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Abstract

This project was conducted in two phases. In Phase 1, four algorithms including
the classical algorithm, the NASA adaptive algorithm, the UTIAS adaptive algorithm,
and the optimal algorithm were investigated. The classical algorithm generated results
with more distortion, more delay and lower magnitude than the results generated by the
other three algorithms. The classical algorithm is the fastest one. This is of little
importance since today’s computers are fast and none of the four algorithms will run
beyond the required time. Therefore, the classical algorithm has no advantage and was
not considered in Phase 2.

The two adaptive algorithms are basically similar. The NASA algorithm is well
tuned with satisfactory performance. The UTIAS adaptive algorithm strives for more
flexibility, but results show that it does not behave better than the NAéA algorithm while
having more undesirable properties. Some changes were made to the adaptive aléorithms
such as reducing the magnitude of undesirable spikes.

The optimal algorithm was found to have the potential to behave much better than
it did in Phase 1. In Phase 2, the optimal algorithm was redesigned. The center of
simulator rotation was redefined. More terms were involved in the optimal algorithm
cost function to yield more flexibility in tuning the algorithm. A new design approach
featuring a Fortran/Matlab/Simulink interactive design was used. Each set of selected
parameters cquld be tested in only 30 seconds while the old design approach could
require as much as 15 minutes. This makes it possible to try hundreds of sets of
parameters. As a result, the optimal algorithm was well tuned in Phase 2 that also

incorporated a revised vestibular sensation model.



The effect of motion was also discussed. The topic covers what type of motion is
desirable and what type is undesirable. A new semicircular canal sensation model was
constructed and justified. The discussion and the new sensation model helped to develop
the optimal algorithm and to evaluate the motion-base driving algorithms.

In Phase 2 comparisons were made betweén the NASA adaptive algorithm and
the redesigned optimal algorithm. Results showéd that the optimal algorithm has some
advantages over the NASA adaptive algorithm and might be the best among the four
algorithms involved in this study. At the same time the NASA adaptive élgorithm ‘was
observed to be a very well developed algorithm.

There were some general problems left unresolved in Phase 1 that required
solutions. The first problem was that when inputs had large magnitudes, all the
algorithms tended to drive the simulator beyond its motion limit. A new nonlinear gain
algorithm was designed in Phase 2, the effect of which was that the simulator would not
reach its motion limit in most input cases, while the gain in low magnitude input cases
remained high. The seconcrii problem was that when the simulator reached its limit, an
algorithm was needed to brake the simulator to a full stop and then reiease the brake at
some proper time to allow the simulator to follow the output of the washout algorithm

again. This braking algorithm was developed in Phase 2.
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1. Introduction

With continuing improvement in hardware and software, flight simulation plays
an expanding role in the training of aircraft crews, design of new aircraft, and
entertainment. This study evaluates a motion-base driving algorithm for a modern six-
post synergistic aircraft simulator. Three types of algorithms, classical, adaptive, and
optimal, are evaluated within the scope of this study. Some implemented cueing
algorithms were first investigated, with some efforts then spent to improve or even re-
design them.

The purpose of a motion simulation is to provide task-critical motion and force
information (i.e., cues) and any required components of the stressor-induced workload
increment that would be present in flight. Since a ground-based flight simulator system
cannot duplicate the motions of an actual aircraft, it becomes necessary to determine the
best way to utilize its limited capabilities to provide the most necessary and beneficial
motion cues. It is also critical for the cueing algorithm to avoid any improper motion
cues since it is commonly known that improper motion cues in some flight conditions
have great negative effects on the simulation. It is reported that some motion systems
experienced being turned off to avoid improper motion cues. A principle component of a
motion simulator design is the determination of the motion information that is relevant to
the task, can impact human performance, and can be provided within technical and
economic constraints. This requires some knowledge regarding the human’s motion
perception that is therefore also an important portion of this study.

The motion system usually works in conjunction with a visual system to

accomplish effective simulation. Although some of the aspects of the visual system are
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taken into consideration in this study, a detailed study of the visual system or the co-
operation of the two systems is beyond the scope of this research.

This project was conducted in two phases. In Phase 1, four motion cueing
algorithms, the classical algorithm, the NASA adaptive algorithm, the UTIAS adéptive
algorithm, and the optimal algorithm were investigated. The results of these algorithms
were compared with modifications made to correct problems observed with both the
NASA adaptive algorithm and the UTIAS adaptive algorithm. In Phase 2, the NASA
adaptive algorithm and a redesigned optimal algorithm were further investigated, with the
optimal algorithm incorporating a revised model of the human vestibular system.
General problems common to all algorithms not resolved in Phase 1 were also addressed
in Phase 2.

The motion cueing algorithms are intended to drive the MCFADDEN 676B-B046
simulator at the NASA Langley Research Center. The simulator is a hydraulic six-post

synergistic full motion simulator.
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2. -Background Information
2.1. Effect of Simulator Motion and Human Motion Perception

The goal of the motion system, along with the visual system, is to provide a
virtual environment to the pilot so that in a simulator the pilot can perform the controls
and maneuvers which are consistent with how they are to be performed in a real aircraft.
The simulation can be employed to help in the design of new aircraft, the training of
pilots, and research. What is critical to understand is whether motion helps the
simulation and what kind of motion is really desirable. Although early studies showed
some controversy on the effect of motion on aircraft simulation, results of further studies
converged to some consistent conclusions.
2.1.1. Effect of Motion Cue

Gundry [1] reported that Douvilier, et al., Matheny, et al., Perry and Naish, and
Tremblay, et al. found that although motion did not always help to reduce pilot
performance error in some simulation tests, there were always differences in the pilot
control activity power spectra. When motion was provided, there was an increase in the
occurrence of high-frequency/low amplitude control movements. These changes served
to make the control actfvity in the moving simulator appear more like that observed
during flight than that recorded in a fixed base simulator. The presence of motion was
found to reduce phase lag, increase the mid-frequency gain and crossover frequency, and
reduce the size of the remnant.

Gundry [1] also reported that Sadoff, et al., and Meiry found that when the
simulator dynamics were stable, the presence of maneuver motion did little to improve

control. But as the vehicle became unstable, maneuver motion became more important;
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its presence allowed the operator to exercise control even in regions where control by
visual cues alone would be impossible.

The visual system alone could provide motion illusions in many simulation tests.
It was found that as long as there was some proper simulator motion at the beginning of
each maneuver, the motion illusions introduced by the visual system could be established
more easily and faster. In some simulation cases the motion illusions could exist all thev
time after its establishment without continuing in\-folvement of simulation motion. This
implies that the simulation motion onset requires high attention.

Improper simulator motion could be very harmful for it might conflict with the
visual cue and then break the motion illusions introduced by the visual system. The
motion cue that conflicts with the visual cue is called a negative motion cue in the
literature. Negative motion cues should always be avoided whenever possible.

Clark, et al. [2] found that a pilot’s vestibular system could process low level,
constant acceleration in the presence of vibratory acceleration as efficiently as it could
without the vibratory noise. In other words, vibratory acceleration had little or no
masking effect on the detection of constant acceleration over a wide range of intensity
levels of constant acceleration. This implies that it is not practical to employ vibrations
to mask some motion sensation such as the rotational sensation when the simulator tilts to
simulate sustained linear acceleration.

2.1.2. Human Motion Perception

As pointed out in the UTIAS report [3], [4], deriving the human’s motion

sensation models is important for the evaluation of motion-base drive algorithms and the

formulation of the optimal control algorithm. The human vestibular system located in the
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head is found to be dominant in human motion sensation. The vestibular system consists
of two important parts. One part is the semicircular canals that sense rotational motion
and the other are the otoliths that sense linear motion. The UTIAS report [3], [4]
provided models for both the semicircular canals and the otoliths.

The semicircular canal sensation model is given as:

‘r,_‘rasz

T (T s+ (trs+D)(T,s+])

(2-1-1)

e lie

where ) is the angular velocity input and ® is the sensed angular velocity. ¢, Ts, and T,
are time constants. The model represents a second order torsion pendulum with an
adaptation term. 7. has a unique value for each rotational degree of freedom: 6.1 sec (roll
input p), 5.3 sec (pitch input q), and 10.2 sec (yaw input r). 7s = 0.1 sec and 7, = 30 sec
for all three degrees of freedom.

The otolith sensation model is given as:

f  K@s+)
£ (Ts+)(Ts+1) (2-1-2)

where f is the input specific force and f is the sensed specific force. 1., Ts, and T, are
time constants and K is also a constant. 1. = 5.33 sec, 15 = 0.6 sec. T.= 13.2 sec, K=0.4.

2.2.Reference Frames
In describing the development of motion cueing algorithms it is convenient to

employ several reference frames. These reference frames are defined below and are

shown in Figure 2.1.
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2.2.1. Frame Frg

The simulator reference frame Frs has its origin at the centroid of the simulator
payload platform, i.e. the centroid of the simulator’s upper bearing attachment points. It
is fixed with respect to the simulator payload platform. X5 points forward and Z
downward with respect to the simulator cockpit. Ys points toward the pilot's right hand
side. The x-y plane is parallel to the floor of the cockpit.

2.2.2. Frame Fru

The aircraft reference frame Fry has its origin at the same relative cockpit location
as the simulator reference frame Frs. Fr has the same orientation for Xa, Ya, and Z,
with respect to the cockpit as the simulator frame Frs.

2.2.3. Frame Frcg

The aircraft center of gravity reference frame Frcg has its origin at the center of
gravity of the aircraft. Frame Frcg has an orientation for Xce, Yo, and Zcg that is
parallel to reference frames Frs and Fry.

2.2.4. Frame Frps

This is a frame attached to the simulator pilot's head with its origin located at a
point midway between his left and right vestibular systems. Frame Frps has an
orientation for Xps, Yps, and Zps which is parallel to Fry and Frg.

2.2.5. Frame Frps

This is a frame attached to the aircraft pilot's head with its origin located at a point
midway between his left and right vestibular systems. Frame Frpy has the same

orientation for Xpa, Ypa, and Zp, as Frps.
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2.2.6. Frame Fr;

The inertial reference frame Fr; is earth-fixed with Z; aligned with the gravity

vector g. Its origin is located at the center of the fixed platfdrm motion base. X points

forward and Y points to the right hand side with respect to the simulator pilot.
2.2.7. Reference Frame Locations
In Figure 2.1 are four vectors which define t_he relative location of the reference
frames. R; defines the location of Frs with respect to Fr;. Rs defines the location of Frpg
“with respect to Frs. Similarly, Ra defines the location of F.rpA with respect to Fra. Rcg

defines the location of Fra with respect to Frcg.

Aircraft

Simulator

/////////////////////fIFn X,

Figure 2.1. Reference Frame Locations. Z
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2.3. Coordinate Transformation
Consider a body having both translational and rotational motion with respect to

Fri. In Figure 2.2, the inertial translational acceleration of a point b on the body located
at a distance §_§ = Sxf + 8,3 + 8212 from the origin of any body reference frame Frg can be
expressed by:
a) =ap +8, +20} x8, +@} x87 +} x (@) x8}) @3-1)
where
ay, is the acceleration of the origin of Frg with respect to Fr;.
©,, is the angular rate of Frp with respect to Fry.
p.q.r are the three components of ©. ,ie., @l =pi+qj+rk.
Assuming point b is fixed with respect to Frg, then §: = §: =0.
8, = 25 +@p X3, + @y X (@ x3}) (2-3-2)
= ap + [-8,(@° +1°)+3,(pg ~1)+8,(r+ ] i
+ [ 8.(pa+i) =8, +1r)+8,(ar ~ )]
+[ 8,(pr=q) +8,(ar+p)-8,0° +a")] k

Fr X

>

XB
FI'B

1 & b

Z Zs

Figure 2.2. Coordinate System for Inertial Acceleration.
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2.3.1. Euler Angles

The orientation between two reference frames Fr; and Frg can be specified by
three Euler angles: B=[¢ 6 yw]" which define a sequence of rotations which will carry
Fryinto Frg. A vector Y expressed in the two frames can be related by the transformation
matrix Lgg (Fr; = Frg ) or Lp; (Frg > Frp):

VB=LpV'and V'=Lp¥®
where
Le=L] =L | (2-3-3)

cosOcosy sindsinOcosy —cosdsiny cos¢sinOcosy +sin¢siny
Lgi= | cosBsiny sindsin®siny +cos¢cosy cos¢sinBsiny.—sin¢cosy
—sin© sin ¢ cos© cosdcosO

The angular velocity of Frg with respect to Fry can be related to the Euler angle

rates E by the following. Let @ ; represent the components of this angular velocity in

frame Frg, then
p=T, "_3:3
where
1 sin¢tanO® cosdtanO
Te=1|0 cos¢ —sin¢ (2-34)
0 sin¢sec® cos¢psecO
and
I —1
Dy = Tg E
where
1 0 —sin0

T,' =(0 cos¢ sin¢cosd

0 -sin¢ cosdcosO

19
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F{gure 2.3. Illustration of a Six Post Synergistic Motion Base Geometry.
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2.4. Actuator Extensions
The geometry of a six degree-of-freedom synergistic motion base is given in

Figure 2.3. The relevant vectors relating the locations of the upper and lower bearings of

the j-th actuator are shown in Figure 2.4:

Figure 2.4. Vectors for the j-th actuator.

In Figure 2.4 Os and O are the centers of the payload platform and fixed platform
respectively. Os and O are respectively the origins for Frs and Fr;.
It can be seen that the relation among those vectors is:

R,+Al=R;=B}+{, @-4-1)
Then the actuator length vector can be found from:

£,=Aj+R,-B (2-4-2)
Expression of £ ; in Fry is desired:

g=A;+R,-B;

2-4-3
~L A5+ BB 42
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Where A? are the coordinates of the upper bearing attachment point of the j-th actuator

in Fr; and E} are the coordinates of the lower bearing attachment point of the j-th actuator

n FI‘[.

The actuator extensions can then be found from

AL (1) = £;(1) - £,(0)

s I I (2-4-4)
= (Lg(t)-Lg(0)A; +(S(1)-S'(0)
Usually L, (0)=1 and S'(0) =0, where 1 is the identity matrix. Therefore -
ALl = ALgAS +AS' 4
Using small angle approximation AL, can be expressed as:
[ 0 0, |
Vs s
ALg =y 0 b (2-4-6)

|05 ¢s O

Employing Equations (2-4-5) and (2-4-6) the actuator extensions can then be calculated.
It is observed that a smaller _A_; will result in smaller actuator extensions for a given
simulator rotation angle. This information might be useful for simulator hardware

design.

2.5. Input Scaling and Limiting

Scaling and limiting are applied to both aircraft translational input signals a% and

rotational input signals g:. Scaling and limiting modify the amplitude of input

uniformly across all frequencies. Limiting is a nonlinear process that clips the signal so
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that it is limited to be less than a preselected magnitude. Scaling and limiting can be used
to reduce the motion response of a flight simulator. Two input scaling and limiting
algorithms were used in the current simulation software. They were suggested and used
in [3], [4], and [5].
2.5.1. Linear Input Scaling in Combination with an Input Limiting

The first algorithm is characterized by a linear input scaling in combination with
an input limiting. Each component of a} and @} in different degrees of freedorﬁ is

scaled and limited separately but in the same manner. The scaling and limiting of aax, the

x component of a% is given as an example, where Sy is the slope from -X to X;:
po! AlSE pe
S, lagl<X,

a, =7 S.X| a, =X, (2-5-1)
-8, X a, <-X

4 OUTPUT

" Figure 2.5.1. Linear Input Scaling.

2.5.2. Nonlinear Input Scaling

The second algorithm is characterized by a nonlinear input scaling. Input limiting

is not used. Each component of a} and @) in different degrees of freedom is scaled

23



separately but in the same manner. The scaling of asx, which is the x component of a},

is used as an example:

S a laxOISXI

x“x0
a =1 S,8,-07S(a,-X,)  a,>X, (2-5-2)
SanO - O'7Sx (axO + X]) axO < —Xl

4 OUTPUT SLOPE=0.3S,

S. X,

_— -8, X,

Figure 2.5.2. Nonlinear Input Scaling.
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3. Structure of Simulation Software

The execution of the software begins with input of a set of simulation commands.
The simulation commands contain selection of input degree of freedom, input type, input
magnitude and duration, duration of simul.ation, and type of cueing algorithm. Each of
the input channels for six degrees of freedom can be selected. Maximum duration of
simulation is set to be 40 seconds. There are six aircraft input options: step, pulse, pulse

doublet, sinusoidal, half sine pulse, and ramp to step. Aircraft translational acceleration

at the point corresponding to the centroid of the simulator payload platform as, and

aircraft angular acceleration @/ are used as input vectors.

From the aircraft inputs the aircraft response and the simulator response are both
calculated. Next the aircraft pilot's sensation and the simulator pilot's sensation are
'calculated and compared. Actuator extensions are generated based on the simulator
responses output by the cueing algorithm.

The aircraft response is assumed to follow the input command without error.

Then the acceleration at the pilot's head a, can be calculated from a¢, and o} . By

subtracting the gravity vector g the specific force on the pilot's head f} can next be

calculated. By passing ©% and f, through the vestibular model the aircraft pilot’s
sensation will be generated.

The simulator response is calculated by passing the aircraft commands through
the selected cueing algorithm and the platform dynamics filter. The cueing algorithms
are the kernels of this software. They are responsible for maximizing the motion cueing
effects while restricting the physical motion to be within the displacement, velocity and

acceleration capacity of the motion s‘ystem hardware. The cueing algorithm outputs the
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desired translational and rotational platform positions S._ and Es‘b which are used to

compose the desired actuator commands £, that will drive the simulator platform.

In a real simulation, the platform dynamics will cause some error between the
platform motion and the motion commands. Passing the motion commands through a

filter that is a model of the platform dynamics can simulate this. Then the filter outputs

BS and S' are assumed to be the real platform positions. Based on _@s and S' both the

simulator translational acceleration ag and angular rate @; may be obtained. The

specific force on the simulator pilot's head f3 is also available. By passing o} and f3
through the vestibular model both the sensed angular rate and sensed specific force are

obtained. The flowchart of the simulation software is shown in Figure 3.1.
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USER CHOOSES TYPE OF FILTER; DURATION OF
SIMULATION; INPUT DOF; INPUT TYPE,
MAGNITUDE AND DURATION OF INPUT.
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Figure 3.1. Overall Structure of the Software
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4. Descriptions of the Four Washout Algorithms

Four algorithms are used in this study. The first is known as the classical
algorithm. This type of algorithm is generally denoted in the literature as a linear cueing
algorithm [3], [4]. The second algbrithm evaluated in this study is the NASA Langley
Research Center developed "Coordinated Adaptive Washout Algorithm" [5]. The next
cueing algorithm reviewed in the study is a variation of the Coordinated Adaptive
Washout Algorithm. This was developed by L. Rei& and M. Nahon at the University of
‘Toronto [3], [4]. The Optimal algorithm, the fourth algoritﬁm employed in this study is
that developed at MIT by Sivan, et al. [6] and implemented as described in [3] and [4].

The basic task of the washout algorithms is to create a specific force vector and an
angular velocity vector at the pilot's location in the simulator approximating those that the
pilot would experience in an actual aircraft. The translational and rotational motion
effects on the simulator pilot are expected to approximate the motion effects on the
aircraft pilot:

fos = fon » Qps ~ 014

The relation between the specific force acting on the simulat_or (aircraft) pilot and the
specific force at the origin of the simulator (aircraft) frame can be found from Equation

(2-3-2):

A __A A
fra =2p, —8

— oA A A A A
=3, +0, xR, +0, x(@, xR,)-¢g

— A - A A A
—£A+QA xEA'*'Q;\ X(Q)_A XEA)
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Usually R, =R, 0 =05, ©4 =o?,. Thus the washout algorithms attempt to

achieve:

fA, o% ora%, w4 are used as washout algorithm inputs .
4.1. Classical Algorithm

This algorithm employs aircraft body axes acceleration a% and angular velocity

©% as the aircraft state vector elements that provide the input to the cueing algorithm. A
linear scaling in combination with a limiting as described in Section 2.5 is applied within
the algorithm to modify the input. The architecture of the classical approach is such that
there are separate filters for the translational degrees of freedom and the rotational
degrees of freedom with a crossover path to provide the steady state or gravity align cues.
This algorithm behaves like open-loop control. The details of this algorithm are
presented below.
4.1.1. Translational Degrees of Freedom

The aircraft acceleration vector a) is first scaled and limited. This scaling can be
either linear or nonlinear. It should be noted at this point that it is not the scaling that
makes the cueing algorithm either linear or nonlinear, but rather it is the formulation of
the washout filters that is responsible for that characteristic. For the classical algorithm a

scaling and limiting scheme as described in Section 2.5.1 is used. After scaling and

limiting, the aircraft specific force f} is computed and then transformed from the
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simulator frame Frg into the inertial frame Fr;, whereupon the inertial frame vector
subtracts the gravity vector, with the difference f) filtered by a high pass filter (transfer

function) of the form

S3

- (s* +2c0 s+’ )s+a,)

(4-1-1)

Where ®, is a second order system undamped natural frequency and oy is a first order
system break frequency. ¢ is a second order damping ratio. The output is then
integrated twice to provide the simulator translational position S'.
4.1.2. Rotational Degrees of Freedom

The rotational rate vector is first scaled and limited by the same scheme for the
translational channel. The resulting vector is transformed to the Euler angular rate. The

Euler angular rate is then filtered through a high-pass filter (transfer function) of the form

SZ

S 4-1-2)

The output is then integrated to provide the desired simulator Euler angular position
corresponding to the aircraft rotational input.
4.1.3. Tilt Coordination

Sustained translational acceleration is sensed by the pilot as a long term change in
the magnitude and direction of the specific force in the absence of rotational motion.
This cannot in general be simulated by translatioi.cl motion due to motion-base travel
limits. It is possible to alter the direction of the steady-state specific force experienced by
the pilot in the simulator by tilting the cab. It has become common practice in flight

simulators to employ cab tilt to simulate the effect of sustained translational inertial
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acceleration. Because this tilt coordination process cannot alter the long term magnitude

of the specific force vector, it is an approximation to the desired effect. [3], [4]

The formulation of the tilt coordination Euler angles B_ starts with al as shown

in Figure 4-1-1. a! is formed by filtering a} through a low pass filter of the form:

0)2

TF= s’ +2co0 s+ @’ (4-1-3)

f* can be considered to be the specific force components that are to be simulated

fhrough simulator cab tilt. In the absence of other cab rotational displacement and
translational motion, f!* in Fr, is shown in Figure 4.1.1 (a). By tilting the simulator cab

_t:: can be rotated with respect to Frs (Figure 4.1.1 (b)). It is found that this change in
the direction of the sensed sustained specific force by the simulator pilot is quite useful in

the simulation of low frequency aircraft acceleration components. When the desired tilt
angle o, =a,, fs=k f; , wherek=g/|f}|, f3 is successfully aligned. It s easy to
see that the desired tilt angles o ; are:

¢g =tan"(-fy /g)~ -1} /¢

6y =tan"'(fx /g)~f /g
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1 & & b S _ 1
- ] o, o, fs=-g Frs

Figure 4.1.1. Simulator Cab Tilt
E or is usually restricted under the threshold of pilot perception for avoiding undesired

cuc.

4.1.4. Summation of Two Rotational Channels

The summation of B and ESR will yield [_35, the angular position of the
simulator. Lg; and Ts can be formed by Equations (2-3-3) and (2-3-4). Then the
simulator translational position S' and the angular position p_s can be transformed from

degree-of-freedom space to actuator space. These are the actuator lengths required to

achieve the desired platform translation.

The block diagram for the classical algorithm is shown in Figure (4-1-2).
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4.2. NASA Coordinated Adaptive Washout Algorithm

This algorithm was developed at the NASA Langley Research Center in 1977.
The intenﬁ of the algorithm is to adapt the severity of the simulator washout filters
according to the current state of the simulator. In this way it should be possible to make
full use of the simulator motion system at all time. This algorithm also employs
a% and @} as the input to the cueing algorithm. A nonlinear scaling as described in
Section 2.5 is applied to modify the input. The general architecture is similar to the
classical algorithm in the aspect that there are separate filtering channels for the
translational degrees of freedom and the rotational degrees of freedom with a crossover '

path to provide the steady state or gravity align cues. The block diagram for this type of
adaptive algorithm is shown in Figure 4-2. The signals f | and QA represent the inertial

frame acceleration components and Euler angles which if applied to the simulator frame

Frs will produce specific force and rotational velocity components in Frs identical to the

corresponding Fr, components in the aircraft. BA is passed through the rotational channel

with an adaptive gain & to produce a simulator angular rate command. The gravity vector

g is added to f] to yield a new specific force f, that will actually be simulated as

simulator motion. f) is passed through a translational channel with an adaptive gain A to

produce a simulator translational acceleration command and passed through a crossover
tilt channel with a fixed gain y to generate a simulator angular rate command. These

commands drive the simulator to the desired translational and angular positions.

§'and §' are employed as feedback as shown in Figure 4-2. Adaptive parameters

A and & are continuously adjusted according to the current state of the simulator and
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aircraft input. The control equations for this cueing algorithm are presented below. The
motion equations are separated and dealt with as four parallel modes: pitch/surge,
roll/sway, yaw, and heave.

4.2.1. Pitch/Surge Mode

Control law:

.

S, =2y fx —d,S; —¢,S; (4-2-1)
85 =7xfx +8x0,

where dy,e, & v, are fixed parameters for the pitch/surge mode; A, and 8, are the

pitch/surge adaptive parameters which are continually adjusted in an attempt to minimize

the instantaneous value of the cost function.

Cost function:

1 . W, . . b C
Jy =§(f,‘( -X) +—5"—(6A —es)2 +—§"—X2 +TX

X? 4-2-2)
where Wx, bx, and Cx are constant weights which penalize the difference in response
between the aircraft and simulator, as well as restraining the translational velocity and
displacement in the simulator.

Steepest descent for the adaptive parameters:

. a5,
A’x = ‘le R + Kil, (;"xo - A‘x)
(4-2-3)

. 0J
8, =-K,; 36}—+ Ky, (840 —5,)

where K, ,K; ,K; , and K; are constants. The first right hand side term of each

equation in (4-2-3) defines that the change of the adaptive parameter (Ax or 84) is toward

a minimum cost function and also defines the rate of change together with the second
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right hand side term. The second right hand side term also restrains the deviation of
either A, or 8, from their original values.

4.2.2. Roll/Sway Mode

The control law, cost function and steepest descent for the adaptive parameters
are in the same form as for the pitch/surge case. Therefore by a substitution of y for x
and ¢ for O the roll/sway motion equations may be obtained. Note that the adaptive
parameters, cost function weights and steepest descent constants are unique for the
roll/sway mode with a subscript y replacing the subscript x.
4.2.3. Yaw Mode

Control law:
Y =mM,W, €, Vs (4-2-4)
%em e, is a fixed parameter while 7, is an adaptive parameter.
Cost function:
1. . b :
Iy =500a =) + ¥ (4-2-5)

where by, is a constant weight in the cost function.
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Steepest descent:

JW

’lvanw

ﬁw =-K + Kiq‘, (leo - ﬂw)

where K, and K, are constants.

4,2.4, Heave Mode

Control law:

SL = lele —szlz —ezS'z

where 1, is a fixed parameter while d, and e, arc adaptive parameters.

Cost function:

1 w b C, .
I =y(G-2P+ 2+ 27

where bz and Cz are constant weights in the cost function.

Steepest descent:

2

f]z =-K + Kiqz(nzo - nz)

“l an

z

where K, and K, are constants.

38

(4-2-6)

(4-2-7)

(4-2-8)

(4-2-9)



‘wiuody moysep 2andepy VSN 7' 2anSiy

'sjuejsuod a1 4 pue ‘o ‘p pue swjewered sandepe are ¢y 010N

A 4

A

S/1

A

S/1

G | Q Twlll SL < AIVOS[¢«
g ‘ MO
&wm wm
Hury
e

A

mu 3
iy Y[ - EstAN v

-l

3

A
<

39



4.3. UTIAS Coordinated Adaptive Algorithm

This algorithm was developed at the University of Toronto in 1985. The general
philosophy and structure of this algorithm are the same as those of the NASA adaptive
algorithm. The UTIAS adaptive algorithm adapts the severity of the simulator washout
filters according to the current state of the simulator. ah and @4 are the input to the
cueing algorithm. A linear scaling in combination with a limiting as described in Section

2.5 is applied to modify the input. The block diagram is shown in Figure 4-3. The
signals f; and QA represent the inertial frame acceleration components and Euler angle

rate which if applied to the simulator frame Frs will produce specific force and rotational

velocity components in Frs identical to the corresponding Fra components in the aircraft.

E\ is passed through the rotational channel with adaptive gain px; to produce a simulator

angular rate command. f] is passed through a translational channel with an adaptive
gain py; to produce a simulator translational acceleration command and passed through a

crossover tilt channel with an adaptive gain px> to generate a simulator angular rate

command. These commands drive the simulator to the desired translational and angular

positions. §' and SI are used as feedback as shown in Figure 4-3. Adaptive parameters
Px1>» P2 and pxs are continuously adjusted according to the current state of the simulator
and aircraft input. The difference between the UTIAS and the NASA adaptive
algorithms is that the UTIAS algorithm made more pa.ameters adjustable and employed
more terms in the cost function in an attempt to improve the effect of th'e adaptive

washout filter. The parameter in the crossover tilt channel is adjustable in the UTIAS

algorithm and remains fixed in the NASA algorithm. The absolute values of f and B
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along with the deviation of the adaptive parameters from their initial values are employed
in the cost function. The control equations for this cueing algorithm are presented below.
The motion equations are separated and dealt with as four parallel modes: pitch/surge,
roll/sway, yaw, and heave.

4.3.1. Pitch/Surge Mode

Control law:
§. = pafly -kaSLk - koS, (4-3-1)

6, = lim (pe fix) + Pc 6,
where k,; and ky are fixed parameters and parameters pxi, Px2, and py; are adaptive
parameters which are continually adjusted in an attempt to minimize the instantaneous
value of the cost function.

Cost function:
=05 [y, (£,-8)7 + Wu(, -6,
+p, Wi S + W S + Wiy 92 + Wys 02) (4-3-2)
+ Wis (Pxi1 - pxlO) + Wy (P - szo) + wa(Pﬂ px30) ]
where vy, px » and Wy; are constant weights. In (4-3-2) the first group of terms in the
cost function penalizes the difference between the aircraft and simulator responses. The
second group restrains the translational velocity and displacement of the simulator. The

third group restrains the deviation of the adaptive parameters from their original values.

4



4.3.2. Roll/Sway Mode

The control law and cost function are in the same form as for the pitch/surge case.
Therefore by substituting y for x and ¢ for 0 the roll/sway equations may be obtained.

43.3. Yaw Mode

Control law:
Vs = P, Va- ky I‘Vsdt - Ky2 s (4-3-3)

where k,, and k,,, are fixed parameters and p,, is an adaptive parameter.
Cost function:

T, = 05[(Wa- W) +p, (Wer s® + Wazyg) + Wes(pw - pvo)’]

(4-34)
where p,, and Wy, are constant penalty weights.
4.3.4. Heave Mode
Control law:
§ = p,fl -k, [Sidt- k,, S} -k, 8] (4-3-5)

where k,; are fixed parameters and p, is an adaptive parameter.
Cost function: |
J, = 05[(fi; - 5 + P, (Wy 87 + W, 87°)° + W, (p, —p)’]
(4-3-6)

where pz and W; are constant penalty weights.
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4.3.5. Steepest Descent for the Adaptive Parameters

For all four channels the steepest descent has the same form:

3], 3

pcj= - ch ap
5

With the subscript ¢ corresponding to x, y, and z, for  the subscript j corresponds to 1,

2, and 3, and G are constants.

43



<]

‘unpuod|y noysem sandepy SYILN “gp 3431y

"SJUBISUOD oIk TN*IXy pue siajoweted sandepe axe £4d ‘2xd ‘ixd :aj0N

Nxv—

§/1

_xv—

A

S/1

A

S/1

|

DNILINIT

|

SL

&

©d »

'y

A

|

A

3

L I
: " ~
I3 M ONITVOS Ve

ONI'TVOS

=]
&0}

ONILIATIT




4.4. MIT/UTIAS Optimal Washout Algorithm
4.4.1. Optimal Control Theory

A linear optimal control theory can be applied to the aircraft simulation problem.
The definitions and solutions of linear optimal control problems have some simple
standard forms, which make it convenient to apply the optimal control theory and find the
solution to a specific optimal control problem.
I. Deterministic Linear Optimal Regulator Problem

The problem can be illustrated by Figure 4.4.1. The problem is to determine
some constant matrix F that relates the control system input u to the system states x and

minimizes the optimal criterion J.

System
Dynamics

| F

Figure 4-4-1. Deterministic Linear Optimal Regulator.

v

System equations:

Xx=Ax+Bu b
y=Cx with x=x(0) at t=0. | (4-4-1)
Criterion: J= ['[x"R, x + u"R, uldt + X"(t) P, x(t,) (4-4-2)

The problem. of determining an input u for which J is minimized is called the

deterministic linear optimal regulator problem.
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II. Stochastic Linear Optimal Regulator and Tracking Problems
(a) Regulator Problems with Disturbances: the Stochastic Regulator Problem

The problem can be illustrated by Figure 4.4.2. Disturbance input y is a filtered
white noise with limited bandwidth. The problem is to determine a constant matrix F that

determines u by relating it to the system states X and the disturbance input y so that the

optimal criterion J is minimized.

g

Noise Filter

v
J Ft! ,1?‘2 are partitions
- - Dm’incs - ;=['F1 F2]
L

Figure 4.4.2. Stochastic Linear Optimal Regulator.
System equations:
x=Ax+Bu+y

= 7 w is white noise. (44-3)
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y= [C 0]%
Optimal criterion:
J=E { [[yRoy+u'R,ulat+ xR } | (4-4-4)
=E { E[XTRIX +u'R,ujdet + X"P,X } (4-4-5)

~ P, O :
where Rj=CTR;C, P, = { 01 0] , Ry, Ry, R, and P, are constant matrices, and E is

defined as the mathematical mean of a statistical variable.

(b) Stochastic tracking problems.

This problem can be illustrated by Figure 4-4-3. X is the state of a reference
system which has a white noise input. X is the state of the control system which strives
for following the reference system. The problem is to determine a constant matrix F
which determines u by relating it to the state of the reference system X, and the state of

the control system x so that the optimal criterion J is minimized.

w Reference Xy
————  System
M L

-
»

F1 F1, F2 are partitions

— of F.
_ Dynamics >
F2 |«

Figure 4.4.3. Stochastic Tracking Problem
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System equations:

w is white noise. (4-4-6)

44-7)
y=y-y =[C -C,]?i

Optimal criterion:

1=e{ [y Ry-y) +uR,u] e |

=E { f [%"R,% +u"R,u] dt } (4-4-8)

where R;=[C -CJ"R;[C -C/}
Equations (4-4-6) and (4-4-8) can be generalized in a common standard form:

] x=Ax+Bu+Hw

System equation: y=Cx (4-4-9)
Optimal criterion: J=E { L' [ETR, X+ gTR,g_]dt +x"Px } (4-4-10)

where R, and R, are constant matrices and E is defined as the mathematical mean of a

statistical variable.
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III. Solution to the Optimal Control Problems
There is a common linear optimal solution for the deterministic regulator

problem, the stochastic regulator problem and the stochastic tracking problem. The

solution has a standard form:

=-Fx (4-4-11)
where
F=R; B"P(®) (4-4-12)
and P(t) is the solution to the algebraic Riccati equation:
-P=R,-PBR,B"P + PA + AP (4-4-13)
with boundary conditions x = x(0) at t = 0 and P(t;) = P;.
When t, approaches infinity, it is proven that P has a steady-state solution which satisfies

the equation:
0=R,-PBR,B"P + PA + AP (4-4-19)

4.4.2. Aircraft Simulation Problem Definition

The problem is to determine a linear filter matrix W(s) which relates the simulator
motion states us to the aircraft motion states ua so that some cost function or criterion
which constrains the pilot’s sensation error ¢ and the simulator motion simultaneously

will be minimized. The structure of the problem is illustrated in Figure 4.4.4.
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Aircraft VStates Up N Aircraft pilot's Sensationy

vestibular system
A 4
W(s) £
Simulator motion Simulator
command States us Platform Simulator pilot's
* dynamics ® vestibular system
Sensationg

Figure 4.4.4. Aircraft Simulation Problem Structure

Since the control strives for tracking the output of the aircraft pilot’s vestibular
system, the problem is most likely to be treated as a tracking problem. The aircraft
motion can be quite variable. Therefore, it is reasonable to use a filtered white noise that
contains sufficient frequency components to represent the aircraft motion states.
Therefore, the problem is a stochastic tracking problem.
4.4.3. MIT/UTIAS Development of Washout Filter Coefficients

The optimal algorithm documented in this section was developed at the
University of Toronto in 1985. The optimal washout filter design problem is formulated
as follows. The actual aircraft and simulator sensation systems Sensation, and
Sensationg are given along with the input signal u, that drives Sensations. A properly
constrained operator W(s) can then be found that generates the simulator input us to
Sensations on the basis of the input to Sensation,, such that the pilot senation error ¢ is as
small as possible. A mathematical model of the vestibular organ is used. The
optimization criterion that is selected is the mean-square difference between the

physiological outputs of the vestibular organs for the pilot in the aircraft and for the pilot
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in tﬁe simulator. The structure for the optimal filter is assumed given and the task is to
find the optimal values for the parameters of the filter.

The optimal algorithm in this section generates the optimized transfer function
W(s) by an off-line program. W(s) is then applied on-line to generate simulator motion
commands.

W(s) relates the aircraft pilot sensation input to the simulator pilot sensation input

that is assumed to be approximately identical to the simulator motion base input

us = W(s) us , where ua consists of aircraft body axes acceleration aj and angular
displacement E: . us will be used as the command to drive the motion base. A linear
scaling in combination with a limiting as described in Section 2.5 is applied to modify the
input.

W(s) is optimized by minimizing the cost function ¢ = f Jdt , where

J=E {ETQQ + P(_‘!gRQs'*‘Z: Rdst) }
€=¥s-¥a

1T

ug =[B; a5 ]
where y, and y, are the pilot's sensations in the aircraft and simulator environments.
For uncoupled system equations, ys! has different meanings for different degrees of

freedom:
. . L2 I 1
For pitch/surge equations: ~ yq! = [ H u dt I ugdt ug ]
: . T _ I 3,2 I b
For roll/sway equations: Ya, =1 Hvsdt jvsdt \78!
For yaw equations: var = H\y sdt2 J'w (dt]

For heave equations: val = ﬁw;dtz !wédt wy ]
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Q and Ry are positive semi-definite matrices, R is a positive definite matrix and p is a

positive scalar. These parameters determine the weight of each term in the cost function.
The optimal washout is performed in the pilot head frames Frps and Frps. It is

claimed in the UTIAS report [3], [4] that this frame selection will avoid sensation cross-

coupling where the sensation cross-coupling may make the calculation of W(s) more

complicated.

The washout filter coefficient W(s) will now be generated. The sensation system

for the pilot in both the aircraft and simulator environments are given as:

X,=A; X, +Bu,

4-4-15
¥,=C x,+Dyu, ¢ )

Sensation , :

Xs = A Xs +B; yg

Sensationg: Zs =C, x,+D, (4-4-16)

Where it has been assumed that the same motion sensing system dynamics can be applied

both in the aircraft and in the simulator and all system matrices are taken to be time-
invariant.

Assume u, consists of filtered white noise:

X, =A, x,+B, w
= (4-4-17)

u, =X

Adjoining all the above systems, the optimal controller equations may be generated:

X=AX+Bug+Hw

(4-4-18)
Y=CX+Duyg
with the cost function ¢ = [ Jat,
where 1=E{Y'"GY +p ulR u} (4-4-19)
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where p and R are positive scalars.
By matrix substitution and manipulation Equations (4-4-18) and (4-4-19) transform to the

standard form of the stochastic linear optimal regulator problem:

x=A'x+Bu +Hw

(4-4-20)
J=E { f; [x"Rjx +u"R,u]dt }
whose solution was given in Section 4.4.1:
E: = —F] X,
where (4-4-21)
F, =R;'B"P
and P is the solution of the matrix Riccati equation
0=R,-PBR;'B'P+A""P+PA’ (4-4-22)
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with definitions of the new notations used in the above equations:
Ri=C"GC;R2=C'GD;R;=R+D'GD;
R; =R, -R,R;'R}, ; u'=u, +R;'Rix ; (4-4-23)

A'=A-BR;'R], ;x=X

Now us and x can be related:
u = ¥-RRix = -R; B'P+R})x= -Fx (4-4-24)

where —-F =-R;' B"P+R},

Partition -F into - [F1 F2 F3], then
u,=—[FIF2F3]]| x{ (4-4-25)

Taking the LaPlace transform on (4.4.1) and (4.4.3) yields:

X, =(sI-A)'Buy,
(4-4-26)
Xs = (SI - A)-lB U

By the substitution of (4-4-26) into the LaPlace transform of (4.4.25), the relation

between us(s) and ua(s) is finally found:

ul(s)= W(s) ,(5)
where _ (4-4-27)
W(s) = [-1+F2 (sI- A + BF2)"'B] [F1 (sI- A)'B + F3]

W(s) is the optimized open-loop transfer function linking us(s) and ua(s), the optimal
algorithm controller implemented in the UTIAS report. The block diagram for the

optimal algorithm is shown in Figure 4.4.5.
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5. Changes Made in Project to Original Algorithms

For evaluation purposes, changes were made to the four algorithms. The NASA
adaptive algorithm and the three washout algorithms implemented by UTIAS (classical,
adaptive, and optimal) are accommodated in one program as described in Section 3.
Some of the subroutines in the NASA software have functions overlapping with the
functions of some subroutines in the UTIAS software. These overlappiﬂg subroutines are
not included in the current evaluation software.

Limits on angular tilt rates were not included in the optimal and the NASA
adaptive algorithm. In the current software these limits are included. The parameters for
scaling translational and rotational inputs were different for each algorithm. For this
project a scale factor of 1.0 is used in all algorithms for convenience of comparison
between the aircraft motion and the simulator response.

When either the UTIAS adaptive or NASA adaptive algorithm was run,
convergence to steady state oscillations was observed under rotational input. The
adaptive algorithms were modified in such a manner as to influence the response of the
simulator corresponding to the aircraft rotational input. The modification does not affect
the response of the simulator to the aircraft translational input. The difference is that the
simulator will perform pure rotation to simulate an aircraft pure rotational input. The
original algorithm generated some translational acceleration under aircraft pure rotational
input and this translational acceleration is occasionally unstable. The rotétional response
of the simulator to rotational input was not affected. This topic is further discussed in

Section 5.1.
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When either the UTIAS adaptive or NASA adaptive algorithm was run, unwanted
spikes on the specific force of the pilot's head occurred whenever the input contains some
sharp change of translational acceleration. These spikes were in the opposite direction to
the correct response direction. The UTIAS report [3]; [4] mentioned these unexpected
spikes but did not explain the correct reason for their occurrence. No effort was made to
eliminate or decrease the spikes. The cause for the spikes was identified to be angular
acceleration when the simulator is tilting for éompensating aircraft translational
acceleration input. This angular acceleration can be so large that it can overpower all
other simulator motions at some points in time and give the pilot a perception in the
opposite direction to which is expected. The angular acceleration is limited in the current
software. The spikes were effectively reduced and the overall response of the simulator
did not change significantly. This topic is further discussed in Section 5.2.

A platform dynamics filter was added. A model of the actual platform dynamics

- mnz
s? + 2¢c00 + @n

is not currently available. A transfer function is used to approximate

2

the platform dynamics, where ¢ = 0.707, @, = 10 = rad/s. This filter represents the
specifications for the real platform design. In the output plots in Appendix A, the
notation 'desired simulator displacement' and 'desired simulator angular position' means
the output of a washout filter. This output has not yet passed through the platform
dynamics filter. The notation 'actual simulator displacement' and 'actual simulator

angular position' means the output that has passed through the platform dynamics filter.
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5.1. Instability in the UTIAS Adaptive Algorithm

In some rotational input cases, the UTIAS adaptive algorithm was unstable. In
the UTIAS report, Volume 2, [4] the instability of the adaptive algorithm was mentioned
but the reason was not discussed. The report suggested restricting the adaptive
parameters to eliminate the instability. But this restriction will make the algorithm lose
some of its adaptive characteristics, i.e., the adaptive algorithm becomes less 'adaptive’,
and this restriction may not eliminate the instability completely in some cases. It is

necessary to find the cause of the instability before trying to eliminate it.
As shown in Figure 4.3, the algorithm tries to duplicate f{ in the simulator
frame. The simulator rotates at an angle Os to simulate an aircraft rotation of 6. It is

always true that |es| < b A| unless both are zero. In the pure rotational input case in

which a, = 0, the aircraft and simulator angular positions are plotted in Figure 5.1 below:

84

Os

Input: doublet angular acceleration.

Time
Figure 5.1. Aircraft and Simulator Angular Position under Pure Rotational Input
It is observed that with the doublet angular acceleration input, both the aircraft

and the simulator angular positions reach steady state after some time. In these steady
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states, g imposes a force g‘“ on the pilot's head in the aircraft and a force gs on the
pilot's head in the simulator, where g* = g°. For example, in the pitch test case,

g*=[-g*sinB, 0 g*cosO, |

) (5-1)
g’= [-g*sinf; O g*cos b 1T

with f}, = g*-g* = [-g*(sinB; -sin6,) 0 g*(cos 65 -cos6,)]".
The UTIAS adaptive algorithm attempted to compensate for £ by passing §'and QST

through both the translational and crossover tilt channels. Now look at the formula for

generating the simulator translational acceleration:

S, =Pu*fyn-ka* S, - ke* S | (5-2)
where k,; and ky; are constant scalars and py; is an adaptive parameter. f_ is not zero in
steady state since [esl < iB AI. Since all washout algorithms should attempt to wash out
S' to zero in steady states, the adaptive algorithms would attempt to bring the simulator
to its neutral position in the steady state. When the simulator reaches its neutral position,
ie, SI=0,itholdsthat § +ke* S! =py * f},. Since f}, is not equal to zero, §' and
$l cannot both be zero. Then the simulator cannot stay in the neutral position, i.e. it must
continue moving. Because the adaptive algorithms are attempting to return the simulator
to its neutral position in the steady state and the simulator cannot stay in its neutral
position, the simulator oscillates around its neutral position. This is the cause of the

instability under rotational input. This analysis is consistent with the results generated by

the original adaptive algorithms before revisions were made.
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The difference between g*and g° under rotational input in fact cannot be

eliminated. It cannot be eliminated by simulator rotation since |98| < IG A | Neither can it

be eliminated by §' because §' cannot be sustained for a long time and f, is a long-

term force. From another point of view, since 0, is simulated by 6s and _g_A and gs are
just g' rotated by B, and B_ respectively, it is reasonable to simulate g" by g°.

The block diagram for the revised algorithm is shown in Figure 5.2. g“ is no

SR

longer followed but g™ is used as direct input. gsx is g in an imaginary reference

frame Frgg. If the simulator only responds to angular input, the simulator frame is Frsg.
In the pure rotational case, Frsg = Frs, then g“ = g_s i
The original algorithms had an active translational and tilt channel under pure

rotational input. Neither QST nor §' was zero and it was often unstable under pure

rotational input or a mixture of transiational and rotational input. The revised algorithm
generates the same results as the results generated by the original adaptive algorithms

under pure translational input. The difference is that the revised algorithm has a null
translational channel under pure rotational input. Both QST and §' are zero. The revised

algorithm is stable under translational, rotational, or a mixture of translational and

rotational inputs.
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52 Spikes in the Outputs of the NASA and UTIAS Adaptive Algorithms

Some significant spikes occurred when either the NASA Adaptive algorithm or
the UTIAS adaptive algorithm was run as shown in Figure 5.4. Whenever there was a
sharp change in the translational acceleration input, a spike would occur. In the UTIAS
report [1], [2], the spikes were said to be due to the attenuation of the second pulse of a
(simulator acceleration). But after careful examination, the real cause of the spikes is
identified to be the rotational acceleration of the simulator. Since the pilot’s head is in a
position some distance away from the centroid of the simulator (the rotational center in
the adaptive algorithms), a simulator rotational acceleration will generate some additional
acceleration at the pilot's head. It is this acceleration that caused the spikes.

The specific force on the pilot’s head can be expressed as:
fo=ap-8 (5-2-1)

where a>; is the acceleration at the pilot's head. aj is then expressed as

aps=a; + Ry + 205 xRy + @5 xRe+ 0f x(@3 x Ry) (5-2:2)
where Rg is the vector from the centroid of the simulator to the pilot's head.
Assuming R, =R, =0, then

aps= 8 + @5 X Ry+ @5 x (05 x Ry) (5-23)
Equation (5-2-3) indicates that both @} and @] contribute to aps. The limits for tilting
@ are set to 0.0524 rad/sec. Usually each component of Rs is less than 2 m for most

simulators. Therefore each component of co_z X (m_z_ X &) has a magnitude less than
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0.05 m/sec’>. This term will not contribute much to aj;. Major attention will be paid
to &g xRy , which is expressed as:

(Pi+dj+ik)x Rei+Rgj+RyK) (5-2-4)
= (RgG-Ryd)i + Rei-Ryp)j + R,p-Ro @k

@s xR

There are two ways to prove that @5 x R, is the cause for those spikes. First, the

magnitude of @ xRy can be estimated by hand calculation. Then the value can be

compared with the magnitude of the spike. The second approach is to set R = (0,0,0),

when the spikes are supposed to be eliminated completely. These two tests were
performed and proved that @} xRy is the real cause of the spikes.
Since the spikes are generated by @S xR, , there are two ways to decrease the

spikes. The first is to reduce @S and the second is to reduce Rs. Rg is determined by the
position of the pilot's head relative to the position of the center of the simulator rotation.
Only the former can be reduced. In the UTIAS report [3], [4] the center of rotatién is
selected to overlap with the centroid of the simulator for minimum extensions of actuator

legs. This selection is quite reasonable and any change will increase the actuator
extensions. Then the only approach left is to reduce @3 .

The generation of EA was investigated as shown in Figure 5.2. The Pitch/Surge

filter was examined as an example. The Roll/Sway filter has similar characteristics. In

the Pitch/Surge filter,

q=6,=px2*fl +px3*0, (5-2-5)
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A rotational acceleration will be generated by:

4 =6, = pa* (£L,G+]) - £5,6))/ dt, : (5-2-6)
where i indicates the current time step and i+1 the next time step. If there is a sudden
change in f} , an extremely large 6, might be generated. Furthermore, the smaller the
step size dt is chosen, the larger 8, will be generated. For example, if the longitudinal
acceleration input is a step or a pulse input, and when t = 0, 95 = 0, then at the first time
step O, = px2 * f; / dt. The UTIAS adaptive algorithm set pz = 0.12 initially and dt =
0.05 sec. Then an input which has an amplitude of 1 m/sec’ would generate 6, = 0.12 *
| 1/0.05 = 2.4 rad/sec’ at the first time step. The UTIAS simulator used R =-0.2 1-0.465

} -1.783 k. Then q = 6, = 2.4 rad/sec’ would generate:

@5 xRy = (Red-Rg )i + Ref-Rep)] + Ryp-Redk
= Rqu’i\ = RSquk R
~1783-241 + 02-24k
~ -431+048k (m/sec?)

@S xRy contains a component with a magnitude of about 4 m/sec? in the x direction at
the pilot's head. This acceleration will overpower all other simulator motion effects and
give the pilot a perception iﬁ the wrong direction at the beginning of the simulation. This
significantly wrong perception will also happen whenever there is a sudden change in
aircraft translational acceleration.

A limit on tilting angular acceleration @ of 0.5 rad/sec’ has been added in the

current software. Spikes were attenuated significantly at the price of a slower simulator

tilt response as shown in Figure 5.5. In the former example, if the limit of B, is set to be

0.2 rad/sec?, then the magnitude of the spikes can then be attenuated by about ten times.
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At the same time, about 10 * dt is needed to get 6, to reach the expected value. Then at
about 0.5 seconds, the simulator response is slower than before the new limit is added.
Since it only influences about 0.5 seconds duration, this is more tolerable than the spikes,
which completely reversed the pilot's perception. On the other hand, simulator
translational motion performs a more important role at the beginning of simulating a

translational acceleration change. This makes the slower response more tolerable.
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6. Phase 1 Results
6.1. Translational Input Case

Both a pulse input of 1 m/sec? for a 10 second duration and a sinusoidal input of 1
m/sec® with a frequency of 3 rad/sec were used as translational inputs. In each case the
input was applied individually to each translational degree of freedom (surge, sway, and
heave). The pulse contains both high frequency and low frequency components. Figure
6.1 shows the specific force at the pilot’s head for the pulse input, and Figure 6.2 shows
the response for the sinusoidal input.

The response onsets, i.e. the start of a response, generated by each algorithm are
significantly different. During the response-sustained period the difference among those
results is not significant. Major attention will be given to the response onsets. For
comparison of the response onsets Figures 6.1 through 6.3 were generated with a shorter
time axis (5 seconds).

As observed in Figure 6.1 the classical algorithm and the UTIAS adaptive
algorithm response onsets have smaller magnitudes and larger phase lag as compared to
the NASA adaptive and optimal algorithm response onsets. If the responses within the
first second are inspected, the classical algorithm generates a response with a magnitude
equal to about one half the magnitude of the aircraft response. The other algorithms
generate responses with higher magnitude. Note that for an easy comparison the input
scaling gain has been set to one for all algorithms. The optimal algorithm had the least
onset lag and the NASA adaptive algorithm had the second least onset lag, with the
classical algorithm and the UTIAS adaptive algorithm having larger lags by about 0.1 to

0.2 seconds. The “sags” following the onsets generated by the classical algorithm and the
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UTIAS adaptive algorithm were significantly larger than the sags generated by the
optimal and the NASA adaptive algorithm. Large sags usually decrease the fidelity of
motion cues.

The response offsets are similar to the response onsets. It should be noted that the
UTIAS adaptive algorithm has some excessive delay. This delay is due to the tilt
adaptive parameter p; being driven to a very small value after the input magnitude is
sustained for several seconds. The NASA adaptivé algorithm has a fixed tilt channel
parameter k3 so that it avoids the extra delay.

These differences on response onsets and offsets might have significant meaning
in the overall fidelity of those algorithms. For further comparison, in Figure 6.2 the
specific force at the simulator pilot's head corresponding to sinusoidal input was
generated. It is observed that the NASA adaptive algorithm and the optimal algorithm
generated responses with high magnitude. The UTIAS adaptive algorithm generated
response with medium magnitude and the classical algorithm generated response with
low magnitude.  The optimal algorithm has the highest fidelity in shape. All other
algorithms generated some extra extremum points. The NASA adaptive and UTIAS
adaptive algorithms generated specific forces in a wrong direction during about the
beginning 0.3 seconds. This problem on specific force in a wrong direction was
discussed in Section 5.1.

On the other hand, the optimal algorithm and NASA adaptive algorithm resulted

in significantly larger actuator extension costs than the classical algorithm and the UTIAS

adaptive algorithm.
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AIC & Simu. Specific Force atPilotHead

AF-X & SF-X (m/s?2)
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Line with no marks -- Aircraft response.

Line with marks -- Simulator response.

*__ Classical ' 0o NASA Adaptive +-- UTIAS Adaptive x-- Optimal

Input: pulse x-acceleration input, magnitude = 1.0 m/sec’, duration = 10 seconds.

Figure 6.1. Specific Force at Pilot's Head Corresponding to Pulse Input.
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Line with no marks -- Aircraft response.
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Input: sinusoidal x-acceleration input, magnitude = 1.0 m/sec?, ® =3 rad/sec.

Figure 6.2. Specific Force at Pilot's Head Corresponding to Sinusoidal Input.
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6.2. Rotational Input Case

A doublet pulse angular acceleration input of 0.05 rad/sec’ for a 10 second
duration was used. The classical angular rate response has some overshoot when it drops.
This causes the simulator angular position response to have a slight unwanted drop
(Appendix B Figure B.1). The amplitude of the angular position generated by the
optimal algorithm slightly exceeds the aircraft angular position (Appendix B Figure B.2).
The UTIAS adaptive algorithm and the NASA adaptive algorithm both have smooth
angular position response. The magnitudes of the simulator angular position responses
are significantly attenuated, especially in the NASA adaptive algorithm (Appendix B
Figures B.3 and B.4). In the UTIAS Report Volume 2 [4], the Bode frequency responses
of the classical algorithm and optimal algorithm were presented. These plots show that
the gain of the classical and optimal response fluctuates around one and some small phase
shift would happen in both the classical algorithm and optimal algorithm. These analyses
are consistent with the graphs in Appendix B. For further comparison some sinusoidal
input cases were studied. From Figure 6.3 it can be seen that in some input cases the gain
of the classical and optimal algoritbms could exceed one. The phase shifts of the
classical algorithm and optimal algorithm are larger than the phase shifts of the UTIAS
adaptive algorithm and NASA adaptive algorithm. The NASA adaptive algorithm has a
response with much smaller magnitude.

The optimal algorithm resulted in the largest jack extension costs. The UTIAS
adaptive algorithm and the NASA adaptive algorithm resulted in jack extension costs

smaller than the classical algorithm and the optimal algorithm.
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Input: Sinusoidal roll acceleration input, magnitude = 0.05 rad/sec?, © =3 rad/sec.

Figure 6.3. Aircraft and Simulator Angular Rate Response.
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6.3. Conclusions and Recommendations

At the current stage, in translational input cases the optimal élgorithm and the
NASA adaptive algorithm perform better than the classical algorithm and the UTIAS
adaptive algorithm. In rotational input cases, the UTIAS adaptive and the NASA
~ adaptive algorithm perform better than the classical and the optimal algorithm.

The classical algorithm is a type of linear algorithm distinguished by the fact that
the washout output is proportional to the input. This is an undesirable attribute because
the duration of the onset cue is then limited by the maximum amplitude input case.
Therefore in lower amplitude case the onset cue cannot be sustained any longer even
though the hardware motion resource is quite available. The classical algorithm is
therefore not recommended.

The NASA adaptive algorithm has been improved by eliminating unwanted
spikes and excessive oscillations. The NASA adaptive algorithm currently performs
well.

The UTIAS adaptive algorithm is expected to perform better than it does
currently. It has also been improved by eliminating unwanted spikes and excessive
oscillations. Some more improvements are needed such as increasing the slow tilt
response by fixing or restricting the tilt adaptive parameters, thus changing some
parameters to make the translational response be sustained for a longer time. With these
further improvements implemented, the UTIAS adaptive algorithm might be attractive.

For the optimal algorithm, if selecting another washout frame can decrease the

actuator extensions, this algorithm will be very attractive. Currently the optimal
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algorithm performs washout in the pilot head frame. As discussed in the UTIAS report,
this frame selection results in some extra jack extension costs when the simulator rotates.
A washout frame whose origin lies on the simulator centroid is desired. But the
desired frame will cause some cross coupling in the pilot specific force sensation. This
cross coupling might make the generation of the optimal transfer functions much more
complicated or even not practically feasible. Further study on the optimal washout in the

simulator centroid frame is recommended.
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7. Phase 2 Optimal Algorithm Redevelopment

In Phase 2, further comparisons are made between the NASA adaptive algorithm
and a redeveloped optimal algorithm. The classical algorithm will not be evaluated due
to the undesirable results obtained in Phase 1. Since the adaptive algorithms are
fundamentally similar with the NASA adaptive algorithm having more desirable features
than the UTIAS algorithm, the UTIAS adaptive algorithm will not be evaluated in Phase
2.

The optimal algorithm will be revised with the center of rotation redefined and
utilizing a new cost function with additional terms. In addition, a new design approach
that integrates FORTRAN/MATLAB/SIMULINK is developed in which a set of selected
parameters can be tested in 30 seconds as compared to 15 minutes with a conventional
approach. The revised optimal algorithm also includes a new vestibular model.

Two general problems that were unresolved in Phase 1 are addressed in Phase 2.
The first problem was that for inputs with large magnitudes all the algorithms tended to
drive the simulator beyond its motion limit. A nonlinear gain algorithm was developed
so that the simulator would not reach its motion limit for most input cases. The second
problem was that when the simulator reached its limit an algorithm was needed to brake
the simulator to a full stop and release the brake at a proper time to allow the simulator to
again follow the washout algorithm output. For this problem a braking algorithm was

developed in Phase 2.
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7.1. New Vestibular Models

The semicircular canals have been well studied by many rmeﬁchem. A model
that was more consistent with the results of recent research could be found through a
review of the reports written by those researchers. The construction and justification of
this proposed model is discussed in detail in Appendix A. The revised model for

practical usage (neglecting the short time constant) can be expressed as:

T, T.5(1+7,5)
I+t s)(1+7,5)

(7-1-1)

g _
]
where @ is the input angular acceleration and @ is the sensed angular velocity. 1,, T,
and 1, are time constants. T, = 30 sec, 1. = 0.06 sec, and T, =15.7 sec.

The UTIAS report [3] suggested a simplified otolith sensation model that ignored

the short time constant term (tgs +1) in Equation (2-1-2) for practical usage:

ﬁ _K(ts+])
£ (1,5+1) -1-2)

where f is the input specific force and f is the sensed specific force.
Human sensation models (7-1-1) and (7-1-2) are used in the revised development

of the optimal algorithm.
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7.2. Redefinition of Center of Rotation

In Phase 1, the optimal algorithm resulted in significantly larger actuator
extensions than the other algorithms. It was found that this problem arose from the
different selection of the center of rotation. If the center of rotation is selected at the
centroid of the simulator, there are several cross-couplings:-
pitch = surge, pitch - heave, roll > sway, roll > heave, yaw -> sway, yaw => surge.

This can be shown in Figure 7.1:

V(es.Rs)
P, (Pilot’s head)

o/ Rs

C, (Centroid of the simulator)
Figure 7.1. Phase 1 Optimal Algorithm Center of Rotation
An angular velocity @ § with respect to the centroid of the simulator always generates a
translational motion at the pilot’s head.

If the pilot's head is selected as the center of rotation and the vestibular system is
considered as the only motion sensation organ of the pilot, all the cross-couplings will
disappear. This is the reason for which the UTIAS report [3] chose the pilot's head as the
center of simulator rotation. Unfortunately, this selection resulted in excessively large
actuator extensions in some input cases. This can be shown by an example in which the
simulator has both translational and rotational displacement.. For example, in the
pitch/surge mode the same tilt angle 6 and the same linear displacement Sy are generated
in two different systems, one of which has the pilot’s head and the other has the centroid

of the simulator as the center of rotation. The motion of the simulator is shown in Figure
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7.2. Figure 7.2 shows clearly that the different selections of center of rotation will result
in different amounts of actuator extensions.

The adaptive algorithms selected the centroid of the simulator as the center of
rotation. However, cross couplings were ignored in the algorithm development. Test
results showed that some undesirable spikes were generated due to the cross couplings.
Some effort was spent on reducing or eliminating the magnitudes of the spikes in Phase
1. The spikes were reduced but not eliminated. The spikes may generate some negative
motion cue to the pilot’s sensation or at least cause some delay on the pilot’s sensation ;>n
the positive motion cue. In Phase 2, a new optimal algorithm that chooses the centroid of
the simulator as the center of rotation was developed. Cross couplings were handled

explicitly and the spikes were eliminated in the new optimal algorithm.
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Centroid of simulator is the center of rotation Pilot’s head is the center of rotation

P

Original C C
simulator|
position

With
angular
displace-
ment

With
both
angular
and
linear
displace-

ment

E, : Actuator Extension relative to

Compare
the original position

actuator
displace-
ments in
two
different
systems

E, and E; have the centroid of the
simulator as the center of rotation

E: and E, have the pilot’s head as the
center of rotation

Figure 7.2. Actuator Extensions for Different Centers of Rotation

81



7.3. Revised Development of Optimal Algorithm
7.3.1. Construction of the System Equations and Cost Function

The optimal filters for the four modes, pitch/surge, roll/sway, heave, and yaw are
designed separately in the optimal algorithm development. This design technique was
also employed in the development of the other three motion-base drive algorithms.

In Phase 2 only the pitch/surge mode is redefined. The roll/sway mode filter
design was based on the pitch/surge redevelopmeﬁt. The heave and yaw modes are
.unchanged from Phase 1. The revised development for the pitch/surge mode is as
follows:

(a) Rotational Motion Sensation

Input:

The semicircular canal sensation model given in Equation (7-1-1) is then used to obtain

the rotational sensation q :

. 7,5(1+1,5) Ts*+Ts
1= A+t s+t s)ul T S 4 Ts+T,
' 1 ] T,+71 o (7-3-2)
h T,=—, T="-""2, T,= T, T,=1.T
where 1, Tr, 1T, 2= 0l L=T
Now expressing the above in state space notation yields the following equations:
Define x,, =[x, x,]", then
X~ =Auc)—(~ +Bucg
{ - i (7-3-3)
q = Cmil—'z + Dncg
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where
-T, 1 T,-TT, 0
A =[- T: 0] » B =[ —I'T‘,IT,2 0}’
C.=[t 9, p.=[1, 9|

(b) Translational Motion Sensation

The otolith sensation model given in Equation (2-1-2) can be rewritten in terms of the

break frequencies Ao and Bo:
f Gy(s+Ay)
= = = 7-3-4
£~ +By) (74
where f is the input specific force and f is the sensed specific force. Go = 5.86,
Ag = 13.2 sec, Bo = 5.33 sec .
Input :
g = =
a, u,
The center of simulator rotation is set at the centroid of the simulator. Then
f=a +g0-Ry0 (7-3-5)

where Rg, is the z-component of the vector from the centroid of the simulator to the

pilot’s head. Equation (7-3-5) can also be expressed in the LaPlace domain:

£(6)= u,(5) + (@ 57~ Re i (5) (736
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Specific force sensation:

N A,
f = G e
s+B
s+A
(Uz+(g s2 -Rg)u,)
s+A :
= ——R 1 23-
Go g5 I8 ~Re) 1 a3
= GO[— RSZS -1{351A0$22+g,s+gAO S+A0] u
7 s’ +Bgs s+B,
Ry (Bo_Ao)sz'*'gs"”ng A,-B,
= z + G,[-R
ol 53+B082 s+B, Ju + Go[ sz 1]u
State-space model:
Define x, ( =[x, x, x5 X,]7, then
X3 = AowXss + Boul (7-3-8)
f=C,Xx,45+D,u :
where
~-B, 01 0 R.(B,-A,) 0
0 00 O gA, 0
Aw=l o 10 o[ Bu=Go g o |
0 0 0 -B, 0 A,-B,

C.=[1001], D =G, [-r, 1].

(c) Combination of Both Rotational and Linear Motion Sensation

{31..5 =AyXx, s +Byu (7-3-9)

2] =Cyx,6+Dyu
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where

It is assumed that the same human motion sensation model can be applied to both

the pilot in the aircraft and the pilot in the simulator. Define the input to the pilot in the

5 N
aircraft as u, = A}=|ﬁ A’} and the input to the pilot in the simulator as
_an uA2

8 ug |
u, =[ s ] =[ '|. To reduce the order of the system equation, define x_ = x; - x,, ,

and then define the pilot’s sensation error as € = ils - im , then

X, = %, ~%, = AyX;+Byug—(Ayx, +Byu,) (7-3-10)
= vz(_e"‘Bvl_ls—BVgA
e=Cyx, +Dyu;-Dyu, (=10

(d) It is necessary for the control algorithm to explicitly access some motion states, such
as the linear velocity and displacement of the simulator, which are desired to appear in
the cost function. For this purpose some additional terms were grouped and included in
the system equations.

—m axdt3— [ x, |
H a dt’ Xg

xo=| o |=|% (3-12)
X0
0 RSTH
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X, =A,;x,+B,u

where
[0 1 0 0 0] [0 0]
0 01 00 0 0
A,=|0 0 0 0 0/, B,=(0 1
0 00 0 1 00
0 0 0 0 0 1 0]

(¢) Input u consists of filtered white noise. This can be expressed by the state-space
equation

X, =A, x,+B, w
(7-3-13)
E : xn ’

where

A -10 0 B 10
"1 0 =101 "* |10

(f) Assemble system equations.
The desired system equation can be obtained:

Define

14
]
tal

a
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then

x=Ax+Bu, +Hn

€ 3-
y=|Z‘}=Cx+Dus (7-3-19)
Y= x,
where
(A, 0 -B, B, 0
A= 0 A, o0 |, B=|B,|, H=| 0 |,
0 0 A, 0 B_
'C, 0 -D, D,
C—_o I 0 J D“[o
with the cost function
I= E{f‘(gTQg +x;R, X, + ugRug )dt} (7-3-15)

The cost function implies that three variables are to be constrained: e, x4, and us.
€ is the sensation error. x4, which is a group of terms, along with us define the rotational
and linear motion of the simulator. The cost function constrains both the pilot sensation
error and the simulator motion.
7.3.2. Transformation to Standard Form

The system equations and cost function can be transformed to the standard form
by the following equations:

System equation: x=A'x+Bu'+Hn (7-3-16)

. t1 T T
Cost function: 1= E[ [x"Rix+uR,uldt; (B=0) (7-3-17)
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where

G={(§ Iij’ R,=C'GC,R,=C"GD,R,=R+D'GD,
A'=A-BR;R},, v =u +R/R}x, R;=R,-R,R;'R],,
7.3.3. Solution of the Optimal Control Problem
The standard form solution to the optimal control problems can be applied since
both the system equations and the cost function are in standard form. Therefore,
u' =-R;B"P(t) x (7-3-18)
where P is the solution of the algebraic Riccati equation:

0=R,-PBR; B'P+A'"P +PA’ (7-3-19)

From (7-3-17) and the definition of u’, it is obvious that

u, = -|[R;'B"P + RY,)x (7-3-20)
Define

F = R;'(B"P+R},) (7-3-21)
Then

u, =-Fx | (7-3-22)

Partition F corresponding to the partitionof x =| x, |:

X
X, X
u, = _[Fl F, Kjx, |= —[Fl F, {—e ] -Fu, (7-3-23)
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Eliminate X, from the system equations:

X, A, 0 -B, " B,

== 7-3-24

[Ka} {0 A, 0 | +[ B ( )
X

After taking the Laplace transform of (7-3-23) and (7-3-24) and making some

substitutions, the foilowing equations are obtained:
u,(s) = W(s)- u,(s) (7-3-25)

where

3

- si-A, +B.F B.F B, A+F
W(S)=[Fl F2 v v&1 v*2 ' V(I 3) _
B,F, sI-A, +B,F, B,F,

Note that the filter matrix W(s) is not identical to the filter matrix W(s) described

in Section 4 and implemented in the UTIAS report. The revised design of W(s) was
based on control inputs of angular acceleration and linear acceleration, while the design
of W(s) was based on control inputs of angular displacement and linear acceleration. A
revised on-line Fortran development was not implemented; the pitch/surge and roll/sway
filters W(s) developed in Section 4 were simply replaced with the revised filters W(s) in
the Phase 1 on-line development.
7.3.4. Solution of the Washout Filter Coefficient

W(s) is solved by Matlab functions and Fortran programs. All the system
matrices were constructed in Matlab functions. First, the weighing matrices Q, R, and Rq4
in the cost function were selected. These matrices were adjusted several times in a trial
and error procedure. Then the system matrices Ay, By, Cv, Dv, Ry, Rz, Rpz, A’, and R|

were constructed in a proper order. The algebraic Riccati equation was defined in the
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Matlab function. The definition was transported to a Fortran environment in which the
algebraic Riccati equation would be solved by Fortran programs. The solution of the
algebraic Riccati equation was transported back to the Matlab environment and Fy, Fs,

and F; could then be defined.

After all matrices in (7-3-25) were defined, the solution of W(s) still required

symbolic calculation since there was the Laplace variable s. A series of fairly

complicated Fortran programs were presented in the UTIAS report to solve W(s). The
solution required manual cancellation of common poles and zeros. It was found that the
problem could be solved more efficiently by Matlab after a careful observation of

Equation (7-3-25). Recall that a linear control system can be expressed in state-space

form:
{3 =Ax+Bu (7-327)
y=Cx+Du
where A, B, C, D are system matrices.
Equation (7-3-27) determines a transfer function between y and u:
y=[C6I-A)'B+D]u (7-3-28)

By an observation of the similarity between (7-3-26) and (7-3-28), it was found that the

state-space model that had ua as the input and us as the output could be obtained directly:

{ X =Ax+Bu, (7-3-29)

u, =Cx+Du,
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where

A:[AV—BVF —BvFjl Bz[Bv(I+F3)

, C=[F, F], D=-F
-B,F A,-BSF B,F, } [F, F] *

This state-space model could be converted to the transfer function model by the Matlab
function ss2tf easily. A Matlab function was also written to cancel common poles and

zeros and yield some transfer functions in reduced order. A simulation setup that reads in
the transfer functions automatically was constructed in Simulink. The effects of W(s)
are visualized with the simulation. If W(s) is not satisfactory, the procedure of the

design of W(s) is repeated by selecting some new cost function matrices Q, R, and Ry,

until a satisfactory result can be finally approached. The procedure for the solution of

W(s) is illustrated in Figure 7.3.
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Adjust weighting matrices R, Rd, Q.
(Matlab function: ric.m)

Define parameters: g, An,
~ vestibular parameters.
(Matlab function: ric.m)

Construct system matrices:
As, Bs, Cs, Ds.
Other matrices: R1, R2, R12, R1', As'
(Matlab function: ric.m)

Output R1', BRB', As' to
riceq.dat. End of ric.m

Read data from ricc.dat. Solve the algebraic
Riccati equation. P is the output.
(Fortran routine: optproj.exe)

Output P to psol. m .
End of optproj.exe

Read data from psol.m. Construct F. Calculate

state-space expression of the optimal filter.

(Matlab function: wsol.m) Simulation result
. not satisfactory

Transform to zeros and poles.
Cancel common factors.
Transform to transfer function form
with reduced order.
(Matlab function: wsol.m)

Perform simulation in

| Simulink to verify the filters
are successfully designed.
(Simulation Setup: sopt.m)

Simulation resuit
satisfactory
Output optimal filters
to tfns.dat

Figure 7.3. W(s) Solution Procedure.
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7.4. Nonlinear Gain Algorithm

It is desirable to maximize the magnitude of the motion cue while remaining
within the operational limits of the motion system. Although it is very difficult to restrain
the response within hardware limits all the time, it was found feasible to restrain the
response successfully during most of the simulation time by implementing a nonlinear
gain in the simulator motion-base driving software.

When the magnitude of input to the simulator motion system is small, the gain is
desired to be relatively high, otherwise the output may be below the pilot’s perception
threshold when it should be perceptible. When the magnitude of input is high, the gain is
desired to be relatively low otherwise the simulator may go beyond the hardware limits.
Define the input as x and the output as y. Define Xmax as the expected maximum input
and Ymax as the maximum output, and So and S, as the slopes at x = 0 and X = Xmax
respectively. Four desired characteristics for the nonlinear gain can be expressed as:

1 x=0 =>y=0;

2) x=Xp0, = V= Yo >
B3) vl ,=S;

4y S,;

A third order polynomial can be employed to provide functions with all the desired

characteristics. This polynomial will be of the form:

_ 3 2
Y =CX +CX° +¢,X+¢,
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where
€3 = X " (3Y e = 280% e = S Xt
C; = x;ix “(SoXmzx = 2Y e + 51X )

One example of this nonlinear gain is shown in Figl_xre 7.4, with parameters set as Xmax =

10, Ymax =6, 5= 1.0, 5; = 0.1.

Nonlinear Gain

45 1

351

y25 4
24
151
11
05 ¢

Figure 7.4. Nonlinear Gain.

The nonlinear gain developed by NASA for its motion-base drive software results
in a high probability of reaching system limits for accelerations higher than 3 m/sec?,
which is common in aircraft simulation. When the new nonlinear gain as shown in

Figure 7.5 was implemented in the software, in most input cases the simulator motion

was within the hardware limit.
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7.5. Actuator Extension Limiting

There is a possibility that the output of the washout algorithm will drive the
simulator beyond its hardware limit. It is obvious that any hardware shut down due to the
simulator’s excessive excursion should be avoided. This raises the requirement that the
simulation software should be able to handle the situation that the simulator may need to
be arrested before encountering the system limit. This necessary software subroutine is
called the braking algorithm. When necessary, the braking algorithm takes over the
control of the simulator from the washout algorithm. It is also desirable that when the
washout algorithm would begin to drive the simulator toward smaller excursions, the
braking algorithm returns control to the washout algorithm. In other words, the braking
algorithm should release the system to resume regular simulation at the proper time. The
logic of the braking algorithm is shown in Figure 7.6.

The algorithm makes a series of decisions to determine when to brake the

simulator and while braked to determine when to release the brake. The first decision is

based on an evaluation of the expression (2-c,-a,-s—v’) for each actuator at each
simulation cycle, where v is the velocity of the actuator, s is the available actuator stroke,
ay is the acceleration/deceleration by which the braking algorithm will stop the actuator,
and ¢ is a coefficient less than or equal to 1 that is described below.

a, should not be larger than the maximum actuator acceleration which is a
hardware parameter. The simulation software sets a software limit position that is before
the simulator hardware limit position. If the simulation cycling rate is infinitely high,

when co = 1, the actuator will be stopped exactly at the software limit position; when
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Co < 1, the actuator will be stopped before the software limit position. Since the real
system always has a finite cycling rate, it is possible that the actuator may go a little
beyond the software limit position even though a braking algorithm is implemented. For

this reason, the software limit position should be set slightly before the hardware limit

position. When one actuator reaches the braking region defined by (2-¢,-a,-s~v?> <0)
at time tp, it will be decelerated by a,. At the same time, all other ‘actuators will be
decelerated proportionally to their respective velocities at time to.

The second decision is based on a comparison between the actual simulator states
and the washout algorithm output. The simulator states refer to the simulator’s linear and
angular positions. When the simulator has been completely stopped by the braking
algorithm, the comparison begins. When the washout algorithm output states are smaller
than the corresponding actual simulator states, the simulator will begin to follow the
washout algorithm output again.

When the braking algorithm releases the brake, the washout algorithm output may
have large velocities while the simulator has small velocities at that instance. To avoid
the regular simulation being resumed with any excessively large simulator acceleration,
an algorithm which allows the simulator to follow the washout algorithm output
gradually was designed. The algorithm expresses the linear and angular position

command to the simulator as:
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Xeom = 8(t) Xpo + (1~ (1) Kwas =~ Xinar) - (7-5-1)
where

X, is the commanded position which drives the simulator,
X, is the current actual position of the simulator;
Xwas 18 the current output of the washout algorithm.

a(t) is a function of time. It increases from 0 ton /2 gradually.
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Figure 7.6. Braking Algorithm in the Actuator Driving Subroutine.
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8. Phase 2 Results
8.1. Pitch/Surge Mode and Roll/Sway Mode

The pitch/surge mode and the roll/sway mode have similar characteristics with
both employing the simulator tilt to provide sustained specific force cue, and both having
the cross-coupling from the simulator tilt to the pilot’s head translational motion. Both
half cycle sinusoidal inputs and ramp to step inputs were employed to test the pitch/surge
and roll/sway channel of the NASA adaptive washout algorithm and the optimal washout
algorithm.

When a 0.1 Hz half cycle sinusoidal translational acceleration was employed as
the input, the output of the NASA adaptive algorithm and the output of the optimal
algorithm were similar. The specific forces at the simulator pilot’s head generated by the
two algorithms had similar magnitudes and shapes. The actuator extensions resulted
from the two algorithms were also similar. One difference with the NASA adaptive
algorithm was that the specific force generated went to a wrong direction at the beginning
of the input and had an extra hump besides the sinusoidal hump corresponding to the half
cycle sinusoidal hump of the input. The specific force output of the optimal algorithm
did not have these two deviations from the shape of the input. The outputs are shown in
Appendix C, Figures C.1, C.2, and C.3.

When a 0.5 Hz half cycle sinusoidal translational acceleration was used as input,
the shape of the specific force at the simulator pilot’s head generated by the NASA
adaptive algorithm had some significant distortion. The specific force in the wrong
direction at the beginning of the input had a magnitude which was about half of the

magnitude of the onset of the specific force cue and a duration which was about one half
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of the time by which the input reached its maximum. The specific force onset had some
more wiggles than the input and the washout of the specific force had a large overshoot.
Stimulated by the same input, the optimal algorithm generated a specific force at the
simulator pilot’s head with significantly smaller shape distortion. There was no negative
cue at the beginning of the input. The overall shape of the output was similar to the
input, with a small washout overshoot. The outputs are shown in Appendix C, Figures
C.10,C.11, and C.12.

When a ramp to step acceleration with a ramp slope of 3 m/sec’ was employed as
the input, the specific forces at the simulator pilot’s head generated by the two algorithms
had similar magnitudes and shapes. The actuator extensions resulting from the two
algorithms were also similar. The speciﬁé force generated by the NASA adaptive
algorithm went in the wrong direction at the beginning of the input. The specific force
generated by the optimal algorithm reached its maximum earlier as compared to the
adaptive algorithm and then slowly decreased. The outputs are shown in Appendix C,
Figures C 4, C.5, and C.6.

When a ramp to step acceleration with a ramp slope of 5 m/sec’ was employed as
the input, the shape of the specific force at the pilot’s head generated by the NASA
adaptive algorithm had some significant distortion. The specific force in the wrong
direction at the beginning of the input had a magnitude about one half of the magnitude
of the onset of the specific force cue with its duration almost equal to the input ramp
duration. The onset of the specific force was followed by a sag. Stimulated by the same
input, the optimal algorithm generated specific force at the pilot’s head with significantly

smaller shape distortion. There was no negative cue at the beginning of the input. The
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ove@l shape of the output was similar to the input. The outputs are shown in Appendix
C, Figures C.7, C.8, :and C9.
8.2. Heave Mode

A pulse acceleration with a magnitude of 3 m/sec’ and duration of 5 seconds was
employed as the input. The onset of the specific force at the simulator pilot’s head
generated by the NASA adaptive algorithm was similar to the one generated by the
optimal algorithm. When the specific force at the aircraft pilot’s head dec_reased, the
optimal algorithm generated a corresponding drop of the specific force at the simulator
pilot’s head, while the NASA adaptive algorithm did not generate an obvious drop of the
corresponding output. The drop of the specific force at the simulator pilot’s head
generated by the optimal algorithm was followed by a washout with a large overshoot.
The outputs are shown in Appendix C, Figures C.13, C.14, and C.15. |
8.3. Pitch Mode and Roll Mode

A doublet angular acceleration with a magnitude of 0.1 rad/sec? and a duration of
5 seconds was employed as the input to the pitch channel and roll channel. For the pitch
test runs the shape of the specific force generated by the NASA adaptive algorithm was
nearly the same as the shape of the input, while the specific force generated by the
optimal algorithm slowly decreased. For the roll test run the specific force generated by
the NASA adaptive algorithm was nearly the same as the shape of the input, while the
specific force generated by the optimal algorithm required more time to settle during
washout. Some distortion with the simulator angular velocity relative to the input was
also observed with the optimal algorithm. The outputs are shown in Appendix C, Figures

C.16,C.17,C.18,C.19, C.20, and C.21.
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8.4. Yaw Mode

A pulse angular acceleration with a magnitude of 0.05 rad/sec’ and duration of 5
seconds was employed as the input. Both the outputs generated by the NASA adaptive
algorithm and the optimal algorithm have the characteristic that the simulator yaw rate
and yaw angle were washed out toward zero when the aircraft yaw rate was rising up to a
constant value and the aircraft yaw angle was always increasing. The simulator yaw rate
generated by the NASA adaptive algorithm dropped much earlier as compared to the
aircraft yaw rate. The optimal algorithm generated a yaw rate following the aircraft yaw
rate for a longer time but also resulted in larger actuator extensions as compared to the
NASA adaptive algorithm. The washout of the simulator yaw rate generated by the
optimal algorithm had a larger overshoot than the one generated by the NASA adaptive
-algorithm. The NASA adaptive algorithm produced a distorted specific force curve with
an onset greater than the aircraft which decreased too rapidly, while the optimal
algorithm was closer in shape to the aircraft but with a large amount of overshoot in
washout. The outputs are shown in Appendix C, Figures C.22, C.23, and C.24. |
8.5. Braking Algorithm

A y-acceleration pulse with a magnitude of 10 m/sec’ and duration of 10 seconds
was employed as the input. The optimal algorithm was employed as the washout
algorithm. The simulator reached its motion limit once and was successfully braked.
Some large specific force spikes were generated when the simulator was being braked.
The brake was then released when the washout algorithm output was driving the

simulator toward smaller excursions. The outputs are shown in Figure C.25.
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9. Conclusions

When the pitch/surge or roll/sway channel was tested, the specific force output of
the NASA adaptive algorithm often went in the wrong direction at the beginning of a
translational acceleration input. The specific force in the wrong direction resulting from
the cross-coupling from the simulator tilt to the simulator pilot’s head translational
motion was reduced but not completely eliminated in the first phase of this project. It
was found that both the magnitude and duration of the specific force in the wrong
direction were still too large to be ignored when the input contained some frequenc‘y
components near or higher than 0.5 Hz. As discussed in Section 1, negative motion cues
should always be avoided if possible and when the motion cue onset has high importance.
The specific force in the wrong direction may generate a bad motion sensation which
happens at the motion onset, therefore it was desired to eliminate it completely. It was
found that the optimal algorithm successfully handled this problem. The cross-coupling
was explicitly expressed in the construction of the system equations when the new
optimal algorithm was developed. Results showed that the specific force in the wrong
direction was completely eliminated. The optimal algorithm also generated specific force
outputs with significantly smaller shape distortions than the NASA adaptive algorithm
did in the pitch/surge and roll/sway test cases.

In th¢ heave test case, the NASA adaptive algorithm did not generate an obvious
specific force drop when there was a large drop of the input while the optimal algorithm

generated one, which was obviously desired.
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When the pitch channel and the roll channel were tested, the NASA adaptive
algorithm generated simulator angular velocity outputs with very nice shapes while the
outputs of the optimal algorithm had some visible distortion. The optimal filters for the
pitch channel were designed in the pitch/surge channel design. The filters were tuned
mainly according to test runs with surge inputs. If the filters for the pitch channel are not
satisfactory, it may be necessary to re-tune those pitch filters without changing the filters
for the surge channel. This is also true for the filters for the roll channel.

When the yaw channel was tested, the output of the NASA adaptive algorithm
and the optimal algorithm were different. If the nonlinear gains for the two algorithms
are adjusted so that the two algorithms drive the simulator to the same amount of
actuator extensions, the simulator angular velocity output of the NASA adaptive
algorithm will have higher magnitude but be sustained for shorter time than the output of
the optimal algorithm. It is not clear which output will result in better simulation effects.

It was found that in most input cases, to generate the specific force at the
simulator pilot’s head or the simulator angular velocity with the same magnitude, the
NASA adaptive algorithm and the optimal algorithm would result in about the same
amount of actuator extenéions. The advantages of the optimal algorithm over the NASA
adaptive algorithm are that the optimal algorithm eliminated the negative motion cues,
generated outputs with better shapes in many simulation cases, and did not lose some

desirable motion cues while the NASA adaptive algorithm did in some input cases.
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Appendix A.
Vestibular Rotation Sensation Model Construction and Analysis
1. Introduction

The purpose of this study is to find a vestibular semicircular rotation sensation
model that is most consistent with experimental results and can be justified by theoretical
analysis, thus providing a reliable approximation to the rotation sensation function. This
study is based on the reports presented by the many researchers who worked on the
semicircular canal and rotation sensation function analysis. The model is first
constructed step by step. The model parameters are then determined and then the model
is carefully justified.
2. Model Construction

The vestibular rotation sensation model has been well studied by several authors.
Steinhausen [A1] first developed a linear second order model of canal dynamics to
explain the observed characteristics of vestibular induced eye movements in fish (pike) in
1931. This model was further refined by the "torsion-pendulum” model of Van Egmond,
et al. [A2] in 1949, and is later developed from a systems approach by Mayne [A3]. The
differential equation for this model is

16, +c6, +k6, = Ia (A-1)
where I = Moment of inertia of the endolymph
¢ = Moment of viscous damping of the endolymph
k = Moment of elastic restoring force of the endolymph

0. = Angulér displacement of the endolymph with respect to the head

o = Angular acceleration of the head with respect to an inertial axis
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The following transfer function is obtained from Equation (A-1):

I
als) g2, 8 + X LICIRLN +1
I I k k
For an overdamped system, Equation (A-2) can be written as

I

8.(s) k

e = A-3
a(s) d+75)(1+1,5) (4-3)

‘whereT, =-l‘%,‘c2 =—i—, andt, > t,. Schmid, et al. [A4] show that cupula deflection ¢

and the endolymph angular displacement O, are related by

RA
=-2 £ =-2a0
. T A af, (A-4)
cp
where R = Central radius of the canal

A. = Cross-sectional area of the canal
A, = Cross-sectional area of the cupula
h = Height of the cupula
and a is a nondimensional number. Substituting (A-4) into (A-3) results in the transfer

function relating cupula angular deflection to an angular acceleration input:

¢.(s) _ atT, (A-5)
a(s) (A+t,5)1+7,9)

The numerator in Equation (A-5) is equal to the K in the numerator in the transfer
function given by Zacharias [A5].
Further studies showed that a complete vestibular rotational perception model is

more complex than the torsion-pendulum model. Young and Oman [A6] formulated an
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adaptation operator and cascaded it with the torsion-pendulum model to resolve the
conflicts between the sensed response predicted by the torsion-pendulum model and the
perceptual response measured in experiments. The addition of adaptation results in the

following transfer function:

¢c(s) :K‘ Tas . l 1 i} (A_6)
a(s) 1+t,s (1+7,5)(1+7,5)

Zacharias [A5] noted the following in regard to an additional lead component of

tne form (1 + ts):

“In addition to the adaptation just discussed, there appears to be evidence of
lead sensitivity in vestibular processing of angular velocity information. In studying
postural reactions to induced body tilt in 1970, Nashner found it necessary to augment
the torsion pendulum model with a lead term having a 17 msec time constant, in order to
fit reflex latencies to large amplitude disturbances. As noted by Ormsby, this type of lead
behavior is not inconsistent with the vestibular nystagmus frequency responses reported
by Benson, in which a high frequency gain rise was noted, consistent with a lead
operator having a 60 msec time constant. Finally, in their investigation of primary
afferent response of squirrel monkeys to rotational stimuli, Fernandez and Goldberg
found that the population average frequency response could be best fit with the inclusion
of a lead term having a 50 msec time constant.”

A model representing both the semicircular canal and the peripheral neuron

transduction dynamics is now established:

$.(5) _ K. S . 1+1,s (A7)
a(s) 1+t,5 Q+1,5)(1+71,5)

Fernandez and Goldberg [A7] determined the vestibular parameters for the squirrel
monkey by direct measurement of the afferent nerves due to various angular acceleration
inputs of different amplitudes and frequencies. Their transfer function relates the afferent

firing rate of the vestibular nerve to the angular acceleration input:

AFR(s) _ K. TS5 1+1,s
a(s) 1+t,s (Q+1,5)1+1,5)

(A-8)
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where the sensitivity k is different than the sensitivity K given in Equation (A-7).
3. Parameter Determination

Fernandez and Goldberg [A7] determined the average transfer function
parameters for the squirrel monkey as -

AFR(s) _80s ] 1+0.049s
a(s) 1+80s (1+5.7s)1+0.003s)

(A-9)

where the sensitivity k was estimated as 3.44 spikes sec'/deg sec for a constant
accelération input. Parameters for man are more difficult to measure because direct
detection of the afferent nerve outputs of the vestibular system cannot be done and
therefore most experiments were based on subjective responses or nystagmus tests.

The objectives of several researchers were to determine the values of the
parameters based on the subjective response of humans. Van Egmond, et al. [A2]
reported that t; and 1, had values of about 10 seconds and 0.1 seconds respectively for
man in 1949. The values were based on the verbal response of highly trained subjects
subjected to various motion inputs in both a rotating chair and a torsion swing. Meiry
(from Zacharias [A5]) measured detection latency as a function of angular acceleration
step size, and found a long time constant of 7 seconds for roll-axis rotation about the
earth-vertical axis. Guedry (from Zacharias [A5]) used a short period rotational stimulus
consisting of an acceleration pulse doublet, and a response measure of apparent
displacement, and found values of 16 seconds and 7 seconds in yaw and pitch,
respectively about an earth-vertical axis. Malcolm and Melvill Jones (from Zacharias
[AS]) investigated the response to earth-vertical rotation about all three body axes by
using a velocity step as the stimulus, and measured the elapsed time to zero perceptual

response. They also measured the slow phase velocity (SPV) nystagmus of vestibular
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induced compensatory eye movements, thus providing two separate measures of canal
function. They were able to derive two sets of long time constants for the three axes with
the torsion pendulum model driving both perceived angular velocity and eye velocity.
Their results are summarized in Table A.1.

Table A.1. Torsion Pendulum Long Time Constants (from Zacharias [A5]).

Yaw Pitch Roll
subjective sensation 102418 53+0.7 61+12
nystagmus SPV 156+12 66+0.7 40+04

Tt should be noted that all the above estimations were based on the model expressed as
the transfer function in Equation (A-5).

Young and Oman [A§] later fit these measured parameters to a more complex
model. Young and Oman's model also resolved the apparent inconsistency between the
nystagmus and subjective response measures for yaw rotation. Figure A.1 shows Young
and Oman's model. The torsion-pendulum model of the canals drives both perceptual
and nystagmus response channels. Each channel has its own adaptation time constant. A
single long time constant of 16 seconds is used for the torsion-pendulum model. A
combination of the torsion-pendulum model and the adaptation mechanism generated a
different response to a step input for each channel. When the model is stimulated by step
inputs, the apparent time constant of the nystagmus decay is 16 seconds, whereas the
apparent time constant for sensation decay is 10 seconds. This model predicts a result for
earth-vertical yaw rotation consistent with the data given in Table A.1, but was never
extended for roll and pitch rotation.

It can be inferred that the long time constant T, measured by Van Egmond, et al.

[A2], Meiry and Malcolm and Melvill-Jones (from Zacharias [AS5]) does not actually
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represent the semicircular canal parameter in the model, but is an overall dynamics
parameter representing the decay speed of the rotational sensation to a step angular
velocity input. Zacharias [AS] suggests each axis of rotation has an equivalent “body
axis” canal pair with a distinct time constant. These “body axis” time constants can then
be transformed into the three physical canal pairs. The psychophysical results show each
of the three canal pairs having a distinct value for 1), especially for yaw. However,
physiological results based on afferent responses by Fernandez and Goldberg [A7] show
the same value for T, for all three canal pairs. Zacharias [A5] suggests the differences

shown in the psychophysical results may occur at a central origin at the perceptual level.

Nystagmus 120 sec 3.8 deg/sec

Gain Adaptation Threshold
5 | Eye
~» 6.74 o PR L i » Dynamics W
Angular Velocity (s +0.0083) =] Velocity
of Skull 7y (Slow Phase)
s .
I 156s Long Term
| Threshold
+25)(5+0.0625
(s+25X ) Habituation
Torsion-Pendulum
Canal Dynamics
Central Nervous System y
> s ) J_ |~ >
03 15.9 ]——» a >
s+0.033
0.3 sec Dead |Subjective 30 sec 1.5deg/sec  Sensation of
Time Delay |Gain Adaptation Threshold  Velocity

Figure A.1. Adaptation Model for Earth-Vertical Rotation (from [A3]).

Fernandez and Goldberg [A7] made the following observation in regard to the

short time constant T3;
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“Our observations, since they extended only to 8.0 Hz, are insufficient to provide
a direct experimental measure of 1, Some estimate of this constant can, however, be
made from hydrodynamic considerations. What seems to be required is a solution of the
Navier-Stokes equation for the complicated geometry represented by the canal, the
associated ampulla, and the utriculus. No one to our knowledge has accomplished this,
though Steer has solved the equation for a straight tube in 1967. The approximate value
of the time constant, so derived, is T; = (p r/ n Bz), where 3 is the first zero of the
zeroth-order Bessel function of the first kind; p and n are, respectively, the density and
viscosity of the endolymph, and r is the internal radius of the tube, in this case the radius
of the membranous canal. This radius has been measured by Igarashi and leads to a
value of 1, equal to 0.005 seconds in man and 0.003 second's in the squirrel monkey.”

Several authors did experiments to determine the value of t, . Their findings are

summarized in Table A.2.

Table A.2. Lead Sensitivity to Rotational Stimuli (From Zacharias [A5]).

1, (sec) Measure Source
0.017 (man) posture control Nashner
0.06 (man) nystagmus Benson and Ormsby
0.05 (squirrel monkey) primary afferent Fernandez and Goldberg

From experiments with human subjects, Van Egmond, et al. [A2] showed that the
perceived angular velocity ¢ is proportional to the cupula deflection ¢. by the long time
constant 13, resulting in the transfer function

o(s) 1,8
o (s) - (A +7,5)(1+1,5)

(A-10)

As shown in Equation (A-9), Ferandez and Goldberg [A7] show a gain sensitivity k
between the input stimulus and the afferent firing rate that was estimated at 3.44 spikes
sec’ / deg sec?. Ormsby (from Zacharias [AS]) proposed that the perceived angular
velocity & 1is proportional to the afferent firing rate. While no one to date has
experimentally obtained this parameter, Zacharias [AS] noted that Curry, et al. provided
an estimate of the overall gain between perceived and input angular velocity based on

angular acceleration thresholds.
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From subjective pilot measurements of angular acceleration thresholds on a

moving base platform, Hosman and van der Vaart [A8] show the perceived input

threshold ay;, as
b .
8 = o (A-11)
H@)|
where bmin = Minimum sensed amplitude of the afferent firing rate

| H(o) | = Modulus of the vestibular transfer function
From the measured frequency response of amir the following transfer function is obtained,
neglecting gain sensitivity and adaptation:

140.1007 s
H(s) = A-12
©) = 1759245000055 (A-12)

These results are based upon roll and pitch acceleration thresholds; yaw thresholds were
not measured. The value for t; agrees well with the value obtained by Femandez and
Goldberg. The value obtained for 1. is nearly twice the nystagmus value obtained by
Benson and Ormsby as given in Table A 2.

From the results reported by the authors mentioned in this section, a transfer

function that can best describe the vestibular rotational sensation system is proposed:

AFR(s) 3 44 80s 1+0.06s
a(s) "~ 1+80s (1+5.735)(1+0.005s)

(A-13)
It should be noted that the parameters in the above transfer function are by no means
exact, but are of the correct order of magnitude, thus making the transfer function a

meaningful approximation to the real dynamics of the vestibular rotation sensation

system. The frequency response of the transfer function given in Equation (A-13) with
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gain k = 1 is shown in Figure A.2. Both the torsion-pendulum model and the complete

sensation model with lead and adaptation mechanisms included are both shown.
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Figure A.2. Frequency Response of Vestibular Rotation Sensation System.

The sensory function of the semicircular canal can be described by observing the
frequency response of the torsion-pendulum model. In the range of normal head
movement from 0.05 to 5.0 Hz (Mayne, [A3]), the gain response decreases by 20
dB/decade with the phase close to minus 90 degrees. In this frequency range the canal
functions as an “integrating accelerometer” or an angular velocity transducer. At very
low frequencies less than 0.01 Hz, the phase approaches zero degrees, thus functioning as
an accelerometer. At very high frequencies greater than 100 Hz, the phase approaches

minus 180 degrees, thus functioning as an angular displacement transducer. The effects
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of -adaptation and lead on rotational sensation are apparent; adaptation influences low
frequencies below 0.01 Hz while lead influences high frequencies greater than 10 Hz.
4. Physiological Interpretation

Modem theories of the operation of the semicircular canal receptors are based on
the assumption that the nervous impulses are generated by deflection of the hairs in the
sensory cells 'as a result of the cupula displacement. Input acceleration is first
transformed into cupula deflection by the cupula-endolymph system. Then the cupula
deflection is further transformed into electrical impulses by the mechano-neural
transduction system consisting of sensory hair cells, afferent nerves and efferent nerves.

The cupula-endolymph system was likened to an overdamped linear torsion-
pendulum by Steinhausen [A1] in 1931. A rigorous analytical evaluation of the dynamics
of the endolymph motion in the semicircular canals was made by Steer [A9] in 1967.
The torsion-pendulum model is well accepted by different authors without controversy
upon the form of the model.

Besides the torsion-pendulum dynamics there are some additional terms in the
complete transfer function in Equation (A-8). These terms could be grouped as

kt, s(l1+x,5)
(I+1,5)

(A-149)
representing an adaptation-lead mechanism. Controversy occurred when different
authors tried to interpret this adaptation-lead mechanism primarily because the precise
mechanism of hair cell stimulation is not yet understood.

The first controversy is whether the adaptation arises in the mechanics of the

cupula-endolymph system or in the mechano-neural system. Goldberg and Fernandez

[A8] presented a good discussion of the origin of the adaptation:

116



“Two observations tend to suggest that the adaptation arises in the mechano-
neural system. The first is the clear adaptation seen by Lowenstein when polarizing
currents were applied to the vestibular nerve of the thornback ray. . Presumably, the
currents acted directly on the nerve terminals. The second is the fact that units differ
greatly in their adaptive properties. Were adaptation of mechanical origin, one would
have to assume that hair cells differ in the way they are mechanically coupled to the
motion of the cupula. An assumption which appears to us more reasonable is that the
adaptation reflects the physiology of the hair cells and/or of the afferent nerve terminals.
Another, perhaps unlikely, possibility is that the adaptation results from the activation of
the efferents innervating the sensory epithelium.”

Controversy arose again about the origin of the lead operator. Since no
mechanism was found in the cupula-endolymph system that could provide a reasonable
interpretation for the lead operator, most authors suggested that the lead operator arose
from the mechano-neural system. Fernandez and Goldberg [A7] suggested that the lead
operator implies the sensory hair cells are sensitive to both the displacement and the
velocity of the cupula. The time constant ;. reflects the relative sensitivities to these two
aspects of the cupular motion. They further suggested that the adaptation-lead
mechanism represents the transfer function between the discharge frequency F and the
cupula deflection ¢:

F(s) kt, s(1+st,)
o(s)  1+st,

(A-15)

This expression implies that both adaptation and lead arise from the mechano-neural
system.

Schmid, Buizza, et al. [A4] gave two other plausible interpretations for the
adaptation-lead mechanism. One is based on the observation that there are two types of
sensory cells in the vestibular sensory epithelia of mammals. All the sensory cells are

assumed to be characterized by a transfer function of the type
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F(s) K*T*s
d(s)  1+T*s

(A-16)

where F, is the afferent nerve output, ¢ is the cupula deflection, K, is the sensitivity
factor and T* is the time constant of the transduction process. It is further assumed that
the two different types of sensory cells work in parallel with a different T*. Then the

overall transfer function of the mechano-neural transduction system can be expressed as

F(s) K,Ts . K,.Ts

o) 1+Ts 1+Ts (A-17)
By simple manipulation the following transfer function can be obtained:
F(s) _ K, Ts(1+Ts) (A-18)

d(s)  (1+Ts)(1+Ts)
where T, >>T, and T, =~ 2T,. If T, is assumed negligible, then the transfer function can
be reduced to an adaptation-lead operator and give a good interpretation to the origin of
the adaptation-lead mechanism. A very small T, implies that a group of sensory cells
have a very small adaptation time constant. Experiments have shown that the adaptation
time constants of the vestibular mechano-neural system of squirrel monkeys range
approximately from 30 seconds to infinitely long. The fact that no group of sensory cells
with a small adaptation time constant were found experimentally conflicts with the first
interpretation presented by Schmid, et al. [A4].

The second interpretation presented by Schmid, et al. [A4] is based on the
existence of efferent pathways descending from the vestibular nuclei to the sensory
epithelium, possibly with an inhibitory function. These efferents may represent a
negative feedback that modifies the characteristics of the mechano-neural transduction.

The average dynamics of all sensory cells is assumed to be
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F(s) K*T*s
d(s) 1+T*s

(A-19)

The dynamics of the inhibitory process is described by means of a first order system with
a time constant 7, much smaller than 7 * . The complete mechano-neural transduction

system can be represented by the block diagram in Figure A2

¢(s)+ U(s)

| K*T*s
1+T*s

Dynamics of the
sensory cells

e
»
gl v

o

r

»>
|

K.

1
1+Ts|{"

Dynamics of the
efferent pathway

Figure A.2. A Closed-loop Interpretation of the Mechano-neural System.

The closed-loop transfer function can be obtained:

K*T*s
Fs)  12T%  _ K*T*s(1+Ts) A2
d)(s)_HK*T*S Ki "1+(K*K, +1)T*s+Ts+T*Ts> (A-20)
1+T*s 1+Ts

By introducing the simplifications suggested by the condition T, << T*, it follows that

(s) K*T*s (1+T;s)

(A-21)

= T
o(s) [1+(K*Ki +1)T*s] I+ *Kli 7

——K*Kii T is small enough to be considered negligible, then the above transfer

function can be further reduced to the form of Equation (A-15).
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4. Conclusion

The vestibular rotational sensation system has been well studied. Its model
consists of a second order torsion-pendulum operator and an adaptation-lead operator.
The torsion-pendulum operator arises from the cupula-endolymph system and functions
as an angular velocity transducer in the range of normal head movement. The model is
then augmented by the adaptation-lead operator that arises from the mechano-neural
transduction system. The adaptation-lead operator most likely represents a closed-loop
“dynamic system consisting of sensory cells, afferent nervés as feed-forward path and
efferent nerves as negative feedback path. Based upon the model parameters reported in
the literature a transfer function best approximating the rotational sensation system is

proposed.
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Appendix B.
Phase 1 Rotational Qutput Figures

Figure B.1. Classical Algorithm Roll Doublet Pulse Input.
1 nv/'s” peak, 10 second duration mput

Figure B.2. Optlmal Algorithm Roll Doublet Pulse Input.
' 1 m/s® peak, 10 second duration input.

Figure B.3. NASA Adaptive Algorithm Roll Doublet Pulse Input.
1 m/s? peak, 10 second duration input.

Figure B.4. UTIAS Adaptive Algorithm Roll Doublet Pulse Input.
1 m/s? peak, 10 second duration i input.
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CLASSICAL ROLL TEST CASE
DOUBLET INPUT
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Figure B.1. Classical Algorithm Roll Doublet Pulse Input.

123



Simu. Velocity in Inertial Coord.
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CLASSICAL ROLL TEST CASE
DOUBLET INPUT
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Figure B.1. Classical Algorithm Roll Doublet Pulse Input.

125



Aircraft Angular Rate
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Figure B.1. Classical Algorithm Roll Doublet Pulse Input.

Simulator Angular Rate

20
R
E
[}
0
b=
wn
-10 . .
0 10 15 20
t (sec)
1
(/2]
Es)
S
-~ 0
d
=
175! ) ‘ E
.0 10 15 20
t (sec)
1
@
k)
(o]
2o
<
w 1 i i i
0 10 15 20
t (sec)

126



CLASSICAL ROLL TEST CASE
DOUBLET INPUT
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C(r) & Simu.(g) Sensed Specific Force
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Figure B.1. Classical Algorithm Roll Doublet Pulse Input.
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OPTIMAL ROLL TEST CASE
DOUBLET INPUT
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Aircraft Angular Rate
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Figure B.3. NASA Adaptive Algorithm Roll Doublet Pulse Input.
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Airc;raft Specific Force at Pilot Head
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Figure B.4. UTIAS Adaptive Algorithm Roll Doublet Pulse Input.
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Aircraft Specific Force at Pilot Head
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Appendix C.
Phase 2 Test Run t Fi

Figure C.1. Optimal Algorithm Surge Half Sinusoidal Pulse Input.
0.1 Hz half cycle, 1 m/s” peak x-acceleration input.”

Figure C.2. NASA Adaptive Algorithm Surge Half Sinusoidal Pulse Input.
0.1 Hz half cycle, 1 m/s® peak x-acceleration input.

Figure C.3. Surge Pulse Input Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Figure C 4. Optimal Algorithm Surge 3 m/s*/s Ramp-Step Input.
3 m/s%s slope, 5 m/s* peak x-acceleration input.

Figure C.5. NASA Adaptive Algorithm Surge 3 m/s%/s Ramp-Step Input.
3 m/s%s slope, 5 m/s® peak x-acceleration input.

Figure C.6. Surge 3 m/s%/s Ramp-Step Input Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Figure C.7. Optimal Algorithm Surge 5 m/s%/s Ramp-Step Input.
5 m/s%/s slope, 5 m/s? peak x-acceleration input.

Figure C.8. NASA Adaptive Algorithm Surge 5 m/s*/s Ramp-Step Input.
5 m/s¥/s slope, 5 m/s’ peak x-acceleration input.

Figure C.9. Surge 5 m/s%/s Ramp-Step Input Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Figure C.10. Optimal Algorithm Sway Half Sinusoidal Pulse Input.
0.5 Hz half cycle, 1 m/s* peak y-acceleration input.

Figure C.11. NASA Adaptive Algorithm Sway Half Sinusoidal Pulse Input.
0.5 Hz half cycle, 1 m/s’ peak y-acceleration input.

Figure C.12. Sway Pulse Input Specific Force Comparison.
Comparison of the specific forces for both algorithms.
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Figure C.13.

Figure C.14.

Figure C.15.

Figure C.16.

Figure C.17.

Figure C.18.

Figure C.19.

Figure C.20.

Figure C.21.

Figure C.22.

Figure C.23.

Figure C.24.

Figure C.25.

Optimal Algorithm Heave Square Pulse Input.
3 m/s? peak, 5 second duration z-acceleration i input.

NASA Adaptive Algorithm Heave Square Pulse Input.
3 m/s” peak, 5 second duration z-acceleration input.

Heave Square Pulse Input Specific Force Comparison.
Comparison of the specific forces for both algorithms.

§onthm Roll Doublet Puise Input.
0.1 rad/sec” peak, 5 second duration input.

NASA Adapt:ve Algorithm Roll Doublet Pulse Input.
0.1 rad/sec’ peak, 5 second duration input.

Roll Doublet Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Optimal Algorithm Pitch Doublet Pulse Input.
0.1 rad/sec’ peak, 5 second duration input.

NASA Adaptlve Algorithm Pitch Doublet Puise Input.
0.1 rad/sec® peak, 5 second duration input.

Pitch Doublet Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Optimal Algorithm Yaw Doublet Pulse Input.
0.1 rad/sec’ peak, 5 second duration input.

NASA Adaptive Algorithm Yaw Doublet Pulse Input.
0.1 rad/sec’ peak, 5 second duration input.

Yaw Doublet Specific Force Comparison.
Comparison of the specific forces for both algorithms.

Sway Pulse Input Brakmg Algorithm Test.
10 m/s? peak, 10 second duration y-acceleration input.

Specific force comparison figures are labelled as follows:
Line with no marks — aircraft response.
Line with marks — simulator response: 0 — NASA Adaptive; * — Optimal
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Figure C.1. Optimal Algorithm Surge Half Sinusoidal Pulse Input.
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Aircraft Angular Position
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Figure C.1. Optimal Algorithm Surge Half Sinusoidal Pulse Input.
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Aircraft Angular Rate
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Figure C.1. Optimal Algorithm Surge Half Sinusoidal Pulse Input.
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Aircratt Specific Force at Pilot Head
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A/C(.) & Simu. () Sensed Specific Force
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Simu. Transiational Velocity
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A/C & Simu. Specific Force at Pilot Head
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Figure C.4. Optimal Algorithm Surge 3 m/s/s Ramp-Step Input.
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Aircraft Specific Force at Pilot Héad Simu. Specific Force at Pilot Head

Figure C.4. Optimal Algorithm Surge 3 m/s*/s Ramp-Step Input.

171

6
24 %
E Eos
X ol X
< %
0 - 0 .
0 10 20 30 40 0 10 20 30 40
t (sec) t (sec)
1 . 0.05 .
% 05 e
é @
£ o E o
x> >
<05 R &
-1 - - - 0.05 ‘
10 20 30 40 0 10 20 30 40
t (sec) . t (sec)
-8 8 - -
n ®-10F
@ 9t X
£ £ J
2 10 N -2
< )
. _14 L
-11 - .
10 20 30 40 0 10 20 30 40
t (sec) t (sec)



AC(..) & Simu.(-) Sensed angular rate

AJC(..) & Simu. (-) Sensed Specific Force

| =]
-
18
1O
N
12
~ @ o B °
[ o] O. nw nw
(s/Bep) d- MSS'MSY
g
18

T~
10

T

~ ™ o o <
(s/s/wl) X4SS'X4SY

t (sec)

t (sec)

< <
19 a
T

128 Q

i mul 4 w

: Jo . N

(s/Bap) b- MSS'MSY ° @

(s/Bep) +- MSS'MSY

Q Q

- T <

1O 10

(9] [ 2]

Xy e

le o

-~ i o w v ° @ ¥ -
o Q@ ? 2 h
(8/5/W) Z4SS'ZSY

(s/3/w) A4SS'AdSY

t (sec)

t (sec)

Figure C.4. Optimal Algorithm Surge 3 m/s*/s Ramp-Step Input.

172



Simu. Translational Velocity
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A/C Accel. at Cehtroid of A/C ' Simu. Accel. at Centroid of Simu.
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Aircraft Specific Force at Pilot Head
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A/C & Simu. Specific Force at Pilot Head
2 ] 1 [] T Bl I

AF & SF (m/s?)

| i 1 L] i

-1 L
0 1 2 3 4 5 6 7 8 9 10
t (sec)
A/C & Simu. Sensed Specific Force at Pilot Head
5 1 ! ! 1 I 1 ! i I
4 ~

w
T

ASF & SSF (m/s?)
- N
T

t (sec)

Figure C.9. Surge 5 m/s’/s Ramp-Step Input Specific Force Comparison.

197



AJC Accel. at Centroid of AIC Simu. Accel. at Centroid of Simu.
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AJC Accel. at Centroid of A/C Simu. Accel. at Centroid of Simu.
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Aircraft Angular Position

Figure C.11. NASA Adaptive Algorithm Sway Half Sinusoidal Pulse Input.
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Aircraft Specific Force at Pilot Head
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A/C(..) & Simu.(-) Sensed angular rate
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AIC & Simu. Specific Force at Pilot Head
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