \text { leading-edge radius will have little effect on the nature of the flow. }
\end{aligned}
$$

$\frac{1}{5}$
However, for the high-lift configuration, the changes to the leading-
edge radius did not achieve any significant improvement in L / D.
This result emphasizes the need to perform leading-edge design
work with the aid of computational analysis on the full high-lift
configuration.

Q BTOEINE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
Effect of Leading-Edge Radius
$40^{\circ} / 10^{\circ}$ Flaps, Rn $=7.06$ Million
Lift Curve
LID Ratio Variation with Lift

Lift Coefficient, C_{L}

HSR Airframe Technical Review Feb. '98
This page is intentionally blank

Leading- and Trailing-Edge
Flap Optimization
HSR Airframe Technical Review Feb. ‘98

This figure shows the effect of the leading-and trailing-edge flap
deflection on the measured L / D. The leading-edge flap variation
is shown on the left for the tail-off configuration, while on the right,
the trimmed L / D is plotted for various trailing-edge flap
deflections.
The optimum flap configuration identified is 35° leading edge
deflection, and 15° for the three inboard trailing-edge flaps, and
10° for the outboard flap. It is interesting to note that this
optimum trailing-edge flap setting resulted in a lower deflection
for the outboard flap, rather than the increased deflection which
would be expected to provide an improved span load distribution.
The reasons for this are not clearly understood.

$$
\begin{aligned}
& \text { The following figures show the effect of the Reynolds number on the lift } \\
& \text { and pitching moment of the clean wing/body and the optimum high-lift } \\
& \text { configurations. The 12' Pressure tunnel provides a Reynolds number } \\
& \text { range from } 7.06 \text { Million (based on the Reference chord) at atmospheric } \\
& \text { pressure, up to } 31.96 \text { Million at six atmospheres. } \\
& \text { Based on the results obtained from the NTF tunnel for the } 2.2 \% \text { Ref H } \\
& \text { model, there are some transitional effects observed for Reynolds } \\
& \text { numbers up to about } 30-40 \text { Million, after which the flow appears to be } \\
& \text { fully turbulent. It is therefore believed that the Reynolds number range } \\
& \text { which can be achieved in the 12' Pressure tunnel should provide useful } \\
& \text { data. }
\end{aligned}
$$

HSR Airframe Technical Review Feb. '98
Effects of Reynolds Number

HSCT High Lift Aerodynamics

$$
\begin{aligned}
& \text { This figure shows the effect of the Reynolds number on the lift and } \\
& \text { pitching moment of the clean wing/body configuration. } \\
& \text { The lift curve indicates that the lift decreases at the higher Reynolds } \\
& \text { number. While this would be consistent with a reduction in leading-edge } \\
& \text { vortex separation at the higher Reynolds number, that would not be } \\
& \text { expected to result in a change in the lift curve slope at the higher angles } \\
& \text { of attack when the leading-edge vortex will be fully established } \\
& \text { regardless of the Reynolds number. It is believed that the change in lift } \\
& \text { seen here is due to model deformation at the higher dynamic pressure. } \\
& \text { There is a significant shift in the pitching moment between the two } \\
& \text { Reynolds number results. This could be caused be caused in part by a } \\
& \text { lessening of the interference between the support post viscous wake and } \\
& \text { the horizontal tail. It could also be an aeroelastic effect caused by twist } \\
& \text { induced at the wing tips. }
\end{aligned}
$$

This figure shows the effect of the Reynolds number on the drag polar ibody configuration.
‘98
Technical Review Feb.
HSR Airframe and induced drag of the clean wing/body configuration
 the leading-edge vortex behavior.

HSR Airframe Technical Review Feb. '98

[^9]

This figure shows the effect of the Reynolds number on the lift curve
and pitching moment for the optimum high-lift configuration.
It can be seen that there is very little change in lift.
There is a shift in the pitching moment which as discussed above is
believed to be due to the interaction of the support post wake with the
horizontal tail and/or model deformation effects.
Rn Effects $-35^{\circ} / 15 \% / 10^{\circ}$ Flaps
Tail on $\left(i n=0^{\circ}\right)$
Lift Curve

HSR Airframe Technical Review Feb. ‘98
HSCT High Lift Aerodynamics
\[

$$
\begin{aligned}
& \text { This figure shows the effect of the Reynolds number on the drag polar } \\
& \text { and the } L \text { / } D \text { for the optimum high-lift configuration. } \\
& \text { At lower lift conditions, there is again a reduction of about } 10 \text { drag } \\
& \text { counts as the Reynolds number is increased which is consistent with } \\
& \text { the reduction to be expected from the reduced skin friction. Again, } \\
& \text { this difference reduces at higher lift conditions, although the } 31.96 \\
& \text { Million Reynolds number results still show slightly less drag than the } \\
& \text { lower Reynolds number data. }
\end{aligned}
$$
\]

HSR Airframe Technical Review Feb. '98

[^10] Rn Effects $-35 / 15 / 10$ Flaps
Tail on $\left(\mathrm{ih}=0^{\circ}\right)$
L/D Ratio Variation with Lift

$0 / 7$

Drag Coefficient, \mathbf{C}_{D}
Lift Coefficient, C_{L}

Q HETOEINEE' HSR Airframe Technical Review Feb. '98
\[

$$
\begin{aligned}
& \text { As discussed in the previous figures, the increased Reynolds number } \\
& \text { data is obtained by increasing the tunnel pressure. This increase in } \\
& \text { dynamic pressure results in increased loading on the model which will } \\
& \text { result in substantially greater model deformation under highly loaded } \\
& \text { conditions. During the test entry, optical model deformation data was } \\
& \text { obtained for a limited number of configurations. This data has been } \\
& \text { used to perform a numerical evaluation of the predicted aerodynamic } \\
& \text { effects which would be caused by this model deformation for the high- } \\
& \text { lift configuration with } 40^{\circ} \text { leading-edge and } 10^{\circ} \text { trailing-edge flap } \\
& \text { deflection. The following figures present these results. }
\end{aligned}
$$
\]

Model Deformation Effects
Q emeine' HSR Airframe Technical Review Feb. '98

$$
\begin{aligned}
& \text { The optical data obtained consists of wing twist and displacement } \\
& \text { between the wind-off and wind-on model, and data was obtained for a } \\
& \text { range of angles of attack. The results presented here look at the } \\
& \text { effects of the measured deformation which occurred at } 10^{\circ} \text { angle of } \\
& \text { attack. } \\
& \text { This figure shows the measured model deformation for the } 40^{\circ} / 10^{\circ} \\
& \text { high-lift configuration. The deformation data consists of wing twist } \\
& \text { and displacement. } \\
& \text { It can be seen that the displacement at the wing tip is close to } 1^{\prime \prime} \text {, with } \\
& \text { about } 2^{\circ} \text { nose down twist. }
\end{aligned}
$$

‘98
Measured Model Deformation
10° angle of attack, $40^{\circ} / 10^{\circ}$ Flaps, Tail off

Normalized Spanwise Distance, η
This figure compares the grid for the deformed configuration with the
baseline grid. The wing displacement at the tip can be clearly seen.

Qeforine' HSR Airframe Technical Review Feb. '98
This figure shows the effect of Reynolds number for the $40^{\circ} / 10^{\circ}$ high-lift
configuration compared with the computed effects due to the model
deformation.
The experimental drag polar indicates that there is a decrease in drag as the
Reynolds number (and dynamic pressure) is increased. However, the
computational results indicate that the model deformation should lead to an
increase in drag of approximately 30 counts at a constant lift coefficient. This
change is similar in magnitude, although of opposite sign, to the measured
Reynolds number variation. It is therefore clear that the effects of the
aeroelastic model deformation should be fully accounted for in evaluating the
Reynolds number effects.

Drag Coefficient, C_{D}
Drag Coefficient, C_{D}
HSR Airframe Technical Review Feb. '98 HSCT High Lift Aerodynamics

$$
\begin{aligned}
& \text { This figure compares the computational pressure distribution, } \\
& \text { obtained with the Navier-Stokes code, CFL3D, and the measured } \\
& \text { pressure distribution obtained using Pressure Sensitive Paint (PSP). } \\
& \text { It can be seen that the basic flow features are very well predicted by } \\
& \text { the CFD result. The leading-edge vortex originating close to the apex } \\
& \text { of the wing is present in both the computational and the measured } \\
& \text { data, as is a second vortex emanating from the leading edge planform } \\
& \text { break station. }
\end{aligned}
$$

QSETETNE' HSR Airframe Technical Review Feb. '98
This figure lists the main conclusions drawn from this test.
Q BOEENNE' HSR Airframe Technical Review Feb. '98 Summary

- Test provided good tunnel to tunnel comparison
- Little benefit due to increased l.e. radius
- Flap optimization requires intermediate flap deflections
- Reynolds number effects are small
- Computed effect due to model deformation at high
Reynolds number (higher dynamic pressure) is
comparable to the observed Reynolds number effects
- Surface pressure distribution is very well predicted by
CFL3D Navier-Stokes method

This page is intentionally left blank.

Power Effects on High Lift, Stability \& Control Characteristics of the TCA Model Tested in the LaRC $14^{\prime} \mathrm{X}$ 22' Wind Tunnel

February 9, 1998
Paul T. Glessner
(562) 982-6054
paul.t.glessner@boeing.com

High Lift Research
Contract NAS1-20220 Task 33

The powered TCA-2 test performed at Langley's 14 ' x 22' resides under the Test Programs and Techniques Approach within Task 33, High Lift Technology Development.

- Introduction - LaRC 455 in the TCA WTT Plan
- Test Objectives
- Test Configuration Matrix
- 5\% TCA Model Description
- Results
- Conclusions
- Lessons Learned
- Recommendations

The test was performed from August 29th to the 9th of September, 1997. The average run rate, including model installation was 1.5 runs per hour. The picture above depicts the aft end of the powered 5% HSCT TCA model. The model will be discussed in more detail later in the presentation. The above picture will be referred to at that time.

The TCA-2 wind-tunnel test was the second in a series of planned tests utilizing the 5% Technology Concept Airplane (TCA) model. Each of the tests was planned to utilize the unique capabilities of the NASA Langley 14 'x22' and the NASA Ames 12 ' test facilities, in order to assess specific aspects of the high lift and stability and control characteristics of the TCA configuration. However, shortly after the completion of the TCA-1 test, an early projection of the Technology Configuration (TC) identified the need for several significant changes to the baseline TCA configuration. These changes were necessary in order to meet more stringent noise certification levels, as well as, to provide a means to control dynamic structural modes. The projected changes included a change to the outboard wing (increased aspect ratio and lower sweep) and a reconfiguration of the longitudinal control surfaces to include a medium size canard and a reduced horizontal tail. The impact of these proposed changes did not affect the TCA-2 test, because it was specifically planned to address power effects on the empennage and a smaller horizontal tail was in the plan to be tested. However, the focus of future tests was reevaluated and the emphasis was shifted away from assessment of TCA specific configurations to a more general assessment of configurations that encompass the projected design space for the TC.

Test Objectives of LaRC 455

1. Determine Exhaust effects on the Empennage in Free-air (F-A) and in Ground-Effect (G.E.)
 - Baseline ($800 \mathrm{ft} .{ }^{2}$) \& Half ($400 \mathrm{ft}^{2}$) Stabilizers
 - Takeoff vs Flow-thru Eng. Exhaust Nozzles
 - Interference Effects
 a. High Pressure Air Supply Lines
 b. Domed Nacelles

Abstract

The test's main objective was to quantify the effects of simulated engine plumes on the empennage at several thrust levels with emphasis on the thrust level that most closely represents take-off conditions. Additional objectives included investigating: 1) the plumes' effects on the half-sized ($400 \mathrm{ft}^{2}$) baseline tail, 2) difference in nozzle positions to acquire the desired exhaust effects, and 3) the interference effects of the high pressure air supply lines and domed nacelles.

Five configurations that were tested:

1. Takeoff flaps ($\mathrm{LE} / \mathrm{TE}=30 / 20$), 3 Power settings

- Baseline stabilizer
- Half-size stabilizer

2. Undeflected flaps ($0 / 0$), 3 Power settings, baseline stabilizer
3. Takeoff flaps, flow-thru nacelles

- with high pressure air lines installed
- with high pressure air lines removed

The test configuration matrix was structured to ensure the test's main objective would be met and the remaining objectives were prioritized. This matrix was designed into the plan of test (POT) which can be obtained from the "ADAPT" web page. The High Lift and Stability \& Controls objectives for best trimmed lift, L/D, simulation and control power assessment of the exhaust's effects on the tail were combined and prioritized.

The test was centered around the terminal area takeoff and climbout conditions. Most of the test was conducted with the wing in the takeoff flap configuration - leading edge flaps at 30 degrees and trailing edge flaps at 20 degrees (LE/TE 30/20). The clean wing configuration ($0 / 0$) was also studied. The undeflected flap configuration was tested for baseline simulation data and additional confirmation about downwash at the empennage. The data obtained from this test will be additive to the unpowered TCA-1 test data to culminate in a powered, ground effect and free-air TCA database.

The test included runs to determine interference effects that must be accounted for because of the air supply lines and domed inlets. At the start of the test, the need to test the 'flowthru' nozzles was eliminated by the ability to obtain flow-thru NPRs with the takeoff nozzles.

The baseline TCA horizontal tail $(\mathrm{H} 1)$ was primarily used to determine the thrust effects on the empennage. H1 was tested with both 0 degree and -30 degree elevators. A horizontal tail with half the area of $\mathrm{H} 1(\mathrm{H} 2)$ was also tested. H 2 did not have provisions for elevator deflections.

Tunnel Test Conditions

- $\mathrm{Re}_{\mathrm{c}}=7.54 \times 10^{6}$
- Mach Number of 0.245
- Dynamic Pressure of 85 pis
- Nozzle Pressure Ratios (NPR).of 1.04. 1.26 \& 1.51
- $\quad \mathrm{h} / \mathrm{b}$ (height*) of 0.18 ($14^{\prime \prime}$), $0.21,0.30,0.49, \& 1.0$ ($77^{\prime \prime}$)
* height (HGT) is W.L. of l.e. 50% cbar to tunnel floor.

The TCA-2 test was performed at the LaRC 14 ' $\mathrm{x} 22^{\prime}$ atmospheric wind tunnel. The TCA-1 was previously tested in the same tunnel with a balance located in both the body and the tail section.

Three NPRs were tested and the model's height was varied as indicated above.

The model's configuration is based on the TCA 1080-1450 outer mold line (OML) definition released in March of 1996. The model has been designed to be tested in the NASA Langley's 14 ' by 22 ' tunnel both powered and unpowered and also in NASA Ames' 12^{\prime} pressure tunnel, unpowered, for Reynolds number effects. The model was constructed to determine the TCA configuration's low speed aerodynamic performance, provide a database for subsequent analysis and simulation, and examine the simulated nozzles' propulsion effects on the TCA configuration's performance, stability and control in ground effect.

The model's wing was originally designed to accommodate high pressure air plumbing necessary for powered testing. All four nacelles were supplied with separately controlled high pressure air, regulated by two choke plates in each nacelle, in order to acquire desired Nozzle Pressure Ratios (NPR). The above figures depict the provisions made for the high pressure air supply lines; their stiffness introduced concerns about tare and routing. The sixcomponent internal balance was located between the mid-body and empennage. This facilitated the measurement of the aft-body's control surfaces' aerodynamic forces without requiring a complex tare reduction mechanism or mathematical tare removal. High pressure air supply hoses required special routing through a sliding slot in the floor aft of the support post. A diagram of the nacelle's called a 'Jet Flow Simulator' follows in a few pages.

Two sets of nozzles were built for the nacelles. One set was intended for use at the takeoff NPR settings, while the other was for the "flow-through" setting. Early studies showed that swapping the nacelles during the test was unnecessary and the "flow-through" NPR setting could be run with the takeoff nozzles. Slide \#4 can be viewed for additional detail.

High Lift Aerocynamics, Long Beach

Jet Flow Simulator

The Jet Flow Simulator diagram depicts its functional construction. The high pressure supply lines injected air at approximately 340 psi to the nacelle's plenum. The pressurized air was moved along the circular to rectangular transition and choked through the two choke plates \#1 and \#2 to achieve the desired internal flow conditions. The Nozzle Pressure Ratio was determined by dividing the total pressure at the charging station over the ambient static pressure. This enabled an exhaust plume that most closely represented the full-scale plume.

Mass flow rate was determined by pressures and temperatures obtained from the total and static pressure probes and the thermocouples. Total pressure probe placement was important. Erroneous total pressure readings could have been obtained if the estimated internal flow profile was not known prior to start of the test. The probes were placed in a cosine distribution to best capture the conventional channel flow profile.

The takeoff and flow-thru nozzles were separate pieces attached to the aft end of the nacelles. The designed nozzle deflections were similar. Since the flow-thru NPR was attainable, the time spent to change between the two nozzles was saved by deleting the flowthru nozzle from the test matrix.

Results

$\Delta \mathrm{C}_{\mathrm{m}}$ Exhaust_gefa $=\left(\mathrm{C}_{\mathrm{m} \text { full thrust }}-\mathrm{C}_{\mathrm{m} \text { flow-thru }}\right)$ ground effect $-\left(\mathrm{C}_{\mathrm{m}}\right.$ full thrust $-\mathrm{C}_{\mathrm{m}}$ flow-thru $)$ free air

"If ΔC_{m} Exhaust_gefa >0.015, test entire matrix."

1. Ground Effects achieved by varying the model HGT from $77 \prime$ 14".

2. Exhaust Effects via varying NPR: $1.04 \& 1.51$.

The following data are presented as plots of pitching moment coefficient both absolute and incremental. Pitching moment was selected as the parameter to be used as a metric because small changes in the tail's local flow field are easily observed. Although the results are shown and discussed as incremental changes in pitching moment, the results are also quantified in terms of the change in the local angle of attack at the tail resulting from a change in either stabilizer incidence, downwash, or airplane angle of attack. The change in local angle of attack at the tail was determined by dividing the measured incremental pitching moment by the stabilizer effectiveness (typically $-0.0045 /$ deg.). Although the above equation sums up the additive effects of both ground effect and power, the following plots predominantly separate these effects for clarity. The plots and related text predominantly address the 10 degree angle of attack region. This was chosen as a reasonable alpha for takeoff and initial climbout regimes.

A delta of 0.015 in pitching moment coefficient was agreed on by team researchers prior to the start of the test in order to determine how much of the test matrix would have to be tested. If the delta obtained was greater than 0.015 , the test was to progress through the entire test matrix of heights and power settings. The delta obtained early on in the test was greater than the 0.015 ; therefore the test proceeded accordingly.

Testing in ground effect was performed by moving the model from the tunnel centerline of $77^{\prime \prime}$ to 14 " above the tunnel floor. An NPR of 1.26 was also obtained but used mainly for trends and not presented here.

The test centered around the takeoff flap setting of LE/TE $=30 / 20$ with the stabilizer/elevator deflected to $-15 /-30$. This stabilizer/elevator deflection provides the most airplane nose-up pitching moment simulating the nosewheel lift-off maneuver. Although the data was obtained on the aft balance, all pitching and yawing moments are referenced to the 50% cbar of the wing. Tail-off and nominal stabilizer settings of $-15 / 0$ were also tested to determine stabilizer effectiveness and downwash at the horizontal tail.

Pitching Moment Variation with Angle of Attack

The above plot shows the impact of domed inlets at both 77 inches and 14 inches ground heights. A positive increment in pitching moment due to the presence of the domes is seen at both heights. While the impact of the domes is relatively small at the maximum height, equivalent to a $1 / 4$ degree change in tail angle of attack, the impact at the minimum height is significantly more, about $3 / 4$ degree change in tail angle of attack.

The above chart shows the impact of the air supply lines on the measured pitching moment coefficients. A positive increment in pitching moment is seen due to the presence of the air supply lines in free-air, while a negative increment is seen in ground effect. The magnitude of the increments at 10 degrees angle of attack appear to be the same at both heights and are equivalent to a $1 / 4$ degree change in tail angle of attack.

The above chart shows the impact of NPR on pitching moment in both free-air and ground effect for the takeoff flaps and the stabilizer/elevator deflection of $-15 /-30$ configuration. As NPR is increased from 1.04 to 1.51 , a significant increase in pitching moment is observed at the minimum height, approximately equivalent to a 3.5 degree change in stabilizer incidence. However, at the maximum height, the effect of NPR is greatly diminished and results in a decrease in pitching moment, approximately equivalent to a $3 / 4$ degree change in stabilizer incidence.

The overall nose-down tendency in free-air is most likely due to the entrainment of the wing's downwash with the exhaust plume thus reducing the local angle of attack of the horizontal tail. The crossover in free-air at 16 to 18 degrees angle of attack indicates that increasing NPR has little impact on pitching moment because the tail is in the wing's wake.

The ground effect set of curves show a significant amount of nose-up due to a dynamic pressure or venturi effect acting on the lower surfaces of the horizontal tail. The slide on page 19 shows oil flow visualization highlighting this phenomenon.

The next slide summarizes the impact of the interference effects on the above measured data.

The above chart shows the combined effects of domed inlets and air supply lines on the measured incremental pitching moment coefficients. The final increment data (not including wind tunnel data reduction schemes) will be obtained by removing the cumulative power artifact effects (interference of domed inlets and air supply lines) from the measured data. The final power effect increments in both free-air and ground effect can be applied to the simulation database.

Note that in ground effect the artifact effects negate each other while in free-air they are additive and thus increase the measured pitching moment increments. Final incremental data for the above case shows the free-air pitching moment increment decreasing to just over one degree of tail angle of attack while the ground effect increment remains the same.

Pictures: Top $1->2$, Bottom $3 \rightarrow 4$.
The above pictures illustrate some of the oil flow visualization performed during the test. These pictures are of the same run from different perspectives. Note that the oil pattern in picture 2 looks very symmetrical but when viewed from a different angle, such as picture 1 , the flow lines are somewhat distorted and seem 'braided.' Although it was thought that the air lines were going to cause significant interference, they did not by virtue of the results shown on the previous chart. Pictures 1-3 depict the wing's cross-flow and vortices even at this relatively small angle of attack of 8 degrees. It should be evident from the above pictures that the air is sped up under the tail consistent with a venturi effect which creates lower pressures and thus results in the increased airplane nose-up pitching moment increment. Picture 4 is just a side view; the tail's upper surface can be seen.

Pitching Moment Variation with Angle of Attack

The next four slides show the effect of NPR on both elevator and stabilizer effectiveness for stabilizer/elevator deflections of $-15 / 0$ and $-15 /-30$ with takeoff flaps LE/TE 30/20. The data are presented in free-air and in ground effect separately. The data are presented at the two heights as both absolute and incremental.

The above chart shows the absolute pitching moment data in free-air. As NPR is increased, the elevator's effectiveness is shown to reduce by 12% while the stabilizer's effectiveness is increased by 4.5%. This reduction of elevator effectiveness is puzzling and is better illustrated in the next slide.

The above chart shows the incremental pitching moment effect of increasing NPR in free-air on the two specific stabilizer/elevator combinations. The increment is calculated by subtracting the absolute data at $\mathrm{NPR}=1.04$ from the absolute data at 1.51 for each stabilizer/elevator configuration shown. The incremental pitching moment effect of NPR on the $-15 / 0$ stabilizer deflection is positive over the entire angle of attack range. The positive increment equates to approximately a -2 degree stabilizer incidence change.

Note, as NPR is increased with the stabilizer/elevator deflection of $-15 /-30$, the pitching moment increment is negative for the terminal area alpha range. This reduction in elevator effectiveness equates to approximately a $3 / 4$ degree change in stabilizer incidence.

Repeat runs are also shown in this plot. Repeatability is shown to be reasonable, particularly at 10 degrees alpha. Consistent NPR settings would obviate much of the variance in the data and will be discussed later.

Pitching Moment Variation with Angle of Attack

The above chart shows the absolute pitching moment data in ground effect. This chart shows that increasing NPR in ground effect has a beneficial effect on both stabilizer and elevator effectiveness. This significant increase in stabilizer effectiveness equates to approximately a -4 degrees change in additional stabilizer incidence. The increase in elevator effectiveness is similar to a -2 degree change in stabilizer incidence. The following slide better illustrates the benefits.

The above chart shows that increased NPR increases both the stabilizer and elevator effectiveness in ground effect for all positive angles of attack. The increments are calculated by subtracting the absolute data at NPR $=1.04$ from the absolute data at 1.51 for each stabilizer/elevator configuration shown.

Repeat runs are also shown in this plot. Repeatability of the data is worse in ground effect than in free-air but is sill acceptable, particularly for the $-15 /-30$ stabilizer/elevator configuration. Overall, repeatability could have been improved by maintaining more consistent NPRs. The tail balance showed no significant anomalies during the test that would have resulted in unsatisfactory repeatability.

The above chart shows the incremental effect of NPR on the half-sized (H2) horizontal tail (400 sq. ft.) both in free-air and ground effect. The incremental effect of NPR on the baseline ($\mathrm{H} 1,800 \mathrm{sq} . \mathrm{ft}$.) is also shown for comparison. Both H 1 and H 2 are at a stabilizer/elevator deflection of $-15 / 0$ in the above incremental data plot.

In general, the incremental effect of NPR on the H 2 tail in free-air is more than half the increment observed on the Hl tail at low to moderate angles of attack. This incremental effect is approximately half at higher angles of attack until 20 degrees is reached where the effect reduces to no observable effect at 26 degrees alpha.

However, in ground effect the incremental effect of NPR on the H 2 tail is approximately half that observed for the Hl tail up to about 4 degrees angle of attack. Beyond 4 degrees alpha, the incremental effect on the H 2 tail begins to rapidly diminish with no effect evident at 10 degrees alpha.

Incremental Pitching Moment Variation with Angle of Attack

The above plot shows the effect of NPR on the $0 / 0$ and $30 / 20$ flap configurations at both free-air and ground effect heights for the incremental pitching moment of the stabilizer/elevator deflected $-15 /-30$. The $0 / 0$ flap deflection was tested in conjunction with the 30/20 flap deflection in order to provide an increment for the simulation database. The reduced level of pitching moment for the $0 / 0$ flap when compared to the $30 / 20$ flap configuration is the result of reduced downwash and thus reduced local alpha at the tail.

The trends in pitching moment increment due to NPR and height changes are similar for the $0 / 0$ flaps when compared to the $30 / 20$ flaps. One exception is when NPR is increased in free-air for the $30 / 20$ flap deflection; -4 to 16 degrees alpha shows an airplane nose-down pitching increment while the $0 / 0$ flaps shows the opposite increment. The ground effect curves of the two different flaps settings show comparable, positive increments.

The above plot shows the effect of NPR on directional stability for alpha $=10$ degrees. Both in free-air and in ground effect, the data show that increasing NPR increases directional stability. While the effect of NPR is of primary interest, ground effect is shown to significantly reduce directional stability particularly at small sideslip angles. At all angles of sideslip, the yawing moment due to sideslip is greater in free-air than in ground effect.

Conclusions

- Impact of exhaust on tail is a 'non-issue' as the stabilizer is far from stalled.
- Δ Cm_NPR (30/20 Flaps): negative in free-air due to reduced downwash from plume entrainment and positive in ground effect due to a dynamic pressure increase on tail near the ground.
- Elevator effectiveness lessens in free-air and increases in ground effect while stabilizer effectiveness increases at both heights.
- Half-sized horizontal tail effectiveness due to NPR was greater than half of the baseline tail's in free-air and less than half in ground effect.
- Increased Cn_{β} due to NPR.

The main conclusion drawn from the data thus far indicates that the exhaust plume simulating takeoff power shows no detrimental effects to longitudinal control power.

An additional nose-up pitching moment increment due to NPR was obtained in ground effect for the $-15 /-30$ stabilizer/elevator deflection for both flap configurations tested. However, the flaps $30 / 20$ free-air case showed a slight airplane nose-down increment with the application of power.

Stabilizer effectiveness was shown to increase in both free-air and ground effect for the baseline horizontal tail with the application of power. Elevator effectiveness on the baseline tail was reduced in free-air while in ground effect it was shown to increase. The half-sized horizontal tail effectiveness increase due to NPR was shown to be greater than half of the baseline tail's. This effect due to NPR was reduced in ground effect. Both increases in stabilizer and elevator effectiveness benefit the nosewheel lift-off maneuver at takeoff.

Power increased directional stability.

Lessons Learned

- High pressure flex-hoses don't have to be stowed.
- Repeatability from precise control of NPR a must.
a. NPR control of 0.05 desired while 0.1 was the norm.
b. NPR settings would drift as run was on-going.
c. No acceptable repeatability by human intervention.
- Leak rate less than $0.005 \mathrm{lbs} / \mathrm{sec}$ difficult to meet.
- Precise, consistent stabilizer drive needed.
- Good mass flow calculation is f (Probe placement within the nacelle).
- Prominently mark pertinent model pieces.
- Probes fail.

Prior to the start of the test, the air supply lines were anticipated to have a significant effect thus reducing the quality of the data. This turned out not to be the case as shown previously.

Data repeatability could be improved by maintaining more consistent NPR settings. NPR settings varied during runs and were not easily maintained even with the assistance of human intervention. Better control of NPR would reduce any potential repeatability problems.

Maintaining a leak rate below the target of $0.005 \mathrm{lbs} / \mathrm{sec}$ was difficult. The model was very susceptible to leaking if touched by the mechanics.

The stabilizer was susceptible to drift. Maintaining constant stabilizer incidence would improve repeatability.

The placement of total pressure probes affect the mass flow calculations. The flow profile must be known apriori in order to place total pressure and temperature probes in a logical set of locations for good mass flow calculations.

A portion of the test was performed with the wrong outboard flaps, which cost valuable research time. Model parts need to be prominently marked for easy identification.

Pressure and temperature probes failed. This led researchers to substitute readings from one probe to that of another location. This leads to errors in specific flow quantities and can provide misleading results when data are reduced for mass flow calculations.

[^11]- Perform an isolated check out of powered nacelle(s).
- Design larger powered models to further reduce any high pressure air-line routing impact if the testing facilities are capable.
- Ensure tail drive mechanism has no hysteresis in its inherent design by increasing estimated loads.
- Revamp the controllability of sustaining NPR.
- Acquire ability to seed plume.
- Heated plumes recreate buoyancy (ejectors/bypass).
- Know that 'leaks' are not a 'good' thing.

The following recommendations are given for future powered tests. It seems logical to ensure that the workings of the jet flow simulators (JFS) are fully functional before the actual test start date. Perhaps an isolated test of the JFSs is necessary. Leak rates could have been reduced earlier which would have allowed the actual data taking to have started earlier.

Data repeatability can always be improved by reducing the mast wake turbulence, increasing the controllability of NPR and eliminating the drift in tail incidence. A fairing around the air supply lines could have reduced further any interference from these artifacts. Controllers used to monitor NPR need to be analyzed. As mentioned before, NPR settings varied greatly during a test run.

Hysteresis in any control surface drive mechanism needs to be determined by calibrating with substantially more loads than anticipated in the test.

There is a definite need to view the exhaust plume in three-dimensions. Oil flow does not give height nor breadth. This would have been more insightful and should be provided where flow visualization is needed or requested.

Heated plumes create buoyancy which better simulate the real exhaust plume. The effect of ejector and bypass door turbulence was not investigated in this test. These are added complications but factors that lead to a closer approximation of the exhaust plumes. Some of these items were looked at in the HEAT 1 test.

In closing, when performing a powered test, know that leaks in pressurized nacelles do not assist in gathering good data.
‘98
Assessment of Boundary-Layer
Transition Detection and Fixing
Techniques

Q ETOEINE' HSR Airframe Technical Review Feb. '98
This page intentionally left blank
Q ezoEfNE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
Increase L/D, Develop Analysis/Design Methodology

Demonstrate Greatly Increased L/D Relative to
SST Technology (Suction Parameter $\geq 92 \%$)

$$
\begin{array}{c|}
\text { Technology } \\
\text { Readiness Level } \geq 6 \\
\hline
\end{array}
$$

Validation

路
Q
This page intentionally left blank
Q EOTEINE' HSR Airframe Technical Review Feb. '98
Outline

- Introduction
- Transition Detection Techniques
- TSP System Detail
- TSP Results
- Summary
Q ETOEINE' HSR Airframe Technical Review Feb. '98
This page intentionally left blank
Q eomeine: HSR Airframe Technical Review Feb. '98
${ }^{17}$
- Effect of boundary layer transition
- all low speed testing performed with free transition
- results must be extrapolated to full scale Reynolds
number
- typical wind tunnel Reynolds number ~ 8 Million
\quad (based on MAC)
- Flight Reynolds number ~ 200 Million
- What is the extent of laminar flow at low Reynolds

[^12]Q emenner' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
Transition Detection Techniques
Evaluation and Selection
4 Candidate Techniques Identified

- IR Imaging
- TSP Imaging
- Dynamic Acoustic Detection
- Hot Films
Q BOEINE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
 dollars. atmospheric wind tunnel total temperature present during testing. Rather than temperature could be varied to create the same overall system.

TSP alone has sufficient resolution to acquire steady-state data for boundary-layer analysis. However, as with all other types of instrumentation, the sensor (in this case TSP) is only one component of a system in which many sources of noise exist. Current TSP system's signal-to-noise ratio is insufficient to permit acquisition of steady-state boundary-layer data directly. Hence a temperature step is used to perturb the system and acquire the desired data.

HSR Airframe Technical Review Feb. ‘98
Although dynamic acoustic detection appeared to be a plausible alternative for HSR,
many unanswered questions existed regarding this technique. The technique would use existing pressure ports so that no model modification was required to acquire the data for the upper surface. The lower surface contains only a sparse number of pressure ports. In addition, several dynamic EPS modules would be required to acquire data from the many ports necessary to characterize the boundary-layer state over the entire wing. There wasn't enough space available in the model for these modules.

‘98
Hot films are a traditional method of transition detection. Typically the rms signal
from the hot film is analyzed to determine the change from a laminar boundary-layer
to a transitional boundary-layer and finally to a fully turbulent boundary-layer. The
hot film itself will trip the boundary-layer; and, a turbulent wedge is seen aft of the
device. This requires the careful placement of the hot films to obtain meaningful
data and hence some prior knowledge of the boundary-layer state from experiment,
CFD, or boundary-layer stability analysis.
Q AnEINE• HSR Aiframe Technical Review Feb. '98
Advantages/Disadvantages of
Candidate Techniques (continued)

> t Films Tradition Howeve tempera addition, placeme would er develop the boun effort.

This page intentionally left blank
Q BTOEINE' HSR Airframe Technical Review Feb. '98
TSP System Detail
HSR Airframe Technical Review Feb. '98

[^13]> Temperature sensitive paint (TSP) is composed of two parts: the binder, currently a polymer matrix; and the probe molecule which luminesces upon excitation. A paint's luminescence, or light emission, depends on a variety of parameters: the probe molecules quantum yield, the thickness of the paint layer and any undercoat present, and the excitation light. The paint can be excited by either continuous or flash lighting.
> A thermal pathway to de-excitation exists for temperature sensitive paints; whereas pressure sensitive paints exhibit a sensitivity to molecular oxygen. This means that with variations in temperature a temperature sensitive paint will emit more or less photons.
> TSP's currently used in the NTF are based on a variety of ruthenium complexes. The University of Florida developed one, Ru(tdp), specifically to extend the temperature operating range of TSP. Unfortunately, in extending the operating range enough sensitivity was lost that this paint does not yield consistent results with the current TSP system's signal-to-noise ratio
ontains two parts:

- The paint binder,
- The probe molec
complexes which
(Depends on the
Daries with chang

$$
\begin{aligned}
& \text { Depends on the excitation light, currently about } 400 \mathrm{~nm} \\
& \text { Varies with changes in local temperature } \\
& \text { erating range and sensitivity: } \\
& \text { Temperature sensitive paints have been developed with } \\
& \text { increased operating range at the expense of sensitivity. } \\
& \text { With the current TSP system in the NTF, paints with a } \\
& \text { sensitivity of } \sim 1 \% \text { change in luminescence per }{ }^{\circ} \mathrm{F} \\
& \text { yielded good results. Paints with a sensitivity of } \\
& \sim 0.85 \% \text { change in luminescence per }{ }^{\circ} \mathrm{F} \text { did not yield } \\
& \text { consistent results. }
\end{aligned}
$$

Q eioneince' HSR Airframe Technical Review Feb. '98
TSP System architecture is almost identical to PSP System architecture. Differences occur in the paint applied and hence the wavelength of the excitation lighting. Other differences occur in the types of noise reduction and image
processing applied.
Q BTEENNE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics development strongly parallels pressure
(PSP) system development. A schematic of
t system, in this case a PSP system, is shown
Figure 7 . Yressure Sensitive Pain
Transduction Mechanism Detalls
Taken from "Measurement Techniques" by Roger C. Crites, VKI LS 1993.05
This slide describes components of the current NTF TSP System. This is a
prototype system; it will likely change.
Flash lighting was used in NTF084 and NTF080. About 65% of the light's capacity
provided sufficient illumination after filtering. The filters used only passed
approximately 20 percent of the light. The filters were centered at 400 nm .
Q BOEEINE' HSR Airframe Technical Review Feb. '98
TSP Systems (continued)

This page intentionally left blank
Q BDEINE•'HSR Airframe Technical Review Feb. '98
TSP Results
Q EOEENNE' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics

$$
\begin{aligned}
& \text { This slide illustrates a comparison between previous sublimating chemical results } \\
& \text { and NTF084 TSP results. Two sets of data are available for this comparison. The } \\
& \text { results shown for the Mach = } 0.9 \text { case compare well. Notice the absence of } \\
& \text { sublimating chemical at the leading-edge as well as the similar darker region in the } \\
& \text { TSP results indicative of the thin laminar boundary-layer present in that area. } \\
& \text { Because the laminar boundary-layer is so thin in this area, the mass or heat transfer } \\
& \text { rate, respectively, is the same as or greater than that of the turbulent boundary- } \\
& \text { layer. Unfortunately, the sublimating chemical picture available for the Mach = } 0.3 \\
& \text { case includes the presence of a significant amount of chemical residue on the } \\
& \text { inboard panel which is suspected to be the result of an overly thick application of the } \\
& \text { chemical prior to running. Hence the Mach }=0.3 \text { case does not compare well. }
\end{aligned}
$$

Q ETOEINE' HSR Airframe Technical Review Feb. '98

Results Mach
$=0.9$
Chord Reynolds Number $=10.2$ Million Alpha = +4 Degrees

Sub
Sublimating Chemical Results

Technical Review Feb. ‘98

This slide illustrates the TSP results for the high-lift configuration. No evidence of
laminar flow was found on this configuration except possibly at +4 degrees angle--
attack and a chord Reynolds number of 5.5 million. This configuration was tested
over an angle-of-attack range from 8° to 14°, and $+/-4^{\circ}$. The Reynolds number
range tested was from 5.5 Million to 21.6 Million based on the reference chord.
Q EDEINE:' HSR Aiframe Technical Review Feb. '98
Hscrigh Lit Aesodramics
Untripped High-Lift Configuration

This slide illustrates the TSP results for the transonic configuration. As can be seen
the boundary-layer is tripped at the leading-edge flap hingeline.
Q emerne' HSR Airframe Technical Review Feb. '98
HSCT High Lift Aerodynamics
Alpha $=+1$ Degrees
Upper Surface

Boundary-Layer is tripped at the leading-edge hinge line

Chord Reynolds Number $=10.3$ Million
Mach $=0.9$
Alpha $=+3$ Degrees
Upper Surface
Technical Review Feb. '98
This chart shows a comparison of TSP results, wind tunnel drag data, and analytical
The variation in laminar boundary-layer extent with Reynolds number is clearly evident in this chart. skin-friction predictions at Mach $=0.3$. The wind tunnel data point at chord Reynolds number $=40$ million has been determined to be a bad data point. The
analytical skin-friction curves in this chart were anchored using chord Reynolds number $=90$ million drag data .
Reynolds number. The technique for extrapolating from low Reynolds number data to full scale flight conditions will involve acquiring drag data at low Reynolds number and spotting the corresponding laminar fraction point at that drag level. This would shift the analytical skin-friction curves up or down to allow extrapolation without having to acquire high Reynolds data.
This chart also illustrates the larger than expected laminar surface area present.
Reynolds Number Effects on Boundary
Layer Transition - Mach $=0.3$

The variation in laminar boundary-layer extent with Reynolds number is also clearly
evident in this chart.
This chart shows a comparison of TSP results, wind tunnel drag data, and analytical
skin-friction predictions at Mach $=0.9$.
Notice again the larger than expected laminar surface area.

 ‘98 Feb.
 Technical Review
 HSR Airframe

represents free transition
Q eTOEINE' HSR Airframe Technical Review Feb. '98
This slide illustrates the baseline trip's effectiveness. It was found in general that
the conventionally defined trip was only effective over a limited angle-of-attack
range. This is presumably due to changes in location of the attachment line as the
angle of attack is varied. The trips were defined using Braslow criteria for grit size
and location, assuming the attachment line to be at the leading-edge of the wing.

HSCT High Lift Aerodynamics Results of free transition testing on the baseline, undeflected flaps configuration
indicate significantly more laminar flow than analytical methods predict. Figures in
the TSP Results section of this report which illustrate Reynolds number effects at
Mach 0.3 and 0.9, clearly show this result. The surface area covered by regions of
laminar flow has been determined from the mapped images shown in these figures.
This area has been divided by the gross wing area to determine a laminar fraction.
Conventional trips were defined using Braslow criteria for grit size and location, and
assuming the attachment line to be at the leading-edge. Clouding aft of the
"baseline" trip indicates that it was probably undersized for some test conditions.
When the grit size was increased on the outboard panel and the test condition was
repeated no clouding was seen in the TSP image.
'98

HSR Airframe Technical Review Feb. ‘98
最
No evidence of laminar flow was found on the high-lift configuration at the high-lift
design point. A small region of laminar flow is suspected on the leading-edge flap at
4° angle-of-attack and a chord Reynolds number of 5.5 Million.
As shown in the Figure in the TSP Results section of this paper, the boundary-layer
is tripped at the leading-edge flap hingeline on the transonic cruise configuration.
Results of free transition show that the greatest extent of natural laminar flow on the
baseline, undeflected flaps configuration occurs at $+1^{\circ}$ angle-of-attack. This is very
close to the angle-of-attack corresponding to CDmin. It is also the tested angle-of-
attack where the outboard panel is most closely aligned with the flow when the
outboard twist of -1.5° is taken into account.

As angle-of-attack deviates in either direction from $+1^{\circ}$ the extent of natural laminar
flow is reduced. This illustrates the changes in importance of the various
mechanisms affecting boundary-layer transition, for example cross-flow instabilities,
with changes in angle-of-attack.

- Additional observations:

where the outboard panel is aligned with the flow

$$
\begin{aligned}
& \text { phenomena, other than the existing pressure gradient, } \\
& \text { play a larger role in boundary-layer transition and the } \\
& \text { extent of laminar flow is reduced. }
\end{aligned}
$$

This figure shows the recommendations to emerge from this work.
Q
Recommendations - At the take-off and climb out conditions for the high-lift
configuration no boundary-layer tripping is required.
For accurate measurement of drag levels at low lift
conditions for the undeflected flap configuration, boundary-
layer tripping may be required, particularly at transonic flow
conditions.
TSP is a useful tool for boundary-layer analysis.
Improvement over the current system and development of
advanced analysis tools could yield additional information
such as detecting the presence of vortices and separated
flows.

Title Chart - No Facing Page Description

This presentation includes a summary of a recent experimental study of the static and dynamic ground effects for low aspect ratio wings. The authors would like to thank the many members of the Dynamic Ground Effects (DGE) Team whose contributions were invaluable in this effort.

This study supports the Dynamic GE Testing Program under Test Programs and Techniques of the HSR High Lift Technology Development Task.

Outline

- General Test Information (Owens)
- Static Ground Effects (SGE) Data Analysis and Results (Powell)
- Dynamic Ground Effects (DGE) Data Analysis and Results (Owens)
- Comparison of Wind Tunnel and Flight Ground Effects Data (Curry)

This presentation is divided into four main sections. First, Lewis Owens (Langley Research Center) will cover some general Langley 14-by-22-Foot Subsonic Tunnel ($14 \times 22 \mathrm{ft}$) test information (LaRC Test 462 -- October '97). Next, Art Powell (Boeing-Long Beach) will present some of the analysis and results for the static ground effects (SGE) data, which provided a baseline for comparison with the dynamic ground effects (DGE) data. Lewis will follow with a presentation of the analysis and results for the dynamic ground effects data. Finally, Bob Curry (Dryden Flight Research Center) will present a summary and status of recent Tu-144 flight test ground effects results. He will also compare these results with data obtained from the wind tunnel test.

Previous ground effects data (University of Kansas) illustrates the potential for a difference between DGE and SGE. This plot of the percent increase in lift as a function of the aspect ratio is used to show that some wing planforms exhibit significant differences between DGE and SGE. At lower aspect ratios, the DGE lift increase may only be 50% of the SGE lift increase. If this happens to be the case for the HSCT planforms (aspect ratio currently about 2), then the expected SGE lift increments may over predict the flight (dynamic) ground effect. The significance of this over estimation is that the flight control surfaces may be under designed.

University of Kansas data reference:
R. C. Chang and V. U. Muirhead, "Effect of Sink Rate on Ground Effect of Low-Aspect-Ratio Wings," Journal of Aircraft, Vol. 24, No. 3, March 1987, pp. 176-180.

Test Objectives

- Shakedown the new 14 'x 22^{\prime} DGE cart and instrumentation systems, and develop the overall system as a way of acquiring DGE data
- Determine the extent of DGE on HSCT planforms
- Understand how planform variables such as aspect ratio and sweep affect DGE

DGE cart hardware existed but had not been scheduled for use in the $14^{\prime} \times 22^{\prime}$ tunnel. The HSCT DGE/SGE difference question provided an opportunity to use this new cart. The HSR test was scheduled and a test plan was developed to meet three main test objectives. First, we had to develop experience to be able to effectively use the DGE cart. Each step toward operating the cart in the tunnel (for the first time) involved a major "debugging" effort. This shakedown process would also include validation of the DGE test technique by making comparisons with the Tu-144 flight test ground effects database. Second, we wanted to obtain DGE/SGE data on as many HSCT planforms as possible to try and provide an answer to the DGE/SGE difference question. Finally, we wanted to test a number of different low aspect ratio planforms to be able to understand the dominant geometry factors that may contribute to the potential DGE/SGE difference.

Dynamic Ground Effects Cart

Here is a side view sketch of the DGE cart. The basic cart is similar to other $14^{\prime} \times 22^{\prime}$ model carts. The differences are primarily in the model support structure. A large support strut is hydraulically controlled (vertical drive) to vary the model height above the cart floor. Also, the strut has a hydraulic pitch drive that makes it possible to change the model attitude during a dynamic plunge. Finally, although not used in this test, a yaw drive allows the model to be yawed with respect to the oncoming flow (prior to DGE plunge) so that ground effects data can be obtained with angle of sideslip.

Basic Cart Performance

- Executes pre-programmed model trajectory
- Sink rates varying from 0 to $15 \mathrm{ft} / \mathrm{sec}$
- Cart floor boundary layer minimized with tunnel boundary-layer removal system
- Height limits are 89 in. down to about 5 in. (depends on model pitch)
- Pitch limits are -10 degrees to +50 degrees (depends on model height)

Here are some of the basic performance parameters for the new DGE cart design. Note that we did have some operational problems with the cart. During the test, we were only able to reach sustained sink rates of about $9 \mathrm{ft} /$ sec due to temporary "fixes" made to the hydraulic control system.

Models Tested

- Model \#10: Elliptic wing planform with centerbody (AR=7.0)- No flaps deflected
- Model \#7: Tu-144 wing planform ($\mathrm{AR}=1.627$)- TE flaps deflected 10 deg
- Model \#6: TCA wing planform ($\mathrm{AR}=2.027$) - TE flaps deflected 10 deg

Originally, the test plan included 10 different flat-plate wing planforms (one high AR wing and nine low AR wings). Note that none of the wing planforms had wing twist or camber. The operational/training problems experienced with the new cart contributed to the reduction in the number of models that were tested. Only three models were tested. Model \#10 was used to get an indication of the tunnel flow angularity with different model heights. This was done both statically and dynamically. Model \#7 provided an opportunity to validate the wind tunnel DGE data by making comparisons to actual Tu-144 flight data. Model \#6 provided an opportunity to assess the DGE/SGE differences for a current HSCT baseline wing planform.

This is a sketch of model 10 wing planform with centerbody. The model was tested in the "high-wing" configuration such that the centerbody was under the wing. The dimensions are included to give a better sense of the model scale.

This is a sketch of the model 7 Tu-144 wing planform. The model was tested in the "low-wing" configuration with the balance/balance fairing mounting to the top of the wing. The dimensions are included to give a better sense of the model scale and location of trailing-edge flaps.

This is a sketch of the model 6 Technology Concept Airplane (TCA) wing planform. The model was also tested in the "low-wing" configuration with the balance/balance fairing mounting to the top of the wing. The dimensions are included to give a better sense of the model scale and location of trailing-edge flaps.

Wind Tunnel Measurements

- Six component force/moment balance
- Six model accelerometers
-3 linear accelerations
-3 angular accelerations
- Four sting accelerometers (data not used)
- Tunnel Optotrak system
-model height
-model pitch

The basic measurements provided during the wind tunnel test included a force/ moment balance, accelerometers and an optical tracking system. The six model acceleration measurements were used in combinations to provide 3 linear and 3 angular accelerations of the model reference center. The four sting mounted accelerometer measurements tracked the model accelerations very closely and were not included in any of the inertial loads removal from the force/moment measurements.

Testing Ranges

- Longitudinal load ranges (NF: $1000 \mathrm{lbs} . ; \mathrm{PM}: 4000$ in.-lbs.; AF: 500 lbs .)
- Accelerometer range (10 g 's)
- Tunnel velocity: $267 \mathrm{ft} / \mathrm{sec}$
- Model sink rates
$(0,1,2.33,4.67,7,9.33,11.667 \mathrm{ft} / \mathrm{sec})$
- Gamma
($0,0.2,0.5,1,1.5,2,2.5$ degrees)
- Model AOA between 6 to 11 degrees
- h/b range
(1.5 to 0.2)

Here is the range of variation of the major test condition parameters. Note that the flight path angle (Gamma) corresponds directly to model sink rate for a given tunnel velocity. The wind tunnel investigation did include some lower tunnel velocity test points, but none of those data have been analyzed yet and are not included in this presentation.

Data Corrections

- Static
-weight tare, balance woz

- Dynamic

-weight tare, balance woz
-model acceleration measurements used to remove inertial loads from
balance load measurements
-angle of attack variation

Typical corrections were applied to the static data. The dynamic data included the same corrections plus those necessary to remove inertial loads and any angle-of-attack variation during the plunge.

Static Ground Effects

- Art Powell will present the next section

Static Ground Effects (SGE)

- Flow Angularity (Model 10)
- Lift and Moment (Models 7,6)

Objective: Best estimate of lift and pitching moment characteristics in static ground effect for comparison with dynamic values.

While Lewis, Sharon Graves (GWU JIAFS Graduate Student), and Bob processed the dynamic data, Art took on reducing the static data so we would have a basis of comparison.

Flow angularity was measured using Model 10 , the AR=7 NACA 0012 elliptical wing. DACVINE, a higher-order panel method, was used to estimate zero-lift angle-of-attack, since this model had an underwing fuselage to house the balance.

The tunnel with DGE strut showed a downflow (of approximately 0.15 degrees) at the tunnel centerline, which decreased to near zero at the floor. The flow angularity was deemed too small to have a significant effect on the data for the lower $A R$ wings.

Model 7, the Tu-144 planform, and Model 6, the TCA planform, were the only low-AR Models tested. Severe mechanical problems plagued the test throughout. Data quality was not judged good, but was felt to be sufficient to determine if any significant DGE effects existed.
Only lift and moment data were considered. Since the models had no camber, and no fuselage, and test Reynolds number so small, there was not sufficient motivation to study the drag variation with ground effect.

Overall agreement of static data with other sources was good.

Model 10 consisted of an AR=7 elliptic wing with symmetric NACA0012 sections and a fuselage to accommodate the balance. Since this model had a steep lift-curve slope, it was ideal for probing tunnel flow angularity. The presence of the fuselage made the model slightly asymmetric with respect to lift, so DACVINE was used to determine its angle of zero lift at various heights. This, along with angle of attack sweeps taken at various heights, was used to determine the flow angularity. The figure is the geometry wireframe developed for the DACVINE analysis.

Lift data were taken at four heights, and the resulting lift curves are straight and pass close to the origin. The abscissa is really model attitude angle, not angle of attack. This distinction, which is usually ignored, is necessary in detecting tunnel flow angularity.

This figure is an expanded view near the origin for the lift curves of the last figure. As can be seen, the curves do not all exactly pass through the origin. There is some small positive angle of attack indicated at zero lift, which changes with height from the floor.

Tunnel Flow Angularity From Model 10

Tunnel flow angularity is calculated using the zero-lift angles of attack from DACVINE, and the zero-lift attitude angles from the test. The blue curve (solid line) is the resulting flow angularity for the tunnel with this cart and model in place. It is interesting to note that this is an apparent downflow, the opposite of what was found in the U\&I test (LaRC442). The flow angularity was ignored in the DGE test because it was deemed insignificant for the dynamic measurements, but more importantly because the DGE test really only required that a difference be seen between static and dynamic data. An attempt is underway to extract "dynamic" flow angularity.

Model 7 Static Characteristics

Model 7 was a flat wing of Tu-144 planform. Its leading edge was of small radius from centerline to tip. It featured flaps which were deflected 10 degrees for this test. The model was attached to the sting through a balance block and balance enclosed in a fairing and mounted to the model's upper surface. A 9degree knuckle was used to provide some angle-of-attack capability near the groundplane. Model size is indicated above.
The model was run through angle-of-attack sweeps at six heights above the floor. Floor boundary layer suction was used.

Model 7 static lift characteristics were measured at a number of discrete heights, which for comparison's sake have been normalized by the model span, 47.1". Each data point represents an average of 1200 samples, which eliminates sting vibration, a spurious effect present in most of the data. The data are shown in the region of interest to the DGE test, and landing maneuvers in general. The $\mathrm{h} / \mathrm{b}=.125$ data is limited in angle of attack due to clearance problems with the tunnel floor.

Regressing linearly the lift data in the 7-11 degree range allows the lift data to be generalized and interpolated, and although it was not strictly necessary in constructing the static ground effects characteristics, it is useful for data control. The lift at zero angle of attack asymptotes at higher h / b, which is reassuring.

Regression coefficients were quite high for the Model 7 lift data. Again, the lift-curve slope asymptotes at high h / b, as expected. The increase in lift curve slope at low h / b values is substantial.

The regressed $\mathrm{C}_{\mathrm{L}} @ \alpha=0$ and $d \mathrm{C}_{\mathrm{L}} / \mathrm{d} \alpha$ vs. h / b curves were used to construct curves of $\mathrm{C}_{\mathrm{L}} \mathrm{vs}$. h / b for 7,9 and 11 degrees angle of attack. These were normalized by the free-air C_{L} and are presented here as normalized ground effect lift increment. The data compress well under the normalization. The data from this test were compared with data from the Tu-144 flight test, in which a series of landings were conducted at constant angle of attack. The agreement is very good, despite the fact that the Tu-144 data are for a dynamic maneuver of a full configuration, at vastly different Reynolds number, and powered. Also note the large (42%) ground effect lift increment for this planform.

Pitching moment data about the 50%-MAC point are shown. The large positive slope indicates that the aerodynamic center for this angle-of-attack range is forward of the moment reference. The data do show a negative (nosedown) pitching moment increment as the groundplane is approached, which is what one would expect.

Re-referring the moment data to 42.5%-MAC essentially zeroes the moment slope, indicating this to be the approximate free-air aerodynamic center for this angle-of-attack range. Thus referred, the negative moment increment due to groundplane proximity is larger than in the previous figure. The normalized moment increment presented in the next slide will be based on this reference point.

This figure shows the normalized moment increment about the aerodynamic center for Model 7. Following Curry, the ground-effect moment increment is normalized by the out-of-ground-effect (OGE) lift coefficient. The data compresses well under this normalization. One Tu-144 point is shown. This was taken from an eyeball fairing of rather noisy flight data. an indication of the noise level is shown by the error bar. Again, the agreement appears good, despite likely different flap settings.

Reference:
R. E. Curry, "Dynamic Ground Effect for a Cranked Arrow Wing Airplane," NASA TM-4799, August 1997.

Model 6 was the TCA planform. It had no camber or twist, but featured 10degree deflected trailing edge flaps. The leading edge radius was as large as the wing thickness allowed inboard of the leading-edge sweep break, and much smaller outboard. Like Model 7 it mounted to the sting via a faired balance block and balance on the upper surface. The 9-degree knuckle was used with this model as well.

This model was run through angle-of-attack sweeps at five heights above the floor. Tunnel boundary layer suction was used. In addition, static data was available at high h / b from certain dynamic runs before the plunges began. These data were also used to construct an estimate of the aerodynamic characteristics in static ground effect.

The Model 6 lift curves are presented in the angle of attack range of interest for DGE testing. Comparable lift curves from the TCA-1 (LaRC 14'x22' Test 449) are shown also. The $\mathrm{h} / \mathrm{b}=.987$ (TCA-1) data (Run 572) should be considered as free air data, since it includes wall corrections. The $\mathrm{h} / \mathrm{b}=.174$ (gear height) data (Run 350) was processed as ground effects data and was not corrected for the floor presence. Both of the TCA-1 curves are for 30 deg TE flaps, as opposed to the 10 -degree TE flaps of the DGE model. The TCA-1 curves are for a full configuration, but without horizontal tail, while the DGE test data are for a flat wing planform only. The Reynolds numbers are also different: 7.8 million for the TCA-1 data versus only 4.7 million for the DGE test data. The $\mathrm{h} / \mathrm{b}=.174$ TCA-1 data was limited to below about 8.6 degrees by tailstrike.

The bulk of the DGE test data came from constant-height angle-of-attack sweeps. For these points, roughly 1200 data samples are averaged for each data point. Data at $\mathrm{h} / \mathrm{b}=1.87$ came from DGE runs prior to plunge start. Liftcurve data are available because plunges were taken at 7,9 and 11 degrees angle of attack for Model 6. Typically, over 100 data samples were available for time-averaging prior to plunge start. This largely eliminates the effects of sting oscillations, if any.

A few individual data points at low h / b are shown near 7, 9, and 11 degrees angle of attack. These points, while unique in h / b, have turned out to be extremely useful, as will be seen.

Each of the DGE test static lift curves was linearly regressed between 7 and 11 degrees. Regression coefficients " r " typically were quite good, with at least three "nines" past the decimal. The lift curves were represented as a zero- $\alpha \mathrm{C}_{\mathrm{L}}$ and lift curve slopes. The zero- αC_{L} data are presented here as a function of $h /$ b. These data appear well-behaved and plausible.

This plot shows the regressed lift-curve slopes of the Model 6 static ground effects data. One expects this curve to asymptote to some value as h / b approaches 2 , which it does if the data point at $\mathrm{h} / \mathrm{b}=1.5$ is ignored. In the analysis, lift data at this h / b is excluded in favor of the $\mathrm{h} / \mathrm{b}=1.87$ data taken before plunge start on the dynamic runs.

With the regressed data of the last two figures it is possible to put together plots of ground effect C_{L} increment versus h / b at constant angle of attack. This is a plot of that data, normalized by free-air C_{L}. Since the lowest h / b for which a lift curve could be constructed was 0.250 , extension to gear height might seem difficult, except that the extra, unique data points at lower h / b were very close to the angles-of-attack for which the plot was made. A short extrapolation, using extrapolated lift-curve slopes makes the low h / b end of the curve accessible. The TCA-1 data are shown here for comparison, and show reasonable agreement with the DGE static data. The 9-deg TCA data required a short extrapolation, since the model was tailstrike limited to 8.6 degrees at $h /$ $\mathrm{b}=.174$.

Note that the static lift increment in ground effect for this planform is significantly lower ($\sim 25-30 \%$ compared to 42%) than it is for the Tu-144.

This is a plot of the pitching moment coefficient taken about the 50% MAC for Model 6. At this moment reference location, decreasing h / b causes a positive C_{m} increment. This and the positive slope suggests that the moment-reference center is well behind the aerodynamic center for this angle-of-attack range. Also, note that the $h / b=1.87$ data lie well below the other curves, which is counterintuitive. One would expect the curves to be close together at high h / b, near the edge of the ground effect regime.

The moment data was re-referenced to $35.5 \% \mathrm{MAC}$, which reduced $\mathrm{dC}_{\mathrm{m}} / \mathrm{d} \alpha$ to essentially zero for $\mathrm{h} / \mathrm{b}=1.5$. Taken about this reference point, most of the data exhibit a negative moment increment as the groundplane is approached. The data at $\mathrm{h} / \mathrm{b}=1.87$, taken from the dynamic runs prior to plunge start, do not follow this trend, which is counterintuitive and at odds with the other data. These data are therefore not used for OGE reference in normalizing the moment increment data.

This figure shows the normalized moment increment due to static ground effect as measured for Model 6. The data show the expected trend of negative (nose-down) pitching moment increment as the groundplane is approached. The data does not collapse as well under the normalization as did those for Model 7. Limited data from TCA-1 appears to agree with the trend shown by these data.

Static Ground Effect Conclusions

- Flow angularity check shows small downwash, which was ignored in the DGE analysis.
- Model 7 data agrees with Tu-144 flight test.
- Model 7 lift and moment data compressed well under normalization.
- Model 6 data compares well with TCA-1.
- Model 6 moment data did not compress well under normalization.

The static data serve as a basis for comparison for the dynamic data. An examination of the tunnel flow angularity found, for the DGE strut and Model 10, a slight downwash of about . 15 degrees near the tunnel centerline, which decreased as the tunnel floor was approached. Since the DGE test was principally a comparison of static and dynamic effects, and based on the assumption that flow angularity would be the same for dynamic conditions as for static conditions, the flow angularity was ignored for the purposes of this study.

The Model 7 static lift and moment data was quite consistent, agreed well with data from Tu-144 flight test, and collapsed well under normalization.
Model 6 static data was less consistent, but lift and moment increment data agreed reasonably well with TCA-1 wind-tunnel data. The lift data collapsed reasonably well under normalization, but the moment data did not.

Dynamic Ground Effects

- Lewis Owens will present the next section

Dynamic Ground Effects (DGE) Data Challenges

- Different sampling rates
-model height \& pitch position (50 to 60 hertz)
-balance and accelerometers (150 hertz)
- Accelerations not completely zeroed
- Model/support system "ringing" -during constant velocity segment - most noticeable at high sink rates ($>4 \mathrm{ft} / \mathrm{sec}$)

Some aspects of the dynamic data acquisition/reduction presented real challenges. The data system was set up to acquire multiple channels of data that were each scanned at 150 hertz over an 8 second sampling period. Some of the more significant problems with the dynamic data included issues associated with sampling rates, zeroing initial accelerations and flexibility of the model support system. The position measurements were not sampled at as high a rate as the balance and acceleration measurements. This problem is obvious when either balance or accelerometer data is plotted versus height. Multiple data points are acquired at a given height measurement. The impact of this on the DGE plots is not considered significant for the height measurements, which results in small shifts in the data on the order of 0.01 to $0.07 \mathrm{in} \mathrm{h} / \mathrm{b}$ depending on the sink rate of the run. The impact of reduced sampling rate on the pitch measurement is not as clear cut and may be contributing to problems with cleaning up the rest of the spread in the force/moment data already corrected for inertial loads. No corrections for these sampling rate problems have been made to any of the dynamic data presented. Another challenge included the initial zeroing of the model acceleration levels at the beginning of each dynamic plunge. We attempted to handle this with a combination of wind-off zero and theoretical corrections for changes in the gravity component with pitch, but this did not work. Sharon Graves and I ended up taking an average level at the beginning of each run to reference the accelerations. This appeared to work very well and allowed us to use the integrated accelerations to calculate the model's sink rate. Finally, model support system flexibility tended to shorten the constant velocity segment of the dynamic plunge trajectories and were associated with the larger spread in the data for higher sink rate runs. In the future, we plan for changes in the cart control system to help alleviate this situation.

Here is a representative example of the effect of inertial load removal from the normal force balance measurements during a lower sink rate run. A run begins with the model resting at a position near the tunnel centerline, in this case at an h / b value of about 1.90 . As the dynamic plunge starts, large excursions in the normal load is evidence of the rapid acceleration to the target sink rate. At an h / b level of about 1.30 , the constant velocity segment of the trajectory is reached and the dynamic load excursions have diminished. The steady increase in the normal force level as h / b decreases is associated with the ground effect. At an h / b of about 0.3 , the model begins decelerating and the raw normal force level is consistently lower than the corrected data. The dash curve represents the normal force data after corrections for the primary inertial loads. The amount of inertial load clean up is most evident in comparing the raw and primary curves near an h / b of 1.4 and below an h / b of 0.3 . Between these two h / b values, the primary inertial load corrections routine does not have a significant impact on the raw data.

Here is a representative example of the effect of inertial load removal from the normal force balance measurements during a higher sink rate run. For the higher sink rate runs, the effect of removing the primary inertial loads is more evident throughout the plunge trajectory. Notice that the model deceleration starts earlier (h / b level of about 0.4) as compared with the previous plot for the lower sink rate run. Also note that the support system "ringing" is more prevalent throughout the plunge.

Here is a representative plot of the model glide path angle that resulted for the different dynamic plunge trajectories. The model sink rates were chosen to provide selected constant gamma for the given tunnel velocity ($267 \mathrm{ft} / \mathrm{sec}$). A significant feature of these trajectories is the long run of constant gamma for the lower sink rate runs. Notice that this constant gamma segment becomes shorter with increasing sink rate because the model support ringing persists to lower values of h / b. Also note that the model deceleration starts earlier (higher h / b values) as the sink rate increases, which further restricts or eliminates the constant gamma segment. Another noticeable feature in this data is associated with the reduced height sampling rate. For the sink rates greater than $1 \mathrm{ft} / \mathrm{sec}$, the data symbols tend to cluster in groups of three showing that three accelerometer measurements were acquired before the height measurement was updated.

Here is a representative plot of the model angle of attack that resulted for the different dynamic plunge trajectories. As with the glide slope angle, the constant model alpha segment was longer for the lower sink rate runs. For the higher sink rate runs, the model alpha varied more significantly. Since the main point of this investigation was to try and isolate the ground effect (that is, look at lift variation with constant alpha), we decided to correct the lift data to a constant alpha to remove this effect. This correction involved compensating for the alpha variation by using the out-of-ground effect (OGE) lift curve slope. All of the DGE data that will be presented has been corrected to a constant alpha to make it comparable to the SGE data.

Here is a plot of the lift increment due to ground effect for the dynamic data obtained for Model 7. The cluster of data points at an h / b of 1.9 gives an idea of the variation in the lift levels while sitting statically before the start of the dynamic plunge. The data during the dynamic plunge tends to cluster in a solid trend indicating the ground effect levels on lift. The data points falling outside this trend are associated with the higher sink rate data. Keep in mind that up to h / b levels of 0.4 , the model is decelerating for the higher sink rate runs so that the sink rate is not constant. From this DGE lift data, there is no indication of a significant change in the ground effect trend for varying sink rates.

Here is a plot of the pitching moment increment due to ground effect for the dynamic data obtained for Model 7. The cluster of data points at an h / b of 1.9 gives an idea of the variation in the pitching moment levels while sitting statically before the start of the dynamic plunge. The data during the dynamic plunge tends to cluster in a solid trend indicating the ground effect levels on pitching moment. The ground effect trend on normalized pitching moment magnitude is about 2 percent. If this data were referenced to a moment center closer to the aerodynamic center ($42 \% \mathrm{mac}$), then the magnitude of this effect would increase to about 5 percent.

Since there did not appear to be any significant difference in the ground effect trend with different model sink rates, one of the lower sink rate DGE data runs was selected for comparison with the SGE data. This run was chosen because it was the highest sink rate run available in which the model deceleration did not begin until it was below an h / b of 0.3 . This permits a comparison of DGE lift increase levels with those of the SGE in the more sensitive region of the ground effect trend. This comparison does not show that the DGE lift increase is significantly different from that of the SGE. (Recall that we are looking for differences indicating that the DGE lift increment is about 50 percent of that of the SGE at values of h / b of about 0.3.)

Here is a plot of the lift increment due to ground effect for the dynamic data obtained for Model 6. Again, the cluster of data points at an h / b of 1.9 gives an idea of the variation in the lift levels while sitting statically before the start of the dynamic plunge. The data during the dynamic plunge also tends to cluster in a solid trend indicating the ground effect levels on lift. The data points falling outside this trend are associated with the higher sink rate data. Keep in mind that up to h / b levels of 0.4 , the model is decelerating for the higher sink rate runs so that the sink rate is not constant. From this DGE lift data, there is no significant change in the ground effect trend for varying sink rates. Note that the ground effect lift increase for this wing planform is below 15 percent at an h / b of 0.3 as compared to about 20 percent for Model 7. Also, the lift increment data for Model 6 appears to have a larger variation band than that for Model 7. Model 6 had a blunt inboard LE radius and Model 7 had a "sharp" LE. This geometry difference may contribute to the larger variation in the data for Model 6.

Here is a plot of the pitching moment increment due to ground effect for the dynamic data obtained for Model 6. The cluster of data points at an h / b of 1.9 gives an idea of the variation in the pitching moment levels while sitting statically before the start of the dynamic plunge. The data during the dynamic plunge was more scattered than that for Model 7. The ground effect trend on the pitching moment increment is not clear.

Since there did not appear to be any significant difference in the ground effect trend with different model sink rates, one of the lower sink rate DGE data runs was selected for comparison with the SGE data. This run was chosen to be consistent with that chosen for Model 7. This comparison also does not show that the DGE lift increase is significantly different from that of the SGE. (Recall that we are looking for differences indicating that the DGE lift increment is about 50 percent of that of the SGE at values of h / b of about 0.3.)

Why are SGE/DGE similar?

- Previous data indicated DGE/SGE lift increment ratio of about 50% for aspect ratios less than 2.0
- LE sweep or wing sweep-related factor may be the more important controlling parameter (especially with discontinuous LE)
- Other factors may include: AOA region, RN , flap configuration

The $14 \times 22 \mathrm{ft}$ DGE test did not show significant differences between SGE and DGE lift increment data. The previous KU data suggests that the models tested were in the aspect ratio range where this difference should be significant. A review of the KU database was performed to check for consistency and what factors may explain the difference in the findings. One difference noted was that the models tested in the $14 \times 22 \mathrm{ft}$ study had breaks in the wing planform LE while the KU data was based on planforms with no LE breaks. For continuous LE planforms, there is a direct correlation between the LE and the aspect ratio. For planforms with a LE break, this relationship is not as direct. Other differences were also noticed and considered in the review of the ground effects database. However, the LE sweep factor seemed to be consistent and deserved further examination.

University of Kansas data reference:
R. C. Chang and V. U. Muirhead, "Effect of Sink Rate on Ground Effect of Low-Aspect-Ratio Wings," Journal of Aircraft, Vol. 24, No. 3, March 1987, pp. 176-180.

Here is another look at the University of Kansas wind-tunnel data plotted versus LE sweep (outboard LE for cranked wing planforms) instead of aspect ratio. Comparable SGE and DGE data points were added to show where they fall relative to the existing data. Note that both the TCA and the Tu-144 model data was placed considering the sweep of the outboard LE. If this is a proper way of looking at the differences between SGE/DGE data, then this may explain why the models tested in the 14 'x 22 ' study did not show any significant difference.

HSCT High Lit Aerocynamkes
 Computational Checks

- Unsteady 3-D seems to be predicting the similar DGE results as experiment for a 60 degree delta wing and the TCA wing
- Recommend using computational methods to investigate other factors (LE sweep, AOA region,...)

Two different analytical approaches, each developed by Winfried Feifel (Boeing) and Bill Dwyer (Northrup Grumman), were used to predict dynamic ground effects. Both the analytical and the experimental DGE results are consistent and show no significant difference between SGE and DGE for the TCA wing planform. It is interesting to note that Bill Dwyer showed some potentially significant DGE/SGE differences for the XB-70 wing, but unfortunately this work was not concluded due to funding constraints.

These analytical approaches provide an opportunity to explore other factors associated with low aspect ratio wings to gain a better understanding of when there may be significant differences between SGE and DGE testing techniques.

HSCT High Lith Aeroclynemics
 Flight Data

- Flight data obtained for two similar vehicles
- F-16XL experiment complete
- TU-144, preliminary data available
- Data obtained Test Techniques
- Instrumentation included both on-board sensors and differential GPS
- Data was obtained during constant-angle-of-attack, constant-thrust approaches to the runway
- Data Analysis
- Data corrected for variations in alpha and surface deflections
- Flight results are shown as untrimmed, incremental changes in lift, and pitching moment coefficient relative to the 'out-of-groundeffect' lift coefficient

A flight experiment was conducted to provide additional information regarding ground effect characteristics for slender-wing, high-speed configurations. Flight data has been obtained for the F-16XL and the Tupolev TU-144 supersonic aircraft. Data from the TU-144 flight experiment will also be used to validate results from the DGE wind tunnel test technique.

A thorough discussion of the flight test techniques and data analysis process for the F-16XL is provided in NASA TM 4799. Similar methods are being used for the TU-144 flight experiment.

The data were obtained during approaches to the runway. Before each maneuver, the pilot began a stabilized descent at a pre-determined glide slope and angle of attack. The pilot attempted to hold the power and angle-of-attack constant for the remainder of the maneuver as the airplane descended into ground effect. Perturbations from the initial flight conditions were attributed to ground effect. Adjustments to angle-of-attack and elevon position which occurred during the maneuvers were accounted for in the extraction of ground effect increments.

Data were obtained for a variety of gross weights, flight path angles, flap and canard positions.

This figure shows three configurations for which static and dynamic ground effect data have been obtained. All of the wings have similar aspect ratio and similar inboard and outboard leading edge sweep.

The wind tunnel model is an uncambered, planform of the TU-144 wing. The trailing edge elevons were set at 10 degrees (trailing edge down) for all tests.

Flight data for the TU-144 was obtained using a research vehicle derived from an early production supersonic transport. The configuration has four turbojet engines mounted below the wing similar to 'HSCT' configurations. The airplane is normally landed with canard deployed, however, flight test data was obtained with the canard both deployed and retracted. Elevon positions were were about 9 deg (trailing edge down) during final approach for the majority of flight maneuvers. Slightly negative elevon positions (trailing edge up) were required during maneuvers with the canard retracted.

The F-16XL airplane is a high-performance, single-seat airplane with a cranked-arrow-wing designed for supersonic cruise flight. The single turbofan engine is located on the centerline. Because of the relatively large gear height relative to wing span, ground effect data at very low ratios of h / b could not be obtained with the F-16XL.

During flight testing, the flight path angle and vertical speed is generally constant as the airplane descends through altitudes above ground effect. Initial flight path angles for the flight maneuvers varied between about -2 and -3 deg. These sink rates correspond to vertical velocities of between 10 and $15 \mathrm{ft} / \mathrm{sec}$. As the airplane passes through a height of about one span, the flight path angle and sink rate begins to decrease due to ground effect, until both parameters are nearly zero at touchdown

The variation of flight path angle with altitude during the flight test maneuvers is similar to the landing flare conducted during normal landings of the TU-144.

The DGE wind tunnel capability allowed data to be collected at a constant flight path angle in the presence of ground effect. Similar results have not been obtained in flight testing. The DGE wind tunnel flight path angles are generally lower than the sink rates experienced in flight.

During the flight test maneuvers, the pilot attempts to hold angle-of-attack constant during the descent through ground effect. Atmospheric disturbances and the need to insure satisfactory conditions at touchdown cause some variations to occur. For most of the TU-144 flight maneuvers analyzed so far, there has been a decrease in alpha just prior to touchdown. Angle-of-attack is generally increased slightly during conventional landings. During the flight test maneuvers, the angle of attack was about 9 degrees.

Angle-of-attack was constant during a significant range of the DGE wind tunnel trajectories. As the model decelerated at the end of a run, the angle-ofattack decreased. The region of constant angle-of-attack was therefore smaller for the higher sink rate tests.

Analysis of both the wind tunnel and flight data sets account for any variations of angle-of-attack. Static measurements of lift and pitching moment derivatives with respect to angle-of-attack were used for these corrections.

Similar corrections are made to the flight data for any variation in elevon position which occurs during a maneuver.

As a result, the final wind tunnel and flight data sets represent untrimmed force and moment increments due to ground effect.

The incremental changes in lift coefficient due to ground effect from several flight maneuvers are repeatable within the noise level of the measurements. The primary sources of scatter in the data are felt to be noise in the accelerometer measurements and atmospheric disturbances.

Data for both the TU-144 and F-16XL compare favorably, despite differences in wing shape and engine configuration.

Preliminary comparisons of flight measured lift coefficient increments from flight and DGE wind tunnel testing show excellent agreement. The flight data shown was obtained at an initial sink rate of approximately $15 \mathrm{ft} / \mathrm{sec}$ with the canard deployed. The DGE data was obtained at a sink rate of about $2.33 \mathrm{ft} /$ sec, wing planform only.

Additional correlations will be possible as more TU-144 flight data becomes available.

Both flight and wind-tunnel data indicated small levels of nose-down pitching moment in the presence of ground effect when referenced to 50% MAC.

The center of gravity for the aircraft is typically about 40% MAC and therefore the negative pitching moment due to ground effect is more significant for the flight vehicle.

Any differences between the wind tunnel and preliminary flight data are within the noise level of the flight measurements.

```
HSCTHIGh Lim Aarodynanics
```


Status of Flight Testing

- TU-144 Flight Testing Still in Progress
- 17 flights completed to date, 9 ground effect maneuvers attempted
- Post-flight computations of mass properties and thrust estimates for most maneuvers still in progress
- Flight data set to be summarized in TU-144 final report

The TU-144 flight experiment is still in progress. A total of 18 flights are expected to be completed by the end of February.

The flight data set will be limited to about 8 to 10 good maneuvers. Although the airplane conducted fifteen flights, ground effect maneuvers were only attempted on certain flights due to test planning constraints, and it was also not possible to obtain more than one test point on a given flight.

Additional smoothing and trajectory reconstruction methods may be used to enhance the quality of the flight data. Final data analysis will not be possible until post-flight computations of mass properties and thrust have been provided by Tupolev. A summary of the flight experiment and electronic files containing flight data (in engineering units) will be available to the HSR project at the conclusion of the flight program.

Shown in this figure is the composite ground effect data set from several tests plotted as a function of aspect ratio. As previously noted, there are two general trends.

One trend line consists of all the dynamic data as well as some static data. Another trend line consists of several static test points, with values approximately twice as great as the first trend line. The Tu-144 and TCA dynamic and static wind tunnel data, as well as the Tu-144 flight data all fall along the initial trend line. The dynamic flight data for the F-16XL also fits this trend, however, the corresponding F-16XL static wind tunnel data is significantly larger than the flight data.

When the same data is plotted as a function of outboard leading edge sweep angle, both the Tu-144 and TCA data from the current study fit the trends fairly well. The F-16XL; however, appears to depart from the trend. It should be noted however, that the leading edge sweep breakpoint is relatively farther outboard for the F-16XL than for either the Tu-144 or the TCA model.
Therefore it could be argued that the F-16XL data should be plotted against its inboard leading edge sweep angle (70 deg), which would result in a better fit to the trend. These observations suggest that ground effect, and the sensitivity to dynamic ground effect, may be indicated by a parameter which involves a weighted value of leading edge sweep.

The current data base is awkward to interpret since it includes an inconsistent variety of configurations and test facilities. In many cases, dynamic data for a configuration was obtained from flight or a dynamic facility and then compared against static data from a different wind tunnel facility. Only the University of Kansas low speed wind tunnel and the NASA Langley $14 \times 22 \mathrm{ft}$ DGE cart have the capability to provide parametric data under both static and dynamic conditions. So far, the Kansas data have distinctly indicated strong influences while the $14 \times 22 \mathrm{ft}$ data have indicated negligible differences due to dynamics. Further parametric testing with the 14×22 DGE system, especially with higher wing sweep angles, may help isolate the controlling parameters for dynamic ground effects.

Conclusions

- For the low aspect ratio wing planforms tested
- no significant DGE/SGE differences
- other parameters (besides AR) may be significant controlling factors in this difference (LE sweep)
- Wind tunnel and flight ground effects increment data for the Tu -144 compared well

For the HSCT wing planforms tested in the $14 \times 22 \mathrm{ft}$ DGE test, no significant differences were found between DGE and SGE test techniques. From previous ground effects data, the aspect ratios of the model wing planforms tested were such that differences in DGE and SGE data were expected. Closer examination of all the data suggested that other factors (in addition to AR) may need to be controlled to better understand this difference. Comparisons of the ground effects increment data from the $14 \times 22 \mathrm{ft}$ DGE test and the flight test for the Tu-144 were good. These ground effects increments compared well even with a very basic model that represented only the wing planform of the Tu-144 aircraft.

Recommendations

- DGE cart needs to be reworked before it can be a routinely used in ground effects testing
- Follow-on DGE test
- Check-out reworked DGE cart
- Confirm current HSR DGE findings and provide an opportunity to validate DGE test technique
- Expand parameter database for ground effects modeling for low aspect ratio wings (especially LE sweep influence)
- Computational parametric study of controlling factors
- Unsteady 3-D, to study LE sweep influence on DGE/SGE differences
- Steady-State method, check static ground effect levels

During this test, a list of items that need to be reworked was generated. Before this DGE cart can be routinely used in wind tunnel tests, these items need to be fixed. After these repairs are completed (current repair plan can be completed by Feb/Mar of 1999), a follow-on test would enable us to check-out the repairs. After a brief check-out, we could re-run the HSCT planforms already tested to confirm the current findings plus run the seven untested models to expand the ground effects database. This investigation would provide the opportunity to gain a better understanding of the differences between DGE and SGE test techniques as well as the knowledge necessary to decide when each is needed. In addition, a computational parametric study of some of the other potential factors would help the HSR community gain a better understanding of what factors need to be controlled in ground effects testing.

This page is intentionally left blank.

Boeing Commercial Airplane Group
HSCT Airframe Annual Review
Los Angeles, February 1998
NASA HSR2 Contract No. NASI-20220
Presented at
Task 33 4.3.2.4
Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length.
Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley $14 \times 22 \mathrm{ft}$ wind tunnel. Northup-Grumman is conducting time accurate CFD Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow
methodology which are thought to provide much needed insight in physics of this very complex problem.
The present report summarizes the results of these potential flow studies. The chart shows the outline of this report.
Potential Flow Analysis of Dynamic Ground Effect

Topics
IV. TCA Wing and Tri-Surface Configuration
V. Conclusions and Recommendations
$=$
I. Background and Objectives There are a number of flight test results from which the presence of a dynamic ground effect can be inferred. As a typical example, test data for the F-15 fighter airplane will be shown. The objectives of the Boeing potential flow studies area are outlined below. While listed as separate tasks, the stated objectives have been addressed more or less simultaneously during the course of the investigations. Before hand it should be stated that even 'simple linear potential flow methods' become computationally very involved if time-accurate solutions rather than frequency domain solutions are needed. Dynamic ground effect is not a periodic problem and thus demands the exity and the number of

HLD403
Task 33 4.3.2.4NMF

$$
\begin{aligned}
& \text { - Provide insight into the physics of dynamic ground effect } \\
& \text { - Identify contributing factors other than the dynamic ground effect itself } \\
& \text { - Validate analysis methods based on linear potential flow } \\
& \text { - Apply methods to HSCT-type configurations }
\end{aligned}
$$

HSCT High Lift
HSCT High Lift Aerodynamics

$$
\text { F-15 Dynamic Ground Effect Flight Test Results }
$$

The following excerpts from NASA Memorandum 4604 clearly summarizes the conclusions drawn from the F-15 flight test results:
In general, Figure 11 shows that ground effect becomes increasingly significant as sink rate decreases. The changes in the lift coefficient (Figure $11(\mathrm{a})$) and the nose-down pitching moment (Figure 11 (c)) increase with decreasing sink rate. These data also show that the changes because of ground effect decrease and approach zero as the sink rate increases. The change in the lift coefficient more than doubles from approximately 0.05 to over 0.1 as the sink rate decreases toward zero. The change in the nose-down pitching moment coefficient doubles from -0.008 to -0.016 for the 170 kn with the flaps up configuration and more than quadruples from -0.008 to -0.038 for the 150 kn with the flaps down configuration as the sink rate varies from the maximum to the minimum values.

$\frac{8 \text { Hancer }}{\text { HSCT High Lift }}$
HSCT High Lift Aerodynamics
Lift of an Impulsively Started Two-Dimensional Flat Plate (Wagner's Function)
Much can be learned about unsteady aerodynamics by studying the Wagner function. This function, shown in the figure,
describes the development of lift on an impulsively started 2 d flat plate. The total lift is seen to consist of lift due to
circulation and lift due to added mass effects. At the time $t=0$, at the very onset of motion, the airfoil develops an infinite
amount of lift for an infinite small length of time (similar to a Δ function). At the time $t=+0$ the circulation lift is zero, but
already $1 / 2$ of the final total lift is attained as a result of virtual mass effects. The circulation lift develops slowly due to the
downwash induced by the startup vortices which travel downstream. The lift due to virtual mass decreases with time
because it is proportional to the rate of change of flat plate circulation with time. Basically, the virtual mass forces are a
result of the changes imposed on the entire flow field which was at rest at $t=-0$.
During the period of time when the lift of the flat plate starts building (actually an infinite length of time!), the potential flow
drag of the flat plate is not zero. The drag consists of two components: (1) the vortex drag due to the downwash induced by
the startup vortices and (2) the drag due to virtual mass lift which acts only normal to the flat plate surface.
It is important to note that only the lift associated with circulation produces a potential flow leading edge suction force on
the flat plate. This means that at time $t=+0$ there is no circulation lift and thus no leading edge suction force, but the drag
(due to added mass effects) is $C_{d}=\pi$ *sin ${ }^{2}(\alpha)$. The fact that during transient conditions only the circulation part of lift is
associated with a leading edge suction force may have important implications: Based on the Polhamus theorem (used, for
example, in the modified form of "attainable leading edge suction" in the NASA Aero2S computer code), the strength of the
leading edge suction force determines the lift due to leading edge vortex formation. If part of the lift of a delta wing is
produced by virtual mass effects, the lower leading edge suction force would result in a reduced amount of Polhamus vortex
lift if the leading edge flow is separated.
Lift of an Impulsively Started Two-Dimensional Flat Plate (Wagner's Function)

$=$
HSCT High Lift Aerodynamics
Dynamic Ground Effect Similarity Parameters
Important scaling parameters for dynamic testing are shown in this figure.
The most important parameter is the nondimensional time. It basically describes the number of chord lengths traveled
before comparable states are achieved in model scale and full scale. This nondimensional time scale is important if, for
example, flight test data are to be compared with wind tunnel data. Typically, the requirement that the nondimensional time
scales be the same for the full scale and the model scale airplane is automatically satisfied if the geometric similarities listed
in the figure are satisfied. As usual, it will be difficult to simultaneously satisfy all the aerodynamic similarities. Once a
certain glide path angle, w/u o , has been specified the tunnel velocity is dictated by the attainable plunge velocity, w, of the
plunge apparatus. However, attention has to be paid in the wind tunnel test to allow the model lift to adjust to the angle of
attack change introduced once plunging commences. As will be explained later, a wing of aspect ratio 2 must have traveled
about 5 chord lengths before steady state conditions are fully attained. Also, any oscillatory harmonic motion has to be
scaled correctly.
Typically, oscillatory data (harmonic motion) are presented in terms of nondimensional (reduced) frequency.

[^14]QSCT High Lift Dynamic Ground Effect Similarity Parameters
(to collapse Wind Tunnel \& Flight Test data)
\[

$$
\begin{aligned}
& \mathrm{U}_{\infty} * \mathrm{~T} / \mathrm{C}=\mathrm{u}_{\infty} * \mathrm{t} / \mathrm{c} \\
& \mathrm{k}=\frac{\Omega * \mathrm{C}}{2 \mathrm{U}_{\infty}}=\frac{\omega * \mathrm{c}}{2 \mathrm{u}_{\infty}}
\end{aligned}
$$
\]

HSCT High Lift Aerodynamics

Nondimensional time:
 :рәрәлеп sчıвиә рлочว

Geometric similarities:
Wing geometry (must be similar)

(must be matched in Wind Tunnel)

(should be matched in Wind Tunnel)
$($ Upper case $=$ Airplane, Lower case $=$ Model $)$
II. Time-Accurate Potential Flow Code UNSTEADY3D

[^15]II. Time-Accurate Potential Flow Code UNSTEADY3D

- Description of Method

- Validation Cases
Low Aspect Ratio Plunging Wing in Ground Effect
- Findings
HSCT High Lift Aerodynamics \quad Description of Method

Time Accurate Boeing UNSTEADY3D Potential Flow Program

 [еІәще!! singularities describe the vorticity in the wake which consists of trailing and startup vortices. After every time step the wake vorticity ispropagated down stream by one panel length, thus simulating the increasing separation with time between the wing and its startup vortex system. The computer code accumulates all new vorticity generated during a time step in a vortex system of known strength singularities. For every time step new vorticity generated on the wing is solved for subject to satisfying the wing boundary conditions which include the time dependent onset free stream flow and the velocities induced by the already existing known strength vortices. Once a steady state flow condition is attained, all vorticity resides in the known strength vortex system and no new vorticity is generated by the wing.
In time dependent flow the forces on the wing consist of forces associated with the wing circulation (as in steady state potential flow) and of inertia forces associated with the rate of change with time of the circulation lift. The inertia force is often referred to as added mass effect. UNSTEADY3D follows the method described in Katz, Low Speed Aerodynamics, for determining these added mass effects.
UNSTEADY3D uses a modified version of the A372 paneling scheme to generate the wing lifting and trailing vortex layout, automatically adapting to the step size prescribed for the time dependent analysis. As low order panel codes are sensitive to irregularities in the panel geometry, much care is taken to produce a 'good' panel layout. The shape of the wake can be defined as input. However, the wake shape is not altered as part of the solution process. For most analyses use of a straight wake, which is automatically generated by the code, has been found to be sufficiently accurate.
The code optionally computes the forces described by the Polhamus leading edge suction theorem, under the tacit assumption this theorem is still applicable in time dependent flow.
All computations were performed on a 200 MHz PC. The code was compiled using the Microsoft Developer Studio FORTRAN environment. HLD403
rask 33 4.3.2.4/WMF
$\frac{\text { Bnerger }}{\text { HSCT High Lift }}$

[^16]easily estimated based on Polhamus' theorem.

Polhamus Leading Edge Suction Theorem

> the lift, but also increases the drag of the wing.
Polhamus has shown that the observed increase in lift, $\Delta \mathrm{CL}_{\text {Vortex, }}$, closely matches the magnitude of the leading edge suction force, C_{s}. Therefore the lift increments can be obtained by rotating the vector, C_{s}, about the leading edge by 90 degrees such that it acts normal to the wing surface. Once the leading edge suction force is known, the changes in lift and drag are
Polhamus Leading Edge Suction Theorem

HLD403
Task 33 4.3.2.4/WMF
HSCT High Lift Aerodynamics
Validation of Time Accurate Vortex Lattice Method
Effect of Aspect Ratio on Lift of Impulsively Started Rectangular Wings
The figure shows the lift of impulsively started rectangular wings of varying aspect ratio. The solution for AR=400
compares well with Wagner's infinite span wing solution of the previous Figure. An important result of the computations is
that low aspect ratio wings need to travel only a few chord lengths before the final lift level is attained. This behavior is
attributed to the rapid decrease of the wake influence with time as the startup vortices are convected downstream. This will
be explained later.
The first few time steps in the evaluation of the Wagner function are numerically difficult because of the initial spike of
virtual mass lift and the initially very rapid growth of circulation lift. The rapid growth in circulation lift is associated with
equally intense startup vortices in the wake region.
72
Effect of Aspect Ratio on Lift of Impulsively Started Rectangular Wings

HLD403
Task 33 4.3.2.4/WMF
HSCT High Lift Aerodynamics
Downwash Induced by Startup Vortices
Low aspect ratio wings have been shown in the above analyses to adjust more rapidly to changes in the flow conditions.
Examining Biot-Savart's vortex induction laws easily explains this behavior:
The downwash velocities induced at the point, P, by a startup vortex of the strength, Γ, is inversely proportional to the
distance, a, and directly proportional to the term $\left(\cos \phi_{1}-\cos \phi_{2}\right.$). For a 2 -d airfoil this second term assumes the value 2 , for a
high aspect ratio wing the value of term is nearly 2 as long as the distance, a, is not very large. In the case of low aspect
ratio wings, however, the angles ϕ_{1} and ϕ_{2} quickly approach nearly identical values when the startup vortices are convected
down stream. Consequently the downwash induced at a low aspect ratio wing itself by its own startup vortex system
diminishes very rapidly with time. This allows a more rapid buildup of circulation lift.
$\frac{8-2}{\text { HSCT High Lift A }}$

[^17]HSCT High Lift Aerodynamics
Effect of Aspect Ratio on Lift of Impulsively Started Rectangular Wings in Ground Effect
The figure shows the lift of wings of different aspect ratios in ground effect. The wing trailing edges are located 0.125 chord
lengths above the reflection plane. In terms of chord lengths traveled, the final lift level is seen to be attained much faster in
ground effect than in free air. A physical explanation for this behavior is the reduced influence of the vortices downstream
of the trailing edge, as will be shown later.
HSCT High Lift
Effect of Aspect Ratio on Lift of Impulsively Started Rectangular Wings in Ground Effect

[^18]-
Vortex System of a Wing in Ground Effect
> plane and the sense of its vortex circulation, Γ, is reversed.
> The figure depicts a simplified vortex system of a wing operating at the altitude, h, in ground effect. Computationally, the presence of the ground plane is simulated by introduction of an image of the wing. The image is located below the ground
The figure offers an easy physical explanation for the more rapid rate of change of lift when the wing operates near the ground: the downwash induced on the wing by of the vortices downstream of the trailing edge is lower than in free air. For example, the far field influence of the startup vortex is (nearly) canceled by the image of the startup vortex. This image vortex is located below the ground plane and rotates in the opposite direction. The two counter rotating vortices combined can be viewed as a weak doublet. The influence of a doublet diminishes proportional to $1 / \mathrm{r}^{2}$ while the influence of single vortex decreases with $1 / r$, where r denotes the distance from the wing. The reduced downwash allows a much more rapid growth of the circulation lift. In addition, the virtual mass forces are initially higher because their magnitude is proportional to the rate of change of the circulation lift.
8 namerer
HSCT High Lift Aerodynamics

HLD403
Task 33 4.3.2.4/WMF
2
HSCT High Lift Aerodynamics
$$
\text { 2-d Airfoil in Sinusoidal Plunging Motion / Effect of Number of Panels }
$$
The figure shows solutions obtained for a $\mathrm{AR}=400$ rectangular wing performing a ± 0.1 chord lengths amplitude sinusoidal
plunging motion of the reduced frequency $\mathrm{k}=\omega \mathrm{c} / 2 \mathrm{Uoo}=0.5$. The maximum angle of attack excursions due to the plunging
motion are $\Delta \alpha=+/-5.7$ degrees. Superimposed to the plunging motion is a steady state angle of attack of $\alpha=5$ degrees.
Plunging is started at $t=0$. It initially causes a large Wagner-type response in lift. After about one wave length a steady
state response is attained. Both total lift and circulation lift are seen to be virtually independent of the number of chordwise
panels used in the analysis. Note the phase shift between total lift and circulation lift.
Steady state, an angle of attack excursion of $\Delta \alpha=5.7$ degrees would correspond to a peak lift increment $\Delta \mathrm{C}_{\mathrm{I}}= \pm 0.62$. In the oscillating mode there is insufficient time to develop steady state flow, and thus the peak lift excursions are significantly smaller. The peak lift values become smaller as the frequency of the oscillation is increased. For the reduced frequency of $k=0.5$, UNSTEADY3D predicts a lift amplitude of $\Delta C_{1}= \pm 0.38$. The linearized theory due to Theodorsen predicts $\Delta C_{1}= \pm 0.40$ for a 2-d airfoil under same conditions. The agreement between the two methods appears to be adequate.
QSCT High Lift
2-d Airfoil in Sinusoidal Plunging Motion / Effect of Number of Panels

HLD403
Task 33 4.3.2.4/WMF
HSCT High Lift Aerodynamics
Amplitude Predicted by:
Theodorsen Linearized Theory $\triangle \mathrm{CL}= \pm 0.40$

Rectangular Low Aspect Ratio Wing, AR=4, Performing Sinusoidal Plunging Motion 0.25 Chord Lengths Above The Ground This somewhat crowded graph shows the UNSTEADY3D results for a low aspect ratio wing performing plunging oscillations close to the ground. In the present analysis the distance between the wing and the ground was varied with time to fully simulate the plunge effect. This results in lift excursions which are not fully symmetrical, as the ground effect is larger than the mean value during the lower portion of the plunging cycle and smaller during the balance of the plunging motion. The contribution of the virtual mass effect to the lift forces is seen to be quite significant.
Also listed in the figure is the lift variation obtained by Katz for the same condition. The excellent agreement between the two methods may be somewhat fortuitous as there are differences in the number of panels used. Also, there is a minor uncertainty how ground height was defined.
Rectangular Low Aspect Ratio Wing, AR=4, Performing Sinusoidal Plunging Motion 0.25 Chord
Lengths Above The Ground

HLD403
Task 33 4.3.2.4/WMF

$$
\begin{aligned}
& \text { Lift of AR=4 Rectangular Wing Heaving in Ground Effect } \\
& \text { As part of a study of race car front wings in ground effect, Katz has analyzed a low aspect ratio wing performing heaving } \\
& \text { motions close to the ground. Compared to his results for free air, the lift excursions are markedly increased. } \\
& \text { UNSTEADY3D predictions are in good agreement with his results. }
\end{aligned}
$$

-

Lift of AR=4 Rectangular Wing Heaving in Ground Effect

From: Katz, Low-Speed Aerodynamics
HLD403
II. Findings

The figure summarizes the key findings of section II.

- Added mass lift is proportional to the rate of change of circulation with time
- The number of chord lengths of travel required to attain steady state lift level decreases
with wing aspect ratio
- The number of chord lengths of travel required to attain steady state lift decreases in
ground proximity
HLD403
Task 33 4.3.2.4/WMF
HSCT High Lift Aerodynamics

$$
\text { III. Cropped Delta Wing }
$$

A number of investigations were made using a cropped delta wing because of its simple geometry. The wing was used to
evaluate the lift characteristics in static and dynamic ground effect.
Also, the wing time accurate pitch stability derivatives were determined. These stability derivatives were used to investigate
the effects of the wing pitch inertia on the time dependent lift response to an elevator deflection. This time response may be
significant because elevon deflections commanded to compensate for changes in pitching moment due to ground effect may
cause temporary changes in wing lift which could be interpreted as lift changes due to dynamic ground effect.
III. Cropped Delta Wing

- Findings
Cropped Delta Wing Ground Effect Calculations

Cropped Delta Wing Geometry

Time accurate potential flow analysis in UNSTEADY3D becomes very computing intensive if complex configurations are to be analyzed which require a large number of panels for adequate geometry definition. The computing time also increases dramatically if a large number of time steps is to be performed, as with every time step the number of known strength singularities in the wake is increased. Therefore most of the analyses were run using a simple wing planform and steep descent angles, which minimize the number of time steps required to approach the ground. The wing pitch angle is 15 degrees, measured relative to the ground. The trailing vortex system, located parallel to the ground, was internally generated by UNSTEADY3D. Different wake locations require manual data input and have been found to slightly affect the lift levels, but have virtually no effect on lift increments. Most analyses were run using the automatic wake mode.
> some of the analyses to be shown later.
The point labeled X_{N} is the steady state wing neutral point $\left(\mathrm{dC}_{\mathrm{M}} / \mathrm{dC}_{L}=0\right)$ which has been obtained from potential flow discussed later.
flow zero pitch lift $\left(\mathrm{dC}_{\mathrm{L}} / \mathrm{dq}=0\right)$,
flyses which will be
HLD403

Descent Profile for Cropped Delta Wing

> The figure shows the descent profile used for all analyses. The wing trailing edge is located at $\mathrm{z}=0.0$. The approach to the ground was simulated by moving the ground plane towards the airplane after every time step. At the start of the analysis the image plane was located $\mathrm{z}=3.0$ chord lengths below the wing trailing edge, which corresponds to a height of 0.75 wing spans above the ground. The descent was stopped once the ground plane was located 0.13 wing spans below the wing. During the approach to the ground plane the airplane traveled a horizontal distance of 25 chord lengths. Note that the distance traveled is equivalent to nondimensional time. angle of attack change due to plunging was introduced, thus the 15 degrees incidence included the angle of attack due to the plunging motion. Mathematically, this corresponds to panel boundary conditions of $\mathbf{u}_{\mathrm{oo}} * \mathbf{n}=$ constant, where \mathbf{u}_{oo} designates the free stream velocity vector, and \mathbf{n} the panel surface normal vector. At the end of the trajectory when the plunging motion is stopped the aerodynamic angle of attack remains at $\alpha=15$ degrees. In reality this would require a flare maneuver which would slightly change the airplane attitude relative to the ground in order to compensate for the vanishing sink rate, $\mathrm{dh} / \mathrm{dt}$. Within the assumptions of linearized theory these small attitude changes are small, because they only affect the location of the image singularities relative to the aircraft.
HSCT High Lift Aerodynamics

[^19]Descent Profile for Cropped Delta Wing
HSCT High Lift

> The figure shows the predicted development of time dependent lift together with steady state solutions obtained for a number of different ground heights (diamonds). The differences between the steady state lift and the time dependent solution are surprisingly small. But it must be noted that the unsteady circulation dependent lift is definitely less than the steady state lift. The lift resulting from virtual mass effects virtually fully compensates for the loss in circulation lift. This finding is in agreement with the results obtained for the low aspect ratio rectangular wings which have been discussed in the previous
$=$
HScr High Lift Aerodynamics

HLD403
Task 33 4.3.2.4/WMF
$-$
HSCT High Lift Aerodynamics
Cropped Delta Wing Induced Drag During Constant Angle-of-Attack Descent Towards a
Reflection Plane
As the airplane approaches the ground, drag increases significantly over the steady state values for the same ground height,
as shown in the figure. This drag increase is mainly due to virtual mass effects. Compared to the steady state solution the
unsteady circulation induced drag is actually lower, mainly because the circulation lift itself is also lower. However, a few
simple calculations indicate that, for example, at $h / b=0.13$, the unsteady circulation induced drag is higher than what would
be expected from simply adjusting the steady state induced drag by the square of the ratio between time dependent and
steady state circulation lift. This higher than expected circulation related induced drag in the unsteady mode must be
attributed to the additional downwash induced by the time dependent startup and trailing vortices.
For an uncambered wing higher induced drag is equivalent to a reduction in leading edge suction force. This may be
significant because the Polhamus leading edge suction theorem postulates that changes to the potential flow leading edge
suction force will affect the leading edge vortex lift generated by wings with highly swept sharp leading edges. However,
application of the Polhamus theorem has not been proven.
$=$
Cropped Delta Wing Induced Drag During Constant Angle-of-Attack Descent Towards a
Reflection Plane

HLD403
$=$

Landing maneuvers typically involve changes in pitch attitude for the landing flare, or at the very least, control surface deflections to compensate lift transients associated with pitch control inputs could be interpreted as a 'dynamic ground effect'. Therefore it was decided to explore in more detail the aircraft response to pitch commands.
The investigations in this chapter describe an attempt to break the complex time dependent motions of a wing into a number of canonical functions which describe the time dependent aerodynamic responses to changes such as angle of attack, pitch rate, etc. If such a set of functions can be defined they could be used to synthesize a time accurate model flight profile, within the limits of linear superposition theory. The approach of linear superposition is commonly used to describe the steady state and quasi-steady stability and control characteristics of airplanes. Thus the analysis of an airplane could be performed very quickly, once the function shapes have been defined by running the lengthy time accurate potential flow code. One time accurate potential flow run in UNSTEADY3D would be necessary to define each individual function shape.
The following time accurate transfer functions were determined:

> time dependent lift curve slope
time dependent neutral point position
time dependent lift response to a flap deflection about flap hinge line
time dependent pitching moment response to a flap deflection about flap hinge line time dependent lift response to pitch rate
time dependent pitch damping
$\mathrm{dCL} / \mathrm{d} \alpha$
$\mathrm{dCM} / \mathrm{dCL}$
$\mathrm{dCL} / \mathrm{d} \delta_{\mathrm{F}}$
$\mathrm{dCM} / \mathrm{d} \delta_{\mathrm{F}}$
dCL/dq
$\mathrm{dCM} / \mathrm{dq}$
HSCT High Lift
Unsteady Pitching Motion of Cropped Delta Wing
Time Accurate Pitch Stability Derivatives

- Explore time accurate lift response to pitch control inputs
- Account for airplane pitch inertia
- Quick integration scheme using time accurate transfer functin
- Quick integration scheme using time accurate transfer functions in free air:

	bp/Wフp
	bp/Tכp
	'sp/W:P
	${ }^{\text {s }}$ ¢ $/ 7$ ¢р
	TכP/Wวp
	рр/דวр

HSCT High Lift

The figure shows the response of the cropped delta wing to an impulsive start at 10 degrees angle of attack. The circulation lift initially generates a large nose-up pitching moment, probably due to the initially strong downwash induced at the wing aft region by the startup vortices. This nose up moment is greatly reduced by the moment due to the virtual mass effects, which act farther aft on the wing. The location of the moment reference point, X_{N}, has been selected such that it forms the neutral point in free air once steady state conditions are attained. During the first 0.5 chord lengths of travel, the nose down pitching moment is appreciable. However, for the sake of simplicity this variation of CM has been neglected in the wing motion analyses that will be described later. for low aspect ratio rectangular wings.
Both the moment and the lift functions scale linearly with the angle of attack, which in turn defines the wing asymptotic lift be determined only once.
$=$
Hsco t Hgh Lit A Aerobymamics
Time Dependent Lift and Pitching Moment of Cropped Detta Wing Impulively Started in Free Air
at 10 Degrees Angle-of-Attack

2
HSCT High Lift Aerodynamics
Steady State Chordwise Pressure Distribution of Cropped Delta Wing in Free Air at Zero Degrees
Angle-of-Attack and 10 Degrees Flap Deflection
$=$
HSCT High Liff Aerodynamics
Steady State Chordwise Pressure Distribution of Cropped Delta Wing in Free Air at Zero Degrees
Angle-of-Attack and 10 Degrees Flap Deflection

$=$
Hscr Hgh Lit Aeeorodramics
Effect of Pitch Rate on Dynamic Lift and Pitching Moment of Cropped Delta Wing in
Free Air at Zero Degrees Angle-of Attack
The UNSTEADY3D time accurate vortex lattice code has been extended to include computation of rate derivatives, such as pitch or yaw rates.
 may not be caused by the proximity of the ground, but rather results from the pitching maneuver the airplane has to perform close to the ground A change in pitch attitude is associated with pitch rates which create time dependent 'pitch lift' and 'pitch damping'. Pitch lift depends on the location of the center of rotation and thus can be made zero. The pitch damping moment is the smallest when there is no pitch lift, but it can never be zero. The transient loads caused by changes in airplane attitude are time dependent responses, the shapes of which are very similar to Wagner functions.
Only on a computer is it possible to easily separate the effects of angle of attack, lift $=\mathrm{f}(\alpha$, time $)$, and the rate of change of angle of attack, lift $=$ $\mathrm{f}(\mathrm{d} \alpha / \mathrm{dt}$, time $)$. The figure present the results of such a calculation.
The cropped delta wing is assumed to begin to pitch at the pitch rate $\omega=0.1 \mathrm{rad} / \mathrm{sec}$ about an axis located at the wing neutral point, $X_{N}=-1.0$. In the computer simulation this pitching motion is performed while maintaining a constant angle of attack, $\alpha=0$ degrees! The pitching motion is impulsively started at time $t=0$. The figure shows the development of the pitch rate induced lift and moment as a function of nondimensional time (number of chord lengths traveled). The asymptotic lift coefficient due to the pitch rate is $\Delta \mathrm{CL}_{\omega}=+0.236$. The associated pitching moment is $\mathrm{CM}=-0.077$. The moment counteracts the pitching motion; it is therefore referred to as pitch damping moment. The shapes of both functions are identical to those found before for sudden changes in angle of attack or flap deflection.
For center of rotation located at $X_{P}=-0.3$, the pitch lift is found to be exactly zero. The pitching moment, however is still $\mathrm{CM}=-0.077$. There is virtually no lift carried by the wing and thus there are no startup or trailing vortices. Consequently the pitch damping moment is independent of time. With this finding in mind, the lift and moment created by pitch rotation about an arbitrary axis can always be split into 2 components: A pure equivalent angle of attack change and a rotation about the point X_{N}. Depending on the location of the overall moment reference point, the pitch lift itself can create an additional pitch damping moment. Note that the equivalent angle of attack change is directly proportional to ω.
Effect of Pitch Rate on Dynamic Lift and Pitching Moment of Cropped Delta Wing in

-.0558
.- .668
-.0658
-.878
-.0258
-.088
.- .8858

HLD403

Hscr High Lit Aesedmenemics
Effect of Pitch Rate on the Pressure Distribution About a Cropped Delta Wing in Free Air
at Zero Degrees Angle-of-Attack
The figure shows the steady state pressure distribution about a cropped delta wing for the pitch rate, $\omega=0.1$. Results are shown for two locations of the pitch axis.
> on impact on the pressure distribution near the wing leading edge. If a lifting airplane wing were to pitch about the point X_{P} (a very unstable airplane), the pitching motion would reduce the leading edge suction peak and thus could temporarily weaken the strength of leading edge vortex if such a vortex was present.
The upper part of the figure shows the pressure distribution if the pitch axis is located at the wing neutral point, X_{N}. As explained before, these pressure distributions contain two components (1) the pressure distribution due to rotation about the point X_{N} and (2) the flat plate type pressure distributions associated with the wing equivalent angle of attack, which above has been shown to be proportional to ω. Thus the pitching motion is seen to increase the suction peaks at the outboard part of the wing, while decreasing the inboard pressure peaks.
$=$
Hsct High Lift Aerodynamics
Effect of Pitch Rate on the Pressure Distribution About a Cropped Delta Wing in Free Air
at Zero Degrees Angle-of-Attack

HLD403
HSCT High Lift Aerodynamics

$$
\text { Time Accurate Pitch Motion }
$$

Time Accurate Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of a
Neutrally Stable Cropped Delta Wing

[^20]Wings operating close to the ground experience a nose-down pitching moment. This nose-down moment is further increased by the added mass effects when the ground height changes with time. To trim and flare the airplane, the pilot uses elevator control deflections. These control This is illustrated in the figure showing the time accurate response of the cropped delta wing to a suddene the airplane more difficult to fly. when the center of gravity is located at the wing neutral point, X_{N}. The downward deflected elevator initially creates an upward lift elevons nose-down pitching moment. This moment causes the poset X_{N}. The downward deflected elevator initially creates an upward lift force and a on the wing pitch inertion. The moment causes the onset of a nose down pitch motion of the wing, the pitch acceleration of which depends and a pich demping moment which counteracts the flap created moment. Integrated over time, the pitch rotation itself decreases the wing angle of attack which in turn creates downward lift. In the present analysis, it was assumed that the wing has a finite pitch inertia, but infinite mass. The assumption of infinite mass eliminates the need to account for the plunging motion of the wing as a result of the changes in lift.
The figure shows that the airplane will have traveled nearly 4 chord lengths before the downward lift develop. For a large HSCT traveling at 150 knots this corresponds to a time delay of about 1 second!
$=$
Hscr r Hg Liff Aeroodymamiss
Time Accurate Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of a
Neutrally Stable Cropped Delta Wing

$\stackrel{\text { ® }}{\oplus} \quad \oplus \quad \odot \quad \stackrel{\oplus}{i} \quad \stackrel{\oplus}{~}$

HLD403
$=$
HSCT High Lifif Aerodynamics
Quasi-Steady Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of
a Neutrally Stable Cropped Delta Wing

> The analysis shown above was conducted using the 2-d Wagner function as the transfer function describing the timeaccurate aerodynamics. Use of the 2-d Wagner function models a worst case scenario, as the response times for low aspect ratio wings are actually shorter. This has been explained before.
The present figure shows the wing response if quasi-steady aerodynamics are used, that is instant aerodynamic response to the wings instantaneous geometric operating conditions. The time required to develop the desired downward lift response is seen to be somewhat shorter than computed using unsteady aerodynamics. This indicates that neglecting time accurate
aerodynamics will yield a slightly optimistic result. In both cases shown the pitch attitude diverges very quickly because the wing is neutrally stable and no autopilot algorithm was used in the analysis.
$=$

HLD403
Task 33 4.3.2.4/WMF
$=$

$=$
Quasi-Steady Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of
a 20\% Stable Cropped Delta Wing

HLD403
Task 33 4.3.2.4/WMF
HSCT High Lift Aerodynamics
Quasi-Steady Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of

$$
\text { a } 20 \% \text { Stable Cropped Delta Wing With Reduced Pitch Inertia }
$$

The figure illustrates wing behavior if the pitch inertia factor F is four times larger than the value used in the previous
calculations. Assuming that the geometry of the airplane remained unchanged, this amounts to a reduction of the pitch
inertia by a factor of four. The computations indicate that for the same 10 degree flap deflection input, negative lift is
obtained after 1 chord length of travel. Also, the wing settles with little overshoot at the new steady state lift level,
CL=-0.7.
Based on this preliminary investigation it must be concluded that the magnitude of the inertia factor F can have a significant
impact on how the airplane handles in ground effect. Also, there should be a large impact due to the type of pitch control
used. The impact of control surfaces on transient lift varies greatly if canards, conventional horizontal tails, and tri-surface
configurations were considered in addition to a tailless delta wing.
The F15 horizontal tail is very closely coupled to the wing, thus the time response of the wing/horizontal tail combination to
an elevator deflection may be very similar to that of a single low aspect ratio cropped delta wing. Deflecting the elevator to
compensate for the nose-down moment due to ground effect will initially reduce wing lift and cause the aircraft to settle.
This behavior could be interpreted by the pilot as an adverse ground effect.
$=$
Quasi-Steady Analysis of Pitch Motion Due to a 10 Degree Sudden Flap Deflection of
a 20% Stable Cropped Delta Wing With Reduced Pitch Inertia

HLD403
Q Eamer
III. Findings for Cropped Delta Wing
HScT High Lif Aerodynamics \quad III. Findings for Cropped Delta Wing

- Time accurate circulation lift + added mass lift \approx quasi steady lift
- Time accurate induced drag is higher than quasi steady drag
- In free air, the conventional steady state stability and control derivatives can be
replaced by canonical (Wagner-type) transfer functions allowing quick time accurate
analyses
- Eigen-pitch-damping is independent of time (pitch about point X_{P})
- Lift due to pitch rate is eliminated by pitching about the point X_{P}
- Elevon deflections for lift control initially produce not intended reversed lift excursions

which | - depend on airplane pitch inertia |
| :--- |
| - may explain difficult landing characteristics of Concorde |

HSCT High Lift Aerodynamics

\[\)| IV. TCA Wing and Tri-Surface Configuration |
| :--- |
| |
| TCA Wing Panel Layout for Time Accurate Analysis |

\]

in order to conserve computer time.

Hing Parmeeters (OH Pbojectied aren)	
hef, ares	3500 S0. Fr
spla	131.28 mm .
$\boldsymbol{u}, \mathrm{A}, \mathrm{C}$,	04.1832 Fr .
aspect ratio	2.0270
taper mato	. 0864
L.E. SMEEP	11,0132,0 DEO
sex 4.1.c.	B00\% STA 2304.97

HLD403
Task 33 4.3.
HSCT High Lift Aerodynamics

$$
\text { Comparison of TCA Predicted Ground Effect With Wind Tunnel Data }
$$

The figure shows the computed lift as a function of ground height for quasi-steady and time accurate conditions. The
theoretical lift values have been nondimensionalized using the steady state lift in free air as reference condition. Ground
height is measured relative to 50% MAC and has been nondimensionalized by wing span.
The theoretical static and dynamic ground effect curves are seen to be virtually identical. There are some minor differences
between the wake models used for the static and the dynamic analyses, respectively. These modeling differences should
cause less than 1% variation in lift. The theoretical prediction of a negligible dynamic effect for the TCA agrees with the
observations made for all the other low aspect ratios analyzed so far.
Also shown in the graph are the results obtained in the NASA Langley $14 x 22$ ft tunnel for the static TCA ground effect. The
agreement with theory is excellent. No loss of leading edge suction was assumed in the theoretical predictions. It is not
known if a leading edge vortex was present in the experiment. At the time of writing this report, no dynamic experimental
data had become available.
$=$
Comparison of TCA Predicted Ground Effect With Wind Tunnel Data

HLD403

$=$
HSCT High Lift Aerodynamics
Polhamus Leading Edge Vortex Lift Increment in Static and Dynamic Ground Effect

HLD403
Task 33 4.3.2.4/WMF
Q Mander
HSCT High Lift Aerodynamics
TCA Normalized Pitching Moments
All pitching moment data shown for the TCA wing are referenced to 50% MAC (mean aerodynamic chord). The term
-dCM/dCL defines the location of the wing actual neutral point relative to the somewhat arbitrarily selected $50 \% \mathrm{MAC}$
reference. Assuming that the center of gravity is located at 50% MAC, the wing is unstable if the neutral point is located
upstream (forward) of 50% MAC.
As the wing approaches the ground, the neutral point (which for a flat wing coincides with the center of pressure) is seen to
move aft; the wing becomes statically less unstable. This behavior is seen to be slightly more pronounced in dynamic
ground effect. It is caused by the lift due to added mass effects, which act farther aft on the wing. Also, the amount of
neutral point travel is seen to be larger if a leading edge vortex (Polhamus effect) is present.

[^21]TCA Normalized Pitching Moments

HLD403

The induced drag characteristics of a wing are commonly described by the, k - factor, where

$\mathrm{k}=\mathrm{CD}_{\mathrm{i}} / \mathrm{CL}^{2}$.

In the present figure the wing total drag shown before has been recast in this term. $\mathrm{CD}_{\mathrm{i}} / \mathrm{CL}^{2}$ is seen to decrease with ground proximity, clear evidence that the induced drag is decreased due to the ground effect. Also, under static conditions the ground effect is seen to be more beneficial than during the 5.7 degree dynamic glide path. For reference, the free air elliptic induced drag factor has been added to the graph. The theoretical free air drag of the TCA wing is seen to be somewhat higher than the theoretical minimum. Higher than elliptic induced drag is to be expected. However, use of only 7 spanwise panels in the UNSTEADY3D analysis has possibly decreased the accuracy of the induced drag predictions.
TCA Induced Drag Factors in Static and Dynamic Ground Effect

HLD403
HSCT High Lift Aerodynamics

$$
\text { TCA Wing Lift Response to Sudden Change in Ground Height }
$$

The difference between steady state and time dependent dynamic ground effect increases with the airplane rate of descent
toward the ground. At zero rate of descent (flight parallel to the ground) the dynamic effects vanish. Conversely, the
dynamic effects are the largest for very steep glide slope angles. An upper limit of the rate of descent toward the ground and
thus the largest dynamic ground effect occurs in what may referred to as an "air craft carrier landing", where the ground
height changes abruptly. This limiting condition was investigated in UNSTEADY3D.
The figure shows the development of lift when, after a steady state flight at H/B=0.5, CL=0.376, the ground height is
abruptly reduced to H/B=0.14. In the example shown the jump in ground height occurred at the nondimensional time
equivalent to 0.15 chord length of distance traveled. Total lift is seen to rapidly approach the new steady state conditions
associated with the reduced ground height.

HSCT High Lift Aerodynamics
Change of TCA Wing Chordwise Pressure Distribution Due to a Sudden Change in Ground Height
The increase in nose down pitching moment with decreased ground height is easily explained by examining the chordwise
pressure distributions shown in the figure. Most of the lift and pitching moment increase due to ground proximity is caused
by additional load carried on the aft portion of the wing.
$=$
Change of TCA Wing Chordwise Pressure Distribution Due to a Sudden Change in Ground Height

$=$

HSCT High Lift Aerodynamics
HSCT High Lift Aerodynamics
Tri-Surface Airplane Pressure Distributions Due to a Sudden Canard Deflection
The analyzes presented in previous charts showed that in ground effect the center of pressure is shifted aft by up to 3% MAC relative to its
location in free air. Deflection of the wing elevons, a horizontal tail, a canard surface, or a combination of these three devices could be used to
compensate for the nose down pitching moment. The figure shows a tri-surface airplane configuration formed by addition of two low aspect
ratio rectangular control surfaces to the TCA wing. All three surfaces are planar, except that they are vertically staggered by 40 inches
(3.5\%MAC) in order to avoid numerically singular points between interacting wakes. In the following free air analysis, only the canard will be
used as a pitching moment effector.
At the nondimensional time $\tau=0$ (the equivalent of chord lengths traveled) all three surfaces are positioned at zero degrees angle of attack. At
$\tau=0.05$ the incidence of the canard is suddenly increased to α canard $=10$ degrees.
At $\tau=0.3$ the chordwise pressure distribution about the canard surface is seen to have nearly fully developed. Also shown is the approximate
location of the canard startup vortices, which at that particular instant induce a small amount of upward flow on the main wing.
At $\tau=1.6$ the startup vortices have traveled farther downstream and are now located somewhat upstream of the wing trailing edge. Both the
canard trailing and startup vortices induce a downward flow on the forward part the wing which now develops a negative lift force.
At $\tau=2.3$ the bulk of the startup vortices is located between the wing trailing edge and the leading edge of the horizontal tail. The upwash
induced at the tail causes a temporary upward lifting force on the tail.
At $\tau=2.8$ both the startup and trailing vortices have traveled downstream of t
he tail, which now carries a downward load. Nearly steady state conditions will be attained shortly thereafter.
$=$

QSCT High Lift
HSCT High Lift Aerodynamics
Tri-Surface Airplane Lift and Pitching Moment Due to a Sudden Canard Deflection
The figure presents the airplane time dependent lift and pitching moment characteristics associated with the above pressure distributions.
Initially, a large positive lift increment and a nose up pitching moment is generated by the sudden 10 degree canard deflection at the
nondimensional time $\tau=0.05$.
Up to the time $\tau=0.5$ lift and moment continue to increase as a result of the upflow induced on the wing by the canard startup vortices.
Subsequently, lift is reduced by the growing downwash on the wing as the canard vortices travel farther downstream. Note the reduction in lift
due to added mass effects. The added mass forces act in the aft region of the wing and cause a nose-down moment.
When the canard startup vortices approach the tail, the induced upflow creates for a short period of time an upward tail lift force at
approximately $\tau=2.5$. The tail lift briefly creates a nose down pitching moment.
Once the canard vortices have traveled past the horizontal tail the induced downwash very rapidly creates a downward tail force which is
associated with a nose up moment. Nearly steady state conditions are approached past $\tau=3$. Note that the downwash of the lifting canard
eventually results in negative lift for the entire configuration.
In summary, the canard deflection creates initially a positive increment in lift, which is followed shortly thereafter by a loss in lift. Such an
airplane handling characteristic could be interpreted by the pilot as an adverse dynamic ground effect.
The trisurface analysis yields a few important findings:

1) In the case of low aspect ratio configurations, positive lift of the canard creates a downwash field which causes a significant loss in lift of the
main wing. This can result in a small net loss of overall lift.
2) Moments and lift vary greatly with time during the first few chord lengths of travel after a canard deflection.
3) There is a strong time dependent interaction between the canard wake vortices and the horizontal tail. This interaction can most likely not be
ignored if these surfaces are to be used for control of ride quality or to suppress fuselage bending modes.
$=$

Tri-Surface Airplane Lift and Pitching Moment Due to a Sudden Canard Deflection

HLD403
Task 33 4.3.2.4 WMF
HLD403
Task 33 4.3.2.4/WMF

HSCT High Lift Aerodynamics
TV. Findings from TCA Analyses
The figure summarizes the findings from the TCA analyses.
IV. Findings from TCA Analyses

- Changes in total lift (circulation + added mass) due to dynamic ground effect are small
- Polhamus leading edge vortex lift is reduced in dynamic ground effect
- Large shift in center of pressure associated with static ground effect is aggravated by
dynamic effects
- Induced drag is increased by dynamic ground effect
- Tri-surface airplane overall lift can be decreased by upward lift of the canard
- Significant variation of lift and moment during the initial 3 chord lengths of travel
- Strong interactions between canard and horizontal tail (ride quality control issue)
HSCT High Lift Aerodynamics
Time accurate potential flow results obtained from UNSTEADY3D are in good agreement with the very limited data base of
known theoretical solutions. However, all known 'exact' analytical solutions are only for 2-d airfoils out of ground effect.
Discretization problems may have contaminated the accuracy of 3-d wing data found in literature used for comparison. At
present, even relatively coarse panel layout schemes result in long computer run times in the time accurate mode. These
inherent difficulties associated with time accurate analyses impede rapid program check out, and limit the number of cases
that can be evaluated.
All the data cases run indicate that the dynamic effects on lift in potential flow are relatively small for low aspect ratio
wings. However, pitch control input required to compensate for the increased nose down pitching moment in ground effect,
may cause a transient loss in lift which could be interpreted as lift loss due to ground effect.
The figure summarizes the key findings of the dynamic ground effect study.
HSCT High Lift Aerodynamics
HSCT High Lift Aerodynamics

1) While generally small, the influence of dynamic ground effect on lift is largest for steep glide path
angles and disappears in steady level flight.
2) Virtual mass effects significantly increase induced drag in dynamic ground effect.
3) The large aft shift of the center of pressure in ground effect is slightly aggravated by dynamic effects.
4) The number of chord lengths of travel needed to approach steady state lift conditions decreases with
wing aspect ratio. This effect is more pronounced in ground proximity.
5) Assuming applicability of the Polhamus leading edge suction force theorem, the leading edge vortex lift
of highly swept wings is slightly reduced in dynamic ground effect.
6) Depending on the airplane pitch inertia, control inputs for pitch trim can produce a temporary loss in lift
which - erroneously - could be interpreted as lift loss due to dynamic ground effect.
7) In order to separate lift due to angle of attack from lift due to pitch rate in dynamic wind tunnel tests,
the wing must be pitched about "the point of zero pitch lift, Xp, (the $3 / 4$ point in 2 -d flow, free air)".
8) Tri-surface configurations exhibit highly complex time aerodynamic responses to canard deflections.

> Reanalyze flight test data trying to account for time accurate transients due to control inputs.
> - Analyze NASA Langley $14 x 22$ ft ground effect data knowing what characteristic behavior to look
for. for.
$\pm W M / \nabla^{\circ} Z \varepsilon^{\prime}+\varepsilon \varepsilon \times s e \perp$

This page intentionally left blank.
Dynamic Ground Effects Simulation
Using OVERFLOW-D

This work is being performed under the Non-Linear Methods portion of the High Lift Analysis Methods technology area. This work is being performed under HSR Contract NAS1-20220, Task 33, Subcontract ZA0867, supervised by Paul Meredith at Boeing-Seattle.

Outline Of Presentation This presentation is broken into 5 logical sections. The Background Information section describes the technical issues being address by this study. The Approach section describes the organization of the contract effort which was laid out as the most effective means of quantifying, with validated methods, the magnitude of dynamic ground effects for the TCA configuration. The Validation Case section describes the analysis of the XB-70 configuration in both static and dynamic ground effect, with comparisons to wind tunnel and flight test data. The TCA Analysis section then describes the application of the same codes and methodologies to the TCA in both static and dynamic ground effect. Comparisons are made between the static and dynamic, as well as to early static data from a recent wind tunnel test on the TCA

[^22] outlined.

Outline of Presentation
Background Information
-
ackepounc Incrand
induced effects for static and dynamic data. Existing literature shows that as the aspect of a vehicle descreases, the difference between static and dynamic ground effects increases with the magnitude of dynamic ground effects being smaller than the static. Both wind tunnel and flight test data show this general trend as demonstrated on wings of aspect ratio between
 difference raises concerns that the low aspect ratio of the TCA wing my lead to sizable errors in predicting ground effects using only static methods.
Background Information Dynamic Ground Effect Differs From Static
Ground Effect For Low Aspect Ratio Wings.

- Dge Lift Increments Are Less Than SGE Data From Various Configurations Support This Claim Desire is to
Quantify the
Effect For The
TCA
-

.

-

Background Information
Continued

The increasing speed of computers has made possible the application of compute intensive time-
accurate fluid dynamics analysis over 3-D configurations. This increase in computational power
has been accompanied by the development of analytical tools capable of modeling complex,
moving-body configurations. One of these tools is the Euler/Navier-Stakes code, OVERFLOW. It
has the required time varying metric computations and boundary conditions coupled with
automated tools to maintain inter-block connectivity s the solution progresses and the bodies
move. Northrop Grumman personnel are experienced in the use of this code, particularly in the
unique approaches to interblock connectivity and the software used to perform this task.
Background Information

- Northrop Grumman Personnel Experienced With

Northrop Grumman Personnel
All Associated Software Tools

Has Moving Metric Boundary Conditions and Coupled Domain Connectivity Routines

I

- OVERFLOW-D

-

OVERFLOW-D
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V- 22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
The OVERFLOW-D flow solver used in this study is an early version of the popular flow solver
written by Pieter Buning. It has several flow solver options available, with the ARC3D central
difference solver used for this study. It is a multi-block code which uses overset grids for domain
decomposition. This method allows for efficient modeling of complex configurations. The
particular version of the code used in the current study had been modified by Bob Meakin of
NASA-Ames. To incorporate a SIXDOF routine and the domain connectivity functions within the
flow solver itself. This allows for a complete iteration of flow solver, vehicle position updates, and
updates of interblock connectivity information to be performed within a single code, which provides
for efficient use of computational resources. This code has been demonstrated on several time-
accurate moving body simulations, with perhaps the most notable being an analysis of the V- 22
with spinning rotors in vertical flight.
accurate moving body simulations, with perhaps the most notable being an analysis of the V-22
with spinning rotors in vertical flight. with spinning rotors in vertical flight.

OVERFLOW-DCore Solver is Early Version of OVERFLOW,
-
Buning
Buning
Grid Connectivity Routines
Grid Connectivity Performed by DCF3D
_ Written by Bob Meakin

- Cuts Holes Using Analytic Shape Functions
Ran 10X Faster Than The Then Current Versi Current V
alyti
Demonstrated Capabilities on V-22 With Spinning
Rotors in Vertical Flight
GDCF and DCF3D DCF3D is an acronym for Domain Connectivity Function in 3-Dimensions. It was written as an
alternative to PEGSUS, which was the standard routine accompanying the OVERFLOW code.
DCF3D organizes the input grid data into an octree data structure based on integer truncation of
the 3-D floating point coordinate locations. This allows for an efficient search method to locate
interpolants for grid boundary points. DCF3D uses analytic shapes to cut holes in grids. These
shapes can include spheres, cylinders, planes, boxes, cones, ellipsoids, and frustrums. An
accompanying code called GDCF was written to facilitate the layout of these analytic functions.
GDCF provides a graphical display of the shapes so that they may be placed interactively. The
GDCF program writes a namelist file, which is used as input to the DCFFD routine. The DCFFD
routines have been coded into the OVERFLOW-D package. The namelist written by GDCF is
included as an input when running OVERFLOW-D with moving bodies.
and DCF3D
$\boxed{\circ}$
$\stackrel{4}{\circ}$
 Approach to Problem Approach to Problem The decision was made to model the ground effects using an inviscid (Euler) solver. It was felt that
this would be capable of capturing the time dependent variations of the pressure field, without
requiring an overly large model. This approach would make the best use of available computational
resources. 500 CPU hours on the NAS Cray C-90 where available for this study. It was estimated
that each time-accurate solution would require approximately 30 CPU hours.
The actual analysis was to be broken into three tasks. The initial task was a code validation effort.
A computational comparison between static and dynamic ground effects would be made for a
configuration with existing empirical data. This configuration was the XB-70, for which existed both
wind tunnel and flight test data for static and dynamic ground effects. A wing/body model was
deemed sufficient for capturing the majority of the controlling aerodynamic characteristics without
complicating the geometry too much. Upon completion of the validation study and quantification of
the code capability to predict dynamic ground effect a similar study was to be performed on a
wing/body model of the TCA configuration. The TCA was to be analyzed with deflected trailing edge
flaps, as this is the normal landing configuration. Finally, upon completion of the TCA study, a
higher aspect ratio, conventional transport wing configuration was to be analyzed to determine the
range of applicability of the code for dynamic ground effects analysis, with an eye toward
accommodating any future modifications to the TCA configuration.
Approach To Problem
- All Analyses To Be Run Inviscid (Euler Solver)
- Should Model Time Dependent Pressure Field Variations
- Minimize Model Size to Contain CPU Usage
- Given 500 CPU hours on NAS C-90
Validate Time-Accurate, Moving-Body Analysis
Capability on Configuration With Available
Empirical Data (XB-70)
for
XB-70 Analysis
The XB-70 is a 1.75 aspect ratio
The XB-70 is a 1.75 aspect ratio delta wing configuration. The delta wing has a small break in the
leading edge very near the wing apex. The leading edge sweep of the wing is 65.6°. The overall
vehicle length is 194 ft with a wing span of 105.0 ft . The wing has a very small leading edge radius
giving rise to leading edge vortex flow at angle of attack. The wing is a low-wing configuration, with
the apex standing off from the fuselage on a boundary layer diverter. The configuration used a
flapped canard for longitudinal control. This canard was not modeled in this study. The engine
inlets and engines themselves were mounted under the wing. There were also omitted from this
analysis. The configuration had trailing edge flaps, which were used as high lift devices, but were
left undeflected for this study.
XB-70 Analysis

Configuration Description

[^23]XB-70 Model Description

- Overset Grid Utilizing Near-Field Body and
Background Grids
- Built a Wing/Body Model With Undeflected Flaps
- Used a C-H topology to Model the Wing
- 8 Blocks
- 6 Blocks Covering the Body
- 2 Background Grids
- 674000 Grid Points
XB-70 Model
Grid Scheme
The fuselage was modeled as a series of 3 grids broken into forward, mid, and aft fuselage sections. Additionally, a patch grid was used to resolve the underside wing-centerline juncture, and a collar grid was used to resolve the geometry near the wing apex/fuselage juncture. The background grid was built as a nearly orthogonal grid, with slight clustering in the streamwise, and spanwise directions to concentrate points near the vehicle. The spacing of the background grid was set in all three coordinate directions to match the outer spacing of the body fitted grids around the vehicle. This spacing in the off-body direction was $30-40$ inches. This matching of spacing between connected grids allows for more continuous resolution of the flow field through the grid junctions. This spacing was carried in the vertical direction to the ground to accommodate vehicle translation from a non-dimensional height (h / b) of 1.0 to 0.2 . The background grids vertical resolution increased near the ground to a spacing of approximately 10 inches. A cutting plane was placed 50 inches above the ground to keep the near field body grids from penetrating the ground.

Convergence Each of the steady state solutions required approximately 6000 iterations. The time step was
limited somewhat by convergence of the wing block which required a smaller time step due to the
clustering of the grid cells along the length of the sharp leading edge. Each solution required
approximately 10 CPU hours on the NAS Cray C-90. All blocks converged at least three orders of
magnitude. The collar grid near the wing apex was held up in converging its residual to machine
zero by a few points oscillating near the stagnation point at the wing leading edge. The solution
was stopped before all blocks had a residual which reached machine zero because the lift and
drag coefficients had both converged to four decimal places.
XB-70 Steady-State Convergence

The freestream solution for the XB-70 configuration at 9° angle of attack shows the upper surface of the wing dominated by the separated leading edge vortex flow. The only noticeable flow feature on the wing lower surface is the variation in wing section thickness as outlined by the pressure change on the aft portion of the lower wing.
XB-70 Freestream Solution

NORTHROP GRUMMAN

XB-70 Ground Pressure Plots All of the ground height cases converged as well as the freestream condition. The pressure plots
over the vehicle did not show much visibly discernable difference from the freestream pressure
contours. The variation in these cases is best illustrated by the ground pressure variations. As
can be seen in the plots, the high pressure footprint becomes more pronounced as the vehicle
descends, and when it gets low enough (as indicated by the $h / b=0.2$ case) the low pressure
associated with the leading edge vortex begins to become visible on the ground pressure pattern
as well.
XB-70 Ground Pressure Plots

$h / b=0.5$
$h / b=0.2$

$h / b=1.0$
XB-70 Steady-State Solutions The induced ground effects were calculated from the integrated pressure force coefficient data. The surface pressure was integrated using the FOMOCO utilities written by William Chan of NASA-Ames. The parameter called $\% \Delta C L$ was calculated as $\% \Delta C L=\left(C L-C L_{\text {Free }}\right) / C L_{\text {Free }}^{*} 100$ The results from the three diffe coefficient compared well with the computational results. This was encouraging enough to proceed on to the dynamic solution.

[^24]\[

$$
\begin{aligned}
& \text { Data Compared Well With XB-70 Wind Tunnel } \\
& \text { Data From Kansas University }
\end{aligned}
$$
\]

The time-accurate model was run at a constant descent rate of $12 \mathrm{ft} / \mathrm{s}$. This was driven by the initial desire to run $12 \mathrm{ft} / \mathrm{s}$ and $2 \mathrm{ft} / \mathrm{s}$ on the TCA configuration. The $12 \mathrm{ft} / \mathrm{s}$ would require the least computational time, as it models the shorter duration of real time, so it was chosen. The solution was to be run at a freestream Mach number of 0.24 and angle of attack of 9°. This corresponded to an actual freestream Mach number of 0.2397 and a vehicle pitch attitude of 6.4°. The glide slope was accounted for in the application of the time-accurate boundary
condition which accounts for the surface velocity and adds it to the local surface normal, to determine the actual surface tangency condition to be enforced. The solution was initialized by running the steady-state flow solver with the vehicle descending at the $12 \mathrm{ft} / \mathrm{s}$ rate, without it's vertical position being updated between iterations. After the lift and drag coefficients had converged at this condition, the time-accurate flow solver was turned on and the vehicle was allowed to descend. During the course of the solution the SIXDOF solver was replaced by a routine which prescribed the vehicle position as a function of time. The solution required approximately 19000 iterations to reach the $h / b=0.2$ position. The entire solution required 40 CPU hours, with 10 of the hours required to obtain the initial condition.

XB-70 Time-Accurate Solution
e

$$
\text { of } 12
$$

$$
\mathrm{ft} / \mathrm{s}
$$

$$
\begin{aligned}
& \mathrm{ft} / \mathrm{s} \\
& \mathrm{~d} \text { Lift }
\end{aligned}
$$

n to Converged Lift

- Then Started Time-Accurate Solution, Allowing
The Vehicle to Descend
- Solution Required 30 CPU Hours on Cray C-90
- Modeled 7.25 Seconds of Real Time in 0.00036
Second Increments
- Model Translates 0.0522 Inches At Each Time Step
\square
XB-70 Time-Accurate Solution under investigation.
XB-70 Time-Accurate Solution

The dynamic ground effect data was then compared to the empirical data. For h / b values greater than 0.3, the OVERFLOW code under-predicts the amount of induced ground effect, and fo values greater than 0.3, it over-predicts the induced lift coefficient. It was noted that the OVERFLOW data did not follow the same trajectory as the flight test data. The flight test data followed a nearly parabolic trajectory starting at $12 \mathrm{ft} / \mathrm{s}$ descent rate, but ending at $2 \mathrm{ft} / \mathrm{s}$. It was decided that a trajectory closer to that of the flight test data should be analyzed computationally to provide a proper code verification.

A comparison of the plotted surface pressures shows no distinguishable difference between the
static and dynamic cases at the $h / b=0.5$ condition which had the largest difference in induced
ground effects. Comparison of the ground pressure footprint shows some minor differences in
the pressure coefficient contours near 0.0 , but the high pressure regions match closely.
$\frac{\text { XB-70 DGE vs SGE }}{\text { Surface Pressures at } h / b=0.5}$

Reduction

 In post-processing the data, the major emphasis on verifying the solutions was in making comparisons of the induced ground effects. After pausing to digest the data, it was realized that the level of the lift coefficient for the freestream case was quite high compared to that expected for a wing of aspect ratio 1.75. Upon further investigation it was determined that the major source pressure peak over a larger region of the leading edge than expected. It was decided that before proceeding, the grid should be modified to bring the lift coefficients more in line with the expected values.

XB-70 Finer Wing Grid It was determined that a different grid topology would provide better resolution of the wing leading
edge. That topology was a "stacked-O" grid with all spanwise points collapsing to the wing vertex
at the centerline, which provides good resolution for the high gradients in this region. This
topology also orients the major direction of the grid lines with the major flow features of the wing,
naturally providing better resolution of those features. This new topology required many more
grid points to properly resolve the leading edge.

The steady-state freestream condition was repeated with the resultant lift coefficient of 0.382 . Additionally, the new wing grid was run alone to determine the lift curve slope prediction. The wing alone produced a lift curve slope of 0.0399 vs the predicted 0.040 for a wing of aspect ratio 1.75. This was deemed sufficiently accurate. The resultant values of static ground effect
decreased the $h / b=0.5$ and 0.2 cases with the $h / b=0.5$ case showing the largest percentage change.

XB-70 Solution Comparisons
Comparison of the the solutions from the C-H grid and the stack
Comparison of the the solutions from the C-H grid and the stacked-O topology reveal that the
stacked-O grid gives better refinement of the low pressure over the wing upper surface, and a
better definition of the point of origin, which was at the wing leading edge break. Also it is
noted that the finer grid predicts higher pressures over the aft portion of the upper surface,
contributing to the lower integrated lift coefficient.

XB-70 Solution Comparisons

Stacked-O

NORTHROP GRUMMAN
XB-70 Fine Model Time-Accurate The new XB- 70 model with the highly resolved wing leading edge was attempted to be run with
the time-accurate solver. The solution was to follow the same trajectory as that of the flight test
data. Unfortunately, the global time step was being severely limited by the small grid cells and
very high gradients near the wing apex. When an allowable time step was finally determined it
was calculated that the solution would require the entirety of the remaining CPU budget for the
study, so the analysis was terminated in favor of continuing on to the TCA configuration.
XB-70 Fine Model Time-Accurate

- Unable to Get The Model to Run at a Reasonable
Time Step
- Global Time Step Was Being Limited By The
Small Cells Resolving the Leading Edge Flow
- Estimated CPU Time to Solution with An
Allowable Time Step Would Use Remainder of
CPU Allocation
- Decided to Move On To Solution On TCA Model

The exposed edges of the flap and wing were covered with planar surfaces.
The TCA configuration was modeled as a wing/body configuration with deflected trailing edge
 solver, as those that would be produced by a 30° deflection of the real flaps in the landing configuration. The flaps were deflected using the original HSR distributed TCA lines. The
rotations were performed about the given hinge lines. The gaps created in the upper surface were filled in with conic sections providing slope continuity to both edges of the gap. The lower surfaces of the flaps were intersected at the natural line of intersection created by the deflection.
TCA Model Description

N

TCA Model Description
Continued The grid was made of 33 blocks, broken into near-field and background grids. There were 26
near field grids and 7 background grids. The main background grid was made as an orthogonal
grid with sufficient spacing in all three coordinate directions to sufficiently match those of the
outer spacings of the body grids to provide smooth solution definition through the interfaces at
the various ground heights to be run.

TCA Model Description - 33 Blocks, 1.1E6 Grid Points

TCA Model Description
 -

The wing was gridded using a C-H topology. The $\mathrm{C}-\mathrm{H}$ was used despite the lesson learned on the XB-70 because the C-H is more "point efficient" and it was felt that the rounded leading edge over the inboard portion of the wing would provide attached flow, and hence the C-H would be sufficient. Each exposed flap or wing edge had it's own grid. The flaps cut holes in the main wing grid which was gridded with undeflected flaps.
TCA Model - Flap Grids

NORTHROP GRUMMAN
TCA Steady-State Solutions

[^25]Ran Heights of Freestream and $h / b=1.157,0.657$
$0.357,0.2$
Angle of Attack Was Targeted to Give $C_{L}=0.634$
Ended Up Using $\alpha=11.5^{\circ}$ Which Produced
Freestream $C_{L}=0.614$ And Was Deemed Usable
TCA Steady-State Convergence
All blocks tended to converge toward machine zero, but the solutions were terminated when the
integrated lift and drag coefficients had stabilized to four decimal places. The TCA configuration
was able to converge in about half the number of iterations as the XB-70 model, due to the fact
that a higher minimum CFL number could be used.

TCA Freestream Solution The converged solution at $\alpha=11.2^{\circ}$ is plotted to show pressures and flow patterns. Although this is not the final angle of attack used, it demonstrates the same salient flow features. Nearly the entire portion of the inboard wing appears to have attached flow. Only along the leading edge, just
inboard of the leading edge break is there evidence of a leading edge vortex forming. Then it appears to break off of the configuration and travel over the thin outboard wing section. There is evidence of a vortex burst or wing separation over the outboard panel in seeing the upstream traveling particle trace. The inboard flaps appear to maintain attached flow, with suction peaks shown over the hinge lines.
TCA Freestream Solution

NORTHROP GRUMMAN
TCA SGE Pressure Footprints
The ground pressures show the increasing influence of the TCA configuration with decreasing height. The contours show the same character as those demonstrated by the XB-70 ground pressure patterns. Initially the high pressure field from the underside of the wing can be seen on the ground, then as the vehicle descends the low pressure region from the wing tip can be seen. It should be noted that the irregularities in the contours behind the vehicle are attributed to the block interface region. At each of the successive interfaces moving downstream the grid is coarsened by a factor of 2 to save points. This coarsening has been shown to effect local pressure patterns but not have an effect on the overall solution. To investigate this a downstream grid refinement study was performed. The grid was not coarsened behind the vehicle and the freestream solution was rerun. The integrated performance coefficients changed insignificantly.
 the outer wing panel.
h/b=0.2 Ground Pressure and Traces

NORTHROP GRUMMAN
h/b=0.2 Ground Pressures and Traces

[^26]$h / b=0.2$ Ground Pressures and Traces

NORTHROP GRUMMAN
h/b=0.2 Wing Close-up

[^27]h/b=0.2 Wing Close-up

号

NORTHROP GRUMMAN
TCA SGE Comparisons
The static lift increment data from the OVERFLOW analysis is plotted against data from a
recent HSR memo from Art Powell of Boeing-Long Beach presenting static ground effect data
extracted from the recent HSR dynamic ground effects wind tunnel test. The computational
results seem to agree fairly well with the experimental data, with a slight under-prediction of the
induced lift at $h / b=0.657$.
TCA SGE Comparisons

TCA Dynamic Solution Flight PathA trajectory of a typical TCA landing was devised. The trajectory began with a 3° glide slope
($13.8 \mathrm{ft} / \mathrm{s}$ sink rate) at $\mathrm{h} / \mathrm{b}=1.0$ and ended with a sink rate of $4 \mathrm{ft} / \mathrm{s}$ at $\mathrm{h} / \mathrm{b}=0.17$ with a parabolic
profile fitted between. At each iteration when the vehicle height and velocity were adjusted the
pitch attitude was also changed to maintain constant angle of attack. After beginning the dynamic
descent condition an error was detected in the calculation of the vehicle ground heights. The
location of the vehicle from the HSR distribution database was used as $\mathrm{h} / \mathrm{b}=0.0$ instead of the
actual value of $\mathrm{h} / \mathrm{b}=0.157$. This error is what gave rise to the odd values of non-dimensional
height used in this study. After the error was detected the trajectory was corrected by descending
the vehicle at a constant velocity until it was back on the originally calculated trajectory, then
allowed to continued it's smooth sink rate variation. Subsequently, the static case for the actual
$h / b=0.2$ was calculated.
TCA Dynamic Solution Flight Path

- Devised Flight Path To Start With a Glide Slope of
$3^{\circ}(13.8 \mathrm{ft} / \mathrm{s})$ at $\mathrm{h} / \mathrm{b}=1.0$, and End With A Sink Rate
of $4 \mathrm{ft} / \mathrm{s}$ at $\mathrm{h} / \mathrm{b}=0.17$
- After Starting The Dynamic Solution An Error
Was Found in h/b Calculations
- The Trajectory Was Modified During the Run to
Account For The Error
- This is The Reason For the Odd h / b Values Used.
The $\mathrm{h} / \mathrm{b}=0.2$ Steady-State Case Was Run After
Discovering The Error
TCA Dynamic Solution Flight Path
Continued These figures show the effect on the descent and velocity profiles of the height calculation error.
The descent profile most clearly shows the region where sink rate was held constant. The
variation is not detectable in the plotted flight path. The flight path plot shows that 15 seconds of
real time were modeled in the dynamic analysis.

TCA Dynamic Solution Flight Path
Continued

Descent Profile
Flight Path
TCA DGE Results

> The dynamic solution required 58 CPU hours to complete, with 8 hours required for the initial solution and 50 hours to complete the trajectory. The solution used a real time step of 0.00069 seconds. This time step resulted in a vehicle descent of 0.114 inches/time step at the largest sink rate. The solution was initialized in the same manner as the XB-70. The steady-state solution at $\mathrm{h} / \mathrm{b}=1.157$ required 4500 iterations to achieve. The complete dynamic trajectory required 21700 iterations. The dynamic data shows very little difference from the static ground effect lift increments. In fact the dynamic increments are slightly higher at the higher ground heights due to a jump in the data just after beginning the descent. This jump is currently being investigated.
TCA DGE Results

TCA DGE With Constant Descent
After obtaining the surprising result showing little difference between the static and dynamic cases, a constant descent rate was run. The TCA configuration was held on a constant 3° glide slope (sink rate $=13.8 \mathrm{ft} / \mathrm{s}$) all the way to the ground. This data, surprisingly, nearly over-plotted the variable descent rate case. The results of the analyses where discussed with Bob Meakin to make sure that the analysis methodology was not flawed. It was suggested that before
beginning the descent of the vehicle, the time accurate solver should be run for several hundred iterations at the constant height condition. This change was made, as well as an increase in the frequency of connectivity updates. It had been found that the TCA model required a much larger CPU expenditure to complete the DCF3D routine calls. Therefore, the frequency of connectivity updates was decreased to every 10 iterations, which would have meant a recomputation of intergrid interpolants every 1 inch of translation, as opposed to every 0.1 inches. To address this issue, the DCF3D calls were made every iteration. The results of this computation are plotted in the figure, label as Initial Time-Acc. The only noticeable difference is that the solution did not make a discontinuous jump to the higher initial lift increment values. Instead it slowly merged with the previous analyses. The solution continued to track the previous solutions, so the analysis was stopped.

NORTHROP GRUMMAN

TCA DGE With Constant Descent

TCA DGE Results
The resultant increments due to ground effects on CD and Cm are shown. The drag curve
resembles that of the lift curve, with the larger difference between static and dynamic largely due
to the fact that the freestream value of drag provides a numerically smaller value to normalize
with. The pitching moment curves show a greater disparity in the data. All of the curves show
an increase in nose-down pitching moment. The most interesting point to note is the very
different character of the curve exhibited by the constant descent rate case compared to the
variable descent, compared to the relative similarity of the lift and drag coefficient comparisons.
This point deserves further investigation.
TCA DGE Results

Drag Increment
Comparisons
DGE Current State of Affairs
This study is still in progress with several questions that need to be answered.
Current State of Affairs
Questions Remain

- Would a Time-Accurate Solution on the Finer XB-70 Grid Differ
From the Initial Solution?
- Empirical Data Suggests That Wings Dominated by Vortex Lift
Show Greater Difference Between DGE and SGE
- The XB-70 Differs From TCA in That XB-70 Wing Flowfield is
Dominated by Leading Edge Vortex, TCA Main Wing is
Attached Flow
- Does This Suggest Less Difference Between DGE and SGE for
TCA?
- Would Better Refinement of Downstream Flow Structures

Next Steps

This page is intentionally left blank.
Recent Results in the Study of
Static Ground Effect Using an
Inviscid Unstructured Grid Code
Steven F. Yaros
NASA Langley Research Center

[^28]This page is intentionally left blank.

This page is intentionally left blank.

$$
\begin{aligned}
& \text { Summary } \\
& \text { - CFD Approach - TetrUSS } \\
& \text { Wind Tunnel Data } \\
& \text { - Results }
\end{aligned}
$$

The TetrUSS system, developed at NASA LaRC, enables one to
take a vehicle from its surface definition to its analyzed solution.

The box shown here is the semi-span representation of the NASA
LaRC 14-by-22-foot Subsonic Wind Tunnel. The model is the TCA
in its lowest position at an angle of attack of 8 degrees. The lines
with the arrows represent a typical patch...the vehicle is composed
of many smaller patches. The tetrahedra are background sources
that can be used to control the size and distribution of the tetrahedra
during the volume grid generation.

$$
\begin{aligned}
& \text { This view is a close-up of the triangulation on the plane of symme- } \\
& \text { try for the free-stream condition at an angle of attack of zero } \\
& \text { degrees. Of particular note is the fine detail of the mesh near the } \\
& \text { body, a result of the background sources specified in the initial front } \\
& \text { development. This grid distribution served as a model for emulation } \\
& \text { when other wall conditions were specified. }
\end{aligned}
$$

As the initial grid was shrunk from a free-stream ("big box") size to
a representation of the 14 -by- 22 wind tunnel, an effort was made to
keep the grid as stable in size as possible, especially near the vehi-
cle. Measuring and trying to adjust tetrahedra sides proved to be
inaccurate, so a method of counting cells in a given volume was
adopted. It was felt that if the number of cells in the wind tunnel
box approximated the number of cells in the same size box in the
original "big box", the cell sizes should be reasonably similar
throughout the volume. The background sources on the vehicle
were not changed at all. The table shows our initial attempt to per-
form the above cell matching. Note the relative insensitiviy of the
coefficients even though the cell sizes did vary. Note also the devas-
tating result of removing an innocuous side source on the number
of cells in the volume.
Initial Grid Study Summary 17Jan98

Grid ID Description	Comments	Z max Z min Y max	BG source size	Total number of cells	Approx. cell edge size	Comments	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{D}} \\ & \mathrm{C}_{\mathrm{M}} \end{aligned}$
TCA- 17 "Big Box" Centered	Arbitrary large free stream grid	$\begin{aligned} & 10251 \\ & -10251 \\ & 10251 \end{aligned}$	$\begin{aligned} & 3000 \\ & 3000 \\ & 3000 \end{aligned}$	751315	0.6-0.8	There are 743976 to 746014 cells in the WT Box volume	0.1171 0.01189 - 0.2610
TCA-18 "WT Box" High pos.	Source size linearly adjusted	$\begin{aligned} & 2136.6 \\ & -1343.4 \\ & 2610 \end{aligned}$	$\begin{aligned} & 625 \\ & 393 \\ & 764 \end{aligned}$	737608	0.6	Edge size too small	$\begin{aligned} & 0.1208 \\ & 0.01159 \\ & -0.2692 \end{aligned}$
TCA-19 "WT Box" High pos.	Source size increased 50\%	$\begin{aligned} & 2136.6 \\ & -1343.4 \\ & 2610 \end{aligned}$	$\begin{aligned} & 937.5 \\ & 589.5 \\ & 1146 \end{aligned}$	390337	0.7	Bigger edge size, but loss of definition near A / C	$\begin{aligned} & 0.1210 \\ & 0.01211 \\ & -0.2694 \end{aligned}$
TCA-20 "WT Box" High pos.	Side source value back to 764	$\begin{aligned} & 2136.6 \\ & -1343.4 \\ & 2610 \end{aligned}$	$\begin{aligned} & 937.5 \\ & 589.5 \\ & 764 \end{aligned}$	582046	0.6-0.8	Definition regained near A/C	0.1208 0.01185 -0.2691
TCA-21 "WT Box" High pos.	Side source removed	$\begin{aligned} & 2136.6 \\ & -1343.4 \\ & 2610 \end{aligned}$	$\begin{aligned} & 937.5 \\ & 589.5 \\ & \mathrm{XXX} \end{aligned}$	$\gg 1.4 \mathrm{M}$	XXXX	Grid not completed, as there were indications the number of cells would be huge	XXXX

$$
\begin{aligned}
& \text { This page and the next show the trial-and-error procedure used to } \\
& \text { determine the source sizes for the model in its highest position in } \\
& \text { the wind tunnel. The "RWT" nomenclature indicates a refinement } \\
& \text { of the wind tunnel box, in that the length of the test section and the } \\
& \text { position of the model were modified to match the 14-by- } 22 \text { foot } \\
& \text { wind tunnel exactly. }
\end{aligned}
$$

"Real Wind Tunnel" High-Position Grid Study Summary, 23Jan98

Grid ID Description	Comments	X range Y range Z range	BG sour ce size	Approx. cell edge size	Comments	$\begin{aligned} & C_{L} \\ & C_{D} \\ & C_{M} \end{aligned}$
TCA- 17 "Big Box" Centered	Arbitrary large free stream grid.	$\begin{aligned} & -10251,0,10251 \\ & -10251,10251,10251 \\ & -10251,0,-10251 \\ & -10251,10251,-10251 \\ & 10251,0,10251 \\ & 10251,10251,10251 \\ & 10251,0,-10251 \\ & 10251,10251,-10251 \\ & 2295.22,10251,171.417 \end{aligned}$	$\begin{aligned} & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \end{aligned}$	0.6-0.8	There are 751315 cells total and 743849 to 745790 cells in the RWT-hi volume.	0.1171 0.01189 -0.2610
TCA-22 "RWT Box" High pos.	Source size linearly adjusted according to distance from A/C rotation point.	$\begin{aligned} & -1476.94,0,2136.6 \\ & -1476.94,2610,2136.6 \\ & -1476.94,0,-1343.4 \\ & -1476.94,2610,-1343.4 \\ & 10523.06,0,2136.6 \\ & 10523.06,2610,2136.6 \\ & 10523.06,0,-1343.4 \\ & 10523.06,2610,-1343.4 \\ & 2295.22,10251,171.417 \end{aligned}$	860 828 809 794 1789 1525 1737 1492 765	1.0-1.2	174607 cells total in the RWT-hi volume. Need to decrease the size of the BG sources.	0.1184 0.01413 -0.2633
TCA-23 "RWT Box" High pos.	Source size decreased by factor of 2 from TCA- 22 .	Same as TCA-22.	$\begin{aligned} & \text { Half } \\ & \text { TCA } \\ & -22 \end{aligned}$	0.6-0.7	472950 cells. Need to make the source sizes still smaller	$\begin{array}{\|l\|} \hline 0.1207 \\ 0.01218 \\ -0.2689 \end{array}$
TCA-24 "RWT Box" High pos.	Source size decreased by factor of 3 from TCA-22.	Same as TCA-22.	$\begin{aligned} & 1 / 3 \\ & \text { TCA } \end{aligned}$	0.5	920680 cells. Need something between this case and TCA-23.	$\begin{array}{\|l} 0.1207 \\ 0.01170 \\ -0.2691 \end{array}$

This page is intentionally left blank.

Grid ID Description	Comments	X range Y range Z range	BG sour ce size	Approx. cell edge size	Comments	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{D}} \\ & \mathrm{C}_{\mathrm{M}} \end{aligned}$
TCA-25 "RWT Box" High pos.	Source size decreased by factor of 2.65 from TCA-22.	Same as TCA-22.	$\begin{aligned} & 1 / \\ & 2.65 \\ & \text { TCA } \\ & -22 \end{aligned}$	0.6	745844 cells. This is close to the number (743849 to 745790) in RWT-hi volume.	$\begin{aligned} & \hline 0.1205 \\ & 0.01183 \\ & -0.2685 \end{aligned}$

This page and the next summarize the same procedure for the
model at an angle of attack of zero in its lowest position. The
thought occurred that it would be better to increase the resolution of
the grid underneath the model near the wall in anticipation of
aggravated flow in that area, but it was decided to go with the origi-
nal cell-counting criterion at this time. A short side study will be
done to look at the effect of refining the grid.
"Real Wind Tunnel" Low-Position Grid Study Summary 26Jan98

Grid ID Description	Comments	X range Y range Z range	BG sour ce size	Approx. cell edge size	Comments	$\begin{aligned} & C_{L} \\ & C_{D} \\ & C_{M} \end{aligned}$
TCA- 17 "Big Box" Centered	Arbitrary large free stream grid.	$\begin{aligned} & -10251,0,10251 \\ & -10251,10251,10251 \\ & -10251,0,-10251 \\ & -10251,10251,-10251 \\ & 10251,0,10251 \\ & 10251,10251,10251 \\ & 10251,0,-10251 \\ & 10251,10251,-10251 \\ & 2295.22,10251,171.417 \end{aligned}$	$\begin{aligned} & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \\ & 3000 \end{aligned}$	0.6-0.8	There are 751315 cells total and 710471 to 719847 cells in the RWT-lo volume.	$\begin{aligned} & 0.1171 \\ & 0.01189 \\ & -0.2610 \end{aligned}$
TCA- 26 "RWT Box", model in Low posi- tion	Source size linearly adjusted from the "successful" highposition case, TCA- 25.	$\begin{aligned} & -1476.94,0,3422.8 \\ & -1476.94,2610,3422.8 \\ & -1476.94,0,-57.2 \\ & -1476.94,2610,-57.2 \\ & 10523.06,0,3422.8 \\ & 10523.06,2610,3422.8 \\ & 10523.06,0,-57.2 \\ & 10523.06,2610,-57.2 \\ & 2295.22,10251,171.417 \end{aligned}$	543 521 54 53 1127 960 115 99 289	0.55	There are 1045078 cells in this grid, about 50% "too many" compared to the number of points in the TCA- 17 reference box above.	0.1401 0.00991 - 0.3149
TCA-27 "RW'T Box", model in Low posi- tion	Increase source sizes by 50% from their TCA- 26 values.	Same as TCA-26.	$\begin{aligned} & 3 / 2 \\ & \text { TCA } \\ & -26 \end{aligned}$	0.65-0.8	544932 cells. Need to interpolate between this case and TCA-26 to get approximately 715000 cells.	$\begin{array}{\|l} 0.1407 \\ 0.01030 \\ -0.3158 \end{array}$

This page is intentionally left blank.

Ú	$\frac{t}{4} \frac{0}{0} \frac{\tilde{n}}{0}$
	$\stackrel{1}{\circ}$
ט需	$\underset{\sim}{\sim}$
$\frac{\stackrel{5}{0}}{\square}$	

$$
\begin{aligned}
& \text { This is the model in the wind tunnel at } 8 \text { degrees angle of attack in } \\
& \text { the highest postion. With such close solid walls it is not enough just } \\
& \text { to specify the angle of attack, as the incoming flow would cascade } \\
& \text { over the wind tunnel floor, which would also be at } 8 \text { degrees } \\
& \text { according to the USM3D flow algorithm. It is also necessary to } \\
& \text { rotate the wind tunnel walls down } 8 \text { degrees to present a consistent } \\
& \text { flow configuration. Both the wind tunnel wall and the plane of sym- } \\
& \text { metry surface grids are shown in this picture. }
\end{aligned}
$$

The first page shows the starting cases used to step the high and low
position models from zero to eight degrees angle of attack. The
number of cells remained essentially the same in both the high and
low cases after rotation, so these grid configurations were used.
Note the rotated box coordinates.
"Real Wind Tunnel" Alpha=8 degrees Summary, 02Feb98

Grid ID Description	Comments	X range Y range Z range	BG source size	Approx. cell edge size	Comments	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{D}} \\ & \mathrm{C}_{\mathrm{M}} \end{aligned}$
TCA-25 "RWT Box" High pos.	Reference case used to start grid search for alpha=8, hi-position configuration. Reference configuration, alpha=0.	$\begin{aligned} & -1476.94,0,2136.6 \\ & -1476.94,2610,2136.6 \\ & -1476.94,0,-1343.4 \\ & -1476.94,2610,-1343.4 \\ & 10523.06,0,2136.6 \\ & 10523.06,2610,2136.6 \\ & 10523.06,0,-1343.4 \\ & 10523.06,2610,-1343.4 \\ & 2295.22,2610,171.417 \end{aligned}$	325 312 305 300 675 575 655 563 289	1.0-1.2	745844 cells total in the RWT-hi volume. 500 iterations.	$\begin{array}{\|l\|} \hline 0.1184 \\ 0.01413 \\ -0.2633 \end{array}$
TCA-28 "RWT Box", model in Low posi- tion	Increase source sizes by 1/3 from their TCA-26 values. Reference configuration, alpha=0.	$\begin{aligned} & -1476.94,0,3422.8 \\ & -1476.94,2610,3422.8 \\ & -1476.94,0,-57.2 \\ & -1476.94,2610,-57.2 \\ & 10523.06,0,3422.8 \\ & 10523.06,2610,3422.8105 \\ & 23.06,0,-57.2 \\ & 10523.06,2610,-57.2 \\ & 2295.22,10251,171.417 \end{aligned}$	$\begin{aligned} & 724 \\ & 695 \\ & 72 \\ & 71 \\ & 1503 \\ & 1280 \\ & 153 \\ & 132 \\ & 385 \end{aligned}$	0.7	656505 cell, a bit short of the desired 715000, but just capable of being run as a batch job. 600 iterations.	0.1404 0.01016 -0.3153

This page is intentionally left blank.

Grid ID Description	Comments	X range Y range Z range	$\begin{gathered} \text { BG } \\ \text { source } \\ \text { size } \end{gathered}$	Approx. cell edge size	Comments	$\begin{aligned} & \mathrm{C}_{\mathrm{L}} \\ & \mathrm{C}_{\mathrm{D}} \\ & \mathrm{C}_{\mathrm{M}} \end{aligned}$
TCA-29 "RWT Box" High pos.	Rotated grid to allow for alpha $=8$ degree flow.	$-1705.165,0,1617.168$ -1705.165,2610,1617.168 -1220.843,0,-1828.965 $-1220.843,2610,-1828.965$ 10178.053,0,3287.245 10178.053,2610,3287.245 10662.375,0,-158.888 10662.375,2610,-158.888 2303.785,2610,196.093	Same as TCA25.	-----	Gives 750173 cells...OK to run since it's close to the 745844 cells of TCA25. 2900 iterations.	$\begin{aligned} & \hline 0.2909 \\ & 0.03184 \\ & -0.6248 \end{aligned}$
TCA-30 "RWT Box" Low pos.	Rotated grid to allow for alpha= 8 degree flow.	- 1884.169,0,2890.851 -1884.169,2610,2890.851 -1339.847,0,-555.282 -1339.847,2610,-555.282 9999.048,0,4560.928 9999.048,2610,4560.928 10483.371,0,1114.795 10483.371,2610,1114.795 2124.780,2610,1469.779	Same as TCA- 28.	-----	Gives 642946 cells. This value is pretty close to the 656505 cells of TCA28. 1700 iterations.	$\begin{aligned} & 0.3423 \\ & 0.03185 \\ & -0.7408 \end{aligned}$

This page is intentionally left blank.
Wind Tunnel Data

From NASA LaRC 14- by 22-Foot
Subsonic Wind Tunnel, test 449
("TCA-1") -

Force and Moment data available on
HSR ADAPT system Free-air and Ground-effect data
separated for ease of access

$$
\begin{aligned}
& \text { The USM3D results for angles of attack of zero and eight degrees } \\
& \text { are presented for the highest and lowest model heights, } 78 \text { and } 14 \\
& \text { inches, respectively. the wind tunnel data are presented at all five } \\
& \text { model heights. It appears there is some question about the wind tun- } \\
& \text { nel data at a height of } 14 \text { inches, but it has not been resolved. The } \\
& \text { USM3D results appear to be consistent with the wind tunnel data. } \\
& \text { The drag coefficient was not corrected for skin friction, which } \\
& \text { would raise the curve approximately } 0.0900 \text {. The moment reference } \\
& \text { point is slightly in error for the USM3D results, and it is anticipated } \\
& \text { that movement to the correct location will eliminate the discrepan- } \\
& \text { cies. }
\end{aligned}
$$

These curves of the wind tunnel data for a different flap arrange-
ment were examined to see if there was any inconsistent behavior
of the data at low model heights as on the previous page, but there
did not seem to be any.

This page is intentionally left blank.

This page is intentionally left blank.

High Speed Research Program
Airframe Annual Review
February 10, 1998

This page intentionally left blank.
Introduction

4

4

Analysis Configuration Summary

A flow survey probe is an important tool for investigating the complex flow field
around a wind tunnel model. It is especially useful for quantitative
measurements of profile and induced drag. These separate measurements,
which cannot be distinguished using a force balance, are necessary for CFD
validation.
The cost of using a flow survey probe includes not only the hardware and
software, but also the staff required to operate it. If modifications need to be
made to the existing hardware, cost will increase as well.
Installing the traverser is simple, especially if holes are drilled into the
mounting surface prior to installation. Installation time in this case could be on
the order of 45 minutes.
A major drawback of any flow survey system is the possibility of aerodynamic
influence. It is important that the traverser, whose purpose is to measure the
flow field created by the model, not alter that flow field and give inaccurate
data. Any changes to the flow field must be taken into account.
Introduction
HSCT High Lift Aerodynamics
Why use a flow survey probe?

- Flow field, wake measurements
- Separation between profile and induced drag
- CFD validation (TCA-4)
What are the drawbacks?

$\frac{N}{2}$

\xrightarrow{N}

- Installation time
- Possible aerodynamic influence
Mark-XVI Information
HSCT High Lift Aerodynamics
With these swift traverse rates, complete surveys can be performed in 20-30 is complete.

Mark XVI Geometry
Hscr high Litt Aerodynamics Components
The cannon, upper arm, and probe can translate forward and aft allowing for
surveys of body stations up to 36 inches apart.

Hscr tigh Llt Aerodynamics Range of Motion
The "double rotary" design consists of two linked struts. The lower arm rotates
about the base of the traverser while the upper arm rotates about the cannon.
The probe, therefore, can be positioned anywhere between the 102" outer
radius and the 18 " inner radius.
Because the traverser is located entirely within the test section, there are no
tunnel wall penetrations and the total blockage of the traverser remains
constant.

ne
HSCT High Lift Aerodynamics

Analysis Configuration the hingeline.

$>$
Analysis Configuration Hsct High Lift Aerodynamics One Simple Solution
In order to solve the problem of the wingtip engulfing the traverser, the model
had to be lowered 21 inches from its original height. As far as the potential
flow code is concerned, this means nothing. But in the wind tunnel itself,
ground effect may become significant.
Other solutions that were proposed in solving this problem included building
new hardware for the traverser, such as longer arms, which costs additional
money. Placing the entire traverser on a "soapbox" would also work.
One way to allow surveys of the entire upper surface without concern for
striking the model would be to mount the traverser from the ceiling of the
tunnel. The main problem with this is hoisting a several hundred pound
structure and mounting it upside down.

Results
The Code: A502
The wireframe shown illustrates the panels that were created to model the
traverser and airplane geometry. For clarity, however, this wireframe is less
dense than the actual input deck which consisted of 7922 panels.
Solutions provided by A502 include flow directions, pressures, and Mach
numbers on the surface, forces and moments.
Q BGETNE

- Calculates flow properties, forces, and moments
about arbitrary 3-D configurations
$*$ Uses higher-order panel method to solve linearized
potential flow boundary value problem

[^29]

HSCT High Lift Aerodynamics

0
0
0
0
0
0
0

ұนə!ฺ!ఘəoう əınssəıd
Effect on Pressures
Hsct High Litt Aerodynamics Mid-Span Location
The probe and upper arm create a channel with the upper wing surface
causing the pressure distribution on the upper wing to decrease as the flow is
accelerated through this region.
At a spanwise location directly beneath the probe, the point being measured is
essentially unaffected by the traverser despite this "channeling" effect. For
this particular location, the probe is surveying just forward of the leading edge
hingeline.

Pressures
Hscr High Litf Aerodynamics Outboard Location
The traverser continues to influence the pressure distribution along the upper
surface of the wing causing the pressure to decrease.
HSCT High Lift Aerodynamics
Outboard Location

дцб!ән
ұนə!ฺ!⿰əO૭ əunssəld

Pressures | C |
| :--- |
| 0 |
| \vdots |
| 4 |
| 4 |

Pressure Difference

traverser, showing differences at least an order of magnitude smaller than
those on the upper surface.
\& . Traverser Effect on Pressures

Traverser Effect on Forces \& Moments
The accelerated flow caused by the traverser over the upper surface of the
wing creates an increase in lift by 1.4%. This also causes induced drag to
increase by 3.8%.
Because the lift increase is mainly concentrated on the outboard portion of the
wing, aft of the center of gravity, nose-down pitching moment is increased.
This change is equivalent to 2.0° of horizontal stabilizer.

$$
\begin{aligned}
& \text { Model ONLY } \\
& C_{L}=0.492 \\
& C_{D i}=0.0425 \\
& C_{M}=0.0144
\end{aligned}
$$

$$
\begin{aligned}
& \text { odel \& Traverser } \\
& C_{L}=0.499 \\
& C_{D i}=0.0441 \\
& C_{M}=0.0056
\end{aligned}
$$

Summary
This page intentionally left blank.

\star Pressures at the point being surveyed are
relatively unchanged by the probe's presence
$*$ Lift, drag, and nose-down pitching moment
increase due to the presence of the traverser
\leqslant Changes are necessary to the model's
position or the traverser itself in order to
survey some locations on the model

This page is intentionally left blank.

High Lift Aerodynamics
Robert C. Griffiths
Airframe Annual Review
February 10, 1998
High Lift Technology Development (Task 33)
Increase L/D, Develop Analysis/Design Methodology
This page intentionally left blank
High Lift Technology Development (Task 33)
Increase L.B, Develop:Analysis/Design Methooology

4훈

Included in this discussion are reasons as to why sealed slats work, design constraints,
approach taken, and computational results.

- Goal of this study: increase L/D by improving the flow
on the inboard wing
- Sealed slats to increase performance - experience
- Theory - why sealed slats work
- Practical constraints - design issues - approach
- Results
- Conclusions

This chart shows sensitivity of MTOW to changes in L/D. For example, a 30 count
improvement in drag at climbout CL of 0.5 is equivalent to approximately a 5% improvement
in L/D, or 10,000 pounds MTOW.
The PTC is seen to be less sensitive than TCA.
The major impact to MTOW comes from engine size (increased thrust) or wing area
at a given L/D.

\% Change in LID

The idea of including a sealed slat device on an HSR configuration has been
studied in the mechanical systems area. Previous studies have shown that it is
mechanically viable to include a sealed slat on the sharp outboard leading wing panel.
Installing a sealed slat device on the inboard wing would be easier still due to an
increased in allowable space (leading edge is rounded, therefore there is more room
for mechanical systems). The drawback to either an inboard or outboard sealed slat
device is the added OEW due to additional hardware required - the slat would need to
"buy it's way on" with increased performance.
The chart shows approximately a 4% L/D benefit when compared to the
baseline plain flaps (based on TCA-1 wind tunnel data).

The sealed slat has a hingeline that is below the wing; therefore, when the flap (slat)
is deflected, Fowler motion occurs adding a small amount of wing area and increasing
the hingeline radius. The added area reduces the angle-of-attack required for a
given lift, and therefore the required flap deflection. Reduced flap deflection results
in a more forgiving upper surface curvature.
The increased radius of a sealed slat results in a pressure gradient less likely to cause
separation. The pressure peaks at both the leading edge and hingeline can be studied
with a potential code to help predict separation tendencies.

- Increase hingeline radius - reduce hingeline pressure peak
- Proper LE flap deflection - reduce leading edge peak

The adverse pressure gradient associated with a sharp hingeline results in separation or vortex formation; this gradient is moderated with a more generous hingeline. Note the leading edge peak is not reduced due to the sharp leading edge and the lower surface attachment line. The inboard (subsonic) leading edge of an HSCT configuration is blunt; this will
help the flow negotiate the leading edge and reduce the chance of separation
(at a reasonable angle-of-attack) at the leading edge. As the attachment line
approaches the leading edge hilite, the leading edge pressure peak will be reduced.
This condition helps indicate when an ideal local angle-of-attack (flap deflection) is
approached.

[^30]

The study was constrained by both physical and time considerations.
The goal was to have lofts available within one month from the start of the study
so that new parts could be built and tested during TCA-3. Consideration was
given to make sure the new parts fitted up with any existing mating parts. Finally,
any new design would need to be considered practical from a mechanical systems
point of view.
Design Study Constraints

- Physical constraints:
- new parts must fit up with existing O/B parts
(sealed slats / plain flaps)
- design must be reasonably practical from a
mechanical systems point of view
- in-house paneller
- potential code (A502)

The design study was limited to the inboard wing region shown.

Having access to a fairly robust paneller made possible analysis of multiple
configurations in the short amount of time available.
Special thanks to Keith Ebner for his work in creating the paneller!
Panelling Process Required:

Required:
wing \& body lofts, wing planform corner points,
flap corner points and hingelines

interactive - package allows editing of geometry	

Generates grids for:
deflected LE and TE flaps, wing spar, body

Creates wakes for body, wing and flap edges

| generates input deck for A502 program |
| :--- | :--- |

Q BOEFNE:
HSCT High Lift Aerodynamics

Sample configurations - panelled and shaded.

This is a listing of all geometries analyzed. Included in the study were partial span, and
full span flap configurations along with a combination of plain flaps and sealed slats.
Of these, results of three configurations will be shown here:

1. 35 degree full span sealed slats.
2. 45 degree full span sealed slats.
3. 35 degree sealed slats outboard and 30 degree plain flaps inboard.

> 35 sealed slat full span
35 sealed slat full span
45 sealed slat full span
> 35ss/30ss sealed slat full span
> ueds IInł u!eןd-jels prןeəs 0e/ssse
> 35ss/30 sealed slat - plain partial span 30 plain flap full span
35 plain flap full span
45 plain flap full span
35/30 plain flap full span
30 plain flap partial span
35/30 plain flap partial span

Sealed Slat Runs

*(35ss/35ss/35ss/35ss/35ss)
(40ss/40ss/40ss/40ss/40ss)
${ }^{*}(45 s s / 45 s s / 45 s s / 45 s s / 45 s s)$
(35ss/30ss/30ss/30ss/30ss)
*(35ss/30/30/30/30)

$(30 / 30 / 30 / 30 / 30)$
$(35 / 35 / 35 / 35 / 35)$
$(45 / 45 / 45 / 45 / 45)$
(35/30/30/30/30)
$(30 / 30 / 30 / 0 / 0)$
$(35 / 30 / 30 / 0 / 0)$

Representative pressure distributions are shown at two different spanwise locations,
the cuts are roughly normal to the flap leading edge.
Both flap configurations shown here have a 35 degree sealed slat on the outboard
leading edge. The inboard flaps on one are 30 degree plain; the other has
35 degree sealed slats. Both have $15 / 15 / 15 / 10$ trailing edge flaps (O/B $->/ / B$).
(
The 35 degree full span case shows a reduction in the LE peak relative to the 30 degree
inboard plain flap case, indicating 35 degrees is closer to an ideal flap deflection.
The 35 degree full span case shows a reduction in the LE peak relative to the 30 degree
inboard plain flap case, indicating 35 degrees is closer to an ideal flap deflection.
The upper surface hingeline pressure peak of the 35 degree inboard sealed slat is
reduced relative to the 30 degree inboard plain flap. In addition, the hingeline pressure
peak can be seen to be spread over a larger region of the flap, indicating the presence
of a more favorable presure gradient.
Neither flap configuration is over-deflected.

Representative pressure distributions are shown at two different spanwise locations,
the cuts are roughly normal to the flap leading edge.
One of the flap configurations shown here has a 35 degree sealed slat on the outboard
leading edge and 30 degree plain flaps on the inboard wing. The other has full span
45 degree sealed slats. Both have $15 / 15 / 15 / 10$ trailing edge flaps $(O / B->/ / B)$.
The 45 degree full span case shows a reduction in the LE peak relative to the 30 degree
inboard plain flap case, indicating 45 degrees is closer to an ideal flap deflection.

[^31]

Representative pressure distributions are shown at two different spanwise locations,
the cuts are roughly normal to the flap leading edge.

One of the flap configurations shown here has full span 35 degree sealed slats; the other
has full span 45 degree sealed slats. Both have $15 / 15 / 15 / 10$ trailing edge flaps ($\mathrm{O} / \mathrm{B}->/ \mathrm{B}$).
The 45 degree full span case shows a reduction in the LE peak relative to the 35 degree
full span sealed slat case, indicating 45 degrees is closer to ideal flap deflection. However,
the upper surface hingeline of the 35 degree sealed slat is reduced relative to the 45 degree
sealed slat, indicating that there is a trade of hingeline to leading edge peaks (or flap
deflection for upper surface curvature) for these 2 sealed slat configurations.
Both configurations have a lower surface attachment line; there was some concern that
commonly deflected full span flaps / slats would result in an over-deflection of the inboard
flaps.
Representative CP's
Wh

Shown are TCA results from the Navier-Stokes code TNS3MDB, courtesy of
Allen Chen of Boeing-Seattle and Anthony Saladino of Dynacs.
The chart on the left shows the drag improvement when changing inboard flaps
from 30 degree plain flaps to 35 degree sealed slats. The outboard flaps were
35 degree sealed slats for both configurations. Also, the trailing flaps were
(from outboard to inboard) $15 / 15 / 15 / 10$. At a C_{L} of $0.5, C_{D}$ is reduced by
about 55 counts.

This picture was taken during the TCA-3 new part checkout at the Boeing
wind tunnel shop facilities. The region highlighted in the photo shows an
end view of the new 35 degree sealed slat with the more generous
hingeline.

[^32]
Conclusions
The use of the Boeing in-house paneller and a potential code worked well
HSCT High Lift Aerodynamics
Navier-Stokes results confirmed the potential code design choice; sealed slats
show an improvement in L/D over a plain flap configuration.
The bottom line will be whether or not the sealed slats buy their way onto
the airplane. The trade in added complexity and weight must be offset by the
improved performance seen in L/D.
$\underset{\text { Hscr } \text { Righ Lit Aerodynamics }}{ }$ Conclusions

- Approach taken worked well in achieving quick design solution

- Constant deflection flaps are beneficial from a systems POV
- N-S results confirm design choice way onto the airplane - 1998 TI study to determine whether

This page is intentionally left blank.

Navier-Stokes Results for
HSCT High-Lift Configurations
Iigh-Lift Configurations
Anthony J. Saladino
Dynacs Engineering Co., Inc. Allen W. Chen
Boeing Commercial Airplane Group

HSR Airframe Annual Review

This presentation summarizes the effects of flap span and outward wing
sweep on the Ref. H, and sealed slats vs. plain flaps on the TCA.
In each of the three tasks, CFD was used to determine if it can duplicate
the wind tunnel results and explain the phenomena.
Each task has its own conclusions. Final recommendations are made
based upon the conclusions of the three tasks.
Dynacs Engineering Co., Inc.

HSR Airframe Annual Review
Outline
 -
HSR Airframe Annual Review

It's the long term goal to make the codes an integral part of configuration
design. Running codes and comparing results with test data are the
means to establish confidence in computed results.
Some of the configurations to be tested in TCA-4 were influenced by
Navier-Stokes solutions.
Details of flow physics such as vortex formation, streamlines, and skin
friction that are important to design are generally not available or
difficult to obtain in tests.

Dynacs Engineering Company, Inc.
HSR Airframe Annual Review
Objectives for Navier-Stokes Solutions
Objectives for Navier-Stokes Solutions
To make the codes an integral part of configuration
design
To reveal flow details that are not available or difficult to
obtain in tests
Dynacs Engineering Company, Inc.

Dynacs Engineering Company, Inc.

HSCT High Lift Aerodyamics
We'd like to understand why. If the Navier-Stokes results match the test
data, future designs may be done by computations.

Dynacs Engineering Company, Inc.

$$
\begin{aligned}
& \text { HSR Airframe Annual Review } \\
& \text { Why the LE Flap Span Study (Ref. H) } \\
& \text { Test data from Test 429, 14×22 Wind Tunnel, showed } \\
& \text { that partial span leading edge flaps performed almost } \\
& \text { as good as the full span leading edge flaps. }
\end{aligned}
$$

Dynacs Engineering Company, Inc.
Q emeine
HSR Airframe Annual Review
HSR Airframe Annual Review
Geometry and Grid Generation for Task 1

- Ref. H wing/body. Flap geometry to match the ones
which were tested. Wind tunnel test run log provided
the information.
- Surface grid generated by Boeing using AGPS, with
zero thickness along the outboard wing leading edge,
the entire wing trailing edge, and the wing tip.
- Four-block volume grid generated by Boeing with a
batch job on von Neumann

$$
\begin{aligned}
& \text { The CPU time is } 12.9 \text { hours on the NAS C- } 90 \text {. Turnaround time is two- } \\
& \text { four days. } \\
& \text { The flap edges are approximated in the grid. The upper and lower } \\
& \text { surfaces of the flap edges merge to a point, leading to flap gap regions } \\
& \text { of zero thickness. The flap gaps are set to a flow-through boundary } \\
& \text { condition. } \\
& \text { Viscous computation with Spalart-Allmaras turbulence model. }
\end{aligned}
$$

HSR Airframe Annual Review Q ETEEINE

wind tunnel
Flight Conditions, Flow Solver, and
Postprocessing
HSCT High Lift Aerodyamics
Flight Conditions, Flow Solver, and
Postprocessing
Angle of attack $\left(10^{\circ}\right)$ to match the test data from Test
 Dynacs Engineering Company, Inc.

Dynacs Engineering Company, Inc.
4
HSCT High Lift Aerodyamics

k 1
Dynacs Engineering Company, Inc.
Dest data
Dy
HSR Airframe Annual Review
A

$$
\begin{aligned}
& \text { The total pressure distribution at seven body stations and one station } \\
& \text { downstream of the trailing edge are shown with the local total pressure } \\
& \text { normalized by the free stream total pressure. It may be seen that the } \\
& \text { partial-span case has a noticeable vortex emanating from the inboard } \\
& \text { wing leading edge where the leading edge flap was not deflected. The } \\
& \text { full-span case, on the other hand, does not have such a noticeable } \\
& \text { vortex-like behavior even though there is a much smaller area further } \\
& \text { inboard which has lower total pressure. The full-span case leaves a } \\
& \text { wake with more energy than the partial-span case. This translates into } \\
& \text { more drag for the partial-span case. }
\end{aligned}
$$

The differences between the full-span and the partial-span LE flap
flap
pseoqu!
The
allow the wise

Results from TNS3DMB indicate that the full-span LE flap case has a
lower lift coefficient than the partial-span LE flap case at the same
angle of attack. The same trend is observed in the 14×22 Test 429
data, although the amount is much more than that of the CFD results.
HSCT High Lift Aerodynamics

Lift Coefficient vs. Alpha
Ref. H, Mach 0.24, Alpha 10 Deg.
Flaps LE Full-Span 30/30/30/30/30/30, Partial-Span 0/0/30/30/30/30; TE 10
NASA Langley 14×22 Wind Tunnel, W/B/N/V, Re 8M/MAC
TNS3DMB, W/B, Re 8.8M/MAC
HSR Airframe Annual Review
HSCT High Lift Aerodyamics At a given angle of attack such as 10° the full-span inboard LE flap case
generated lower drag than the partial-span inboard LE flap case in both
CFD and the wind tunnel. For a given lift coefficient such as 0.55 the
full-span LE flap generated much lower drag in CFD but slightly higher
drag in the wind tunnel. Pressure distributions presented later show
where the contribution comes from.

[^33]Lift Coefficient VS. Moment Coefficient
Ref. H, Mach 0.24, Alpha 10 Deg.
Flaps LE Full-Span $30 / 30 / 30 / 30 / 30 / 30$, Partial-Span $0 / 0 / 30 / 30 / 30 / 30$;
NASA Langley 14×22 Wind Tunnel, W/B/N/V, Re $8 \mathrm{M} / \mathrm{MAC}$
TNS3DMB, W/B, Re $8.8 \mathrm{M} / \mathrm{MAC}$

The majority of the difference in drag between the two configurations is
in pressure drag, 0.0072 . The difference in the skin friction is less than
0.0001 .
The following pages show further analyses of the source of this
difference in pressure drag.
HSR Airframe Annual Review
HSCT High Lift Aerodyamics

partial-span LE flaps
 Spanwise distributions of section lift coefficient and pressure drag
coefficient are presented, with the coefficients being normalized with
respect to the local chord.
The section lift coefficient for the full-span case is less than that of the
partial-span LE case for part of the inboard wing. It is higher on the
outboard wing. the section drag coefficient for the full-span case is less
than that for the partial-span case on both the inboard and the outboard
wing. The partial-span inboard LE flaps start at approximately BBL 240 .

$\frac{\text { Q- HSR Airframe Annual Review }}{\text { HSCT High Lift Aerodyamics }}$

Dynacs Engineering Company, Inc.

$$
\begin{aligned}
& \text { Q EaETNE } \\
& \hline \text { HSCT High Lift Aerodyamics } \\
& \text { The full-span inboars } \\
& \text { this section. This is }
\end{aligned}
$$

HSR Airframe Annual Review

$$
\begin{aligned}
& \text { The full-span inboard LE flap case has } 5 \% \text { more lift and } 6 \% \text { less drag at } \\
& \text { this section. This is typical for the entire outboard wing. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TNS3DMB results did not match the test data perfectly, but had the } \\
& \text { similar increments between the two configurations. } \\
& \text { A detailed flow field survey from TNS3DMB shows vortical flow on the } \\
& \text { inboard wing with the partial-span inboard LE flap. Surface pressure } \\
& \text { distributions show this vortical flow has a large contribution to the } \\
& \text { pressure drag. }
\end{aligned}
$$

Navier-Stokes solutions from TNS3DMB compared
favorably with test data

ssure
pre
the

[^34]Dynacs Engineering Company, Inc.

$$
\begin{aligned}
& \text { Q. HETEINE } \\
& \hline \text { HScT High Lift Aerodyamics } \\
& \text { Outline of task 2. }
\end{aligned}
$$

HSR Airframe Annual Review

$$
\begin{aligned}
& \text { Q. Gotine } \\
& \hline \text { HSCTHigh Lift Aerodyamics } \\
& \text { Why the Outboard LE Sweep Study (Ref. H) } \\
& \text { - TCA was exercising an outboard LE sweep study } \\
& \text { - Ref. H test data available from Test } 429,14 \times 22 \text { wind } \\
& \text { tunnel }
\end{aligned}
$$

CPU time is one hour.
HSR Airframe Annual Review
HscTHigh Lift Aerodyamics Geometry and Grid Generation for Task 2 - Ref. $\mathrm{HW}_{6}\left(48^{\circ}\right.$ outboard LE sweep)/body and
$\mathrm{W}_{7}\left(38.9^{\circ} /\right.$ /body. Flap geometry to match the ones
which were tested.

- \quad Surface grid modified from a previous case by Dynacs
using AGPS, with zero thickness along the outboard
wing leading edge, the entire wing trailing edge, and the
wing tip.
- Four-block volume grid generated by Boeing with a
batch job on von Neumann. Dynacs Engineering Company, Inc.

HSR Airframe Annual Review
Upper Surface Grids for Ref. H, W/B, Flaps LE 30/TE 10

(every other grid line shown)

48 deg outboard sweep

HSR Airframe Annual Review

Q beteine

Dynacs Engineering Company, Inc.
HSR Airframe Annual Review
\rightarrow
 Postprocessing
 wind tunnel
HSCT High Lift Aerodyamics

Results for Task 2

Forces and moments

HSCT High Lift Aerodyamics

HSR Airframe Annual Review
th test data
Q ECTETMEF High Lift Ae
HSR Airframe Annual Review

$$
\begin{aligned}
& \text { The total pressure distributions at seven body stations and one station } \\
& \text { downstream of the TE are shown with the local total pressure } \\
& \text { normalized by the free stream total pressure. A vortex, apparent in } \\
& \text { both cases, emanates from the inboard wing where the LE flap was } \\
& \text { not deflected. A vortex exists near the planform break, which seems to } \\
& \text { lose more energy in the } W_{6}\left(48^{\circ}\right. \text { outboard LE sweep) case than in the } \\
& W_{7}\left(38.9^{\circ}\right. \text { outboard LE sweep) case as it approaches the trailing edge. } \\
& \text { A noticeable difference exists between the two configurations in the } \\
& \text { vortex aft of the tip; there is more energy in the tip vortex of } W_{7} \\
& \text { compared with the tip vortex of } W_{6} \text {, resulting in less drag for } W_{7} \text {. }
\end{aligned}
$$

Dynacs Engineering Company, Inc.

HSR Airframe Annual Review

HSCT High Lift Aerodynamics Lift Coefficient vs. Drag Coefficient
Ref. H, Flaps LE $0 / 0 / 30 / 30 / 30 / 30 \mathrm{TE} 10$, Mach 0.24 , Alpha 10 Deg., Re $8 \mathrm{M} / \mathrm{MAC}$
NASA Langley 14×22 Wind Tunnel, W/B/N/V
TNS3DMB, W/B
14×22 Test 429 。

Dynacs Engineering Company, Inc.
Aerodynamics
Lift Coefficient vs. Moment Coefficient
Ref. H, Flaps LE $0 / 0 / 30 / 30 / 30 / 30$ TE 10, Mach 0.24 , Alpha 10 Deg., Re $8 \mathrm{M} / \mathrm{MAC}$
NASA Langley 14×22 Wind Tunnel, W/B/N/V
TNS3DMB, W/B

HSR Airframe Annual Review
4
sweep)

and the CFD
outboard LE sw
W_{6}. Alsoep), CFD
given C C_{L} mainly
W_{7} configuration e CFD results.
HSCT High Lift Aerodyamics
or a e test data f
the CFD reen for t W_{6} configuration is greater for

Q. HETEINE
HSCT High Lift Aerodyamics

The majority of the difference in drag between the two configurations is
in pressure drag, 0.0033 . The difference in skin friction drag is less than
0.0001 .

Dynacs Engineering Company, Inc.
ϕ

ұиә!ฺ!

Spanwise distributions of section lift coeficient and pressure drag
coefficient are presented, with the coefficients being normalized with
respect to local chord.
The section lift coefficient for the $W_{7}\left(38.9^{\circ}\right.$ outboard LE sweep) case is
greater than that of the $W_{6}\left(48^{\circ}\right.$ outboard LE sweep) case throughout the
entire wing span. The difference is greater on the outboard wing. The
section drag coefficient for the W_{7} case is higher than that for the W_{6}
case on almost the entire wing span. It is lower from the planform break
to BBL 560 . The planform break starts at approximately BBL 407 .

Dynacs Engineering Company, Inc.
HSR Airframe Annual Review

entify the regions on the W_{7}
the larger pressure drag
due to pressure. The lift
his section.
Dynacs Engineering Company, Inc.

The $W_{7}\left(38.9^{\circ}\right.$ outboard LE sweep) case has 5% greater lift and 12%
greater drag than the $W_{6}\left(48^{\circ}\right.$ outboard LE sweep) case. This trend is
typical for sections outboard of BBL 560 .
Dynacs Engineering Company, Inc.

$$
\begin{aligned}
& \text { Particle traces on a layer two computational cells off the wing upper } \\
& \text { surface show dissimilar patterns for } W_{7}\left(38.9^{\circ}\right. \text { outboard LE sweep) and } \\
& \text { the } W_{6}\left(48^{\circ}\right. \text { outboard LE sweep) cases, specifically on the outboard } \\
& \text { wing. In the case of the reduced sweep angle, a greater percentage of } \\
& \text { the outboard LE region undergoes spanwise flow. The clustering of } \\
& \text { streamlines near the beginning of the inboard LE flap is an indication } \\
& \text { of the vortical flow seen previously on the off-body total pressure and } \\
& \text { streamline figure on page } 53 \text {. }
\end{aligned}
$$

Dynacs Engineering Company, Inc.

HSR Airframe Annual Review

Dynacs Engineering Company, Inc.

$$
\begin{aligned}
& \text { Navier--- } \\
& \text { favorab }
\end{aligned}
$$

Stok

$$
\text { Conclusions - Task } 2
$$

s solutic

reduced wing sweep
ata
from
TN
S3DMB

səy
-
HSct High Lift Aerodyamics
This Airframe Annual Review
This page intentially left blank
Q ceetine \quad HSR Aiframe Annual Review
Task 3: Effect of Inboard Sealed Slats (TCA)

Dynacs Engineering Company, Inc.

Dynacs Engineering Company, Inc.
Geometry and Grid Generation for Task 3

by Boeing using AGPS, with告
by Boeing with a

Dynacs Engineering Company, Inc.

Dynacs Engineering Company, Inc.

HSR Airframe Annual Review

$$
\frac{A}{B}
$$

$$
\begin{aligned}
& \text { The CPU time is } 12.8 \text { hours on the NAS C-90. The clock time is } 2.5 \\
& \text { hours. The turnaround time is generally overnight if von neumann is not } \\
& \text { heavily loaded. } \\
& \text { Boeing/Seattle started to use FIELDVIEW. } \\
& \text { The flap edges are approximated in the grid. The upper and lower } \\
& \text { surfaces of the flap edges merge to a point, leading to flap gap regions } \\
& \text { of zero thickness. The flap gaps are set to a flow-through boundary } \\
& \text { condition. } \\
& \text { Viscous computation with Spalart-Allmaras turbulence model. }
\end{aligned}
$$

HSR Airframe Annual Review
Flight Conditions, Flow Solver, and
\quad Flight Conditions, Flow Solver, and
Postprocessing
HSR Airframe Annual Review
6
Wind tunnel data for outboard sealed slats only are available from
Langley 14×22 Test 449 .
Wind tunnel data for both inboard and outboard sealed slats will be
available from Ames 12 -ft Test 037 .

Dynacs Engineering Company, Inc.

ta dat

Dynacs Engineering Company, Inc.

The
has
DMB was used
for unknown
sed.

$$
\begin{aligned}
& \text { The inboard slat and outboard slat case was also analyzed for the same } \\
& \text { three angles of attack. The lift coefficient of } 10^{\circ} \text { angle of attack is higher } \\
& \text { than the outboard slats-only case. The benefit diminishes at higher } \\
& \text { angles of attack. }
\end{aligned}
$$

Dynacs Engineering Co., Inc.
HSR Airframe Annual Review
HSCT High Lift Aerodyamics
The full-span sealed slat generated more lift and less drag than the
outboard sealed slat case at 10° and 16° angle of attack. It generated
approximately the same lift but less drag at 22° angle of attack. Test
data fromTCA-3, which is ongoing, will indicate how the full-span sealed
slat performs.

Q eqeIne	HSR Airframe Annual Review
HSct High Lift Aerodyamics	

The full-span sealed slat generated approximately the same pitching
moment as the outboard sealed slat-only case except at the highest
angle of attack, 22°.
HSCT High Lift Aerodyamics
Effect of Inboard LE Device
TCA With 35 deg. outboard sealed slat, TE $10 / 15 / 15 / 15$
Mach 0.247, Re 7.9 M/MAC
NASA-Langley 14×22 Tunnel, Test 449 , Run
TNS 4 DMB W/B

Dynacs Engineering Co., Inc.
Q mating
HSCTHigh Lift Aerodyamics
The computed LOD (lift-to-drag ratio) vs. C_{L} form curves that generally
follow the test data. Again, the ongoing TCA -3 test will provide more
information. Dynacs Engineering Company, Inc.

HSR Airframe Annual Review
5
TNS3DMB results did not match the test data perfectly. A different post-
processor was used on one of the solutions and it improved the $C_{L}(\alpha)$
result.
Pressure sensitive paint (PSP) results may be available from theTCA-3
test.
Skin friction on the forebody may be available from the TCA-3 test.

Dynacs Engineering Company, Inc.
 Conclusions - Task 3 Fair agreement between Navier-Stokes solutions and
the test data for configurations that have been tested - Sealed slats improve the performance
HSR Airframe Annual Review
Q REDEINE

Concl

Dynacs Engineering Company, Inc.

Code Calibration Applied to the TCA High-lift
Model in the 14×22 Wind Tunnel
(Simultation With and Without Model Post-Mount)
HSR Airframe Technical Review
High-Lift Performance
Los Angeles, CA
February 9-13, 1998
Wendy B. Lessard - LaRC
This research falls under the Analysis/Design Methodology under High Lift Development
(Task 33) and is a Navier-Stokes computational method for analyzing the flow field about
the Technology Concept Airplane (TCA).
High Lift Technology Development (Task 33)
Hernall

The outline of this presentation is self-explanatory
Configuration
HSR High-Lift TCA
Outline

The objective of this study is to calibrate a Navier-Stokes code for the TCA ($30 / 10$) baseline
configuration (partial span leading edge flaps were deflected at 30 degs. and all the trailing-
edge flaps were deflected at 10 degs). The computational results for several angles of attack
are compared with experimental force, moments, and surface pressures.
The code used in this study is CFL3D; mesh sequencing and multi-grid were used to full
advantage to accelerate convergence. A multi-grid approach was used similar to that used
for the Reference H configuration allowing point-to-point matching across all the trailing-
edge block interfaces. From past experiences with the Reference H (ie, good force,
moment, and pressure comparisons were obtained), it was assumed that the mounting system
would produce small effects; hence, it was not initially modeled. However, comparisons of
lower surface pressures indicated the post mount significantly influenced the lower surface
pressures, so the post geometry was inserted into the existing grid using Chimera (overset
grids).
HSR High-Lift TCA Configuration
Objective \& Approach

-

Approach - Solve the turbulent flow field of the TCA
highlift baseline (30/10) configuration using CFL3D. A
multi-block grid approach is used (similar to the Ref H) and a
Chimera (overset grid) technique is used to account for mid-
tunnel mount effects.
-
The model without the post-mount was simulated first and the resources needed are shown
on this slide.

$$
\begin{aligned}
& \text { Model without post-mount } \\
& \text { - Multi-block grid containing } 26 \text { blocks } \\
& \text { - Solutions obtained for } \alpha=6,8,10, \& 12 \mathrm{deg} \\
& \text { - Memory required - } 265 \mathrm{MW} \text { (multi-tasked) } \\
& \text { - Average run time } 30 \text { hours or } 12.5 \mu \mathrm{sec} / \text { cell/iteration } \\
& \text { - } 2.5 \text { - } 3 \text { order decrease in residual magnitude }
\end{aligned}
$$

The TCA (30/10) surface grid plotted in the symmetry plane is shown in this figure. The grid is composed of 26 blocks, 53 point-to-point matching interfaces, and 3 patched
boundaries. The grid used a C-O/O-H type of topology and contains over 6 million grid points.

TCA (30/10) Baseline Grid With No Post

The spanwise computational surface pressures were extracted from the solution and
compared with the Langley $14 \times 22 \mathrm{ft}$ wind-tunnel data, T449. The first three fuselage stations
compare fairly well. However, the discrepancies between pressures seen on the lower
surface for the aft three stations were quite alarming, and the experimental pressure data was
considered suspect. It was thought that the upward drifting of the experimental data (on the
lower surface, aft of station 100.5) may be due to a possible leak in the atmospheric reference
line, since the previous solutions obtained on the Reference H configurations showed flat
pressure distributions on the lower surface. Future investigation of the pressure data did not
indicate any error.

The post effects were considered next; Allen Chen from Boeing (using the panel code
A502) showed that the post appeared to be effecting the lower surface more than previous-
ly expected. Consequently, the post geometry was inserted into the grid. The resources
needed for this case are listed on this slide.

A close-up view of the model support, which interfaces with the lower wing surface. The
post and intermediate overset grids are also shown.

A more global view of the TCA $(30 / 10)$ surface grid and post is shown on the left of
this slide. The solution at $\alpha=8$ deg is shown on the right, and depicts surface pressure
contours on the model and post.

The pressure contours are plotted in the symmetry plane and on the lower configuration
surface. The continuity of the contour lines as they pass from one overset region to
another is evident.

The lower surface pressure contours (shaded and lines) at $\mathrm{M}=0.243, \mathrm{Re}=8$ mil., and
$\alpha=8$ deg is shown with the post-mount (upper plot) and without (lower plot) the post-mount
The wake generated by the post creates a strong pressure field which in turn decreases the
pressure coefficients on the surface and lowers the lift.

TCA Baseline (30/10) Configuration

Lower Surface C Contours With and Without Post-Mount

$$
\mathrm{M}=0.243 . \operatorname{Re}=8 \mathrm{mil} . \quad \iota=8
$$

The upper surface pressure contours (shaded and lines) at $\mathrm{M}=0.243$, $\mathrm{Re}=8 \mathrm{mil}$., and
$\alpha=8 \mathrm{deg}$ are shown with the post-mount (upper plot) and without the post-mount (lower
plot). Comparison of contours with and without the post reveal some substantial differences
in the pressure.

TCA Baseline (30/10) Configuration

Upper Surface Contours With and Without Post

$$
\mathrm{M}=0.243 . \mathrm{Re}=8 \mathrm{mil} . u=8
$$

C
Post
2.00
1.48
0. 96
0.45
007

2erer

The chordwise pressure distributions with and without the post-mount are compared at
$\mathrm{M}=0.243, \mathrm{Re}=8 \mathrm{mil}$, and $\alpha=8 \mathrm{deg}$. A dramatic improvement in the computational
pressure distributions inboard of BL 22.5 are seen when the post is added.

The spanwise pressure distribution for the TCA (30/10) with and without the post at the
same conditions are shown. A dramatic improvement in both the upper and lower surface
pressures from station 100.5 and aft is again seen.
Spanwise Pressure Distributions for TCA (30/10)
With and Without Post-Mount

The experimental interference effects due to the post were corrected using the results obtained from the strut interference test performed at Langley, T442. As the photograph shows, the Reference H model was tested inverted with and without the image post to obtain the mounting effects.

The next four figures present forces and moments of computational and experimental
high-lift TCA configurations. The code CFL3D is used to calculate the free air case
(model only) and the model with the post-support. This is compared to experimental data,
which was corrected for free air and for free air without post-mount corrections. (Note the
corrected pitching moment for the post was not available and therefore not included in the
C_{m} vs a plot). Very good agreement is seen for both scenarios, and the code's ability to
predict the increments due to the post-mount interference is excellent.
C_{L} Comparisons With and Without the Post-Mount
TCA $(30 / 10)$ Baseline, $M=0.243, \operatorname{Re}=8$ mil.

This page is intentionally left blank.
C_{D} Comparisons With and Without the Post-Mount
TCA $(30 / 10)$ Baseline, $M=0.243, \operatorname{Re}=8$ mil.

This page is intentionally left blank.
Drag Polar Comparisons With and Without the Post-Mount
TCA $(30 / 10)$ Baseline, $M=0.243$, Re $=8$ mil.

This page is intentionally left blank.
\mathbf{C}_{m} Comparisons With and Without the Post-Mount
TCA $(30 / 10)$ Baseline, $\mathrm{M}=0.243, \mathrm{Re}=8 \mathrm{mil}$.

The present post-mounting system used for the Reference H and TCA creates
a strong wake which dramatically effects the model's surface pressures, in addition to
causing notable differences in the forces and moments. The lower surface pressures
obtained from the Reference H test were confined to the leading edge of the wing; therefore
the pressure values which extend over the full lower wing span were never measured.
However, it is now known that the flow field was not being accurately captured when the
Reference H was modeled without it's post-mount. The lesson here is that fairly
good force and moment comparisons may be obtained on a configuration, but that does not
validate or confirm that one has accurately solved the flow field. This is clearly evident from
the pressure distribution plots shown in this presentation. Very good results were obtained from the post/no-post cases, not only in terms of
absolute values but also increments. The code could also be calibrated against and may
provide useful insight into the wind-tunnel corrections that were also made.

$$
\begin{aligned}
& \text { HSR High-Lift TCA } \\
& \text { Summary \& Conclusions }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Very good agreement seen in force and moment comparsions with } \\
& \text { and without the post. } \\
& \text { - Surface pressure distributions correlate better with experiment when } \\
& \text { the post was included in the analysis. } \\
& \text { - The TCA post-mount geometry should be modeled in all calculations } \\
& \text { since it has been shown to create an extensive pressure field which } \\
& \text { effects the lower and upper flowfield. } \\
& \text { - Addition of wind-tunnel walls in the calculations would provide a } \\
& \text { calibration of the experimental wall correction. }
\end{aligned}
$$

This page is intentionally left blank.

ASE Technologies, Inc.

Aerodynamic Analysis of TCA Wing/Body/Nacelle High Lift Configurations

Xuetong Fan
Paul Hickey
ASE Technologies, Inc.
High Speed Research Program
Airframe Technical Review
Westin Hotel, Los Angeles Airport
February 9-13, 1998

This presentation includes the work completed at ASE Technologies, Inc. in the CFD analysis of HSCT TCA Wing/Body/Nacelle High Lift configurations.

In the High Lift Technology Development program (Task 33), this work falls in the category of Navier-Stokes Methods under Analytical Methods. We hereby acknowledge the support and help from Roger Clark and David Yeh of Boeing Long Beach.

Objectives

- Develop CFD Models for aerodynamic analysis of HSCT TCA Wing/Body/Nacelle (WBN) high lift configurations
- Construct multi-block CFD grids to include nacelles and diverters with and without deflected LE/TE flaps
- Obtain converged CFL3D solutions for the TCA WBN models
- Evaluate the effect of nacelle installation on the aerodynamic performance of HSCT TCA high lift configurations
- Identify and analyze important flow characteristics due to nacelle installation to support Propulsion Airframe Integration (PAI) effort
- Provide flow and performance data related to nacelle effect to supplement wind tunnel test

The objectives of this work are two fold. The first objective is to develop efficient CFD modeling procedures for the TCA high lift configurations with nacelle installation. The second objective is to evaluate the effect of nacelle installation on the aerodynamic performance of the TCA high lift configurations.

To achieve the first objective, we will build multi-block CFD grids to include nacelles and diverters in the TCA high lift configurations with and without deflected LE/TE flaps. And then we will use CFL3D to obtain fully converged turbulent solutions for the TCA W/B/N models.

For the second objective, we will, from the CFD solutions, identify and analyze important flow characteristics due to nacelle installation to support Propulsion Airframe Integration. We will also provide flow and performance data for the TCA W/B/N configurations to supplement wind tunnel test.

Outline

- TCA 0/0 WBN Model
- Model description
- Convergence history
- Comparison with wing/body solution and test data
- Flow characteristics
- TCA 30/10 WBN Model
- Model description
- Convergence history
- Comparison with wing/body solution and test data
- Flap loading analysis
- Flow characteristics
- Summary

We completed two CFD models for the TCA W/B/N configurations: TCA $0 / 0$ and TCA 30/10. In this presentation, we will describe the multi-block CFD models for the two W/B/N configurations and show the CFL3D solutions. We will compare our CFL3D solutions for W/B/N with the respective CFL3D solutions for W/B obtained at Boeing Long Beach for the same flap settings. We will also compare the CFD solutions with the available test data to illustrate nacelle effect. We will use flow visualization to show the important flow characteristics, especially in the vicinity of nacelles and diverters. For the TCA $30 / 10 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ configuration, we will examine the span loading of the deflected TE flaps. A brief summary of this work is included at the end of this presentation.

TCA 0/O WBN Model Description

- Based on single-block TCA 0/O W/B grid provided by David Yeh
- Nacelle/Diverter (N/D) grid face-matched with W/B grid
- Mostly 1-to-1 point-matched between N/D blocks
- Model size: 20 blocks 4 million grid points
- Memory requirement: 160MW
- Minimum viscous spacing: 0.002 in

The construction of TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ grid is based on the TCA $0 / 0 \mathrm{~W} / \mathrm{B}$ grid provided by David Yeh. A portion of the W/B grid is removed to make room for nacelles and diverters (N/D). The N/D blocks interface with the W/B grid in a face-matched manner using the RONNIE pre-processor in CFL3D. Between the N/D blocks, 1-to-1 point-match is used as much as possible. The final model for TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ has 20 blocks with 4 million grid points. It requires 160 MW of memory on Cray C-90 to run the CFL3D flow solver for this model. The minimum viscous spacing in the $\mathrm{W} / \mathrm{B} / \mathrm{N}$ model is 0.002 inches to be consistent with the W/B grid.

TCA 0/0 WBN Model

Contour of y^{+}off model viscous surfaces
(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

With the minimum viscous spacing of 0.002 inches, the y^{+}values for the first grid points off model solid surfaces are in the order of 1.0 , which is appropriate for the Baldwin-Lomax turbulence model. The flow condition for the y^{+}results are: Mach No. $=0.3, \operatorname{Re}=8$ million, and Angle of Attack $=10$ degrees.

CFL3D Convergence History

(TCA 0/0, Mach \#=0.3, Re=8x106, AOA=10 degrees)

- 2-level grid sequencing; 2-level multi-grid on fine level
- Total CPU Usage: 42 hours on Cray C-90
(9 hours on coarse level and 33 hours on fine level)

The convergence history of the CFL3D solution for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ model is shown here. Two-level grid sequencing was used and two-level multi-grid was applied on the fine grid level. Extensive iterations were performed on the coarse grid level for debugging purposes, which used 9 hours of CPU time on Cray C-90. After 500 iterations on the fine level, we adopted David Yeh's modification to the Baldwin-Lomax turbulence model with Degani-Schiff option. it has been proven that Yeh's modification can better simulate the vortical flow above the wing upper surface. For simplicity, we only used his modification in the block around the leading edge and above the wing upper surface in the W/B/N model. This modification caused the predicted lift coefficient to increase gradually, which is why extensive (and expensive) iterations were run on the fine grid level. The 1800 iterations on the fine grid level used 33 CPU hours on Cray C-90.

CFL3D Convergence History

(TCA $0 / 0$, Mach $\#=0.3, \mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

The convergence history for C_{L} and C_{D} for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ model is shown here. For the last 200 iterations, the peak-to-valley variations in C_{L} and C_{D} are within 2% of their mean values, which are comparable to the level of convergence achieved in the W/B model. Since our $W / B / N$ model is based on the W/B grid, it is unlikely for the W/B/N solution to converge much better than the W/B solution.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 0/0, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

Lift Coefficient (C_{L})

C_{L}	W / B	$\mathrm{W} / \mathrm{B} / \mathrm{N}$	$\Delta \mathrm{C}_{\mathrm{L}}$
CFL3D	0.3850	0.4116	0.0266
Experiment	0.3749	0.3711	-0.0038

Drag Coefficient (C_{D})

C_{D}	W/B	$\mathrm{W} / \mathrm{B} / \mathrm{N}$	$\Delta \mathrm{C}_{\mathrm{D}}$
CFL3D	0.0599	0.0634	0.0035
Experiment	0.0606	0.0616	0.0010

The integrated coefficients, C_{L} and C_{D}, for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ model are shown in the above tables, together with those from the W/B solution and wind tunnel experiments. Considerable discrepancies are found between the CFD solutions and the experimental data. Further and more detailed investigation is necessary to understand and possibly eliminate the discrepancies. It is noted that the C_{D} values from both the W/B/N CFD solution and the test data have been corrected for the nacelle interior friction forces and the nacelle base pressure forces.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 0/0, Mach $\#=0.3, \operatorname{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This figure shows the relative locations of the lift coefficients on the lift curve. It is noted that for the angles of attack (AoA) up to 16 degrees, wind tunnel test shows decreases in C_{L}, whereas the CFD solution predicts an opposite trend at AOA of 10 degrees.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 0/0, Mach $\#=0.3, \operatorname{Re}=8 \times 10^{6}, A O A=10$ degrees)

This figure shows the relative locations of the lift and drag coefficients on the drag polar.

TCA 0/0 CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This slide shows the pressure coefficient contour on the wing upper surfaces for the W/B and W/B/N CFD models. With nacelles installed, the CFD solution shows similar leading edge vortices but with enhanced strength, compared to the W/B solution. This enhancement resulted in the increment in the predicted lift coefficient for the TCA 0/O WBN configuration.

ASE Technologies, Inc.

TCA 0/0 CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

On the wing lower surface, the pressure coefficient distributions and the limiting streamlines are very similar between W/B and W/B/N solutions, except for around the diverters. For the W/B/N case, the limiting streamlines indicate possible flow separation near the leading edges of the diverters.

TCA 0/0 WBN CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)
Normalized total pressure downstream of nacelle inlets

This figure shows the total pressure contours in the nacelle interior cross sections just downstream of the nacelle leading edge. Local flow separation is apparent at the entrance to the outboard nacelle which may impact the outboard engine performance.

TCA 0/0 WBN CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)
Limiting streamlines around nacelle leading edge

Examination of the limiting streamlines near the leading edge of the outboard nacelle further confirms the local flow separation.

TCA 30/10 WBN CFD Model

- Based on single-block TCA 30/10 W/B grid provided by David Yeh
- Buffer zones were used to 1-1 match with W/B grid in spanwise locations
- Nacelle/Diverter grid face-matched with buffer zones and W/B grid
- Mostly 1-to-1 point-matched between N/D blocks

Major challenges

- "Web" approach to TE flap deflection not feasible
- Close proximity of deflected TE flaps to nacelles and diverters

The W/B/N model for the TCA 30/10 configuration is based on the TCA 30/10 W/B grid provided by David Yeh. To improve the interfacing quality between the W/B grid and the N/D grid, we used buffer zones between them at spanwise locations. These buffer zones 1-to-1 point-match with the W/B grid and face-match with the N/D grid on flat surfaces for higher interpolation accuracy. Between the N/D blocks, mostly 1-to-1 point-match is used.

The major technical challenge for the TCA $30 / 10 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ configuration is the modeling of the deflected TE flaps. With nacelles installed, the "web" approach used by David Yeh for the W/B model is not feasible. In addition, due to the close proximity of the deflected TE flaps to the nacelles and diverters, it is difficult to obtain high quality grid that can accurately simulate the potentially complicated flows in that region.

TCA 30/10 WBN Model

Modeling the deflected TE flaps with wedges

Our approach to the problem is to use three wedges for each region above the upper surfaces of the deflected flaps, as shown in the above figure.
These wedges fill in the space created by TE flap deflection and at the top flush with the wing upper surface. The side surfaces of the undeflected wing segments and the openings between the wing and the deflected TE flaps are accurately modeled with this approach.

TCA 30/10 WBN Model

Modeling the deflected TE flaps with wedges

Undemeath the wing, another three wedges are used for each region between the deflected TE flaps. The bottom surface of these wedges are flush with the lower surfaces of the deflected TE flaps. Through the openings created by the TE flap deflections, 1-to-1 point-match is established between the upper and lower wedges.

TCA 30/10 WBN Model

- Model size: 50 blocks (including 21 wedges); 6 million grid points
- Memory requirement: 255MW

This figure shows the actual wedge grid in one of the deflected TE flap regions. It is noted that one side for each set of the lower wedges will lie on the side surfaces of the nacelles and diverters. The final grid for the TCA 30/10 W/B/N configuration consists of 50 blocks including 21 wedges and a total of about 6 million grid points. It requires 255 MW of memory on Cray C-90 to run the CFL3D solver for this model.

ASE Technologies, Inc.

CFL3D Convergence History

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

- 3-level grid sequencing
- 2-level multi-grid on intermediate and fine levels
- CPU Usage: 54 hours on Cray C-90 (2 hours on coarse level;

2 hours on intermediate level; 50 hours on fine level)

With the improved accuracy for the patched grid interfaces in the TCA 30/10 W/B/N model, we are able to run 3-level grid sequencing with 2-level multi-grid on the intermediate and fine grid levels. We completed 3000 iterations on the coarse grid level and 600 iterations on the intermediate level which used 2 CPU hours each on Cray C-90. After switching to fine grid level after 3600 iterations, however, fluctuations started to appear in the residual history. Various means were tried to elliminate the fluctuations with no success. Examination of the flow field revealed that local flow fluctuations exist only in the wedge regions. After 6300 total iterations, we adopted David Yeh's modification to the turbulence model and completed another 300 iterations. All the fine level iterations used 50 CPU hours on Cray C-90.

CFL3D Convergence History

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This figure shows the convergence history for the integrated lift and drag coefficients for TCA 30/10 W/B/N model. The local fluctuations in the flow field near the deflected TE flaps have no apparent effect on the integrated coefficients. In addition, Yeh's modification to the turbulence model is not affecting the solution due to the weakness of the LE vortices for the TCA 30/10 configurations. For the last 200 iterations, the peak-to-valley variations in C_{L} and C_{D} are within 2% of their mean values respectively, which are comparable to the level of convergence achieved in the TCA 30/10 W/B CFD model.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 30/10, Mach $\#=0.3, \operatorname{Re}=8 \times 10^{6}, A O A=10$ degrees)

Lift Coefficient (C_{L})

C_{L}	W / B	$W / B / N$	ΔC_{L}
CFL3D	0.4421	0.4635	0.0214
Experiment	0.4260	0.4697	0.0437

Drag Coefficient (C_{D})

C_{D}	W / B	$\mathrm{W} / \mathrm{B} / \mathrm{N}$	$\Delta \mathrm{C}_{\mathrm{D}}$
CFL3D	0.0501	0.0571	0.0070
Experiment	0.0505	0.0602	0.0097

The integrated coefficients, C_{L} and C_{D}, for the TCA $30 / 10 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ model are shown in the above tables, together with those from the W/B solution and wind tunnel experiments. Discrepancies are found between the CFD solutions and the experimental data in terms of lift and drag increments due to nacelle installation. Further and more detailed investigation is necessary to understand and possibly eliminate these discrepancies. It is noted that the C_{D} values from both the W/B/N CFD solution and the test data have been corrected for the nacelle interior friction forces and nacelle base pressure forces.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This figure shows the relative locations of the lift coefficients on the lift curve. For TCA 30/10 configurations, both CFD analysis and wind tunnel experiment show an increase in C_{L} due to nacelle installations, although the CFD solution predicts a much smaller increment in C_{L} than test data at AoA of 10 degrees.

Comparison with W/B Solution and Wind Tunnel Data

(TCA 30/10, Mach $\#=0.3, \operatorname{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This figure shows the relative locations of the lift and drag coefficients on the drag polar for the TCA $30 / 10 \mathrm{~W} / \mathrm{B}$ and $\mathrm{W} / \mathrm{B} / \mathrm{N}$ configurations.

Comparison with W/B Solution

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

The pressure coefficient contour on the wing upper surface for the TCA $30 / 10 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ model is similar to that for the W/B model due to the weakness in the vortices around the deflected leading edge. The nacelles have very little effect on the overall pressure distribution on the wing upper surface. Local "hot spots" can be seen near the deflected TE flaps which are responsible for the residual fluctuations in the convergence history.

Comparison with W/B Solution

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

On the wing lower surface, the pressure coefficient distributions and the limiting streamlines are very similar between the W/B and W/B/N solutions, except for around the diverters. For the $\mathrm{W} / \mathrm{B} / \mathrm{N}$ case, the limiting streamlines indicate possible flow separation near the leading edge of the diverters. Local flow acceleration can be seen between the inboard and the outboard nacelles.

TCA 30/10 WBN CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

Normalized total pressure downstream of nacelle inlets

Inboard

Comparison with W/B Solution: Flap Span Loading

(TCA 30/10, Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)

This slide shows the effect of nacelles on the span loading of the deflected TE flaps. It is expected that the nacelles will work like end-plates to the wing or flap segments, which will usually cause an increase in span loading. This end-plating effect is apparently seen for the inner and outer flaps but not for the middle flap.

TCA 30/10 WBN CFL3D Solutions:

(Mach \#=0.3, $\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees)
Cp on lower surfaces of deflected middle flaps

Further examination of the pressure distribution on the lower surface of the deflected middle flap shows relatively lower overall pressure for W/B/N case compared to the W/B case. This is the result of local flow acceleration between the inboard and outboard nacelles. The flow acceleration and end-plating effect tend to offset each other in the span loading on the middle flap.

Summary

- Developed CFD Models for TCA Wing/Body/Nacelle (W/B/N) high lift configurations including 0/0 and flaps 30/10.
- Obtained converged CFL3D solutions for the TCA W/B/N models at Mach No. $=0.3, \mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees.
- CFD solutions provide insight into the effect of nacelle installation on the aerodynamic performance of TCA high lift configurations.
- Impact on overall flow field and aerodynamic parameters
- Local flow separation on nacelles/diverters
- Span loading and flow characteristics near deflected TE flaps
- Comparison between CFD results and wind tunnel data reveals discrepancies in aerodynamic coefficients. Further investigation is warranted.

In summary, we developed two CFD models and obtained converged CFL3D solutions for the TCA Wing/Body/Nacelle high lift configurations including flaps $0 / 0$ and 30/10. CFD solutions make it possible to examine in detail and understand in depth the effect of nacelle installation on the aerodynamic performance of HSCT TCA high lift configurations.
Preliminary comparison with wind tunnel test data reveals discrepancies in the integrated aerodynamic coefficients. We will perform further investigation into the CFD solution as well as the test data.
HSCT Aerodynamics, Long Beach
Canard Integration for CFD Analysis of
HSCT High Lift Configurations

This page is intentionally left blank.
Outline
This report starts with the description of the objectives for canard integration analysis,
followed by the numerical approach. The methodologies behind the automated canard
modeling procedure are described and the integration process to obtain the numerical
solutions is then summarized. A sample solution is presented and analyzed for the TCA
wing/body/canard configuration with a part span leading edge flap deflected at 30 degrees
and the trailing edge flaps deflected at 10 degrees at a high lift condition. This report
concludes with a summary and future plans.
OUTLINE
HSCT Aerodynamics, Long Beach

- Objectives
- Approach
- Automated Canard Modeling Procedure
- Numerical Solution Process
- Sample Solution
\quad TCA W/B/C 30/10 Configuration at $\alpha=10^{\circ}$
\quad (Part span LE flaps)
- Summary and Future Plans
Objectives
The objective for the current study is to develop the numerical capability to model the
canard surface for high lift configurations; and to evaluate the canard flow characteristics
and its impact on the high lift performance.
Approach The approach is to utilize the overset approach to integrate various canard models with
high lift configurations. An automated gridding procedure is developed and utilized for the
current analysis. This procedure is also applicable for future parametric studies. NASA
developed CFL3D/MAGGIE codes are used for simulation of the physical phenomena.
The numerical solution is analyzed to evaluate canard/wing vortex characteristics and the
corresponding high lift performance. The numerical procedure will be extended to support
the upcoming TCA-4 test, and code validation will be conducted as the test data becomes
available.
APPROACH

Utilize overset approach
- Validate numerical solution based on upcoming
TCA4 test (May 1998)
- Develop an automated gridding procedure
for various canard configurations
- Utilize CFL3D/MAGGIE for flow analysis
- Evaluate canard/wing vortex characteristics
at high lift conditions
W/B/C Modeling Using Overset Approach
The advantage of using the overset approach is that various canard configurations can be Cusirently, the canard surface is added to a TCA wing/bodedy as the configuraration evolves. Currently, the canard surface is added to a TCA wing/body configuration with deflected
part span leading-edge flaps and trailing-edge flaps for demonstration.
W/B/C Modeling Using Overset Approach HSCT Aerodynamics, Long Beach CFD model - Easily integrated into an exsting
(i.e., W/B/Flaps, W/B/../..)

Automated Canard Modeling Procedure
An automated canard modeling procedure has been developed to efficiently generate
canard/forebody grids for CFD analysis. Canard configurations can be different in a
variety of ways such as planform, position, deflection angles mounted on a forebody with
or without a wiping surface. The automated procedure will reduce the gridding time
significantly for sensitivity studies of various canard configurations.

Automated Procedure for Canard Surface Integration This chart summaries the process that is involved in the automated canard modeling
procedure. The only input required is the surface grids of a forebody and a canard
surface. This procedure will first combine the surface grids, deflect the canard through a
user specified angle, calculate the trim curve and generate a combined surface grid. A
CFD volume grid will also be generated automatically using an algebraic grid generation
tool. Once the forebody/canard volume grid has been generated, a zonal connectivity file
will be created using MAGGIE code for CFD analysis. The following few pages will be
focused on the details of each step.
Automated Procedure for Canard Surface Integration

Surface Geometry Definition for Modeling Canard Surface

> The first step of the procedure is to combine the forebody and the canard surface grids together. The surface geometries can be obtained from any configuration of interest.

> Once the canard surface is available, the canard surface grid is extrapolated to the
> centerline so that a trim curve can be computed.

Surface Geometry Definition for Modeling Canard Surfaces
HSCT Aerodynamics, Long Beach

1.1 Input
1.1 Input - Surface Grids

Canard Manipulation for Sensitivity Studies The numerical capability to move the canard surface around has been implemented for
future sensitivity studies. The canard manipulation consists of a translation and rotation.
The canard surface can be moved around in the upstream or downstream, and upward or
downward directions through a translation process, while the dihedral angle is modified
through a chordwise rotation. Once a desirable position is obtained, the canard is
deflected in the hingewise direction based on a user specified angle.

Canard Translation Process
The translation process is provided to move the canard forward or backward and upward
 fuselage which is located at the intersection of the hinge axis and the fuselage. The total displacement of the reference point consists of two vectors. One vector is obtained by sliding the reference axially along the fuselage surface. The second vector is determined by moving the reference point vertically through an user specified circumferential angle. Once the total displacement is found, the canard surface points are linearly translated to the new location.
Canard Translation Process

Canard Dihedral/Anhedral Setting Modification Two options have been implemented in the procedure to change the canard dihedral angle. The first option is to rotate the canard from the original geometry which may consist
an initial dihedral/anhedral angle. The second option is to first reset the dihedral angle to
zero (project onto the horizonta plane) and then rotate the canard from the waterline. For
either case, the rotation is performed about the axis of the canard root chord.

8
Canard Hingewise Deflection

Canard Hingewise Deflection Canard Hinge Axis is Defined by 2 Porodynamics, Long Beach - Typical Hinge Line \perp Local tangent

Wiping Surface:
Reduce Canard/Fuselage Gap

Q EOEFNE

Numerical Procedure for Trim Curve Calculation
Once the canard has been moved and deflected to the desirable position, a trim curve is
then calculated to define the intersection curve between the two surfaces. Each point on
the trim curve is located through the search of the intersection between the canard
segment and the fuselage. The intersection is located when the line segment passes
through the fuselage panel. The trim curve is then obtained by combining the intersection
points. The trim curve would not be found if the surfaces either do not intersect or they
intersect tangentially.

Surface Grid Construction Procedure To blend the fuselage and canard grids together, the fuselage surface grids that are upstream and downstream of the canard are first generated based on the original fuselage separately based on the trim curve grid distribution.

[^35]HSCT Aerodynamics, Long Beach

Sectional Volume Grid Generation
The volume grid generation for the forebody and canard configuration is divided into 2
regions. In the inner region, 4 subregions are temporarily created based on the surface
normals at canard/fuselage junction and at the tip. The subregions are created so that the
boundaries can be used to guide the grid lines through sharp corners and avoid grid line
crossing. In the far field, the grid cells are relaxed to a more uniform distribution. Once
the forebody/canard grid is complete, they are combined into a single block. The size of
the outer boundary is controlled by the user in order to overset with an existing CFD
model.
Sectional Volume Grid Generation
HSCT Aerodynamics, Long Beach
Far Field:
Grid cells are relaxed
to uniform distribution

Forebody/Canard Volume Grid
The resultant forebody/canard volume grid is a single zone grid with an O-H grid topology.
The grid has an O-type in the circumferential direction and an H -type in the axial direction.
The size of the outer boundary for the forebody/canard is chosen such that it is away from
the boundary layers and the flow regions with large gradient. In addition, it should provide
a sizable overlap region in order to get a quality stencil (extrapolation points) through
compatible grid sizes across the blocks.
Forebody/Canard Volume Grid
HSCT Aerodynamics, Long Beach
Numerical Integration Procedure for W/B/C Configurations
The numerical integration procedure for the current study is illustrated in the figure. The
TCA grids obtained from the automated flap deflection procedure and the canard
procedure are combined to form overset grids. The overset grids are fed into MAGGIE
code to establish the zonal communication between the forebody/canard and wing/body/
flap grids for CFL3D flow analysis.
Numerical Integration Procedure for W/B/C Configurations

Create Overset Connectivity Using MAGGIE
MAGGIE is a pre-processor code for using the chimera (overset) option of the CFL3D
code. MAGGIE cuts holes in the wing/body grid to accommodate the forebody/canard
grid. The zonal communication is then generated so that the wing/body solution will feed
into the forebody/canard grid through its outer boundary. The influence of the forebody/
canard solution will pass to the wing/body grid through the fringe points that are generated
associated with the hole creation in the wing/body grid. The flow information will pass
back and forth between these zones until the solution is converged.
Create Overset Connectivity Using MAGGIE

1. Cut WSCT Aerodynamics, Long Beach
2. W/B Sol'n accommodate F/C
3. F/C Sol'n \rightarrow F/C outer boundary

TCA W/B/C Geometry for High Speed Model The automated canard integration procedure provides a fast and efficient way for canard
study. This procedure has been utilized by the Configuration Aerodynamics group and
successfully applied for various canard positions at $M=2.4$ for sensitivity studies. The
results of the numerical analysis were utilized for defining the canard positions and the
plan of test for an upcoming wind tunnel test.
TCA Wing/Body/Canard Geometry
TCA Wing/Body with PTC (v2) Canard, $\mathrm{i}_{\mathrm{c}}=0.0^{\circ}$

Flow Solution for TCA W/B/C Configuration

The focus of this study is to provide a preliminary assessment of the canard flow
characteristics, its influence on the wing, and its impact on the high lift performance.

ACC Canard Upper Surface Flow Pattern
The ACC canard is a low-mount canard with an anhedral angle. The chord sections are described as bi-convex surfaces with a sharp leading-edge. This figure shows the flow solution on the canard upper surface with no canard deflection at 10 degrees angle of attack. Looking at the upper surface pressure and the limiting streamlines near the surface, it clearly shows that the canard is dominated with vortical flow where the LE
vortex induced low pressure region and the typical spanwise flow phenomena are visible.

Q EOEFNF

Particle Traces Released from ACC Canard Edges Free particle traces released along the leading edge and at the tip are shown in this figure.
The blue traces are released near the LE while the red traces are originated from the
canard tip region. It clearly shows the formation of the LE vortex and its interaction with
the tip vortex. Behind the canard surface, the vortex is seen to convect approximately in
the free stream direction.

Q - IEMMF
Cross-Flow solution for TCA W/B/C (30/10) Configuration

> Total pressure contours are plotted at four selected fuselage stations to illustrate the formation and the convection of the canard vortex. At FS 900, the total pressure loss across the boundary layers and the shear layers around the canard vortex are clearly visible in the canard region. The canard vortex is shown to convect downstream above the wing upper surface. The formation of fuselage vortex as well as the wing LE vortex are also illustrated in the figure. The LE flap is seen to be under deflected at FS 2100 where the flow may be separated at the LE.
Cross-Flow Solution for TCA W/B/C (30/10) Configuration
$\mathrm{M}=0.3, \mathrm{AoA}=10 \mathrm{deg}, \mathrm{Re}=8$ million

(2) FS 1300

The flow solution for the TCA W/B/C $30 / 10$ configuration is illustrated in this figure where it shows the total pressure contours at some cross flow plans accompanied by the particle traces released from the LE of the canard surface. This figure shows the canard vortex being convected above the wing. It also shows the formation of the wing LE vortex just inboard of the part span flap as well as the vortex interaction with the TE flap vortices in the wake region.

3-View Canard Vortex Traces
To clearly visualize the footprint of the canard vortex, a 3 -view plot of the canard vortex
traces is illustrated in this figure. The canard vortex is shown to convect above the wing
in a straight path initially. Once the influences of the wing and the LE vortices become
large, the canard vortex is seen to move slightly inboard and parallel to the wing surface.

Q adeine
Canard Influence on the Wing Upper Surface Pressure
The upper surface wing pressures for the cases with and without the canard surface are
illustrated in the figure. Without the canard, the formation of a leading edge vortex is
shown just inboard of the part span LE flap. The presence of the canard induces a higher
pressure gradient outboard of canard vortex while it reduces the pressure gradient inboard
of the canard vortex.
Canard Influence on the Wing Upper Surface Pressure
$\mathrm{M}=0.3, \alpha=10 \mathrm{deg}, \mathrm{Re}=8$ million

8
Canard Influence on the Wing Limiting Streamlines
The influence of the canard vortex is seen to induce a more complicated vortical flow
pattern on the wing just outboard of the canard buttline location, while creating a more
favorable attached flow environment inboard of the canard vortex.
Canard Influence on the Wing Upper Surface Limiting Streamlines
$M=0.3, \alpha=10 \mathrm{deg}, \mathrm{Re}=8$ million
TCA $30 / 10$ Configuration

Q BOENNE
Effect of Canard on Wing Surface Pressure The effect of canard vortex on the wing spanwise surface is shown in this figure. A
downwash effect is seen inboard of the canard vortex where the local angle of attack is
lower resulting in a lower pressure on the wing lower surface while reduces the pressure
difference between the upper and lower wing surfaces. On the other hand, an upwash is
induced outboard of the canard vortex resulting in the formation of a leading edge vortex
which induces a suction peak near the leading edge.
Effect of Canard on Wing Surface Pressure
$M=0.3, \alpha=10$ deg, Re=8 million

Effect of Canard on TCA (30/10) Wing Separation
The effect of canard on the wing separation is illustrated by releasing the limiting particle
traces near the wing leading-edge for the cases with and without the canard. The
influence of the canard vortex is seen to create a more attached flow environment inboard
of the canard vortex while enhances LE separation on the outboard of the canard vortex.
The secondary flow separation pattern which appears on the tapered flap element seems
to be stronger with the canard than without the canard surface. A stronger secondary
separation usually is a viscous phenomena associated with a stronger vortex.
Effect of Canard on TCA (30/10) Wing Separation
$\mathrm{M}=0.3, \mathrm{AoA}=10$ deg, $\mathrm{Re}=8$ million

Canard configuration for TCA-4 High Lift Test

The PTC canard has an aft-elevator which is geared to the canard deflection at high lift conditions. The sizable canard/fuselage gap created at large canard and the aft-elevator deflection needs to be modeled in order to properly resolve the actual flow phenomena in the test.

Canard Configuration for TCA-4 High-Lift Test
HSCT Aerodynamics, Long Beach
TCA-4 (PTC) canard vs. ACC canard 1. Smaller area 2. Further upstream 3. Mid-mount rather than low-mount
4. Movable canard with aft-elevator

Q - THEF

Summary
In summary, the numerical modeling of a canard and integration with a TCA high lift
configuration has been accomplished and the numerical solution has been analyzed.
The numerical result has shown that the canard is dominated with vortical flow at high lift conditions. The canard vortex is shown to convect approximately in the free stream
 inboard of the canard vortex which would create a more favorable attached flow environment. On the other hand, an upwash is induced outboard of the canard vortex which would promote LE separation resulting a stronger LE vortex. As a result, it may be desirable to extend the LE flap further inboard from the part span flap definition to account for the upwash created by the canard vortex. The influence of canard on the wing depends on the canard position and canard vortex strength which is a function of angle-ofattack, canard size, deflection and its position on the fuselage.

[^36]- Automated canard integration procedure has been developed and demonstrated

Numerical solution for an ACC canard on the TCA 30/10 configuration has
been analyzed

High Lift CFD Activities for Canard Integration The canard integration process will continue to model the PTC canard including the aft-
elevator for pre-test analysis prior to the TCA-4 test. The canard/fuselage gap will be
modeled to accurately resolve the actual flow phenomena in the tunnel. Addditional
numerical results will be generated and analyzed as needed for test planning, and code
validation will be performed once the test data become available.

This page is intentionally left blank.

Comparison of CFL3D Solutions Using Alternative Grid Interfacing Schemes

Xuetong Fan
Paul Hickey
ASE Technologies, Inc.
High Speed Research Program
Airframe Technical Review
Westin Hotel, Los Angeles Airport
February 9-13, 1998

This presentation documents the recent work at ASE Technologies, Inc. in applying the overset grid method to the CFD modeling of HSCT TCA Wing/Body/Nacelle High Lift configurations. The MAGGIE preprocessor in CFL3D is used in this work for the grid overlapping interpolations.

In the High Lift Technology Development program (Task 33), this work falls in the category of Navier-Stokes Methods under Analytical Methods. We hereby acknowledge the support and help from Roger Clark and David Yeh of Boeing Long Beach. We'd also like to thank Chung-Jin Woan of Boeing North American, Inc. for the fruitful discussions on the overset grid method.

ASE Technologies, Inc.

Objectives

- Compare CFL3D solutions for TCA Wing/Body/Nacelle (WBN) high lift configurations using different grid interfacing schemes
- Face-matched grid (RONNIE)
- Overlapped grid (MAGGIE)
- Evaluate grid interfacing schemes for more efficient CFD modeling of TCA WBN configurations with and without deflected LE/TE flaps
- Grid generation effort
- Grid interface quality
- Computer resources
- Technical issues

The objectives of this work are twofold. The first objective is to compare and cross-examine the CFL3D solutions for the TCA W/B/N models using two different grid interfacing methods: face-matching (or patching) with RONNIE and overlapping with MAGGIE. The second objective is to evaluate these two methods and determine which one is better suited for the CFD modeling of the TCA W/B/N configurations. The grid interfacing method will be evaluated in terms of grid generation effort, block interface quality, and computer resources. Special attention is paid to the potential technical difficulities involved, especially in the case of deflected TE flaps for TCA high lift configurations.

Outline

- Background
- Overlapped grid model for TCA 0/O WBN High Lift configuration
- CFL3D solution for TCA 0/0 WBN model with overlapped grid
- Computer resources
- Comparison with CFL3D solution using face-matched grid
- Comparison of the two schemes in TCA WBN applications
- Technical issues with overlapped grid
- Interpolation near solid surfaces
- Collar grid for adjoining solid surfaces
- Special requirement in TCA 30/10 WBN case
- Summary

In this presentation, we will first put forth the background information for this work, including mostly our past experience in CFD modeling of the TCA W/B/N configurations using face-matched grid. Then we will describe the overlapped grid model for the TCA 0/O WBN configuration and compare the CFL3D solution obtained from this model with the one from the previous face-match model. Based on the limited experience in using the two methods in the TCA WBN applications, a general comparison of the two methods is presented. Some of the technical issues involved with the overlapped grid method will be discussed. Finally, we will briefly summarize our effort and draw some preliminary conclusions.

Background

- Experience with CFL3D models using face-match grid for TCA WBN configurations with and without deflected LE/TE flaps
- WBN grid is preferably based on WB grid
- Grid generation is time consuming
- Component grids are not portable
- Grid quality is limited by the face-match requirement
- Used wedges to model deflected TE flaps
- More efficient CFD modeling procedure is desired
- Alternative grid approach: Overlapped grid (MAGGIE)

Over the past two years, we have gained a lot of experience in the CFD modeling of HSCT W/B/N high lift configurations using face-matched grid. Though the face-matched models have performed well, the modeling procedure is less efficient primarily for the following reasons. (1) The W/B/N grid is based on the W/B grid for solution consistency. But for the N/D grid to face-match with the grid surfaces in the existing W/B model, it introduces constraints which make the grid generation process more time consuming. (2) The component grid for nacelles and diverters can not be easily used in other planforms. (3) Highly swept wing causes skewness in the grid. And interpolation across curved interfaces introduces numerical errors. (4) Wedges are necessary to model the deflected TE flaps in the W/B/N model, which cause local instability in the CFL3D solution.

The alternative approach to the CFD modeling of $\mathrm{W} / \mathrm{B} / \mathrm{N}$ configurations is the overlapped grid method. We need to determine if the overlapped grid will improve the CFD modeling procedure for TCA W/B/N configurations.

TCA 0/O WBN Overlapped Model

- Comprised of the original W/B grid and the N/D grid from face-matched model
- Total 14 blocks and 4.4 million grid points
- Memory requirement: 180MW
- 1-1 point-matched and face-matched between N/D blocks
- N/D grid overlaps with W/B grid using MAGGIE preprocessor
- CPU usage for MAGGIE: 15 minutes on Cray C-90

For the overset grid model for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ configuration, we simply used the N/D grid from the previously completed face-matched model and let them overlap with the original TCA 0/O W/B grid. No additional grid generation was involved for this overset grid model. This model consists of 14 blocks with 4.4 million grid points. It requires 180 MW of memory on Cray C-90 to run the CFL3D solver for this model. The MAGGIE preprocessor in CFL3D was used to obtain the interpolation coefficients for grid overlapping between the N/D grid and the W/B grid. It used 15 minutes of CPU time on Cray C-90 for MAGGIE to complete the interpolations.

TCA 0/O WBN Overlapped Model

Force integration on overlapped viscous surfaces

- Outer boundary of N/D grid on wing lower surface matches surface gridlines of the W/B grid
- Overlapped region from W/B grid on wing lower surface is not included for lift and drag force integration
- Black lines show the hole definition in W/B grid

One of the technical issues involved in the overset grid approach is the force integration in the overlapped region on model solid surfaces. The general pratice is to go through additional post-processing steps to account for the right areas (See C.J. Woan's report for more information). In our overset grid model for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ configuration, since the N/D grid is directly from the face-matched model, the outer boundary of the N/D grid matches the surface grid lines of the W/B grid on wing lower surface.
Therefore, by excluding the overlapped segment of the W/B grid on wing lower surface from force integration, the correct surface area is accounted for in the overall lift and drag calculations in the overset grid model.

CFL3D Convergence History

(TCA 0/O WBN, Mach \#=0.3, $\operatorname{Re}=8 \times 10^{6}, A O A=10$ degrees)

Overlapped model:

- No grid sequencing
- 3-level multi-grid
- 16 hours on Cray C-90

Face-matched model:

- 2-level grid sequencing
- 2-level multi-grid on fine level
- 18 hours on Cray C-90

The current version of CFL3D/MAGGIE allows multi-grid iterations but does not support grid sequencing for the overlapped grid model. The 1200 fine-level iterations completed for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ overset grid model used 16 CPU hours on Cray C-90. With the face-matched model for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$, the 5000 coarse level iterations and 500 fine level iterations used a total of 18 CPU hours on Cray C-90. Note that the original BaldwinLomax turbulence model with Degani-Schiff option was used in both models for the iterations cited in the above figure.

CFL3D Convergence History

(TCA 0/O WBN, Mach \#=0.3, Re=8×106, AOA=10 degrees)

The convergence history for C_{L} and C_{D} from the two TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ models is shown here. For the last 200 iterations in both cases, the peak-to-valley variations in C_{L} and C_{D} are within 2% of their mean values.

TCA 0/0 WBN CFL3D Solutions:

$$
\text { (Mach \#=0.3, } \left.\mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10 \text { degrees }\right)
$$

Lift and Drag Coefficients

	Face-Matched Model	Overlapped Model	Difference
C_{L}	0.3958	0.3768	-0.0190
C_{D}	0.0627	0.0599	-0.0028

For comparison purposes, the original Baldwin-Lomax turbulence model with Degani-Schiff option was used for both models. The changes in the aerodynamic performance due to Yeh's modification to the turbulence model were +0.0158 in C_{L} and +0.0007 in C_{D} in the face-matched WBN CFD model.

For both the face-matched and the overlapped grid models, the mean values for C_{L} and C_{D} from the last 200 iterations are listed in the above table. Apparently there exist discrepancies between the two CFL3D solutions in terms of the integrated aerodynamic coefficients. Further investigation is necessary to determine the cause for the discrepancies.

TCA 0/0 WBN CFL3D Solutions

This figure shows the pressure distributions on the wing upper surface from the CFL3D solutions using the face-matched and the overlapped models. In general, the face-matched model and overlapped model captured very similar overall flow features for the TCA 0/0 W/B/N configuration.

Similar resemblance in flow features captured by the two models can be seen in the pressure distribution on the wing lower surface shown above. More detailed contour plots for pressure coefficients on wing upper and lower surfaces may be necessary to explain the discrepancies in C_{L} values predicted by the two models.

ASE Technologies, Inc.

Comparison of Face-Matched and Overlapped Grid Interfacing Schemes in TCA WBN Applications

	Face-Matching	Overlapping
Grid Generation	Additional constraints from surfaces of existing grid	Constrained by geometry only
Grid Portability	Less flexible	More flexible
Preprocessing	Less computer resource	More computer resource
Grid Interface	$2-\mathrm{D}$	$3-\mathrm{D}$
Model Size	Smaller	Larger
Grid Sequencing	Yes	No
Multi-Grid	Yes	Yes
Force Integration	Completed in CFL3D	Additional post-processing for overlapped solid surfaces

This table summarizes a general comparison of the face-matched method and the overlapped method based on our recent experience with modeling TCA WBN high lift configurations using CFL3D/RONNIE/MAGGIE. Overall, overset grid approach provides more potential in improving the CFD modeling procedure mainly because it is more flexible in generating the component grid as well as in using the component grid for different planforms. As for the pre-processing step, RONNIE can usually be completed in the debug queue on NAS supercomputers while MAGGIE has to be submitted to the batch queue. Also, since CFL3D/MAGGIE does not support grid sequencing, it will be more expensive and time consuming to debug an overlapped CFD model in the development stage.

Technical Issues with Overlapped Grid

MAGGIE Interpolation off Curved Solid Surfaces

- Grid cells with high aspect ratio exist near solid surfaces in large scale model
- Ghost cells may exist out of bounds for even a slightly curved surface
- Several ghost cells may receive boundary condition data from the same donor cell in the overlapping grid through zeroth-order interpolation

One of the technical issues with the overset grid approach is associated with interpolation from donor cells to ghost cells at the outer boundary of the component grid. In large scale CFD models such as for the TCA W/B/N configurations, grid cells with very high aspect ratios exist near solid surfaces. When the solid surfaces are even slightly curved, the ghost cells can easily go out of bounds as shown in the above figure. In this case, several ghost cells may receive boundary condition data from the same donor cell through zeroth-order interpolation, which will lose the gradient information in the boundary layer profile and thus affect the numerical solution in the component grid as well as the overall solution.

Technical Issues with Overlapped Grid

Collar Grid for Adjoining Solid Surfaces

Method 1

- Two different grid faces for adjoining surfaces
- More flexible

Method 2

- One grid face for adjoining surfaces
- Less flexible

Another technical issue with the overset grid approach is the usage of collar grid for adjoining solid surfaces. In the literature, the collar grid described as method 2 in the above figure is often used and has been validated. However, sometimes it is difficult to fit this type of collar grid in the actual configuration, for example, in the leading edge region of nacelles and diverters adjoining wing lower surface. The collar grid described as method 1 in the above figure offers more flexibility but it needs to be validated.

Technical Challenge in Overlapped Grid for TCA 30/10 WBN Model

(Grid shown are from TCA 30/10 WBN face-matched grid)

Finally, the region between the nacelles/diverters and the deflected TE flaps still poses a technical challenge for overset grid approach due to the close proximity of the deflected TE flaps to the nacelles and diverters.

Summary

- Developed an overlapped grid CFD model for TCA 0/0 Wing/Body/Nacelle high lift configuration.
- Obtained converged CFL3D solution using the overlapped grid for TCA 0/O WBN at Mach No. $=0.3, \mathrm{Re}=8 \times 10^{6}, \mathrm{AOA}=10$ degrees.
- Face-matched and overlapped grids yield similar solutions.
- Discrepancy exists between the integrated aerodynamic coefficients using different grid interfacing schemes. Further investigation is required.
- Evaluation of the alternative grid interfacing schemes reveals:
- Overlapped grid method is more adaptable to configuration changes.
- Less time-consuming grid generation with overlapped grid approach.
- Technical challenges still exist for deflected TE flaps configurations.
- Overlapped grid will be more efficient for TCA WBN configurations.

In summary, our recent work is directed towards the evaluation of overset grid method for the CFD modeling of TCA W/B/N high lift configurations. With the first overset grid model for the TCA $0 / 0 \mathrm{~W} / \mathrm{B} / \mathrm{N}$ configuration, we obtained a converged CFL3D solution which compares well with the CFL3D solution using the face-matched model in terms of overall flow features. Discrepancies exist between the integrated aerodynamic coefficients from the two CFL3D solutions and we will further investigate the reasons for the discrepancies. Based on our extensive experience with face-matched grid interfacing method and the limited experience with the overset grid interfacing method, we conclude that overset grid approach offers more potential in improving the CFD modeling procedure for the TCA W/B/N high lift configurations.

[^0]: Need more parametric data to better calibrate PD process

 Canard Effect on Performance and S\&C Characteristics
 Need a lot more data \& analytical work - PCD III
 AI -
 HEAT 1A ARC 40 'x80' test slid into PCD III
 Full Cost Accounting Impact on PCD III Plans
 Wind tunnels
 NAS time

[^1]: TCA 5\% Model Characteristics

 - TCA-1 Test (LaRC 14'x22' \#449) Data Uncertainty
 - Overview of TCA-1 Data
 - Comparison of $14^{\prime} \times 22^{\prime}$ and NTF Results

[^2]: For the 30/10 part span leading edge flap configuration at the same high lift condition, only a weak vortex is formed just inboard of the leading edge flap. Low pressure regions are also visible along the LE and the hinge lines. This comparison illustrates the suppression of the leading edge vortex through flap deflection.

[^3]: Another flow feature of a highly swept TCA configuration is the formation of an attachment line rather than a stagnation point due to the 3-dimensionality of the flow. The computational solutions show the inboard attachment lines for both flap-up and flap-down cases are both located on the lower surface where the leading edge is rounded. In the outboard region, the attachment line is located close the leading edge where the geometry is typically sharp.

[^4]: The objective of inboard camber study is to understand the flow physics around the inboard leading edge and the effect of geometry variations on the flow. Two inboard camber variations have been analyzed, including the geometries for droop and camber. These configurations are currently being tested at Ames 12-ft tunnel under TCA-3 test. The numerical findings will be verified with test data once they become available.

[^5]: The formation of the apex vortex is also visible for the cambered case. Because the modified region spans a greater chordwise extent, the inboard vortex remains inboard. Moving the leading edge vortex further inboard and delays the leading edge separation
 - into higher aerodynamic performance.

[^6]: For the cambered case, the leading edge suction is further reduced due to a slightly higher downward deflection and a larger LE radius as compared to the drooped case. A smooth upper surface curvature is seen to reduce the pressure gradient and the suction on the hinge line. The LE vortex induced suction is further downstream and its magnitude
 is lower as compared to the baseline and the drooped cases.

[^7]: HIGH LIFT TECHNOLOGY DEVELOPMENT (TASK 33)
 This study falls under the subject areas:

 1) Concept development,
 2) Attached flow flaps, and
 3) Navier-Stokes methods
[^8]: The coupling of CFL3D with FOMOCO has elevated CFL3D to a new level of CFD production applications to complex geometries using overset grid technique.

[^9]: HSCT High Lift Aerodynamics

[^10]: HSCT High Lift Aerodynamics

[^11]: af_revu $2 / 25 / 98$

[^12]: Of the many techniques available for transition detection and boundary-layer
 analysis, four candidate techniques were selected for evaluation. These are the four techniques listed in the chart below.

 Development of IR imaging in cryogenic environments had been largely carried out by Dr. Ehud Gartenberg of Old Dominion University. His results are documented in "Boundary-Layer Transition Detection with Infrared Imaging Emphasizing Cryogenic Applications," circa 1992.

 Development of TSP imaging has been carried out by a number of sources. The specific application of TSP to transition detection had been primarily carried out at Purdue University by a number of investigators under the tutelage of Dr. John Sullivan. Papers on the subject include: "A Preliminary Investigation of the Effect of Acoustics and Leading-Edge Heating on Boundary-Layer Transition," Marvine Hamner and Joseph B. McGuire; and "Temperature Sensitive Fluorescent Paints for Aerodynamics Applications," Bryan Campbell. Dynamic acoustic detection is a technique that has been discussed for some time now but has not yet been extensively developed. "Dynamic Acoustic Detection of Boundary Layer Transition," by Jonathan (J.r) Grohs and Guy Kemmerly discusses this technique.

[^13]: HSCT High Lift Aerodynamics

[^14]: HLD403

[^15]: A brief description of the code will be provided. Many of the validation cases run also served to further the physical understanding the unsteady flow phenomena.

[^16]: Task 33 4.3.2.4/WMF

[^17]: HLD403
 Task 33 4.3.2.4/WMF

[^18]: HLD403
 Task 33 4.3.2.4/WMF

[^19]: HLD403
 Task 33 4.3.2.4/WMF

[^20]: The canonical form for the time dependent stability derivatives allows the use of simple integration schemes for truly time accurate free air trajectory calculations. Compared to performing a trajectory analysis using the aerodynamics provided by interrogating for every time step the time accurate potential flow code, the computing time is reduced from many hours to a few seconds without sacrificing accuracy. At present this method can be used only out of ground effect because the time accurate canonical influence functions for changes in ground height have not yet been developed. However, time accurate analyses of maneuvers in free air may provide valuable insight in what to expect when maneuvering for the landing touch down.

[^21]: The term (CM -CMoo)/CLoo can be interpreted as the amount of neutral point shift due to ground proximity. The predicted

 configuration dependent temporary loss of lift, as has been explained earlier. This temporary reduction in airplane lift, while real, may falsely be interpreted as a lift loss due to dynamic ground effect. To verify this contention, a time accurate analysis of the specific airplane configuration coupled with an autopilot algorithm would be necessary. This was beyond the scope of the present study.

 Also shown in the graph are experimental data obtained for the TU144 wing in the October 1997 NASA Langley $14 \times 22 \mathrm{ft}$
 wind tunnel test. While different in planform from the TCA, the trend of the wind tunnel data is well reproduced by the UNSTEADY3D analysis. When comparing experimental and theoretical data, one must bear in mind that potential flow theory in general does not accurately predict pitching moments for viscous flows. Also, the coarse panel layout used in the present analysis introduces additional inaccuracies.

[^22]: configuration. Finally, the work to date is summarized and the future direction of this study is

[^23]: The model was created as a system of overset grids, as required by the OVERFLOW solver. The domain was decomposed into near-field body fitted grids overset into orthogonal background grids.
 edge and mapping to itself in the wake plane.

[^24]: *Lee, P.H., Lan, C.E., and Muirhead, V.U. "An Experimental Investigation of the Dynamic Ground Effect," NASA-CR-4105, Dec. 1987.

[^25]: The target condition for the analyses with the TCA configuration was a specified lift coefficient of 0.634 . Three angles of attack were run before it was deemed that an acceptably close lift coefficient had been achieved. After the freestream angle of attack was determined the various ground heights were run statically (steady-state solver).

[^26]: the
 The outboard flap has
 interacting with the vortex field over the outboard panel. Also evident is the extended high irregular pressure patterns created by the deflected trailing edge flaps can be sen the
 ground. ground.

[^27]: The wing close-up view shows the vortex flow off the wing. The entire inboard wing leading edge
 does not maintain fully attached flow. The leading edge vortex actually begins inboard of the
 break. The outer half of the outboard wing panel has separated flow, with the circulation in that
 region feeding into the detached leading edge vortex from the main wing panel.

[^28]: Presented in the HL ITD Team Workshop
 at the Biannual Airframe Technical Review
 Los Angeles Airport

[^29]: regions of the base and cannon.

[^30]: Increasing hingeline radius helps the flow negotiate the upper surface curvature at
 the flap break.

[^31]: Neither flap configuration is over-deflected.

[^32]: $\frac{\dot{\sigma}}{6}$
 during the TCA-3
 etween the new

[^33]: $=$

[^34]: HSCT High Lift Aerodyamics

[^35]: The second step in the surface grid generation is to create artificial wake surfaces upstream and downstream of the canard surface.

[^36]: Based on the current numerical results and the geometric differences between the PTC and the ACC canard, it is expected that the influence of the PTC canard on the wing will be less than the currently analyzed result at a similar flow condition.

