
NASA/CP-2000-210100

Lfm2000:
Methods

Fifth NASA Langley Formal

Workshop

C. Michael Holloway, Compiler

Langley Research Center, Hampton, Virginia

June 2000



The NASA STI Program Office ... in Profile

Since its founding, NASA has been
dedicated to the advancement of

aeronautics and space science. The NASA
Scientific and Technical Information (STI)

Program Office plays a key part in helping

NASA maintain this important role.

The NASA STI Program Office is operated
by Langley Research Center, the lead center
for NASA's scientific and technical

information. The NASA STI Program Office

provides access to the NASA STI Database,

the largest collection of aeronautical and
space science STI in the world. The Program
Office is also NASA's institutional

mechanism for disseminating the results of

its research and development activities.
These results are published by NASA in the

NASA STI Report Series, which includes the

following report types:

TECHNICAL PUBLICATION. Reports
of completed research or a major

significant phase of research that
present the results of NASA programs
and include extensive data or theoretical

analysis. Includes compilations of
significant scientific and technical data
and information deemed to be of

continuing reference value. NASA

counterpart of peer-reviewed formal
professional papers, but having less

stringent limitations on manuscript
length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings sponsored

or co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign
scientific and technical material

pertinent to NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings
include creating custom thesauri, building

customized databases, organizing and
publishing research results ... even

providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home
Page at http'//www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320



NASA/CP-2000-210100

Lfm2000:
Methods

Fifth NASA Langley Formal

Workshop

C. Michael Holloway, Compiler

Langley Research Center, Hampton, Virginia

Proceedings of a workshop sponsored by the
National Aeronautics and Space

Administration and held at the Radisson

Fort Magruder Hotel & Conference Center
Williamsburg, Virginia

June 13-15, 2000

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

June 2000



Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000



General Chairman's Message

On behalf of the NASA Langley Formal Method's Team, I welcome you to Lfm2000, the Fifth

NASA Langley Formal Methods Workshop. When the series began in 1990, attendees and

presenters were limited to people directly involved in NASA Langley's nascent formal methods

program. Subsequent workshops in 1992 and 1995 also restricted attendance to invited people. With

the 1997 workshop, we removed attendance restrictions, and also issued an international call for

papers. We continued this approach for Lfm2000.

We believe that the program has something to offer just about everyone, from those interested

in the theoretical aspects of formal methods to those interested in the practical application of formal

methods to help solve industrial problems. We hope that you agree, and that yore time at the

workshop is both interesting and useful to you.

The paper copy of the proceedings contains the papers selected by the program committee for

presentation. The CD contains Portable Document Format (PDF) and (in many cases) PostScript

versions of the papers, supplementary information from some authors, tutorial slides and

supplementary material, and information about the NASA Langley formal methods program. Much

of this material will also be available on the world-wide web at the Lfm2000 web site at

<http ://sheme sh. larc.nasa, gov/fm/Lfm2000>.

Once again, welcome! I look forward to meeting you during the workshop. Please let me

know if there is anything that I can do to help you while you are here.

C. Michael Holloway, Lfm2000 General Chairman

email: <c.m.holloway@larc.nasa.gov>

postal address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-2199
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Program Committee Chairman's Message

Welcome to Lfm2000! We are pleased to be able to bring you a strong program of research

papers and experience reports. This year we added a tutorial track to complement the research

presentations. We were fortunate to receive several excellent tutorial proposals from some rather

accomplished presenters, so we hope you find this a valuable addition to the workshop format.

Following the organization we adopted at Lfm97, out previous workshop, we drew the bulk of

the Lfm2000 program from refereed submissions. We received 37 paper submissions, from which

17 papers were selected for presentation at the workshop and publication in the proceedings. Each

paper received at least three reviews, either by members of the Program Committee or by outside

referees. In addition to selected papers, we invited several speakers to give talks on trends and

perspectives, including presentations on ongoing NASA activities and interests.

Submissions to Lfm2000 showed a continued strong interest in the area of applied formal

methods. The diversity of submissions increased somewhat over out previous workshop in 1997.

Also evident in the accepted papers was a decided shift toward lighter weight methods and the

algorithmic analysis techniques typified by model checking. This trend reflects the growing interest

in finite state analysis that has been seen at other research meetings. It is too soon to tell, however,

whether this growth comes at the expense of interest in the deductive analysis methods. Perhaps

by the time of out next workshop we can gauge the community's directions more definitively.

I would like to thank members of the Program Committee for all their hard work in reviewing

and selecting papers for this year's program. Thanks are also due to the auxiliary referees who

contributed their time. Finally, let me thank the Organizing Committee for helping to give shape to

the finished product.

I hope you find this a rewarding meeting. We welcome any feedback you might wish to

provide so that out next offering will be better still.

Ben Di Vito, Lfm2000 Program Chair

email: <b.l.divito@larc.nasa.gov>

postal address: Mail Stop 130, NASA Langley Research Center, Hampton VA 23681-2199
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On Tableau Constructions for Timing Diagrams

Kathi Fisler

Department of Computer Science

Rice University

6100 S. Main, MS 132

Houston, TX 77005-1892

kfisler@cs, rice. edu

Abstract

Designers oRen cite unfamiliar notation as one obsta-

cle to wider acceptance of formal methods. Formal-

izations of design notations, such as timing diagrams,

promise to bridge the gap between design practice
and formal methods. How to use such formaliza-

tions effectively, however, remains an open question.

Developing new tools around design notations might

provide better support for reasoning at the level of

the preferred notations. On the other hand, trans-

lating the formalizations into established notations

enables leveraging off of existing tools. This decision

of whether to treat design notations as interfaces de-

pends largely on computational tradeoffs. This paper

explores this issue in the context of specifying proper-

ties for automata-theoretic verification using timing

diagrams. Automata-theoretic algorithms perform a
tableau construction to convert properties into Biichi

automata. We contrast direct compilation of timing

diagrams into Biichi automata with an approach that

uses linear-time temporal logic (LTL) as an interme-
diate language during translation. Direct compila-

tion generally produces much smaller automata and

scales significantly better with variations in key tim-

ing diagram parameters. We attribute this to combi-

nation of a correspondence between timing diagrams

and weak automata and certain shortcomings in cur-

rent LTL-to-Biichi algorithms.

1 Introduction

Computer-aided verification uses techniques from

logic and mathematics to prove whether design mod-

els satisfy certain properties. Although these tech-

niques have been used successfully on several siz-

able examples, many designers are reluctant to adopt
them. One frequently cited problem is the notation

that verification tools employ [9]. Verification tech-
nologies are grounded in formal logic. Accordingly,

most tools use their underlying logics as property

specification languages. For example, model checkers

employ temporal logics, while theorem provers use

various flavors of higher-order logic. In contrast, de-

signers use a wide array of notations, including circuit

diagrams, timing diagrams, state machines, VHDL

and Verilog. This rich array of representations, some

of them diagrammatic, stands in stark contrast to the

monolithic textual logics of verification tools.

Bridging this gap requires verification tools that

support notations that are more familiar to designers.

One approach is to develop new tools and algorithms

which support design notations directly [3]. Another

is to create interfaces from design notations to exist-

ing languages [1, 8]; this leverages off existing tool

development efforts. 1 Which approach yields more

efficient algorithms is an open question. There may

exist algorithms for model checking timing diagrams,

for example, that outperform those for the temporal

1Many efforts (other than those cited) are ad-hoc, however,

because they do not formalize the design notations.



logics into which we might translate timing diagrams.

Understanding these tradeoffs requires studies of the

logical nature of design notations and their role in

verification algorithms.

This paper explores these tradeoffs in the context

of compiling timing diagrams to Biichi automata.
Automata-theoretic verification tools, which support

linear-time logics such as LTL, operate at the level

of automata. Using such tools on timing diagrams
requires algorithms for compiling timing diagrams to

Biichi automata. We compare two compilation meth-

ods, one which compiles timing diagrams directly into

Biichi automata and one which translates timing di-

agrams into LTL and then uses existing algorithms

for compiling LTL into Biichi automata. Our results

show that the direct approach produces far smaller

machines even on simple examples. This appears due

to a combination of structural properties of the au-

tomata that capture timing diagrams and shortcom-

ings in existing LTL-to-Biichi translation algorithms.

Section 2 presents an overview of automata-

theoretic verification. Section 3 describes timing dia-

grams and linear-time temporal logic, the two nota-

tions used in this paper. Section 4 presents our algo-

rithms for compiling timing diagrams into LTL and

Biichi automata. Section 5 presents an experimental

comparison of the two approaches to obtaining Biichi

automata from timing diagrams. Section 6 discusses

the experimental results and their implications for
verification research.

2 Automata-Based Verification

Automata-theoretic verification views both systems

and properties as finite-state automata [12, 14]. Ver-

ifying whether a system satisfies a property is analo-

gous to asking whether the property automaton ac-

cepts the language generated by the system. In other
words, for a system S and a property P, verification

reduces to a language containment question of the

form g(S) C_g(P), where g denotes the language of

an automaton. This is equivalent to asking whether

g(S) n g(P) = 0. In practice, automata-theoretic

verification tools implement the latter; they intersect

the automaton for the negation of the property with

the automaton for the system and check whether the

language of the product automaton is empty.

Many other verification problems can be expressed

in terms of operations on languages. Property de-

composition is one example. Properties often prove

intractable to verify because they require too many

computational resources, such as time or memory.

One can approach such cases by decomposing the

original property into a set of simpler properties, each

of which is tractable to verify. If the simpler prop-

erties collectively imply the original property, then

verifying each simple property independently is suf-
ficient to verify the original property. To support

decomposition, verification tools must check whether

one set of properties implies another. If a property P

is decomposed into properties PI,..., Pk, this check

reduces to g(P) C_g(P1) n... n g(Pk).

Both of these checks are decidable for a large class

of verification problems. Implementing them requires

procedures to obtain two kinds of automata: those

that accept the language of a given property and

those that accept the language of the negation of a

given property. This project investigates both prob-

lems in the context of timing diagrams.

3 Timing Diagrams and LTL

3.1 Timing Diagrams

Timing diagrams express patterns of value changes

on signals. In addition, they express precedence and

synchronization relationships between changes, and

timing constraints between changes. As part of our

overall research program, we have developed a logic

of timing diagrams [5]. This section describes the

portion of the logic that is relevant to this paper.

Figure 1 provides a sample timing diagram that

will serve as our running example. Variables a, b,
and c name boolean-valued signals. To the right of

each name is a waveforra depicting how the variable's

value changes over time. For example, b transitions

from low to high, then later returns to low. We inter-

pret low as logical false and high as logical true. Ar-

rows indicate temporal ordering between transitions;

for this paper, we assume that timing diagrams spec-
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Figure 1: A timing diagram and an illustration of its semantics.

ify a total ordering on the transitions through arrows

and ordering within waveforms. Annotations of the

form [l,u] on the arrows indicate lower and upper

bounds on the time between the related transitions; l
is a natural number and u is a natural number or the

symbol oe. 2 The labels at the bottom, referred to as

time points, are for explanatory purposes and are not

part of the timing diagram; intuitively, there is one

time point for each transition in the diagram, plus one

for each of the endpoints of the diagram. The portion

of the diagram between each pair of time points is an

interval; interval Ij spans from time point pj to Pj+I.

Since timing diagrams express sequences of values

of variables over time, an appropriate semantic model

for them must do the same. Formal languages, which

are sets of sequences over a given alphabet, suggest
such a model. Our semantics considers finite or intl-

nite words over an alphabet consisting of all possible

assignments of boolean values to the names labeling

waveforms. Intuitively, a word models a timing di-

agram when the transition patterns in the diagram

reflect the changes in values assigned to names in the

word. A timing diagram language is any set of words

such that every word in the set models the timing di-

agram. This paper provides an intuitive description

of the semantics; the full details appear elsewhere [5].

Consider the timing diagram and word in Figure 1.

2The full logic supports richer bounds with variables [5].

The word appears in tabular form: the waveform
names label the rows and the indices into the word

label the columns. Each cell in the table indicates

the value on the corresponding signal at the corre-

sponding index. Symbols 0 and 1 denote false and

true, respectively. The two lines directly beneath the

table indicate two separate assignments of indices to

time points, as explained shortly.

Intuitively, the semantics walks along a word look-

ing for indices that satisfy each time point. An index

satisfies a time point if the values assigned to each

variable correspond to those required by the transi-

tions at the time point; satisfaction relies on both
the current index and its immediate successor. For

example, in Figure 1, time point Pl contains a rising

transition on signal a; index d satisfies Pl if d assigns

value 0 to a and index d + 1 assigns value 1 to a.

For the word and timing diagram in Figure 1, in-

dex 0 satisfies the rising transition on a. The walk

now searches for an index containing a rising tran-
sition on b; index 1 meets this criterion. When the

walk locates the rising transition on c in index 2, the

semantics checks whether the located indices respect

the timing constraint between the transitions on b

and c. The two transitions occurred one index apart,

which is valid. Continuing the walk locates time point

P4 at index 3 and time point P5 at index 5. The first

row below the table shows this assignment of time



pointsto indices.Thesecondrowshowsanotheras-
signment,startingfromindex4. Thiswalkfails,be-
causethedistancebetweentheindicessatisfyingP2

and P4 is larger than 3, the maximum allowed by the

time bound on the arrow from the rising transition

on b to the falling transition on c. The semantics al-

ways checks the first occurrence of a transition that

it finds once it begins searching for it. The formal

semantics [5] defines this precisely.

Three other aspects of our semantics are relevant:

• Timing diagrams express assume-guarantee re-

lationships; we specify some prefix of the time

points as the assume portion, and only check the

entire diagram when we locate indices satisfying

the assume portion. In our example, taking the

assume portion to be time points P0 and Pl, we

would search for the entire diagram only if an

index reflects a rising transition on a.

• We view timing diagrams as invariants, mean-

ing that we attempt to satisfy the timing dia-

gram from every index which satisfies the assume

portion. In our example, we would search from

every index containing a rising transition on a,

namely indices 0 and 4, as in our demonstration.

• A parameter over the timing diagram indicates

which segments of waveforms should be matched

exactly within words; the rest are treated as

don't-cares. Segments to be matched exactly

are called fixed-level constraints. For example,

we could require a to remain high until the rising

transition on c by putting a fixed-level constraint

on a between time points Pl and P4.

Index satisfaction and fixed-level constraints are

simply constraints on the values of particular vari-

ables; each constraint is a conjunction of literals cap-

turing the values required on each variable. A fixed-

level constraint requiring a to be low and c to be high

would be the conjunction _aAc. The actual conjunc-

tions are irrelevant to the algorithms in the rest of the

paper. We therefore describe our algorithms in terms

of the following symbols:

• Ai: the fixed-level constraint in interval Ii.

• APiinit: the first index required to satisfy the

transition at time point i.

• APi: the second index required to satisfy the
transition at time point i.

• Ti: The conjunction APiinit A XAPi, which uses

the temporal logic next-time operator to capture

the requirements for satisfying a transition.

3.2 Linear-time Temporal Logic

Like timing diagrams, linear-time temporal logic de-

scribes patterns of changes in variables over sequences

of assignments. LTL is a propositional temporal

logic [13], defined relative to a finite set of propo-
sitions 7). The formulas of LTL include 7) and are

closed under unary operators _ and X (next), and bi-

nary operators V and (J (until). Intuitively, X_ says

that _ holds in the next state, while _(J¢ says that

holds in every state until ¢ holds, and ¢ eventually

holds. Other temporal operators, such as G (some-

thing holds in all states) are defined in terms of (J.

Formally, LTL formulas are given semantics relative

to sequences of assignments to 7). An infinite word

= xoxl ... is a sequence of elements of 2p. _i de-

notes the suffix of _ starting at xi. A word _ models

formulas according to the following definition:

• _qiffqExo, forqET),

• _-_iffnot_-_,

• _ t= _V¢ iff_ t= _ or _ t= ¢,

• _ _X99 iff_l _-_,

• _ _- _U_ iff there is an i _ 0 such that _1 _ _/)

and_j _-_forall0_j<i.

A language models a formula iff every word in the

language models the formula.

4 Tableau Constructions

As discussed in Section 2, automata-theoretic verifi-

cation tools compile formulas into Biichi automata.

As LTL model checking uses the automata-theoretic

framework, several algorithms exist for compiling



LTLformulasintoBiichiautomata[2,7];thesealgo-
rithmsusea techniquecalledtableauconstruction.
Thetiming diagramsemanticseffectivelydefinea
Biichiautomatonacceptinga timingdiagramlan-
guage.Thus,wehavetwopossibleroutesto compil-
ingtimingdiagramsintoBiichiautomata,asshown
in the diagrambelow:compilethetimingdiagram
directlyto a Biichiautomatonwhichcorrespondsto
thesemantics,or translatethetimingdiagraminto
LTLanduseexistingLTL-to-Biichialgorithms.The
secondapproachreflectstheviewoftimingdiagrams
asvisualinterfacesfortemporallogics[1].

our existing
translation algorithm

TD LTL _ Biichi

semantics

We would like to compare the Biichi automata aris-

ing from these two approaches. Is one substantially

larger than the other? Size is important because this

form of verification computes the cross-product of

the automata representing the design and the prop-

erty. Does one approach yield a Biichi automaton
that is more amenable to verification than the other?

Some verification heuristics work only on property

automata with particular structural features. An-

swers to these questions help determine whether ver-

ification tools can safely treat timing diagrams as in-

terraces to LTL expressions without having an ad-
verse effect on the verification process.

Our translations from timing diagrams to each of

LTL and automata rely on the same intermediate rep-
resentation, a form of abstract state machine. States

in this machine record which interval they correspond
to, their transitions to other abstract states, and a

set of labels which provide information to the back-

end tools. The abstract machine captures one pass

or walk of the timing diagram semantics, leaving the

backend tools to support repetitions as necessary.

4.1 Generating the Abstract Machine

Generating an abstract machine from a given tim-

ing diagram proceeds in two steps. First, we need to

I2 I3

1 1
12

2 1

Figure 2: Step distribution tables for the example

timing diagram.

calculate the possible numbers of steps that a valid

word can spend in each interval. We partition the

time points into cells such that time points i and j

are in the same cell iff there is an arrow spanning

intervals i and j: for our example timing diagram,

the cells are {0}, {1}, {2, 3}, {4}, and {5}. For each

cell, we generate a table showing the possible combi-
nations of steps allowed in each interval. Each row

of the table provides one distribution of the time al-

lowed by the bounds across the corresponding inter-
vals; if the total amount of time is a lower bound,
the value in the last column of the table is marked

with a +. Figure 2 shows the tables for our example

diagram. They say that a valid word must contain at

least one letter in the first interval (1+ in the first ta-

ble), some combination of 2 or 3 letters in the interval

between time points 2 and 4 (the middle table), and

at least two letters in interval /4. We generate the

tables using a straightforward procedure for calculat-

ing distributions across variables. We then eliminate

distributions that violate some timing constraint; the

example diagram, for example, allows the arrow from

the rising transition on b to the rising transition on

c to last 3 steps, but doing so would violate the con-

straints of the edge from the rising transition on b

to the falling transition on c. The tables in Figure 2

contain no row allowing 3 steps in interval/2.

Next, we generate abstract states from the cells
and tables. Each abstract state contains the time

point it corresponds to, a set of transitions to other

abstract states, and a set of labels (which we de-

scribe shortly). We generate a final state (labeled

final) with a self-transition; this corresponds to the

maximal time point. We also generate two abstract
states with transition to the final state for each time

point in the assume portion: one labeled PM for pat-
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Figure 3: The abstract machine for the example timing diagram.

tern mismatches and one labeled CV for constraint

violations; these capture violations of the timing dia-

gram patterns in the assume portion. The generation

method processes the cells in reverse order. For each

cell, we generate a set of states, designating one as the

initial state for the cell, as follows. If there is no table

for the cell, we generate one abstract state with two
transitions: one to itself and one to the initial state

for the cell containing the next time point. If the time

point is in the assume portion, the abstract state also

contains a transition to the pattern-mismatch state

for the corresponding time point.

If there is a table for a cell, we must generate se-

quences of states that count steps in the intervals as

indicated in the tables. Rather than generate these

sequences independently, however, we share states at

the prefixes of the sequences when possible. All se-
quences will share at least one common prefix state;
this is the initial state for the cell. For the exam-

ple timing diagram, all rows for cell {2, 3} require at
least one state in interval 2. Each state contains a

transition to the next state in the sequence; states

in common prefixes may have transitions to multiple

suffixes. In addition, if the last entry in a row is an-

notated with +, the final state in the sequence for

the row contains a self-loop. If the cell is in the as-

sume portion, each state also contains transitions to

the pattern-mismatch and constraint-violation states

for the corresponding time points. Figure 3 shows

the abstract machine corresponding to our example

timing diagram. We have explained the structure of

this machine; we now describe the labels.

Each state corresponding to a time point in the

assume portion receives the label assume. For each

state other than the final, pattern-mismatch, and

constraint-violation states, we add all labels from the

following list for which the state satisfies the indi-
cared constraints relative to the structure of the tran-

sition system; let B be a state at time point Pi:

• start: no other state for time point Pi reaches B;

• end: B reaches no other state for time point Pi;

• ca n: B has successors for time points Pi and Pi+l ;

• cannot: all successors are for time point Pi;

• must: no successor is for time point Pi.

The labels start and end indicate the first and last

states for each corresponding time point; can, cannot,

and must indicate whether a word can, cannot, or

must advance to the next time point from this state.

While some of these labels have overlapping meaning

(all must states are end states, for example), no two
labels are equivalent.

4.2 Generating LTL

This section generates an LTL formula corresponding

to one pass of the timing diagram semantics. Wrap-
ping the formula in LTL operator G yields the invari-

ant formula. The procedure follows the structure of

the abstract machine. There are two steps in gener-

ating the LTL for a given abstract state: generating

the propositional expression that captures the fixed-

level constraints for the state and connecting this ex-

pression with those for other states using temporal
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Figure 4: LTL generated for example timing diagram

operators. The expression for a state is the fixed-

level constraint Ai; if the state is the first or last in

a time point, we conjoin Ai with APi or APi+linit,

respectively. The temporal operators are based on
the transition structure of the abstract machine.

Formally, procedure GenLTL(B) produces the LTL

for abstract state B as follows, where R is the tran-
sition relation of the abstract machine. For abstract

states B without self-loops, GenLTL(B) produces

Ai A Ti A V X(GenLTL(B')).
B'CR(B)

For abstract states B with self loops, GenLTL(B) is

[(Ai A _Ti) tJ (Ai A Ti A V ×(GenLTL(B')))].

B'CR(B)

The Ti's require the expression to match the first

available transition to the next time point. To handle

the assume portion, the algorithm generates LTL for
the restriction of the abstract machine to the assume

portion and forms an implication from this formula to

the LTL for the entire diagram. This follows the in-

tuitive semantics of timing diagrams. Figure 4 shows

the resulting LTL for our running example. The con-

trast between the formula and the original timing dia-

gram motivates designers' frustrations with common
verification notations.

4.3 Generating Biichi Automata

A B/ichi automaton is a tuple (Q, q0, R, L, _') where

Q is a set of states, q0 is the initial state, R C_ Q × Q

is the transition relation, L indicates propositions

that are true in each state, and :r C_ Q is a set
of fair states. The abstract machine resembles a

Biichi automaton; however, it does not capture a

timing diagram because it does not enforce match-

ing the first occurrences of transitions. The Bfichi

automaton states enforce this by examining proposi-

tions APi+linit and APi+I, which indicate when tran-
sitions should occur. These states also refer to the

fixed-level constraint Ai.

Monitoring APi+linit and APi+I implies that an

abstract state can expand into four Bfichi states (Ai
must hold in each; the pattern-mismatch states ac-

count for when Ai does not hold). The number may

be more or less depending on the abstract state's

labels. Regardless of the labels, only a few com-

binations of propositions arise in practice. Table 1

(left) lists templates of the generated Bfichi states.

For each state, we list the propositions that are true
in that state and a set of labels. These labels are

not part of the Biichi automaton; the algorithm uses
them to create transitions between states. The labels

can be divided into two sets, depending upon whether

they contain this; we explain the distinction shortly.

The Bfichi automaton generator converts abstract
state B into Bfichi automaton states bl,...,bm in

two steps. First, it creates the template states indi-

cated in Table 1 (right). Second, it adds the outgoing
transitions for each bk. These outgoing transitions

depend on B's labels and whether bk outputs propo-

sition APi+linit. This proposition matters because

it indicates that bk could recognize the start of the

next time-point. Any transitions from bk to states

outputting proposition APi+I must be to states cor-

responding to the next time-point.



$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

Sll

S12

Propositions Incoming Labels

Ai, APi+linit, APi+ 1 this-tp, this-tp-trans

Ai, _APi+linit, APi+I this-tp, this-tp-trans

Ai, APi+linit, _APi+I this-tp, this-tp-no-trans

Ai, _APi+linit, _APi+I this-tp, this-tp-no-trans

Ai, APi+linit, AN i tp-start

Ai, _APi+linit, APi tp-start

_APi cv-no-trans

Ai, APi cv-trans

_Ai pv-this

_Ai, APi pv-on-trans

_Ai, _APi pv-this-no-trans
final

Type
cannot

cannot

must

must

can

can

CV

PM

final

Start? States

yes $5, So

no S1, $2, $3, $4

yes $5 plus this-tp label

no S1, $3

yes (ex. P0) S1, $2, $3, $4, $5, $6

no or Po S1, $2, $3, $4

&, S8
$9, S10, Sll

S12

Table 1: Tables defining translation of abstract states to Biichi states.

Next

Type Init?

ca n yes

can no

ca n not yes
can not no

must

Outgoing Labels

tp-start, this-tp-no-trans

pv-this-no-trans, pv-on-trans

this-tp pv-this

this-tp-no-trans, pv-this, cv-trans

this-tp, pv-this, cv-trans

tp-start, pv-on-trans, cv-no-trans

Table 2: Determining transitions between states.

More specifically, we connect the transitions for bk,
generated from abstract state B, according to the fol-

lowing algorithm: Let Cl,...,cn be the states that

expand all successors of B in the abstract machine.

Let hk be the set of labels for bk according to Ta-

ble 2. For each cj, add a transition from bk to cj iff

cj comes from the same (resp. a different) time point

as bk and the incoming labels for cj contain some
this (resp. non-this label) label from hk. The fair
states consist of the state labeled final and all states

expanding abstract states labeled assume.

As an example, let B be the rightmost abstract

state for time point 4 from Figure 3. The following

diagram shows the expansion. The four states in the

dashed box correspond to B. Table 1 (right) tells
us to create these states because B matches the sec-

ond can line. State $5 expands the abstract state for

time point 5; we include it to illustrate the transition

connection procedure.

G=-- Sl -_i

(.._4 _---- SL_ ',
................ J

Tables 1 and 2 determine the outgoing transitions
for each state in the dashed box. For example, $3
matches the first row in Table 2 because B has label

can and $3 outputs APi+lini t. Thus, it needs a tran-

sition to each state in the dashed box with incoming

label this-tp-no-trans (states $3 and $4 by Table 1

(left)) and each state outside the box with label tp-

start (state $5). We ignore the pv labels since there

are no PM states for time points 4 or 5. A similar

process yields the transitions for the remaining states.

Having presented algorithms for translating timing

diagrams to both LTL formulas and Biichi automata,
we need to check whether the derived formulas and

automata correspond on a logical level. Given a tim-
ing diagram D, let DLTL and DBA be the formula

and automaton derived for D, respectively. We have

proven that L;(DBA) models DLTL according to LTL's

semantics. As a sanity check on this result, we con-

structed an LTL formula capturing the structure of

DBA and compared it to DLTL using an LTL equiv-

alence checker [10]. These formulas are equivalent



for a largetest suiteof timingdiagrams,including
thoseusedin ourexperiments.Thus,wehavehigh
confidencein thecorrectnessofourtranslations.

5 Experimental Results

This section compares our DBA automata to those

derived from DLTL using an existing LTL-to-Biichi

translation algorithm [2] with respect to their num-

bers of states. We do not report running times be-

cause the algorithms have been implemented in dif-

ferent paradigms, which reduces the value of such

figures; in practice, the direct translations were sub-

stantially faster than the LTL-based translations. We

report two groups of experiments. In the first, we

generate automata for one pass of the timing diagram
semantics. In the second, we generate automata for

the negation of timing diagrams when treated as an

invariant. The latter is required to model check tim-

ing diagrams using an automata-theoretic approach.

When comparing how each approach scales with re-

spect to a given timing diagram, there are two classes
of parameters to consider: the values of the lower and

upper time bounds on the edges and the size of the as-

sume portion. While the bounds certainly affect the

size of the resulting automata, we conjecture that the
size of the assume portion will be more significant.

Consider the structure of DLTL. As Figure 4 shows,

the subexpression for the assume portion appears on

both sides of the implication in the LTL formula.

LTL-to-Biichi algorithms normalize formulas before

translation: the normalization process will destroy

the similarities between the two copies of the assume

portion. Our timing diagram to automaton algo-

rithm, in contrast, translates the assume portion only

once. Our experiments use Daniele, Giunchiglia, and

Vardi's LTL-to-Biichi algorithm, which yields more

compact automata than other algorithms [2].

5.1 Accepting Timing Diagrams

As an initial experiment, consider a very simple dia-

gram with an empty (trivial) assume portion. The

table shows the number of states in the DBA au-

tomaton (column "DBA") and the number of states

obtained compiling DLTL to an automaton (column

"via DLTL"). The first two columns vary the bounds.

Each automaton sees constant growth with respect to

increases in the time bounds. This supports our hy-

pothesis that the magnitude of the bounds does not

yield significant differences between the two trans-

lation algorithms. Similar experiments on diagrams
with more transitions show similar results: while the

magnitude of the constant difference between the two

machines increases slightly on these examples, the
differences are still small constants when the assume

portion is empty.

l u DBA via DLTL

1 1 7 9

2 2 10 12

3 3 14 16

4 4 18 20

1 oc 12 17

2 oc 12 16

3 oc 16 20

4 oc 20 24

The picture changes dramatically as the assume

portion grows beyond one transition. Consider a di-

agram with four transitions, as shown below. Each

group of three experiments uses the same bounds and

varies the assume portion size. The difference be-

tween assume portion sizes of one and two is substan-

tial in each group. Furthermore, as the bounds in the

assume portion grow, this difference appears to grow

exponentially. Growth of each automaton still ap-
pears constant across experiments with the same as-

sume portion size and varying bounds. This supports

our hypothesis that the size of the assume portion is
more important than the size of the bounds. The size

of the bounds appear to matter more in the assume

portion than in the non-assume portion. This makes

sense, as the LTL-to-Biichi algorithm negates the as-

sume portion to construct the automaton. This nega-

tion creates many disjunctions, which lead to branch-

ing and extra states in the LTL-to-Biichi translation.

The larger the bounds, the more disjunctions result

from the assume portion.



a_[ll,ul]
b _[12,u2]
c )_13,u3]
d _/

ll Ul 12 U2 13 U3 Split DBA DLTL
1 1 1 1 1 1 0 9 9

1 1 1 1 1 1 1 11 25

1 1 1 1 1 1 2 12 119

1 1 2 2 2 2 0 15 13

1 1 2 2 2 2 1 17 29

1 1 2 2 2 2 2 18 123

1 1 3 3 3 3 0 23 19

1 1 3 3 3 3 1 25 35

1 1 3 3 3 3 2 26 129

2 2 1 1 1 1 0 12 11

2 2 1 1 1 1 1 14 27

2 2 1 1 1 1 2 16 319

2 2 2 2 2 2 0 18 15

2 2 2 2 2 2 1 20 31

2 2 2 2 2 2 2 22 323

3 3 1 1 1 1 0 16 14

3 3 1 1 1 1 1 18 30

3 3 1 1 1 1 2 20 666

The LTL-to-Biichi approach produces smaller au-

tomata than our approach in some cases when the

assume portion is empty. We believe this is due to

a slight difference in how we handle relationships be-

tween the symbolic propositions (Ai, etc) in the two
algorithms that would favor the LTL-based approach.

5.2 Rejecting Timing Diagrams

Model checkers require an automaton accepting the

negation of a property. Even though we cannot draw

the negation of a timing diagram as a timing dia-
gram, we can still produce an automaton that ac-

cepts all words that fail to satisfy the timing diagram.

This section compares these automata to those ob-

tained for the expression _GDLTL. We present two

tables: the first summarizes experiments on the sin-

gle transition diagram from the previous section and

the second summarizes experiments on the two tran-

sition diagram. As an experiment in how the place-

ment of temporal operators affects the construction

of automata from LTL formulas, the first table in-

cludes an additional column, "Distrib', for which we

distributed all X operations in DLTL formula over

boolean operators before compiling to an automaton.

l u Split DBA

1 1 0 7

2 2 0 10

3 3 0 14

4 4 0 18

5 5 0 22

1 oc 0 12

2 oc 0 12

3 oc 0 16

1 8 0 34

2 8 0 34

3 8 0 34

1 1 1 9

2 2 1 12

3 3 1 16

1 c_ 1 14

2 oc 1 14

via DLTL Distrib
112 199

310 588

654 1506

1307 3077

2613 6153

295 295

382 772

7O5 1596

14599 24926

14632 25055

14728 25461

117 210

315 599

659 1519

300 300

387 781

ll Ul 12 u2 Split DBA via DLTL
1 1 1 1 0 8 650

2 2 2 2 0 14 5372

3 3 3 3 0 22 24174

1 OC 1 OC 0 18 4999

2 OC 1 OC 0 18 6369

2 c_ 2 c_ 0 18 8286

1 1 1 1 1 10 655

1 1 1 1 2 11 658

1 c_ 1 c_ 1 20 5004

In these tables, the difference between the two algo-
rithms is striking. The direct translation still shows

linear growth as we vary the bounds under a trivial

assume portion. For the first section of the first table,

the LTL-based algorithm shows exponential growth.
The difference between zero and one transitions in the

assume portion is not significant for either algorithm

in the first table. Unfortunately, we were unable to



generatetheLTL-basedautomatafor largerconfigu-
rationsthanthoseshownwithinareasonableamount
of time (severalhoursperconstruction).However,
theexistingresultsaresuitlcientto demonstratethe
drawbacksof theLTLapproachto compilingtiming
diagramsintoautomata.

6 Discussion

The data in Section 5 suggest clear differences be-

tween our two approaches for compiling timing dia-

grams into Biichi automata. These differences could
be due to the LTL-to-Biichi automaton translation,

to our timing diagram to LTL translation, or to some
property of timing diagrams that provides an inher-

ent advantage over LTL.

LTL-to-Biichi algorithms are not canonical, in that

they may produce different automata for logically

equivalent LTL formulas; the Distrib experiments in

the previous section show this. The Daniele et al.

algorithm produces smaller automata than other al-

gorithms because it uses some simple syntactic op-

timization techniques on propositional formulas [2].

More work should be done in this area; our timing

diagrams research has yielded several formulas where

simple manual transformations yielded much smaller
automata from the Daniele et al. algorithm. Algo-

rithms which perform optimizations across temporal

operators are also needed, as our experiments show.

Currently, no known metrics indicate when one

LTL formula will yield a smaller automaton than

another. Therefore, it is possible that a different

translation from timing diagrams to LTL would yield

smaller automata. For several timing diagrams, we

have tried to manually construct LTL formulas that

yield our DBA automata. We have been successful

on occasion by translating the structure of DBA into

LTL. We are still working on such a translation pro-
cedure that acts as a fixpoint over Biichi automata,

as a means of understanding the LTL-to-Biichi algo-

rithms better. However, this approach is clearly re-

dundant in practice, as it requires the construction of

DBA. We continue to experiment with other timing

diagram to LTL translation algorithms, particularly

ones which enable sharing of the assume portion.

This project is part of a larger investigation into

whether timing diagrams offer any computational

benefits over existing logics (including LTL) in veri-

fication contexts [4]. We have identified several dif-

ferences between the two notations. Full timing di-

agrams and LTL have incomparable expressive pow-

ers [5] (this paper uses only a subset of timing di-

agrams). Timing diagrams enable sharing of com-

mon subexpressions to a greater extent than LTL.

The LTL formula in Figure 4, for example, dupli-

cares subexpressions across its disjuncts; these ex-

pressions correspond to entire suitlxes of the timing

diagram. LTL does not appear to provide a way to

avoid this duplication. However, it is not yet clear
whether these duplicated expressions contribute to

the explosion in the generated Biichi automata.

The most interesting distinction that we've discov-

ered between timing diagrams and LTL arises from

the structure of the Biichi automata corresponding to

each notation. Our timing diagram to Biichi trans-

lation always produces a particular structure of au-

tomaton known as a weak automaton [11]. An au-
tomaton with states Q and fair set jr is weak if there

exists a partition of Q into disjoint sets QI,..., Qn

such that (1) each Qi is either contained in jr or is

disjoint from it, and (2) the Qi's are partially ordered

so that there is no transition from Qi to Qj unless

Qi __ Qj. Weak automata have several attractive

features in the context of verification [11]; for exam-
ple, symbolic cycle detection is effectively linear in

weak automata, whereas existing algorithms for the

general case are quadratic [6].

Another feature of weak automata is important to

our study of timing diagrams: complementation of

weak automata requires only complementation of the
fair set jr; the structure of an automaton and its

complement are otherwise identical. In Section 5, we

explored translations of timing diagrams and their

negations to Biichi automata. Our direct translation

produces the same size automaton for a given timing

diagram under each experiment because we exploit

this feature of weak automata. 3 LTL-to-Biichi algo-

rithms do not currently consider weak automata; this

is an open problem as many LTL formulas do not cor-

3We require one extra transition to handle the invariant.



respondto weakautomata.WhenweuseLTLasan [5]
intermediatelanguage,the Biichiautomatafor the
negatedtimingdiagramsaremuchlargerthanin the
non-negatedcase.This is partlydueto the struc-
ture of theLTL formulascorrespondingto timing [6]
diagrams.As Figure4 shows,LTL formulascorre-
spondingto timingdiagramsinvolvedisjunctionsof
longsequencesof conjunctionsandtemporalopera- [7]
tors.Thenegationofsuchaformulacontainsmany
moredisjunctionsthantheoriginalformula.Disjunc-
tionsforcebranchingandextrastatesin Biichiau-
tomata. It is thereforenotsurprisingthat the au-
tomataforthenegatedtimingdiagramsaresomuch
largerthanthosefortheone-passtimingdiagrams. [8]

In summary,manyfactorsinfluencethesizeofthe
automataobtainedwhentreatingtimingdiagrams
asaninterfaceto LTL.Thesefactorssuggestahost
of researchproblemsin verification.Wefully ex-
pectthat improvedLTL-to-Biichialgorithmswould [9]
reducethesizesofautomatageneratedin ourexper-
iments.Until researchersdevelopsuchalgorithms,
however,directcompilationof timingdiagramsto
Biichiautomataappearsa betterapproachfor veri-
ficationapplications.
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Abstract

This paper introduces the use of abstraction

relationships for timed automata. Abstrac-

tion relations make it possible to determine

when one specification implements another,

i.e. when they have the same set of corn-

putations. The approach taken here permits

the hiding of internal events and takes into

account the timed behavior of the specifica-

tion. A new representation of the semantics

of a specification is introduced. This repre-

sentation, rain-max automata is more corn-

pact than other types of finite state automata

typically used to represent real-time systems,

and can be used to define a variety of abstrac-

tion relationships.

1 Introduction

This paper describes the use of rain-max au-

tomata to specify the behavior of real-time

systems compactly. Originally developed [2]

as an alternative representation of timed be-

havior for the Modechart language[12], in

order to support the evaluation of abstrac-

tion relationships between Modechart spec-

ifications, min-max automata are a general

construct for representing the behavior of

timed systems. Min-max automata are a

more general form of automata than the

computation graphs originally developed for

Modechart[27], but are more compact than

other types of automata which represent the

passage of each unit of time as a distinct edge.

Thus, min-max automata are more suitable

for model-checking and automated evalua-

tion of abstraction relationships between au-

tomata.

Abstraction and refinement relationships

permit the evaluation of whether one speci-

fication can replace another. When can one

specification replace another? What does it

mean for two specifications to have the same

behavior or for one specification to have more

general behavior? Abstraction permits the

substitution of module with a simpler im-

plementation for one that is more complex.

In abstraction, modules can be simplified by

hiding internal details or by simplifying tim-

ing constraints.

There are several important uses for ab-

straction relations. This work was primar-

ily motivated by the desire to ameliorate the

state-space explosion problem which arises in

mechanical model-checking. If one specifi-

cation is an abstraction of another (i.e. it

has more general behavior), then all behav-



iors of original are behaviorsof the abstrac-
tion. Therefore, it may be advantageous

to mechanically verify the abstraction rather

than the original specification, should it have

a more compact representation. Frequently,

abstractions are created in an ad hoc man-

ner in order to perform model checking. This

research provides a formal basis for creating

and using abstractions for real-time specifica-
tions.

Two other scenarios for using abstraction

relations merit discussion. First, abstractions

may be applied as part of a "top-down" de-

velopment procedure. First, a very general

specification of a real-time system may be

defined. Then, a series of refinements may

add increasing detail, resulting in specifica-

tions which are more operational. If this se-

quence of refinements is designed while main-

taining an abstraction relation at each step,

then properties which have been verified at

In particular, for real-time systems, the

process of refinement might include the spec-

ification of tighter and tighter timing bounds

as assumptions about the environment of a

system are refined, the previous step will hold

for each refinement step.

The last scenario involves showing an ab-

straction relationship between two specifica-

tions where one represents an implementation

and the other represents the properties which

must hold. In this case, instead of performing

model-checking, one shows that a property,

described as a specification, holds for the im-

plementation.

Because of the timed behavior of Mod-

echart specification, it is not possible to use

the standard notion of program equivalence

used to relate untimed concurrent programs

[23]. The usual approach relies on the repre-

sentation of the system as a labeled transition

system. The original behavior representation

of a Modechart specification [27], a compu-

tation graph, is a type of labeled transition

system which captures the untimed behavior

of a Modechart specification. Timing infor-

mation is described in associated separation

graphs. As a consequence it is not possible

to define abstraction relationships directly for

computation graphs.

The approach taken here is to represent all

timing constraints explicitly in the labeled

transition system. Then, the simulation re-

lationships described in the literature can be

directly applied. A new type of labeled tran-

sition system, rain-max timed automata, are

introduced. Each edge in the automata rep-

resents either the passage of time or a dis-

crete system event which takes no time. Min-

max automata represent elapsed time with

time-passage edges which specify the mini-

mum and maximum amount of time which

can elapse between two discrete events.

The rest of this paper is organized as fol-
lows: Section 2 introduces both discrete-

timed automata and min-max automata.

Section 3 describes the extensions to the

usual definitions for a move in an automata

necessary to define abstraction and simula-

tion relationships. Section 4 defines bisim-

ulation and trace inclusion relationships for

min-max automata. Conclusions and future

work are found in Section 5.

2 Definition of Min-Max

Automata

This research is motivated by two goals.

First is the ability to mechanically evaluate

abstraction relationships between automata

representing timed systems. Second is achiev-

ing a compact representation of timed sys-

tems. These goals are achieved by the use of



min-max automata in which eachtime pas-
sageedgedenotesa range of possible times

elapsed. This results in a more compact rep-

resentation than other approaches because

multiple paths can be collapsed into one.

However, because each path in the min-

max automata can potentially represent more

than one timed execution of a system, the

usual notions of bisimulation and abstraction

relations cannot be directly applied.

Definition 2.1. A min-max automata, A is

defined as the tuple

< states(A), initial(A), actions(A), next(A)

where

• The initial states, initial(A) C_

states(A),

• The actions of A, actions(A), is the

union of the the sets external(A) and

{r} and times(A) = {(rnin, rnax) •

. in,. ax • {z+uoo} and . in _<. ax}
where r is called the internal action and

times(A) are time-passage actions, and

• The next-state relation, next(A) is a

subset of states(A) × actions × states(A).

Min-max automata, like discrete timed au-

tomata, are examples of Lynch's [22] untimed

automata. And like discrete-timed automata,

the time-passage actions can be used to assign

occurrence times to external events in a trace

to form a computation.

r is distinguished as the internal action of
A. It is considered to be invisible outside of

A. If cr is a sequence of actions in actions(A),

then _ is the same sequence with all r actions

removed, and cr is the sequence with the time

actions (elements of times(A)) removed.

If (s,a,s') C next(A), then the notation
a s_s _ may be used to indicate this. If there

is a sequence, cr for which there are states

So, sl, s2,.., s_, such that for all i, si Z2+ si+l,

cr is called a finite execution fragment of A,

and one can write So ----+ s_. For an infi-

nite sequence, the notation So _ is used. A

move of A, indicated by s _ s', occurs if

s _+ s' and 7 = &- Thus, a move ignores

internal actions.

If So is an initial state of A, then cr is an

execution of A. The sets, execs*(A), execs _,

and execs(A) indicate the sets of finite, infi-

nite, and executions of A. If the time pas-

sage actions are removed, (or), the result-

ing sets are the untimed finite, untimed in-

t_nite, and untimed executions of A, de-

noted execsb(A),execs_, and execsv(A). If

the internal action is removed from an ex-

ecution of A, _ = #, the resulting se-

quence is called a trace of A. The sets of

traces of A are traccs*(A),traccs'(A), and

traces(A) for the finite, infinite, and all traces

of A. The corresponding untimed traces,

tracc@(A), tracc@(A), and traccsu(A) are

also defined, for the corresponding .7.

The actions in the set external(A) repre-

sent the discrete, externally visible actions of

the system. In the context of Modechart,

these could represent mode entry, mode exit,

and mode transition events which are visi-

ble on the interface of a Modechart module.

The symbol r is used to represent internal

events which can not be observed externally.

Both external(A) and r events occur instan-

taneously. The set external(A)U{r} is called

discrete(A).

The time passage actions represent the

passage of an amount of time between the

values of rnin and max. When they oc-

cur in an execution, they represent time

elapsing between the instantaneous exter-
nal and r events. The values of a time-

passage edge, c, are indicated by rnin(c) and

max(e). A timed event sequence is a se-



quence5 = do, dl,d2,.., with di = (ai,ti) C

discrete(A) × Z ÷ and ti increasing. If the

timed event sequence corresponds to some ex-

ecution cT of A such that for every di C 5, if

ai = crk then ti >_ _ 0_<j<k rnin(crj) and
c_j Etimes(a)

ti < 2 o<_j<k rnax(crj) if rnaxj ¢ oo for
o'j crimes(a)

all j. If rnaxj = oo for any j, then only the
lower bound restriction holds, then 5 is called

a timed execution of A. It can be observed

that 5 assigns times to the discrete events in

cr in a way that is consistent with the time

passage events in or. If the timed event se-

quence corresponds to a trace of A it is called

a timed computation, comps(A) indicates the

set of timed computations of A.

l, Q

01 0l(3,5)

1 1

(1,2)

a

20 2(

3(

40

(2,3)

Figure 1: Complications in matching time

passage edges in a min-max automata

3 Issues in Defining Ab-

straction Relations for

Min-Max Automata

Direct application of the definitions for ab-

straction relations described in the litera-

ture is problematic, since each path through

a min-max automata represents more than

one (timed) computation. As a consequence,

soundness and completeness results which

hold for the ordinary definitions of abstrac-

tion relationships (e.g. bisimulation) will

hold for traces of min-max automata, but not

necessarily for computations.

Moreover, time-passage edges have some

properties which cause unexpected results

when the ordinary abstraction relations are

applied directly using the usual definition of

a move. The definition of a move is relaxed,

leading to more powerful abstraction rela-

tions.

Example 3.1. Consider the min-max au-

tomata P and Q, depicted in Figure 1.

The ordinary definition of a move will not

permit the sequence 0 -----+p 1, 1 -----+p 2, to

be matched to 0 ==_ 4 in Q, for any of the

abstraction relations described. Yet, the two

systems describe the same set of timed com-

putations and have very similar structure.

It should be possible to extend the def-

inition of a move to permit a single time-

passage edge to be matched with an appro-

priate sequence of time-passage edges in the

abstraction such that a time passage edge on

(rn, n) could be matched by a sequence of

time passage edges whose minimums sum to

rn and whose maximums sum to n. How-

ever, the definitions of abstraction relation-

ships described in the literature match a sin-

gle edge to a move. That is, if a min-max

automata has an edge with action (1, 2) fol-

lowed by (2, 3), while it can be said that the

automata moves on (3, 5), what move should

each of (1,2) and (3,5) be matched to in the
abstraction automata?

Other approaches (discrete-timed

automata[3] and [22] for example) ad-



dress this problem by filling in all the
possible time passageedges. In this case,
if there were an edge (3,5) in a min-max
automata betweenpoints s and s', then there
would haveto be every possiblesequenceof
edgesbetweens and s' suchthat the sumof
the minimum times was 3 and the sum of
the maximum times was 5. However, this
defeats the purpose of min-max automata
which is to provideafinite andmorecompact
representationof a system,by usingmin-max
time passageedges.

Instead, the problem is addressedby defin-
ing a canonical representation for a sys-
tem. The canonicalrepresentationcombines
all sequencesof time-passageedgesand re-
placesthem with new edgescorresponding
to a move. In the example, the sequence
(1,2),(2,3) would be replaced by a single
time-passageedge(3,5). The abstraction re-
lations are then definedon the canonicalrep-
resentation. A canonical representation of a

min-max automata, A, denoted can(A), is de-

fined by computing the closure of a min-max

automata with regard to the time-passage

edges and deleting all but the maximal length

edges.

A consequence of computing the canoni-

cal representation of a min-max automata is

that some points are left unreachable. Since

the canonical representation represents the

same set of timed computations as the orig-

inal min-max automata, this is of no conse-

quence. However, the definitions of the simu-

lation relationships must be adjusted to take

this into account. The unreachable points are

not required to be included in the simulation

relations.

Definition 3.1. A point s in a min-max au-

tomata is reachable if there is a sequence cr

such that So ---+ s, where So is an initial point

of the automata. The set of reachable points

of an automata A is denoted reachable(A).

The abstraction relations will be defined al-

most identically as in the literature. However,

only reachable points will be included and the

canonical representation of the min-max au-

tomata will be used. This will address the

anomaly from Example 3.1.

A second issue is described in Example 3.2.

p Q

01 0l(3,5)

1 1

(1,10)

a

20 20

Figure 2: Rationale for a relaxed-time move

in a min-max automata

Example 3.2. Consider min-max automata

P and Q, depicted in Figure 2.

Then corrzps(P) C corrzps(Q), but there is

no abstraction relationship between P and

Q. If the individual computations were rep-

resented on separate paths as they are for

discrete-timed automata, then an abstraction
relation would exist.

This problem is avoided by extending the

definition of a move, to permit time-passage

edges to be matched to time-passage edges

which are inclusive of the times represented

by the original edge. That is, a time-passage

edge (rrz, n) will be matched to a time-passage

edge (rrz', n') if rrz' _< rrz and n _< n'.

First, a time-relazed step, relaxes the tim-

ing requirements of a time-passage edge.

Definition 3.2. If s (2:_ s', and rrz' _< rrz

and n _< n', then s (m_,e) s'



Next, the definition of a moveis expanded
to accommodatetime-relaxed steps.

Definition 3.3. A time-relaxed move of A,

indicated by So _-_ s_, occurs if 7 = _ where

cr is a sequence of states, So, sl, s2,.., s_, such

that for all i, si _ si+l or si _2_ si+l.

By substituting time-relaxed moves for or-

dinary moves in the definitions of the abstrac-

tion relations, the anomaly described in Ex-

ample 3.2 is avoided. It is now possible to
define abstraction relations for min-max au-

tomata.

4 Abstraction Relations

for Min-Max Automata

This paper now considers the issues of when

one specification is an abstraction (or imple-

ments) another specification. Trace inclusion

or trace equivalence has been widely used

to describe when one system implements an-

other [21, 22]. The terms simulation [21],

homomorphism [18], and refinement mapping

[1] have all been used to reduce the problem

of showing trace inclusion to proving some-

thing about transitions in some kind of au-

tomata. Thus, only a local property needs to

be demonstrated. All of these techniques re-

late systems in terms of the timed behavior

of visible events. In each case, the behavior
of internal events is hidden. This section de-

scribes several such relationships in the con-

text of discrete-timed automata.

4.1 Bisimulation and Forward

Simulation

is called bisimulation [25]. Bisimulation in-

volves finding a relation on the states of two

systems such that two states being bisimi-

lar means that each state has an edge to a

state so that the resulting states are bisim-

ilar. This approach can be relaxed (called

weak bisimulation) so that an edge in each

system is matched by a move (including in-

ternal events) so that the resulting states are
bisimilar. Bisimulation is a rather conser-

vative notion of system equivalence, as it is

sound but not complete, but it is widely used

especially in process algebras [24].

In order to hide internal events, a sequence

of steps, or a move is more relevant to the

question of whether two automata similarly.

A move, as defined above, is a subpath be-

tween two points where no intervening events

are externally visible. A weak bisimulation

[25] relaxes the requirement that the two sys-

tems proceed in lockstep. Rather, it is only

necessary that an edge between two points

correspond to a move between two points.

Definition 4.1. For min-max automata,

P and Q, _' C _'cachabl4can(P))×

reachable(can(Q)), is a weak bisimula-

tion, if

• for all p 6 initial(P), there is some q,

such that (p,q) C r and q C initial(Q),

• for all q 6 initial(Q), there is some p,

such that (p, q) C r and p C initial(P),

• ifV(p,q) Cr:

- ifp _ p_ then 3q _ • q--% q_ and

(p', q') 6 r, and

- ifq _ q_ then 3p _ • p--% p_ and

(/, q') c

One common technique for showing that Informally, this states that two points are

two systems are observationally equivalent bisimilar if any edge from one of the points



canbe matchedby the other point making a
moveon the sameeventand reachinga point
that is weakly bisimilar to the point reached
from the first point. Sinceweakbisimulations
areclosedunder union, it canbe shownthat
there is a largest weakbisimulation, denoted
_, for any pair of computation graphsfor a
givenset of observableevents.

The following theorem establishes the
soundnessof bisimulation.

Definition 4.2. The notation comps(P) =

comps(Q) indicates comps(P) C_ comps(Q)

and co. p (Q) c_

Theorem 4.1. P _ Q _ comps(P) =

Pro@ Similar to the proof for ordinary timed

automata found in the literature [22]. The

proof is in [2], which shows that the exten-
sions to the definition of a move do not violate

the conditions of the usual proof. []

Bisimulation is not complete. That is,

there are systems which have the same set

of timed traces, but which are not bisimilar.

This is because bisimulation captures some

aspects of system structure. Each point must

be bisimilar to a point in the other system

which permits actions which move to points

which are bisimilar to those which can oc-

cur in the original specification. As a con-

sequence, bisimulation distinguishes with re-

gard to the state of the system as well as the

sequence of actions or events.

[9, 11, 15], and possibilities mappings [20].

Because the restriction is in one direction,
a forward simulation shows trace inclusion

rather than trace equivalence.

In practice, this approach is desirable. Of-

ten a general purpose specification will be de-

signed as well as an implementation or oper-

ational specification which has a narrower set

of behaviors. It is not necessary for the im-

plementation to have the full set of behaviors

as the specifications. Alternatively, perhaps a

simplification can be made to a specification

which reduces the size of the computation

graph, but which admits a larger set of be-

haviors. If the a trace inclusion relationship

holds between the two systems, then it may

be possible to model-check the simpler system

and apply the results to the more complicated

system.

Definition 4.3. For min-max automata,

forward simulation from P to Q is a

relation f over reachable(can(P)) and

reachable(can(Q)) a forward simulation if:

• for all p ¢ initial(P), there is some q,

such that (p,q) C f and q C initial(Q),

• if V(p,q) C f and all c C actions(P),

p _+ p' then 3q' • q _ q' and (p',q') C

f.

Lynch [21] shows that forward simula-

tions are a pre-order (i.e. they are reflexive

and transitive). Soundness follows from the
soundness of bisimulations.

4.2 Forward Simulations

If the definition of bisimulation is modified to

apply in only one direction, the result is called

a forward simulation [21]. Forward simula-

tions are also related to simulations [28, 13],

history measures [17], downward simulations

4.3 Forward-Backward Simula-

tions

Forward-Backward simulations were also de-

scribed by Lynch and are similar to the in-

variants and ND-measures of [16, 17] as well



assubsetsimulations [14], and simplefailure
simulations [7]. They are lessrestrictive than
forward simulations. Perhaps,most notewor-
thy is that they are completefor trace inclu-
sion. However,sincea singletrace of a min-
max automata can representmore than one
timed computation, forward-backwardsimu-
lations are not completefor timed computa-
tions.

Definition 4.4. For min-max automata,
forward-backward simulation from P to Q

is a relation fb over reachable(can(A)) and

N(reachable(can(B))) 1 such that:

• for all p ¢ initial(P), there is some

set A, such that (p,A) ¢ fb and A C_

initial(Q),

• if p _+ p' and (p,A) • fb, then there

exists a set A' such that (p',A') • fb

such that for every q' • A' there is some

q • J such that q-& q'.

Then, comps(P) = comps(Q) but it is not

the case that P _<FB Q, because there is no

match for the time-passage edge, (3, 5).

Therefore, further research is required to

find an abstraction relation which is complete

for computations of min-max automata.

4.4 Homomorphisms and Re-

finements

Homomorphisms [8, 18] and refinement map-

pings [1, 19, 21], are more restrictive than

forward simulations, because they require a

function from states(P) to states(Q)rather

than a relation.

Definition 4.5. For min-max au-

tomata, P and Q, a function f between

reachable(can(P)) and reachable(can(Q)),

is a refinement if:

1, Q

O

(3,5)

Figure 3: Completeness Problem for Min-

Max Automata

Example 4.1. To understand why forward-

backward simulations are not complete for

min-max automata, consider min-max au-

tomata, P and Q, depicted in Figure 3.

1For a set X, N(X) indicates the set of non-empty
subsets of X.

• for all p • initial(P), f(p) • initial(Q),

• if for all e • actions(P) p _ p' then

f(p) -,_ f(p')

The proof of soundness for forward simula-

tions, forward-backward simulations, and re-

finements is similar to that for bisimulations.

Another interesting type of relationship be-
tween two automata is failures inclusion or

equivalence, developed by Hoare [4, 10]. An

alternative characterization, given by Hen-

nessy and de Nicola [6], is called testing

equivalence in which equivalent automata

pass or fail the same set of tests. Testing and

failures relationships cannot be characterized

by matching an edge in one automata with

some kind of move in another automata and

so are not discussed in this paper.



5 Conclusions and Future

Work

Science, The University of Michigan,

1999.

[3]This paper has introduced rain-max au-

tomata which are a compact form of timed

automata suitable for mechanical evaluation

of simulation and abstraction relationships.
Extensions to the definition of a move nec-

essary to support simulation and abstraction

relationships were defined and several types [4]

of equivalence and abstraction/simulation re-

lationships were described in the context of

min-max automata. Related research efforts

extend these ideas by describing automatic

generation of abstractions [2]. [5]

Future work involves integration of min-

max automata into existing software tools

to automatically generate min-max automata

for Modechart specifications and to automat-

ically check for the simulation and abstrac-

tion relationships defined in this paper. The [6]

Modechart Toolset [5, 26] provides a graphi-

cal interface for editing, consistency-checking,

simulation, and verification of real-time spec-

ifications in the Modechart Language. This [7]
will permit evaluation of the techniques on

real-world examples. Future work is also re-

quired to define an abstraction relationship

which is complete for trace inclusion of min-

max automata.

References

M. Abadi and L. Lamport. The exis-

tence of refinement mappings. Theoret-

ical Computer Science, 82(2):253 281,

1991.

[1]

M. Brockmeyer. Monitoring, Testing,

and Abstractions of Real-Time Specifi-

cations. PhD thesis, The Department

of Electrical Engineering and Computer

[2]

[8]

[9]

[10]

M. Brockmeyer. Using modechart mod-

ules for testing formal specifications.

In Proceedings of the High Assurance

Systems Engineering Workshop. IEEE,

1999.

S. D. Brookes, C. A. R. Hoare, and A. W.

Roscoe. A theory of communicating se-

quential processes. Journal of ACM,

pages 560 599, 1984.

P. C. Clements, C. L. Heitmeyer, B. G.

Labaw, and A. T. Rose. MT: A toolset

for specifying and analyzing real-time

systems. In Proc. IEEE Real-Time Sys-

tems Symposium, December 1993.

R. de Nicola and M. C. Hennessy. Test-

ing equivalences for processes. Journal

of Theoretical Computer Science, pages

83 133, 1983.

R. Gerth. Foundations of composi-

tional program refinement. In Proceed-

ings REX Workshop on stcpwisc refine-

rncnt in distributed systems: Models,

Formalism, Correctness, Lecture Notes

in Computer Science, volume 430, pages

777 808, 1987.

A. Ginzburg. Algebraic Theory of Au-

tomata. Academic Press, 1968.

J. He. Process simulation and refinment.

Journal of Formal Aspects of Computing

Science, 1:229 241, 1989.

C. A. R. Hoare. Communicating Sequen-

tial Processes. Prentice-Hall, Englewood

Cliffs, N J, 1985.



[11] C. A. R. Hoare, J. He, and J. W. [20]
Sanders.Prespecificationin data refine-
ment. Information Processing Letters,

25:71 76, 1987.

[12] F. Jahanian and A. K. Mok. Mod-

echart: A specification language for real-

time systems. IEEE Trans. Software En- [21]

gineering, 20(10), 1994.

[13]B. Jonsson. Co,,positional Yeri cation
of Distributed Systems. PhD thesis, Up-

scala University, 1987. [22]

[14] B. Jonsson. Simulations between speci-

fications of distributed systems. In Pro-

cccdings Concur '91, Lecture Notes in

Computer Science, volume 527, pages [23]

347 360. Springer-Verlag, 1991.

[15] M. B. Josephs. A state-based approach

to distributed processing. Distributed [24]

Computing, 3:9 18, 1988.

[16] N. Klarlund and F. Schneider. Verifying [25]

safety properties using infinite state au-

tomata. Technical Report 89-1039, De-

partment of Computer Science, Cornell

University, 1987. [26]

[17] N. Klarlund and F. Schneider. Prov-

ing non-deterministically specified

safety properties using progress mea-

sures. Information and Computation,

171(1):151 170, November 1993.
[27]

[18] R.P. Kurshan. Computer-Aided Verifi-

cation of Coordinating Processes: The

Automata-theoretic Approach. Princton

University Press, 1994.
[28]

[19] L. Lamport. Specifying concurrent

program modules. A CM Transactions

on Programming Languages, 5:190 222,

1983.

N. Lynch. Multivalued possibilities map-

pings. In Proceedings REX Workshop on

stcpwisc refinement in distributed sys-

terns: Models, Formalism, Correctness,

Lecture Notes in Computer Science, vol-

ume 430, pages 519 543, 1987.

N. Lynch and F. Vaandrager. Forward

and backward simulations part i: Un-

timed systems. Information and Compu-

tation, 121(2):214 233, September 1995.

N. Lynch and F. Vaandrager. For-

ward and backward simulations part

ii: Timing-based systems. Information

and Computation, 128(1):1 25, 1996.

Z. Manna and A. Pnueli. The Temporal

Logic of Reactive and Concurrent Sys-

tems. Springer-Verlag, 1992.

R. Milner. Communication and Concur-

rcncy. Prentice-Hall, 1989.

D. Park. Concurrency and automata

on infinite sequences. Lecture Notes in

Computer Science, 104, 1980.

A. Rose, M. Perez, and P. Clements.

Modechart toolset user's guide. Tech-

nical Report NRL/MRL/5540-94-7427,

Center for Computer High Assurance

Systems, Naval Research Laboratory,

Washington, D.C., February 1994.

D. Stuart. Implementing a verifier for

real-time systems. In Real- Time Systems

Symposium, pages 62 71, Orlando, FL,

December 1990.

R. J. van Glabbeek. Comparative Con-

currency Semantics and Refinement of

Actions. PhD thesis, Free University,

The Netherlands, 1990.



Algebra of Behavior Tables*
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Abstract

A design formalization based on behavior tables was

presented at Lfro97. This paper describes ongoing

work on a supporting tool, now in development. The

goal is to make design derivation, the interactive con-

st_uction of correct implementations, more natural

and visually palatable while preserving the benefits

of formal manipulation. We review the syntax and

semantics of behavior tables, introducing some new

syntactic elements. We present a core algebra for ar-

chitectural refinement, including new notational con-

ventions for expressing such rules.

KEYWORDS: behavior table, design derivation, for-

mal synthesis.

1. Introduction

Behavior table notation emerged out of case studies

in formal design derivation between 1985 and 1995.

The DDD transformation system [7] is based on func-

tional algebra. Behavioral expressions at the level

of algorithmic state machines [1] are represented by

recursive systems of function definitions, and archi-

tecture oriented implementations are represented by

recursive systems of stream expressions. In DDD,

these representations are manipulated as transforma-

tions on Scheme programs, so the expressions are also
executable.

The primary goal in our early case studies was to

interactively impose hardware architectures on algo-

rithmic specifications. As these studies became larg-
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er, a practice emerged of printing DDD expressions

in a tabular form, reminiscent of register transfer ta-

bles. The tables helped design teams visualize their

architectural goals so they could strategize about how

to accomplish them in the DDD algebra.

We began to contemplate using the tables more di-

rectly as formal objects, retargetting the DDD alge-
bra to operate on tabular representations. We believe

the tables are more perspicuous to practicing profes-
sionals who, it has been claimed, are put off by the

notation used in formal reasoning systems.

The rising visibility of tabular specification lan-

guages such as Tablewise [3], SCR* [2], and and-or

transitions in RSML [8], helped convince us to look at
behavior tables more seriously as a formalism rather

than merely as a visual aid. Subsequently, we have

undertaken to develop a tool for interactive design

derivation using them.

In this paper, we develop a core algebra for archi-

tectural manipulation. In the main, this algebra cor-

relates to the "structural" algebra of sequential sys-

tems, presented in [5]. Although the main purpose is

to lay the groundwork for tool implementation, one

ancillary contribution of this paper is its notational

conventions for stating the rules of the algebra, which

use table schemes to simplify quantification.

The conclusion lists additional topics and issues

entailed in the implementation effort. We extend the

term-level syntax presented at Lfm97 [6] to include
provisions for bounded indirection, additional algebra

for a simple kind of data refinement, and possible

extensions for verification.



2. Terms

Behavior tables are arrays of terTns in a ground vo-

cabulary of constants and operations. We very briefly

review the terminology of first order structures then
introduce the extensions that are assumed in behav-
ior tables.

A first order structure describes a family of value

sets, A1, ..., An, together with a collection of to-
tal functions, fl, ..., f,_, on these sets. With each

set Ai is associated a type symbol, ri,. There are

constant and operator symbols representing the func-
tions fi, and a distinct set of variable symbols. The

notation v: ri asserts that the variable v ranges over
values in Ai. The signature of an operator specifies

its domain and range, which in general are nested

products. The formula f: (T1, (T2,7-3)) --} (T4, Tb, 7-6)

asserts that the operation f maps the product A1 ×

(A2 × A3) to the product A4 × A5 × A6. We shall
allow for multioutput operations, as suggested here,

whose output signatures are n-tuples.

A term is a variable, constant, or application,

f(T1,..., Tn), of an operation f to the terms Ti ac-

cording to the f's signature.

A structure becomes an equational algebra when

it is provided with a set E of equational identities

among terms (over a distinguished set of logical vari-

ables). E induces an equivalence relation; and we

write _E s -- t to express the fact that s and t are
provably equivalent under E.

Certain additional features are assumed of al-

l structures used in behavior tables and are thus ab-

sorbed at the metalinguistic level.

• A sort Bool is assumed with constants true and

false and the identities of boolean algebra. Oper-

ations with range Bool are called tests.

• A don't care constant is designated by '_'.

• Finite product (tupling) and projection opera-
tions of each type are assumed Projections are

denoted by sans-serif adjectives, 1st, 2nd, 3rd,

4th, 5th ..., ith, .... An n-tuple is expressed as

a parenthesized series of n terms, (T1,..., Tn).
Projections applied to n-tuples can be simplified

at the syntactic level; for instance,

2.d(rl,r2, r2) - r2

• It is assumed that arbitrary finite sets of tokens

can be represented (e.g. by n-tuples over Bool).
We shall extend this idea to what Hoover calls a

finite logic [3], with which we associate a specific
selection operation, written

case s of

al _1

ak _1

The usual treatment of terms is extended for ex-

plicit multioutput operations. The definition of sub-

stitution on terms is adapted for multioutput opera-

tions by allowing nested lists of variables to serve as

substitution patterns. Such a list is called an identi-

fier.

Definition 1 An identifier is either a variable or

a nested list, (X1,...,Xn), of distinct identifiers,
meaning that they share no common variables.

Definition 2 The formula T[R/X] denotes a sub-
stitution of the term tR for the identifier X in the

term T. The formula T[R1/X1,..., Rn/Xn] denotes
the simultaneous and respective substitutions of terms

R4 for identifiers X_, i C {1.. n}. Substitution is de-
fined by induction on the language of terms. In the

base cases, constants are unchanged and for a vari-

able symbol u,

f R ifx = u
U [/_/X] \ u ifXT£u

For applications and n-tuples,

f (T1, • • •, Tn)[R/X] = f (T1 [R/X],..., Tn [R/X])

For nested identifiers, a simultaneous substitution
is done on the constituents:

T[l_/(Xl, . . . , Xn)] = T[lst(l_)/Xl, . . . , nth(R)/Xn]

In the last case, substitution of an n-tuple for an n-

element identifier simplifies to

r[(/_l,...,/_n)/(Xl,...,Xn)]

= T[I_1/X1,..., P_/Xn]



3. Syntax of behavior tables

Behavior tables are closed expressions whose terms

contain variables from three disjoint sets: I (inputs),

S (sequential signals, or data state), and C (combi-

national signals). Fix these sets for the remainder of
this section. We will write ISC for I U S U C and

SC for S U C. We use the term "register" for an el-

ement of S, but this is a euphemism that should be
interpreted very abstractly. There is no assumption

that these variables denote finite values, nor are ta-

bles intended only for register-transfer specification.
The form of a behavior table is:

Name: Inputs --+ Outputs

Conditions Registers and Signals

:

Guard Computation Step

:

Inputs is a list of input variables and Outputs is a

set of terms over ISC, but without loss of generality,

assume O C SC. Conditions is a set P of predicates

over ISC, that is, finitely typed terms ranging over

finite types, such as truth values, token sets, etc.
The notion of term evaluation used here is stan-

dard. The value of a term, t, is written a_t_, where a

is an assignment or association of values to variables.

go

a

b

done*

w

• [
/_ iIx i2

[ MULT:(go, a, b) --> (done*, w)

IgolPl(even7 u) ll u I v I" I d°ne* I
I _ _ a b 0 P A _go

0 t _ _ _ w P A _go

0 0 I u--2 v×2 w P A _go
0 0 0 u.'--2vX2 w+v P A _go
where P- (zero7 u) V (zero7 v)

Figure 1: Example of a behavior table

Definition 5 A behavior table for I -+ O consists

of a decision table, D, with guards C = {gl, ... gn},

and an action table indexed by C, A = {t_,k I v 6

SC and gk 6 G}.

Figure 1 shows a shift-and-add multiplier, ex-

pressed as a behavior table. The timing diagram is

provided to explain the interface, with multiplication

performed within a full handshake.

Definition 3 A guard is a set of constants indexed

by a condition set P: g = {%}pce. A decision table

D = [P, G], consists of a condition set and a an as-
sociated list of guards. We say g holds for an assign-

ment a to ISC when, for each p 6 P, either % =

or = ep.

Following [3], we say a decision table is functional

when G describes a proper partitioning of the possible

assignments to ISC. In other words, the guards are
"consistent" and "complete".

Definition 4 A computation step or action is a

set of terms, one for each register and signal: a =

{t_}_csc. An action table is a set of actions typical-
ly indexed by the guards of a corresponding decision
table.

4. Synchronous semantics

A behavior table [D, A] for O C SC denotes a rela-
tion between infinite input and output sequences. We

call these sequences streams because in prior work

we obtain a semantics by interpreting a table as a

(co)recursive system of stream-defining equations [7].
More directly, suppose we are given a set of initial val-

ues for the registers, {x_}_cs and a stream for each
input variable in I. Construct a sequence of assign-

ments, (a0, al...} for ISC as follows:

(a) an (i) is given for all i 6 I and all n.

(b) For each s C S, ao(s) = x_.

(C) an+ 1 (S) = a n Its,kl if guard gk holds for an.



(d) For each c C C, o-n(c) = o-nItc,k_ if guard gk
holds for o-n.

The stream associated with each o C O is

(_0(o), _1(o),...}. This semantic relation is well de-

fined if there are no circular dependencies among the

combinational actions {_c,k ] c C C, gk C G}. The

relation is a function (i.e. deterministic) if decision
table D is functional• We shall restrict our attention

to behavior tables that are well formed in these re-

spects. In essence, well formedness reflects the usual

properties required of synchronous finite state ma-
chines•

To achieve well formedness, we constrain behavior

tables in two ways. First, we prohibit "combinational
feedback" in the actions• Given row k in the action

table {_,o,k ] v C SC}, there is a natural dependence
graph with vertices corresponding to the signal names

and edges given by the relation: a --+ b iff a is a

subterm of _s,k. Checking for combinational cycles is
a straightforward depth-first search•

Even if the actions themselves do not contain com-

binational loops, the decision table can still induce
race conditions or metastable behavior• Consider the

following table fragment where r and c are registered

and combinational boolean signals:

[ S:I---_O ]

I lo*l... ll lo*l... I
0 0 0 1

0 1 0 0

1 0 1 1

1 1 1 1

Intuitively, if the system makes a transition into a

state where _n(r) = 0, then combinational signal a
will oscillate• Our semantics is not well defined in this

case: ifcr = 0 and c_ = 0 in some guard gk = {cp}pcP

at timeslice n, then _n (c) = 1 by (d). Since gk no

longer holds at _, some other guard gj = {dp}pcp

in which dr = 0 and d_ = 1 hold changes _ (c) back
to O.

The race condition occurs in our example when

_ (r) = 1 and _(c) = O. Although one could argue
that _n is well defined, we shall prohibit this mode of

expression anyway, as it reflects a kind of transition
race.

To eliminate these scenarios, we constrain the pred-

icates of the decision table to use only registered vari-

ables and input signals• This way, no action can di-

rectly change the guard gk since the values of regis-

tered signals persist for the duration of the present

action (c).

In addition, we shall require a functional set of

guards, as noted earlier• This results in deterministic

and total behavior, for which the algebra presented
here is intended•

We think of behavior tables as denoting persisten-

t, communicating processes, rather than subproce-
dures. In other words, behavior tables cannot them-

selves be entries in other behavior tables, but instead

are composed by interconnecting their I/O ports•

Composition is specified by giving a connection map
that is faithful to each component's arity. In our

function-oriented modeling methodology, such com-

positions are expressed as recursive systems of equa-

tions,

where

(Xll, . . . ,Xlql) = "_I (Wll, . . . , Wlgl)

(Xpl,...,Xpqp) = "_p(Wpl,...,Wp£p)

in which the defined variables Xij are all distinct,
each _ is the name of a behavior table or other com-

position, and the outputs Vk and internal connec-

tions Wij are all simple variables coming from the
set {ud u

Valid systems must preserve I/O directionality, ex-
cluding both combinational cycles and output con-

flicts. Checking validity has two stages and is again

a graph problem:

1. For each behavior table let its inputs and outputs

be vertices, and let i --+ o when output signal o

combinationally depends on input signal i.

2. Add the following edges to the disjoint union

of the behavior table I/O graphs: o --+ i

when Tj(...,o,...) is the right hand side of

an equation where Tj's I/O signature is Tj :



A legitimateconnectionnetworkexistswhenthis
graphhasnocycles•

Providedtheyarewellformed,deterministicsys-
temsarereadilyanimatedinmodelinglanguagesthat
allowrecursivestreamnetworksto beexpressed[4].
As longas eachregisterhasan initial value,the
streamsareconstructedhead-firstasa fixed-point
computation•Translationto bothcycle-basedand
event-basedsimulationlanguagesisalsorelativelys-
traightforward,aslongasthesystemsareexpressed
overtheconcretedatatypesthesetoolsrecognize•

A synchronoussemanticsis simpleandsuitedto
theclockedimplementationmodelsmosthigh-level
synthesizersuse.In fact,behaviortableswillacquire
arangeofsemantics,dependingontheirapplications,
just asHDLsandprogramminglanguagesdo. Even
withavarietyofinterpretations,theirinherentstruc-
turehelpsreducethemathematicalbookkeepingthat
oftenobscuressemanticdefinitions•

5. Behavior Table Algebra

The collection of transformation rules presented in

this section applies to architectural refinement• This

set is not claimed to be complete nor is minimal in

any mathematical sense• At this stage, our principal

object is to build a set of rules that is robust enough

to serve as a core rule set for tool implementation•

mathematical efficiency is a secondary concern, for
the moment•

5.1. Notational conventions

Defining these rules has led to some stimulating no-

tational issues• In attempting to present the rules in

a clear way, we have been led to consider some novel

conventions for expressing features, particularly for

quantification• For reasons of both typography and

clarity, we want to reduce use of ellipses, columns,

and subscripts to describe a table as, for example,

b: (I1,..., lk) _ (O1, • •., Of)

P1 • • •

1 gll ' ' '

n 9nl

P,_ S 1 ... Sp

glm _11 ' ' ' _lp

gnm _nl _np

Our table scheme notation uses the table itself as a

quantifier, and uses set elements as indexes rather

than number ranges. Uppercase italic variables de-

note sets; and differently named sets are always as-

sumed to be finite and disjoint. Lowercase italic vari-

ables denote indices ranging over sets of the same
name. The form

S

represents a two-dimensional array (table) of items,

{xr_ I r C R and s C S}. A san seriff 1 identifier

denotes a fixed (throughout the scope of the rule)

element from the set of the same name. Thus, the
form

5

represents a column, {Xrs I r C R}, and similarly for
rows.

Under these conventions, the table scheme from
Section 3 looks like

b: l ---_ 0

P S
1

' grip t
, gt,S

N

The use of ellipses 1 • • • N on the left is not necessary,

but serves as an reminder that the rows are typically

numbered• That is, we usually take the set N to be
the first "N" numbers•

5.2. The rules

Some structural rules subsumed by the semantics,

must be implemented in the tool. For example, inter-

changing rows and columns is allowed since indices

lWhere possible, we display these identifiers in red.



range over sets, not sequences. The underlying se-
mantics remain well defined because the order of e-

quations in a system is irrelevant. Similarly, renam-

ing variables is allowed under the usual rules of a
substitution 2 .

The rules fall into three groups, the first involving
both the decision and action table parts, the second

being operations on the action table part, and the

third being operations that affect the decision table

part.

Replacement

Decomposition

b: I --_ O

! g_p t., I t, iNi.....................i..........................................

#

"........................................................ •........................................................ :i

P S P T
1 .......................................................... "01 ......................................................... '

.% t .% t

..............

°IIIIIIIIIIN IIIIIII:IIIIIIIII IIiiiii:i
b tns _ Uns "U"

............

Decomposition splits one table into two, both in-

heriting the same decision table. The compose oper-
ator connects the two tables to maintain the original

dependence among the signals. Interpreting the ta-

bles as functions on streams and reading 'U and 'n

as list operations B1 o B2 yields the system

B(I)defo where

(0 N S) = Z_1 (1 U T)

(ONT) = B2(1US)

One term can be replaced by another term that is

(proven to be) equivalent in the underlying structure

(or theory). Recall that _ t = u is a provable e-

quivalence in the underlying structure. In practice,

establishing equivalence would be done with a rewrit-

ing tool or proof assistant.

2Actually, behavior tables do not have free variables, so a
conversion is even simpler.

It is a background job of the table editor to maintain
the connection hierarchy as a byproduct of decompo-

sition. An upward composition transformation (_), if
formulated, would require conditions to exclude name

clashes and preserve well formedness. In using tables

for design derivation, one would typically decompose
tables rather than compose them.

This is by no means all there is to say about com-

position. This strong (in the sense of not being very

general) form of the Decomposition rule is essentially
a partitioning rule, allowing one to to impose hierar-

chy on designs.



Conversion

b: I ---'0

p q z

J gjp Vjq Os

Vj, j' C J: gjp =- gj,p

UjcJ Vjq = dom(q)

b: I ---" O

This rule, allowing function to be moved between

the decision and action parts of a table, provides the

means to change the boundary between control and

architecture. The side conditions say that, within the

range indicated by J, the guards outside column q a-

gree, and the guards within column q are exhaustive.

Action collation

b: I --->0

ii.....................i..........................................i
I

Ni.....................i.....l.................l...............L..i

(defined)

(compatible)

(well formed)

b: I -->0

1
Ni.....................i......i.................................L.....l..i

The idea behind collation is that two, or several, com-

patible signals can be merged into one by instantiat-

ing don't-cares. The %' operator denotes term-level

instantiation,

t if t' =
t o t' = t' if t =

undefined otherwise

Compatible means that both variables must be com-

binational or both must be sequential. If both sig-

nals are combinational, an audit is required to assure

that the resulting system remains well formed, that

is, that instantiation does not introduce feedback.

Action identification

b: I -" O

P S
1

' grip tns
N _..................... ......................

combinational

In terms of systems, this is the recursion rule, stat-

ing that y is equal, in a logical sense, to its defining
equation, and hence that one can be replaced for the

other. In fact, this rule can be applied on a row-

by-row basis, but we give the full-column version to

reflect the more typical case when a common subter-

m is being identified. If y were a sequential variable,

it would acquire the value r_y in the next step and
so the replacement is invalid.



Action introduction

b: I --> O

P S

1

gnp tns
N i .......................................... ,

y fresh
well fo_med _ y unused

Action table entries need not be explicit tuples, al-

though they can be, because l, 2, etc. are legitimate

operators.

Decision grouping

iLiL;;;
b: I --" O

, ..............................r21

A new action column can be added (g) as long as
the signal name is not redundant and, in the case of

combinational signals, the action terms do not refer

to the signal being introduced.

Action grouping

b: I --" O

i.....................................i

(both comb. or both seq.)

compatible

bTT_5 ............................i

1 "i'i[i'!.'i'!i_.!'i'i'1"i'i'_'i!._)'i'i'[i'i" i'i'i'i'i'i_.'i'i'i'i'i"

Ni L.................l .................,5...............i

As with action tables, decision table columns can be

grouped into tuples. In contrast, the entries are val-

ues and the headers are terms so explicit use of de-

tupling projectors is allowed in both.

Decision introduction

b: I --'0

P S
1

' gnp tns
N .............................................

b: I -->0

1i ......... e ....... I----!--!_!-----I-I ........ !._......[....i i

;......%2.!.!:.{.5.{....
Columns can be grouped and ungrouped as long as

the resulting columns are purely sequential or pure-
ly combinational. Thus, one canonical form for ac-

tion tables has just two columns. Recall that signal-

s names are nested identifiers; the notation '" l(s)"'
means that ungrouping transformations require ex-

plicit tuples in the header fields, and destructure

them in the obvious way. For instance, if s -- (a, b)
the ungrouped columns will be headed with a and b.

(2 finite

b: I --'0

1i ........ _.......[..Q...]..i......_.....ii

i ....................l.............i...............i

One can introduce a new test with don't-care criteria.

The underlying intent of this rule is its use in ad

hoc table constructions. A possible well formedness

restriction on this rule is that the resulting table be

safe from race conditions. Such a restriction can, in

principle, be applied when decisions are instantiated

(see just below), yielding a more general algebra.



Decisioninstantiation

b: I --_ O

ii hp gq]t,
N+_:_.....................j............Li..............i

Having introduced a new test to a behavior table,

instantiation is used to do case splitting. In the sim-

plest case, suppose that a _ appears in a decision table

entry. Then this rule provides for expanding that row

into enough duplicates to account for all the possible
values of the test. In the upward direction, the rule

gives us a way to combine rows whose actions are i-

dentitical. The notation fq U gq anticipates allowing
for decision table entries to be sets of values, as is

seen in requirements specification languages.

I/O restriction

Input and output signals may be added to behavior

tables without concern so long as the inputs and out-

puts of the encapsulating system remain the same.
Such additions cannot introduce combinational feed-

back until they are used, and the decision/action in-
troduction rules check for well formedness.

Conversely, an unused I/O signal qualifies for re-

moval. We can remove input i to a behavior table if

no action or predicate contains i as a subterm. A be-

havior table output may be removed when is unused

in the surrounding interconnect expression.

practice, the product of such manipulation is a de-

composition of the specification into subsystems for

synthesis into hardware or compilation into embed-

ded software components. This section briefly de-
scribes a number of other immediate issues and as-

pects entailed in the development of a design tool.

Figure 2 shows a derivation decomposing a be-

havior table into two components, one allocating t-

wo arithmetic operations to a single device. This

is an example of a system faetorization, a funda-

mental transformation in the DDD algebra [5], and

the instance in the figure comes from an illustration

in Johnson's Lfm97 presentation of behavior tables.

The example shows that the algebraic rules present-

ed in this paper are much more finely grained than

the transformations that typically would be used in

an interactive setting, but would instead serve as a

core set of rules from which larger-scale ones are com-

posed.

6.1. Stream semantics

Given a behavior table, one can construct an equiva-

lent sequential system by repeated applications of the

Decomposition and Conversion rules. Use Decompo-

sition to separate every column of the action table,

then Conversion to reduce each of the resulting tables

to a single row. The resulting nested system descrip-

tion can be flattened and simplified. Alternatively,

Decomposition can be generalized to simultaneous-

ly split tables into several components. To complete
the transformation, we must make initialization of

the sequential signals explicit. The resulting system
is

/_(I)defo where

{ Xs = xs,select(tests, alternatives) }
Yc = select(tests, alternatives) _cS, ccC

6. Other aspects

This paper has developed a core algebra of behavior

table manipulation for architectural refinement. In

where the expression v ! S denotes an initialized

stream [5]. In DDD, this construction is reversed. An
initial behavior table is built from a system of stream

equations, each with a common selection combination

[7].



6.2. Bounded indirection 6.4. Verification

We have found an extension to the term-level syn-

tax called indirection [11] which is highly useful for

hardware applications and appears to be equally use-

ful in incremental specification development. If v is a

signal name, the term Vv stands for a "reference" to

signal v; concretely, it is actually a token which can

later be used to select v. The term Aw denotes that

selection. As an illustration, consider the table:

[I-+0 ]

IPII s I t I u I v IsI
1 vt fl hi

Vu f2 h2

5 _ f3 h3 As

In essence, the term As in the third row stands for

the term:

case s

vt:: t

VU: : U

We are also interested in integrating the derivation-

al formalism with property verification. One way to

approach this is to augment behavior tables with as-

sertions in a suitable temporal logic. Since we are

primarily interested in higher levels of specification,

"model checking" [12] these assertions would likely

require interaction. Considered as an algorithmic s-

tate machine, the table would provide contextual in-

formation making the proof process more agreeable.

6.5. Animation

Finally, animation, particularly symbolic execution,

would be an important feature of any practical be-

havior table tool. Consequently, we want to inte-

grate our tool with proof assistants particularly ter-

m rewriters_ot only to support replacement rules,

verification and type inference, but to provide in-

teractive simplification of terms in the fashion of

Moore's symbolic spread sheets [9].

Uses of indirection include the description of bidi-

rectional buses, other forms of implied selection, and

control branching. Of course, such use also neces-

sitates consistency audits over the whole table; for

instance, to verify that selected signals are compati-

ble and uniformly typed.

6.3. Data refinement
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[ FIB: (go, in) _ (done*, v) ]

Inowlu=Oll now Id....I u Ivl w I
1 _ done* _go in 0 1

o 1 " u=0 _ v
0 0 2 false u-i v w

2 _ done* u=O u w v+w

action introduction

[ FIB: (go, in) _ (done*, v) ]

I nowI u=OII now I d.... I u Ivl w Ix, ly, lz, lao, I
1 _ d ..... go in 0 1 [q [q [q P

o 1 ,, u=0 _ v _ _ _ _ P
0 0 2 false ao v w sub u 1 P

2 _ done* u=O u w ao add v w P

where P--(case x* y*+z* y*-z*)

decomposition

[ FIB: (go, in, ao) _ (done*, v, now, u, w, x*, y*, z*) ] i ALU: (go, done*, v, u, now, w, x*, y*, z*) _ (ao*) I

Inowlu=OII now I d.... I u Ivl w Ix, ly, lz, I Inowlu=OII
1 _ d ..... go in 0 1 _ _ _ 1

0 i ,, u=0 _ v _ _ _ _ 0 i
0 0 2 false ao v w sub u 1 0 0

2 _ done* u=O u w ao add v w 2

output restriction

[ FIB: (go, in, ao) _ (done*, v, x*, y*, z*) ]

I nowlu=O II now I d.... I u Ivl w Ix, ly, lz, I
1 _ d ..... go in 0 1 _ _

o 1 ,, u=0 _ v _ _ _
0 0 2 false ao v w sub u 1

2 _ done* u=O u w ao add v w

Figure 2: A factorization from [6]
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input restriction

[ ALU: (u, now, x, y, z) _ (ao*)

In°wIu:°II ao,
i _ (case x y+z y-z)

0 i (case x y+z y-z)

0 0 (case x y+z y-z)

2 _ (case x y+z y-z)

decision generalization

[ ALU: (u, now, x, y, z) _ (ao*) ]

In°wIu=°II ao, I
(case x y+z y-z) ]

(case x y+z y-z)

(case x y+z y-z)

decision generalization

[ ALU: (u, now, x, y, z) _ (ao*) ]

I n°w I u=° II ao, I
I _ I _ II ( ..... y+zy-z) I

decision introduction

[ ALU: (u, now, x, y, z) _ (ao*) ]

I x In°wl u=° II ao* I
I_1 _ I _ I1( ..... y+zy-z) I

conversion

[ ALU: (u, now, x, y, z) _ (ao*) ]

I x Inowlu=011 ao* I
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sub _ _ y-z

decision elimination
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I x II ao, I
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sub y-z

input restriction

i ALU: (x, y, z) _ (ao*) I

I x II ao, I
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sub y-z
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Abstract

Hybrid systems are characterized by the hybrid

evolution of their state: A part of the state changes

discretely, the other part changes continuously over

time. Typically, modern control applications be-

long to this class of systems, where a digital con-

troller interacts with a physical environment. In
this article we illustrate how a combination of the

formal method VDM and the computer algebra sys-
tem Mathematica can be used to model and simu-

late both aspects: the control logic and the physics

involved. A new Mathematica package emulating

VDM-SL has been developed that allows the in-

tegration of differential equation systems into for-

mal specifications. The SAFER example from [11]

serves to demonstrate the new simulation capabili-
ties Mathematica adds: After the thruster selection

process, the astronaut's actual position and veloc-

ity is calculated by numerically solving Euler's and

Newton's equations for rotation and translation.

Furthermore, interactive validation is supported by

a graphical user interface and data animation.

1 Introduction

Modern control applications are realized through

microcontrollers executing rather complex control

logics. This complexity is increased by the fact that

control software interacts with a physical environ-

ment through actors and sensors. Such systems are

called hybrid systems due to the hybrid evolution of

their state: One part of the state (variables) changes

discretely, the other part changes continuously over
time.

Hybrid systems are excellent examples for moti-

vating the use of formal software development meth-

ods. First, their complexity calls for a real soft-

ware engineering discipline applying both, a pro-

cess model as well as a mathematical method. Sec-

ond, these kinds of systems are often safety-critical

which justifies formal validation and verification

techniques. Third, engineers in the control domain
are educated in the use of mathematical models for

designing dynamic systems. 1 In our experience, the

offer of a formal method for software development

is more often appreciated by control engineers, than

by software developers used to produce short cycle

products in 'Internet time'.

In [11] the hybrid system SAFER has been cho-

sen by NASA in order to introduce to formal spec-

ification and verification techniques. SAFER is

an acronym for "Simplified Aid For EVA (Ex-

travehicular Activity) Rescue". It is a small,

lightweight propulsive backpack system designed to
provide self-rescue capabilities to a NASA space

crewmember separated during an EVA. In this

NASA guidebook[11], SAFER is specified formally
in the PVS notation and properties are formally

proved using the PVS theorem prover [12]. In the
guidebook the dynamic aspects are used to com-

pare the continuous domain model from spacecraft
attitude control with the discrete PVS model of

SAFER's control logic. It demonstrates that the

two models have the same goals: rigorous descrip-

tion and prediction of behavior but that the needed

mathematics and calculation techniques are differ-
ent.

In [1, 2] Agerholm _z Larsen have proposed

a cheaper testing based validation approach to

the SAFER example using an executable VDM-SL

model and the IFAD VDM-SL Toolbox [10, 7, 6].

They recommend the use of a specification executor

and animator for raising the confidence in a formal

model prior to formal proving.

We agree with Agerholm _z Larsen's arguments

for such a "light-weight" approach to formal meth-

1The same holds for software developers coming from clas-

sical engineering disciplines.



ods in order to facilitate the technology transfer.

Since in several industrial projects performed at
our institute a similar experience has been made

[9, 15, 5], one of our research areas has become the

support of testing through formal methods [4].

However, neither the PVS nor the VDM-SL

model of SAFER did take the continuous physical

models into account. The reason is that, in gen-

eral, today's formal method tools are not well suited

for supporting continuous mathematics. This paper
shows a solution the problem.

In the following it is demonstrated how an ex-

plicit discrete model can be combined with the con-

tinuous physical model for validation and anima-

tion. With the right tool there is no reason why a

physical model should not be included in the valida-

tion process of a hybrid system. Just the opposite

is the case: [1] detected several cases where the in-

terrace to a cut out automatic attitude hold (AAH)
control unit needed further clarification.

In this work the commercial computer algebra

system Mathematica [16] has been used to overcome

the gap between discrete and continuous mathemat-

ics. A VDM-SL package has been implemented that

allows to specify in the style of the Vienna Develop-

ment Method (VDM) inside Mathematica. Thus,
explicit discrete models can be tested in combi-

nation with differential equation systems modeling

physical behavior by solving the equations on the

fly. Even pre- and post-condition checking is pos-

sible. Again, NASA's SAFER system serves as the
demonstrating example. The VDM-SL specification

of [2] has been taken and extended with the physics
involved in SAFER, expressed through differential

equations. More precisely, the physical behavior is

movement in space, modeled by the laws for transla-

tion and rotation -- Newton's and Euler's equations

for three dimensional space.

Beside the execution (testing) of hybrid models,
Mathematica's front-end supports the visual valida-

tion of such systems. The graphical user-interface

for SAFER's hand grip is implemented inside the
computer algebra system as well as a scientific graph

representing the movement of a crew-member using

SAFER. After each control cycle, actual physical

vectors like angular velocity or acceleration can be

inspected together with the logical status, e.g. the

thrusters firing. Finally, it is even possible to an-

imate a sequence of performed control-cycles as a

movie showing the SAFER representation flying.

The structure of the rest of the paper is as fol-
lows. First in Section 2 an overview of the SAFER

system is given, which will serve as the demonstrat-

(ZiE)

Figure 1. SAFER thrusters.

ing example throughout the paper. This is followed

by a discussion of VDM-SL and its realization in-

side Mathematica in Section 3. Then, a description

of the discrete SAFER model is given in Section

4. Section 5 explains the differential equation sys-

tems modeling SAFER's physics and the coordinate

transformations needed. Then, Section 6 introduces

to the hybrid model and demonstrates the integra-

tion of VDM-SL and differential equation systems.
Next, the validation capabilities of our approach are
discussed in Section ? and Section 8. In the final

Section 9 we draw some conclusion regarding the
presented work in particular, as well as possible fu-

ture approaches in general.

2 The SAFER System

The following overview of the SAFER system is

based on, and partly copied from, the NASA guide-

book [11], which describes a cut-down version of a

real SAFER system.

The Simplified Aid for EVA Rescue (SAFER) is

a small, self-contained, backpack propulsion system

enabling free-flying mobility for a NASA crewmem-

ber engaged in extravehicular activity (EVA). It is

intended for self-rescuing on Space Shuttle missions,

as well as during Space Station construction and op-

eration, in case a crewmember got separated from

the shuttle or station during an EVA. This type of

contingency can arise if a safety tether breaks, or

if it is not correctly fastened. SAFER attaches to

the underside of the Extravehicular Mobility Unit



(EMU)primarylife supportsubsystembackpack
andis controlledby a singlehandcontrollerthat
is attachedto theEMUdisplayandcontrolmod-
ule.Figure1showsthebackpackpropulsionsystem
withthe24gaseous-nitrogen(GN2)thrusters,four
in eachof the positiveandnegativeX, Y and Z

directions. For example, the thrusters denoted by

5-FI, 6-F2, 7-F3 and 8-F4 are firing backwards (indi-

cated by the arrows) resulting in a forward motion.

The main focus of the discrete specification is

on the thruster selection logic, which is rather com-

plex due to a required priorization of hand controller

commands. Various display units and switches

which are not directly related to the selection of the

thrusters have been ignored in our model. However,

in contrast to [II] and [I] the calculation of the con-

trol output in the Automatic Attitude Hold (AAH)

is not ignored, but simulated based on a dynamic

model of the physics discussed in Section 5.

(*z)

Figure 2. Hand controller module of
SAFER.

The hand controller, shown in Figure 2, is a

four-axis mechanism with three rotary axes and one

transverse axis using a certain hand controller grip.

A command is generated by moving the grip from

the center null position to mechanical hard-stops
on the hand controller axes. Commands are ter-

minated by returning the grip to the center po-

sition. The hand controller can operate in two

modes, selected via a switch, either in translation

mode, where X (forward-backwards), Y (left-right),

Z (up-down) and pitch commands are available, or

in rotation mode, where roll, pitch, yaw and X

commands are available. The arrows in Figure 2
show the rotation mode commands. Note that X

and pitch commands are available in both modes.

Pitch commands are issued by twisting the hand

grip around its transverse axis, while the other com-
mands are obtained around the rotary axis.

A push-button switch on top of the grip initiates

and terminates AAH according to a certain proto-
col. If the button is pushed down once the AAH is

initiated, while the AAH is deactivated if the button

is pushed twice within 0.5 seconds.

As mentioned above there are various priorities

among commands that make the thruster selec-

tion logic rather complicated. Translational com-

mands issued from the hand controller are priori-

tized, providing acceleration along a single transla-

tional axis, with the priority X first, Y second, and
Z third. When rotation and translation commands

are present simultaneously from the hand controller,

rotations take higher priority and translations are

suppressed. Moreover, rotational commands from

the hand grip take priority over control output from

the AAH, and the corresponding rotation axes of
the AAH remain off until the AAH is reinitialized.

However, if hand grip rotations are present at the

time when the AAH is initiated, the corresponding

hand controller axes are subsequently ignored, until
the AAH is deactivated.

In [1] it is explained how a specification inter-

preter tool facilitates the validation of the require-

ments listed in the appendix of the NASA guide-
book. Moreover, it is demonstrated that formal val-

idation techniques uncover open issues in informal

requirements even if they seem to be straightfor-
ward and clear.

The same validation techniques as discussed in

[1] can be applied in our Mathematica based frame-
work -- and more. However, before we discuss the

value added through a hybrid model, in the follow-
ing section, the realization of our VDM-SL package
is discussed.

3 VDM-SL in Mathematica

VDM-SL is the specification language of the Vi-

enna Development Method (VDM) [10, 7]. VDM

is a widely used formal method, and it can be ap-

plied to the construction of a large variety of sys-

tems. It is a model-oriented method, i.e. its for-

mal descriptions (specifications) consist of an ex-

plicit model of the system being constructed. More

precisely mathematical objects like sets, sequences

and finite mappings (maps) are used to model a

system's global state. Additional logic constraints,
called data-invariants, allow one to model informal

requirements by further restricting specified data-



types. For validationpurposesthe functionality
maybespecifiedexplicitlyin anexecutablesubset
of VDM-SL.In addition,pre-andpost-conditions
statewhat must hold before and after the evalua-

tion of a system's operation. Although VDM-SL

is called a general purpose specification language it

does not support the specification of dynamic sys-

terns. The language's ISO-standard [13] does not
even include standard functions like sine or cosine.

Here, as the name indicates, Mathematica's

strengths supplement our combined approach.

Mathematica is a symbolic algebra system that of-

fers the opportunity of solving arbitrary non-linear

as well as linear systems of equations. Mathemat-

ica's language interpreter is in fact a rewriting sys-

tem providing an untyped functional programming

language. For an introduction to functional pro-

gramming in Mathematica see [3]. This program-

ming language has been used in order to define a

package emulating the specification language VDM-

SL. By emulating we express the fact that the pack-

age does not allow one to write specifications in

VDM-SL's concrete syntax, but in its abstract syn-

tax with some pretty printing for VDM-SL output.
Mathematica's user interface are so called note-

books, fancy editors structured in cells for input,

output or plain text. Entering a Mathematica ex-

pression in an input cell, the system tries to evaluate

this input through a rewriting procedure based on

pattern matching.

The following language constructs have been

added to the standard language in order to import

the VDM-SL model from [2]:

• abstract datatypes for composite types, sets,

sequences and maps

• comprehension expressions for sets, sequences

and maps

• let and cases expressions

• operators for propositional and predicate logic

• types optionally restricted by data-invariants

• value and global state definitions

• typed function/operation definitions with pre-

and post-conditions

Some of the items above deserve a more detailed

discussion.

Comprehensions

A powerful feature of a specification language

like VDM-SL is its ability to construct collection

types like sets, sequences and maps through com-
prehensions. For example, a set-comprehension de-

fines a set through an arbitrary expression describ-

ing the set-elements with its free variables ranging

over a set of values, such that an optional condi-

tion holds. The following example demonstrates

the value added through a computer algebra sys-

tem. The set-comprehension

set[xl{x E Z}. {x 8 - 44x s + 318x 4 + 4102x 3

--4461x 2 + 550x + 8750 == 0}]

representsa setofelements x,where x isan integer

number such that the equation holds.

The resultingset2

set [--7_ --i_ 25]

demonstrates that,unlikeIFAD's VDM-SL inter-

preter,comprehensions ranging over infinitesets

may be evaluated.

Types

As already mentioned, in contrast to VDM,

Mathematica has an untyped language. Conse-

quently, no type checking mechanism is available.

However, types are an important tool for specifying

a data-model in VDM. Therefore, type declarations

of the form Type[name,type] have been included,

where type is one of the predefined VDM-SL types,

like basic types, composite types, sets ... For exam-

ple, a type ISet representing a set of natural num-

bers might be declared by Type[ISet, set[H ].

Optionally, a type can be further constrained by

a data-invariant condition. Such invariant types

are defined by Type[name, type, Invariant-- >

predicate]. The predicate is defined by a lambda

expression mapping type to a Boolean value. All

the invariants are globally stored in the system for

invariant checking, before and after the evaluation
of a VDM function.

Internally, a type is translated to a Mathematica

pattern, matching those values the type denotes.

Invariant types are supported by the possibility of

defining patterns with arbitrary predicates. These

patterns restrict the argument range in the defini-

tion of typed VDM functions.

2The six solutions including double and complex solutions

are: -7,-1, 1 - I, 1 + I, 25, 25.



Functions

Using the VDM-SL package, typed functions

with pre- and post-conditions can be defined using
the constructor

VDMFunction[id, sig, id[vars] := body, pre, post]

with the following parameters:

id the name of the function,

sig the signature of the function,

id[vars] := body the function definition,

pre an optional pre-condition stating what must

hold before the evaluation such that the post-

condition holds,

post an optional post-condition stating what must
hold after the evaluation.

VDMFunction realizes a complex call to Mathemat-
ica's internal Function call and emulates the checks

for

• the signature types,

• pre- and post-condition,

• data-invariants.

4 Discrete Model

In order to demonstrate the Mathematica pack-

age the same functions for the thruster selection

logic as in [1] are presented in this section. The

six degree-of-freedom of the translation and rota-

tion commands is modeled using a composite type:

Type[SixDofCommand, Composite[{"tran", TranCommand},

{"rot", Rot Command }]]

whose two fields are finite maps from translation

and rotation axis respectively to axis commands.

For example the type of translation commands is
defined as follows:

Type[TranCommand, TranAxis -> Axiscommand,

Invariant -> (dom[#] == set [X,Y,Z]_)]

where the invariant ensures that command maps
are total. Here, the invariant predicate is defined

by a lambda expression in Mathematica's notation

of pure functions. The type of rotation commands

is defined similarly. Enumerated types are used for
axis commands and translation and rotation axes:

VDMFunction[

Selec%edThrusters,

AUX_SixDofCommand X AUX_RotCommand X

set[AUX_RotAxis] × set[AUX_RotAxis]

-> ThrusterSet,

SelectedThrusters[hcm, aah, actAxes, ignHcm] :=

let[{tran, rot, bfMandatory,bf0ptional,

lrudMandatory,lrud0ptional,bfThr,lrudThr},

{t ...... t} =

(IntegratedCommands[hcm,aah,actAxes,ignHcm]

/. SixDofCommand[tr_,ro_]:->tr,ro);

{bfMandatory, bf0ptional} = BFThrusters[tran[X],

rot[PITCH],

rot[YAW]];

{irudMandatory, irud0ptional} =

LRUDThrusters[tran[Y],

tran[Z],

rot[ROLL]];

bfThr = If [(rot[ROLL] === ZERO),

bf0ptional U bfMandatory,

bfMandatory ];

irudThr = If[(rot[PlTCH] === ZERO) and

(rot[YAWl === ZERO),

irud0ptional U irudMemdatory,

irudMandatory];

set @@ (bfThr U irudThr)

]
];

Figure 3. The SelectedThrusters function.

Type[AxisCommand, NEG I ZERO I POS];

Type[TranAxis, X I Y I Z];

Type[RotAxis, ROLL I PITCH I YAW]

In the SelectedThrusters function in Fig-

ure 3 grip commands from the hand controller

(with six-degree-of freedom commands) are in-

tegrated with the AAH control output. The

IntegratedCommands function prioritizes hand con-
troller and AAH commands.

Based on these commands, thrusters for back and

forward accelerations and left, right, up and down

accelerations are calculated by two separate func-

tions. Figure 4 presents cut-down versions of these

functions. These represent a kind of look-up ta-

bles, modeled using cases expressions. Note that

they return two sets of thruster names, represent-

ing mandatory and optional settings respectively.

5 Physics Involved in SAFER

This section presents the continuous model of

the physics involved in our hybrid model. For the

SAFER example, translation and rotation equations

from mechanics are sufficient for modeling the mo-

tion of a crewmember using the propulsion system.
The purpose of this model is twofold: First, we need

to calculate the sensor inputs of angular velocity for

simulating the AAH. Second, in order to visualize



VDMFunction[

BFThrusters,

AUX_AxisCommand X AUX_AxisCommand X AUX_AxisCommand

-> ThrusterSet X ThrusterSet,

BFThrusters[A, B, C] :=

cases[{A, B, C},

{.EG,ZERO,ZERO}->{{S4},{S2,S3}},
{ZERO, ZERO, ZERO} -> {{}, {}},

{POS,NEG,ZERO}->{{El,F2},{}},

]

];

VDMFunction[

LRUDThrusters,

AUX_AxisCommand × AUX_AxisCommand × AUX_AxisCommand

-> ThrusterSet × ThrusterSet,

LRUDThrusters[A, B, C] :=

cases[{A, B, C},

{NEG, NEG, ZERO} -> {{}, {}},

{NEG,ZERO,ZERO}-> {{UR,L3R}, {L1F,L3F}},
{POS, ZERO, POS} -> {{R2R}, {R2F,R4F}},

]

];

Figure 4. Extracts from BFThrusters and
LRUDThrusters.

the SAFER movement, absolute coordinates have
to be determined. The mathematics needed can be

found in the standard literature of mechanics, like

[8].

Translation

The translation of a crewmember wearing

SAFER is described by Newton's second law of mo-

tion expressed by

F = rm) =/5 (1)

where F, m, v and p denote force vector, mass,

velocity vector and impulse vector. It states that

"The time rate of change of the momentum of a

particle is proportional to the force applied to the
particle and in the direction of the force."

tions are then given by

Ilhl + (I3 - I2)e2e3 = Q1

I2h2 + (I1 - I3)e3e1 = Q2

I3h3 + (/2 - I1)ele2 = Q3

(2)

(3)

(4)

or as a vector equation where I is a diagonal matrix:

Z._+_ x I._ = Q (5)

Qi denotes a torque causing a rotation around the

/-axis, in the body's own coordinate system. Here,

the torque is given by the sum over the thrusters fir-
ing. Actually, a component Qth is calculated by the

cross product of a thruster's position vector relative
to the center of mass and its force. SAFER does not

use proportional gas jets, but thrusters whose valves

are open or not, which simplifies the calculation.

Motion

In order to combine translation and rotation in a

single model of motion, suitable for our purposes,

coordinate transformations are necessary. More

precisely, the fixed coordinate system values for vi-

sualization (position and velocity) have to be related

to SAFER's coordinate system values (angular ve-

locity).

As f_ is calculated in the body's own coordinate

system, they have to be transformed back to the

fixed coordinate system. Given the Euler angles 9_,
0 and ¢ that denote the deviation of the fixed x, y

and z axis, the angular velocities can be calculated

according to the following formula.

f_l = _ sin 0 sin ¢ + 8 cos ¢ (6)

f_2 = _ sin 0 cos _ - 8 sin _ (7)

_3 = _ cos_ + ¢ (s)

The derivation of these equations can be found in

[8]. Using vector notation we get the equation:

f_ = D3 (¢)" D1 (8). (8, 0, _)T -4-(0, 0, _)T (9)

Rotation

The rotation is modeled by three equations

known as the Euler's equations of motion for the

rotation of a rigid body.

Denote by f_ the angular velocity defined with re-

spect to the center of mass, and by I the moments

of inertia. The equations describing the body rota-

(i 0 0/D1 = cos 0 sin 0 (10)

-sin8 cosS/

sin !)D3=/-s:_ cos_0 (11)

where D1 and D3 are rotation matrices that turn

the coordinate system by a given angle.



D1 and D3 are used to transform a vector from

our fixed coordinate system to a turned coordinate
system. For translation motion, the thruster's force
vector F has to be transformed from SAFER's coor-

dinate system to the fixed one using the transposed
rotation matrices:

(D3(_) • D1 (8). D3 (99)) T

Summarizing, these four vector differential equa-

tions are sufficient for modeling SAFER's motion
over time:

v = _ (12)

rn.v = (D3(¢). D1(8). D3(9_))TF (13)

I._+f_xI.f_=Q (14)

f_ ----D3(¢) • Dl(8) • (8,0,_) T + (0,0,_) T (15)

Solving these equations with given thruster forces

results in SAFER's position vector x(t) and the an-

gular velocity f_(t) used for AAH.

Alternatives to the Euler's equations model are

possible. For example, an aproach could have in-

volved the less computationally intensive quater-

nions. However, for validation purposes the model

should be as intuitive as possible, here efficiency

plays a minor role.

6 A Hybrid Model

The hybrid model of SAFER consists of the hand
controller and the Automatic Attitude Hold as its

discrete parts on one side and the equations of mo-

tion as the continuous part on the other side. Both

are modeled in Mathematica, the first in the form of

the VDM-SL specification using our VDM-SL em-

ulation package, the later in the form of ordinary

differential equations in Mathematica notation.

The combination of the discrete control system

and the continuous physical model during the test-

ing phase carries certain advantages:

Not only can the system specification be tested

in an (idealized) physical simulation, but also the

system parameters like the force of the thrusters and

the moments of inertia of the backpack can easily be

adjusted until the system responds in a way suitable
for practical use.

This is not a very rigorous approach, and it is not

intended to replace other testing tools and meth-
ods. Rather it can serve as a valuable supplemen-

tary tool.

VDMFunction[

ControlCycle,

SwitchPositions X HandGripPosition X

RotCommand X InertialRefSensors -> ThrusterSet,

ControlCycle[SwitchPositions[mode_, aah_], rawGrip,

aahCmd, IRUSensors]:=

let[{

gripCmd=HCM_GripCommand[rawGrip, mode],

thrusters=SelectedThrusters[gripCmd, aahCmd,

AAH_ActiveAxes[], AAH_IgnoreHcm[]]

},
AAH_Transition[IRUSensors, aah, gripCmd, SAFER_clock];

SAFER_clock=SAFER_clock+I;

PosData=CalcNewPosition[thrusters];

thrusters

],
True,

card[RESULT] _ 4 A ThrusterConsistency[RESULT]

];

FDMFunction[

SensorControlCycle,

SwitchPositions × HandGripPosition -> ThrusterSet,

SensorControlCycle[SwitchPositions[mode_, aah_],

rawGrip]:=

ControlCycle[SwitchPositions[mode,aah],rawGrip,

AAHControl0ut[Sensors], Sensors ]

];

Figure 5. The ControlCycle function.

The Control Cycle

The ControlCycle function (Figure 5) integrates

the discrete model of hand control, thruster se-

lection and Automatic Attitude Hold (AAH) with

the continuous physical model of motion presented
above.

The Control Cycle is implemented in two differ-

ent functions. ControlCycle takes the state of the

hand control (switches and hand grip) as well as the

already calculated or manually entered AAH com-

mands and the sensor values. SensorControlCycle

takes the values of the sensors (here simulated by

the solutions of the equations of motion of the pre-

vious control cycle) and determines which thrusters

are invoked by the AAH. These are then passed on

to ControlCycle.

After determining the active thrusters and the

AAH state, the differential equations are solved nu-

merically in the CalcNewPosition function and the

current position is updated. These results simulate

the values measured by the sensors (with exception

of the heat sensors, which are left out in our model)

providing data for AAH. This part of the control

system is completely left out in [1] and only included

in the form of two unspecified functions in the PVS

model [11].
Here the SAFER state is not as trivial as in [1]

where it holds only a clock variable.



VDMFunction[

AAHControl0ut,

InertialRefSensors->RotCommand,

hhHControl0ut[IRUSensors]:=

let[{rr=IRUSensors."RollRate",

pr=IRUSensors."PitchRate",

yr=IRUSensors."YawRate"},

map[

ROLL->Which[

rr _ -EpsRoll,POS,

rr _ EpsRoll, NEG,

True, ZER0],

11"'"
];

Figure 6. The Bang Bang algorithm for
AAH.

State[ShFER,

Type[clock, N],

Type[PosData, PositionData],

Type[Sensors, InertialRefSensors],

Type[step, Rpos],

Type[PosDataList, List[PositionData]],

init[SAFER] := SAFER[0,

PositionData[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

InertialRefSensors[0, 0, 0, 0, 0, 0, 0, 0, 0],

1/4, {{{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}}}1

1;

The state above also includes the current posi-

tion, Euler angles and velocities stored in a variable

of type PositionData.

Even the past position data is stored for provid-

ing full information about SAFER's trajectory. For

simulation this data will be used to display the his-

tory as a Mathematica "movie" showing the astro-
naut flying around in the coordinate system.

Automatic Attitude Hold (AAH)

Simulating the measured sensor values by the re-
sults of the equations of motion provides the op-

portunity of including the Automatic Attitude Hold

mechanism by a simple Bang Bang [11] algorithm: If
the angular velocity for an axis where AAH is turned

on exceeds a certain threshold, selected thrusters

are fired in order to slow down this rotation (Fig-

ure 6). AAH is limited to this mechanism because

SAFER is only based on simple thrusters with two
states: on and off.

The Differential Equations

The equations of motion used to determine the

new position of the astronaut are Newton's and

Euler's equations described above. Although this

model neglects any gravitational forces and other

disturbing influences, they could easily be added by
an additional acceleration in the equations or ran-

dom fluctuations applied to the results of the differ-

ential equations.

The new position is obtained by numerically solv-

ing the equations rather than algebraically which is

less time-efficient, beside the fact that the algebraic

solution is not necessary as only the result at time

step is needed for simulation.

Since the equations are only slightly coupled,

they can be solved in four steps, which is numeri-

cally more stable than solving them all at once. This

functionality is provided by Mathematica's NDSolve

function, which takes the differential equations and
the initial conditions and returns numeric functions

that approximate the exact solutions of the equa-

tions. In this case the trajectory is calculated piece-

wise: in every control cycle the trajectory only for

that cycle is solved using the position before the cy-

cle as the initial conditions and the force and torque

applied by the thrusters as parameters. These can

easily be calculated, the force by a simple vector ad-

dition of the forces applied by every single thruster,

and the torque by adding up the cross products of

the thruster positions with the force applied by that
thruster.

First, Euler's equation in the astronaut's coor-

dinate system is solved giving the angular velocity.

This needs the forces and the torque applied by the
fired thrusters as parameters. The result is then

transformed back to the fixed coordinate system
and used to solve the differential equation for the

Euler angles. In a third step Newton's equation can

be solved using the results from the previous equa-

tions. Finally, a simple integration of the velocities

gives the position of the astronaut.
These numerical solutions to the differential

equations can also be used to investigate stability.

In the simplified case without any external forces

like gravitation, this might not be so interesting,
but as soon as external forces are modeled into the

differential equations, stability is a crucial concern.

What happens if the hand controller keeps in the

same position over a long period of time? Such

questions can easily be answered by solving the dif-

ferential equations for a time period longer than just

the control cycle.

7 Simulating SAFER

Mathematica does not only provide algebraic and

numeric functionality, but also an extensive reper-



toireof plottingfunctions.ThusMathematicahas
alsobeenusedto visualizeSAFER'scurrentposi-
tiontogetherwithotherstateinformation.

Hand Grip input control

Mode Button It/+yaw rU-yaw z/roll pitch

i i_ fw _ iiiiiiiii_iiiii i

bw iiiiiiiiiiiii_iiiiiiiiiiiliiiiiiiiiiiii#iiiiiiiiiiiI_iiil

AAHcontrol Output (optional)

DetermineAAH output: i i

Figure 7. The GUI for the hand controller.

An interface to the hand controller similar to that

in [2] is provided in Mathematica (Figure 7). It
contains buttons for all the hand controller states

as well as for manual input of the AAH output for

overriding the simulated AAH in the model.

Pressing one of the buttons sets a global variable

that is used to determine the parameters passed to

the ControlCycle function. Additionally, the "Cy-

cles--l" button determines how many control cycles

should be evaluated when the "Run Control Cycle"
button is pressed.

Pressing "Run Control Cycle" initiates the con-

trol cycle and after calculating the new position
prints out a plot of the astronaut's path so far to-

gether with his orientation indicated by the axes of

his own coordinate system (Figure 8). Additionally,

his velocity and angular velocity are shown as vec-

tors. Optionally a table with the list of the fired
thrusters as well as the axes where AAH is turned

on is printed.

Since all the previous position data is stored,

Mathematica can even animate this graph so that

one can inspect the SAFER moving through space.

A graphical interface to the simulation like in

Figure 7 is interesting when testing the system's be-

havior in general. However, when adjusting param-

eters or testing specific cases, it's more convenient

to run the control cycles directly using Mathemat-

ica input commands. Figure 9 shows the input to

create Figure 8.

In [1] the visualization is done outside the

toolbox using dynamic link modules, which are

programmed specifically for this one application.

In Mathematica, changing only the differential
equations suffices to include other influences like

L _

o_ -:............- ..... , ",,

x ",,
-10_ i

i .:_o

.........................:,#-:--_..... -s
"z"

Figure 8. A sample trajectory of the
SAFER.

gravity, as Mathematica chooses the algorithm to

solve the equations.

However, testing in Mathematica is not restricted

to graphical simulation. Like in [1], the output of

the thruster selection logic can be validated by enu-

merating all possible states of the Hand controller,

or in an extended version enumerating all possible

states of the hand controller and the AAH. Fig-
ure 10 shows these functions formulated in Math-

ematica's VDM-SL notation. On every possible

state, ControlCycle is applied to calculate the fired

thrusters. The result of this large map comprehen-

sion then has to be investigated manually.
Another important part in the process of veri-

lying software would be coverage testing, which is

unfortunately not possible in Mathematica.

8 Enhanced Analysis of the System

The simulation possibilities described in the last

section can be exploited for risk and safety analysis

of the system. A very simple application is the case
when one of the thrusters fails due to a mechanical

defect or an iced valve. The most important ques-
tions in this scenario are whether the astronaut will

still be able to navigate the system, and whether it

is possible to return before the air or the nitrogen
for the thrusters is used up.

We investigated the functionality of AAH in the

case where one thruster (6-F2) fails. Figure 11

shows the angular velocity of the system, with the



ResetSAFERPosition[ ] ;

(* I right *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [ZERO, ZER0,POS, ZERO] ], { i}] ;

(* 3 yaw *)

Do [SensorControlCycle [Swit chPositions [ROT, UP],

HandGripPosition [ZERO, ZER0,P0S, ZERO] ], {3}] ;

(* 15 "right" *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [ZERO, ZER0,P0S, ZERO] ], { 15}] ;

(* wait *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [ZERO, ZER0,POS, ZERO] ], {2}] ;

(* 3 up *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGr ipPosit ion [POS, ZERO, ZERO, ZERO] ], {3}] ;

(* 6 down *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [NEG, ZERO, ZERO, ZERO] ], {6}] ;

(* 5 up *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [POS, ZERO, ZERO, ZERO] ], {5}] ;

(* nothing, just keep floating in space *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [ZERO, ZERO, ZERO, ZERO] ], {6}] ;

(* finally, 2 down *)

Do [SensorControlCycle [Swit chPositions [TRAN,UP],

HandGripPosition [NEG, ZERO, ZERO, ZERO] ], {2}] ;

VDMFunct ion [ ControlCycleTe st,

SwitchPositions X HandGripPosition X RotCommand->

ThrusterSet,

ControlCycleTest [SwitchPositions [mode_, aah_] , rawGrip,

aahCmd] :=

SelectedThrusters [HCM _GripCommand [rawGrip, mode] ,

aahCmd, AAH_ActiveAxes[] , AAH_IgnoreHcm[]] ,

True,

card[RESULT]_< 4 A ThrusterConsistency[RESULT]

];

VDMFunction[ BigTest,

{}->(HCM'SwitchPositions × HCM'HandGripPosition ×

AUXIL_RotCommand -> ThrusterSet),

BigTest[]:= map[({switch, grip, aahLaw}->

ControlCycleTest[switch, grip, aahLaw])l

{switchEswitchPositions, gripCgripPositions,

aahLawCallRotCommands }]

]

VDMFunction[ HugeTest,

{}->(HCM'SwitchPositions X HCM'HandGripPosition ×

AUXIL_RotCommand -> ThrusterSet),

HugeTest []:= map[({switch, grip, aahLaw}->

ControlCycleTest[switch, grip, aahLaw])l

{switchCswitchPositions, gripCallGripPositions,

aahLawCallRotCommands}]

];

Figure 9. The commands to create the sam-

ple trajectory.

hand grip set to forward acceleration. Just be-

fore cycle 4 is initiated, thruster 6-F2 breaks, which
would be used in this acceleration. This leaves

thruster 7-F3 applying an additional torque to the

system, which results in an increasing angular ve-

locity. In cycles 9 and 10 the astronaut initiates

AAH, but keeps the forward acceleration (cycles 10

to 17 and 20 to 25). AAH is now only able to com-
pensate the additional torque, but not to reduce the

angular velocity. Only when the forward accelera-

tion is turned off (cycles 17 to 20 and 25 to 30),
AAH shows effect.

The functionality of AAH could be improved by

immediately excluding thruster 7-F3 from the trans-

lational commands when thruster 6-F2 fails (and

thus allowing thruster 3-B3 to be used by AAH in-

stead of 6-F2). This would require a slightly modi-

fled and more complex thruster selection logic, pro-

viding a higher level of safety for the astronaut.

9 Concluding Remarks

In this article a hybrid model of NASA's SAFER

system has been presented using the specification

language VDM-SL inside the computer algebra sys-
tem Mathematica. We demonstrated that the im-

plementation of a VDM-SL package for Mathemat-

ica provides both, VDM-SL's powerful language lea-

Figure 10. The testing functions.

tures, like comprehensions, as well as the mathemat-

ical power of Mathematica, e.g. solving differential

equation systems.

The SAFER example shows the validation pos-

sibilities of such a combined tool. Like in [1] the
complex discrete model of the control logic can be

validated through testing. This is a cheap technique

for raising the confidence that the right model has

been specified prior to the application of more ex-

pensive formal proof techniques.

However, with the right tool, there is no rea-

son why the continuous models of a hybrid system

should be excluded from validation. Such a hybrid

validation is more suitable for finding unjustified do-

main assumptions made in the discrete model. We

strongly propose such validations, due to the fact

that making wrong assumptions is the weak point

of formal verification techniques, possibly leading to

correct proofs of the wrong model.

Furthermore, we demonstrated that the visual-

ization features of Mathematica provide a conve-

nient way to communicate a model to a customer.

Moreover, in contrast to [1], our visualization is a

functional graph that facilitates the communication

to control experts as well as to customers with a

technical expertise.

In the Irish school of VDM, Mathematica has

been used to explore explicit VDM specifications

[14], but to our present knowledge not for modeling

hybrid systems.
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Figure 11. Angular velocity with a broken

thruster, AAH initiated in cycle 9.

Note that the conclusion of our work is not that

Mathematica is the best tool for validating hybrid

system specifications. Our Mathematica approach

has its disadvantages, too: Our VDM-SL represen-
tation is not as readable as the notation of standard

VDM-SL and a typed language would be more suit-
able for specification purposes. Rather than propos-

ing a certain tool, our work points out the features

a powerful toolset should provide for validating hy-

brid systems.

Another future approach would be the integra-
tion of a classic formal method tool with a com-

puter algebra system. For example a combination
of Mathematica with the IFAD VDM-SL Toolbox

used in [1] would be a possibility. This could be re-

alized with the lately developed CORBA API of this
tool, that enables access to the toolbox as a CORBA

object and thus calling its VDM-SL interpreter from

programs implemented in C or Java. Mathematica
provides an interface through its MathLink facility.

Summarizing, we feel that our approach of hy-

brid validation is a valuable technique for produc-

ing systems of higher reliability and hope that it will
stimulate further research in this area.
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Abstract

In life-critical and mission-critical applications, it is im-

portant to make provisions for a wide range of contin-
gencies, by providing means for fault tolerance. In this

paper, we discuss the specification of a flight control sys-

tem that is fault tolerant with respect to sensor faults. Re-

dundancy is provided by analytical relations that hold be-

tween sensor readings; depending on the conditions, this

redundancy can be used to detect, identify and accommo-
date sensor faults.

Keywords

Flight Control Systems; Fault Tolerance; Flight Dynam-
ics; Sensor Failure Detection, Identification, and Accom-
modation.

1 Introduction

Providing the fault tolerant capability (FTC) to control

systems is a major issue in domains where system fault oc-

currences may give rise to unrecoverable damages to peo-

ple and/or to very expensive devices (e.g., nuclear plants,

space missions, aircrafts). In this paper we discuss mod-

eling and specifying the fault tolerant capability of a flight

control system (FCS), with respect to sensor faults. Rel-

evant issues include: achieving fault tolerance for FCS's,

defining fault domain (i.e., specifying fault hypotheses),

*This work is supported by a grant fi'oln NASA's DEcdenFlight Re
search Center.

Conespondence author.

adequate modeling, and adequate representation of the
model.

A typical approach to introduce fault tolerance in a con-

trol system is physical redundancy of components. The

detection/identification of a fault is achieved by compar-

ing the behavior of replicated components accomplish-

ing the same task and having the same features. Cost

and complexity considerations led recently an increasing

interest in alternative approaches, mostly based on an-

alytical redundancy. Outputs of components measuring
different but related items are observed in order to de-

tect/identify the faulty component. We go towards the

specification of the fault tolerant capability (based on an-

alytical redundancy) for a FCS, bounded to sensors faults.

We only focus on critical sensors, i.e. sensors measur-

ing modes of the aircraft that change too quickly to be

controlled by the pilot. We neglect multiple, transient and

simultaneous faults. Therefore the goal of this work is

not producing specifications for a complete fault tolerant

capability of a real world FCS, but conceptually address-

ing most of issues that also persist in large scale systems.

The space of sensor readings is partitioned, under fault hy-

potheses, and for each partition analytical relations among

system variables are introduced in order to characterize

the partition and to express constraints that must be sat-

isfied when a fault occurs while system conditions fall in

the partition, in order to guarantee stability and maneuver-

ability of the aircraft.

The formulation of such relations using the Software

Cost Reduction (SCR) notation is based on the tabular

representation of variable behavior in SCR: it is straight-

forward to introduce the expression whose result is the



valuethatavariablemustassume,undergivenconditions.
Functionaldependencyamongtablesisexploitedtocatch
out indirect relations. On the other hand, several repre-

sentation/execution issues are raised here on the usage of

SCR for such a domain (e.g., modeling time).

Section 2 gives an overview of a FCS, in terms of hard-

ware/software components and input/output variables. In

Section 3 analytical relations are introduced that describe

how analytical redundancy provides fault tolerant capa-

bilities to a FCS; domain partition is also provided. In

Section 4 major issues related to the SCR modeling are

dealt, and the specification refinement process, as part of

validation, is also sketched. In Section 5 a wider perspec-

tive of the problem is given, as part of an ongoing project,

where current and future possible directions are outlined.

Conclusions are reported in Section 6.

2 A Fault Tolerant Flight Control

System

2.1 Structure of a Flight Control System

Figure 1 shows the basic architecture of a Fly-By-Wire
Flight Control System (FBW-FCS). In FBW technology

conventional mechanical controls are replaced by elec-

tronic devices coupled to a digital computer. The net re-

sult is a more efficient, easier to maneuver aircraft. Four

subsystems form the core of such FCS's. The Measure-

merit Subsystem (MS) consists of the Sensors and the Con-

ditioning Electronics. It measures quantities that allow

observation of the state of the aircraft. Primary sensors

are those sensors whose correct operation is required to

maintain a safe flight condition. The Actuator Subsystem

(AS) consists of the Control Surfaces, the Power Con-

trol Units (PCU's), and the Engines. It produces aerody-

namic and thrust forces and moments by means of which
the FCS controls the state of the aircraft. The Control

Panel Subsystem contains all control devices and displays

through which the pilot maneuvers the aircraft. The Flight

Control Software subsystem (FCSw) includes all software

components of the FCS. It interfaces to the hardware of

the FCS through A/D and D/A cards (not shown in the fig-

ure). Current measurements, pilot inputs, and commands

to the actuators are processed according to the Flight Con-
trol Law (FCL) to obtain the commands to the actuators

at the next time step. Dash blocks and arrows represent

the system providing Analytical Redundancy based Fault

Tolerant Capability (AR-FTC) to the FCS and will be de-
scribed in the next section.

2.2 Deploying Redundancy for Fault Toler-

ance

Any hardware or software fault within the FCS can com-

promise the safety of the aircraft. For this reason FBW-

FCS's must meet strict Fault Tolerance (FT) requirements.

The standard solution adopted to achieve fault tolerance is

physical redundancy. A typical multichannel architecture

for the FCS consists of three intercommunicating FCS's,

that are equivalent --yet able to work independently. A

voting mechanism checks for consistency and can, under

some conditions, identify faulty components. Brute force

physical redundancy is no panacea, however: product re-

dundancy (duplicating copies of the same product) does

not protect against design faults, and design redundancy

(independent designs) has two major drawbacks, which

are cost and complexity. Complexity, in turn, adversely

affects overall reliability, and defeats the whole purpose

of the fault tolerant scheme. This additional complexity

affects not only the development costs, but also the main-
tenance costs.

These factors have, in recent years, led to an increased

interest in alternative approaches for enhancing FCS's re-

liability. In the past two decades a variety of techniques

based on Analytical Redundancy (AR) have been sug-

gested for fault detection purposes in a number of appli-

cations [12]. The AR approach is based on the idea that

the output of sensors measuring different but function-

ally related variables can be analyzed in order to detect

a fault and identify the faulty component. Furthermore,

preserved observability allows estimating the measure-

ment of an isolated (allegedly faulty) sensor, while pre-

served controllability allows controlling the system with

an isolated (allegedly faulty) actuator. Fault tolerance is

achieved by means of software routines that process sen-

sor outputs and actuator inputs to check for consistency
with respect to the analytical model of the system. If an

inconsistency is detected, the faulty component is isolated

and the flight control law is reconfigured accordingly. By

introducing AR it is possible to take off redundant sensors,

electronics, mechanical linkages, hydraulic lines, PCU's,

etc., thus cutting costs and weight, and reducing overall

complexity of the FCS. Physical redundancy would be re-

quired only where either post-failure system observability

and controllability are not preserved or detection of the

fault by means of AR is not feasible in the first place.

Application of AR in FCS's is not new. The very same

airplane used to conduct research on FBW technology
was also used as testbed for an AR based fault detec-

tion algorithm [14]. The algorithm showed adequate per-

formance during flight tests. However, poor robustness

to modeling errors and the amount of required modeling

hampered further development. Since then, a number of
results have been obtained in the area of robust fault de-
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tection[11].Unknown-input observers, robust parity re-

lations, adaptive modeling, and H_ optimization are a

few examples. While recent research has enabled us to

gain new insights into modeling analytical redundancy,

it has fallen short of an integrated design methodology

involving feasibility analysis, requirements specification,

and certification of AR based fault tolerant control sys-

tems. Exploring strengths, weaknesses, related degree of
reduction of physical redundancy, and overall reliability

is a fundamental step in the engineering process of such

systems.

3 Analytical Redundancy for Fault

Tolerance

3.1 The Flight Control System and Its Envi-

ronment

The airplane we adopt in this study is an F16. A detailed

non-linear model of the dynamics of this airplane is pre-

sented in [13]. The analytical redundancy of a fault toler-

ant flight control system depends on an analytical model

of the system and its environment. The dynamics of many

systems can be described in terms of a set of relations
among its inputs, outputs, states, and state derivatives.

These relations represent constrains imposed by laws of

mechanics, electronics, and thermodynamics upon sys-

tem inputs, outputs, and their derivatives. Because of ne-

glected dynamics, disturbances, and measurement errors

the analytical model of a system is not necessarily a truth-

ful representation of the real system. Control system de-

signers are mindful of this discrepancy and adopt design

techniques that are robust with respect to such uncertain-
ties.

In describing how analytical redundancy provides fault

tolerance capabilities to a flight control system, we adopt

the following notation:

1_ (state, state derivative, input, output,

process uncertainty, measurement error) (1)

Rd(current state, new state, input, output,

process uncertainty, measurement error) (2)

Parameters involved in these relations are vectors. The

relations are deterministic with respect to the first four

parameters, and stochastic with respect to the last two.

Whenever a parameter is not involved in a relation, we

write the symbol '-' in its place. Relation (1) is used for

time continuous models, where all parameters are evalu-
ated at the same instant t. Relation (2) is used for time

discrete models, where all parameters are evaluated at the

discrete time tk, except the new state, which is evaluated

at tk+a. The difference (tk+a - tk) is the sampling time

of the discrete system. For the sake simplicity we describe
only the most relevant parameters of the relations that we

introduce in the remainder of the paper. Accordingly, we

will often skip the description of state, state-derivative,

process-uncertainty, and measurement-error parameters

unless they play a prominent role in the analytical redun-



dancyframework.

The following relations represent the analytical models

of the hardware systems in Fig. 1:

P (x(t), _(t), c(t), x(t), _(t), -) (3)

A(xa(t),2a(t),u(t),c(t),_a(t),_la(t)) (4)

(5)
M,, (x,,(t),2,,(t),r(t),y,,(t),_,,(t),_],,(t)) (6)

Relation (3) describes the dynamics of the aircraft, i.e.

the process to be controlled by the FCS. It involves force,

moment, kinematics, and navigation equations. The state

vector includes the flight variables used in the above equa-

tions. A typical state vector is:

x ----[U, V, W, P, Q, R, (b, ®, _, PN, Pz, h]T (7)

where the elements are the three linear velocities, the three

angular velocities, the three attitude angles, and North,

East, and ahimde position of the aircraft. Forces and mo-

ments applied to the airframe by the control surfaces and

the engines are included in the input vector c(t). The out-

put coincides with the aircraft state and represents the ac-

tual value of the flight variables in (7). Since it is a set of

actual values, there is no output uncertainty. The process

error vector ( is related to the uncertainty of the relation

with respect to neglected dynamics and unknown inputs.

Relation (4) describes the dynamics of the actuator sub-

system. The input vector u(t) includes command signals

to the actuators, while the output vector includes thrust

and aerodynamic forces and moments. Relation (5) de-

scribes the dynamics between aircraft state x(t) and pro-

cess measurements yp (t). A typical set of sensors pro-
vides the following measurements:

These are static pressure, total pressure, angle of attack,

sideslip angle, body accelerations, and body angular rates

respectively. To differentiate measured from actual body

rates we adopt the 'tilde' notation. Relation (6) describes

the dynamics between the actual position of pilot controls

r(t) and their measurements yr (t). The two measurement

vectors will be referred to in the sequel as:

y(t) = [yp (t), y,, (t)] T (9)

The following relations represent the analytical models of
the software systems in Fig. 1:

I (-, -, y(tk), 9(tk), -, ,lI(tk)) (10)

--,,lL(tk)) (11)

0 (-,-, it(tk), u(tk),-, ,]o(tk)) (12)

The FCSw closes the control loop between sensors and

actuators subsystems. To distinguish software variables

from related electrical signals we adopt the 'hat' nota-

tion. Relation (10) represents the relationship between

measurement samples y(tk) and the corresponding soft-

ware variables 9(tk). Since this is an algebraic relation,

there is no need to introduce state variables, zl(tk) takes
into account quantization error. Relation (11) describes

the dynamics of the the flight control law. Current value

of sensor measurements and actuator commands are pro-

cessed to produce the actuator commands at the next time

step a?(tk+l). Relation (12) describes the relationship be-
tween software commands fi (tk) and electrical commands

In order to complete the set of relationships needed to

illustrate the principles at the basis of AR-FTFCS's we in-

troduce two relationships capturing the FT requirements:

Rh (x(t), _(t), _(t), ÷(t)) (13)

Rl (x(t), 2(t), r(t), ÷(t)) (14)

Relation (13) describes the high priority responsiveness

requirements of the aircraft to pilot commands in terms

of the true state of the airplane, the input commands, and

their derivatives. Relation (14) describes the low priority

requirements. For an airplane to be safe it is mandatory

that the high priority requirements are preserved even in
case of fault.

3.2 The AR-FTFCS

After having introduced the analytical model of the FCS,

its environment, and its fault tolerant requirements it is

possible to illustrate how an AR-FTFCS works.

At the instant tk new measurements are available as

software data 9(tk). The elements of this vector are not

independent; they are correlated by means of relations (3),

(5), (4), (10), and (12). Furthermore, they are correlated to

(tk) by virtue of the same relations. By analyzing sensor

measurement and actuator command histories it is possi-
ble to check whether the above relations are satisfied. If a

fault within the hardware loop produces an inconsistency

with respect to the analytical model the system is said to

hold AR properties allowing detection of the fault. Af-

ter detection of the fault it is necessary to identify which

component has failed. Each component of the FCS plays
a different role within relations (5) and (4). Hence, the

distortion affecting these relations at the occurrence of a
failure depends on the component failed and on the fault

mode. By processing sensor measurement and actuator

command histories it is possible to locate the source of

distortion. If a fault within the hardware loop produces

a distinct signature in terms of commands/measurements



correlationthesystemissaidtoholdARpropertiesallow-
ingidentification of the fault. Once the faulty component

component is identifed, the FCS needs to be accommo-

dated in order to preserve responsiveness requirements.
Accommodation can be carried out at the software level

because the flight control algorithm is not unique. Given

relations (3), (5), (4), (10), and (12) describing the dy-
namics of the aircraft, sensors, actuators, and interfaces

with the FCL, there can be a number of different control

algorithms satisfying responsiveness requirements. Some

of these algorithms do not use all of the sensors and/or ac-

tuators available. Hence, if a hardware component of the

FCS falls, responsiveness requirements can be maintained

by switching to a control algorithm that does not employ

that component. If such an algorithm exists the system is

said to hold AR allowing accommodation of the fault.

Figure 1 shows how a FCS is enhanced to an AR-

FTFCS. The dash blocks and arrows represent the sub-

system providing Fault Tolerant Capability (FTC) to the

FCS. The core of this subsystem is the AR-FTC software
module, while the dash section within the Control Panel

block represents the hardware interface to the pilot. Fol-

lowing the notation adopted in the previous section we

describe the FTC subsystem by means of the following
two relations:

AR_._ (xa,, (_), xa,-(_+a), [y(_), _(_), _(_)],

[Yv (_k), _v(_k+a),/)(_k), _(_k)],-, 7]ar(_k)) (15)

ARH (-,-,
-, z/,,,(tk)) (16)

Relation (15) describes the dynamics of the software mod-

ule. It processes current measurements _(tk) and com-
mands fi (tk) to validate _ (lk) against the analytical model

of the system. If no inconsistencies are detected the

FCL module takes over and produces the new command

fi(tk+a). If an inconsistency is detected the AR-FTC

module further processes incoming data to identify the

faulty component. Then, it either produces a virtual set

of validated measurements _ (tk) for the FCL, or it by-

passes the FCL and produces a new set of validated com-

mands fi_ (tk+a) according to a safe control law that does

not use the faulty component. The two options are typi-

cally adopted for sensor and actuator faults respectively.

If a component of the actuator subsystem falls then it is

often necessary to reconfigure the control law to take into

account the control deficiency. If a sensor falls its out-

put can be estimated and the estimation substituted into

the measurement vector _(tk) to produce _ (tk). How-
ever, the solution can be adopted where the FCL is by-

passed and an alternative control law is used in its place.

The _ (tk) signal is used to synchronize execution of the

FCL and the AR-FTC modules, rh(tk) and _3(tk) are the
operational mode selected by the pilot and the diagnos-

Fault mode Yi (Volts) _)i (deg/sec)

Loss of signal [2.0, 2.5] [-22, 0]

Loss of power 0 - 90

Loss of ground 12 90

Table 1: Fault modes

tic information respectively. Relation (16) represents the

relationship between pilot's controls m(t k) and displays

v (tk) and related software variables rh (tk) and _3(tk).

3.3 Fault Hypotheses

In the previous section we have shown how a system fea-

turing AR properties can be made fault tolerant with re-

spect to sensor faults at the software level. However, soft-

ware along with its supporting hardware (computers, data

buses, etc.) and hardware systems other than sensors and

actuators can fail as well. AR cannot be adopted to pro-

vide fault tolerance with respect to failure of such com-

ponents; a different approach must be adopted for these

types of faults.

In this phase of the study we focus our attention on sen-

sor faults only. More specifically, we require fault toler-

ance with respect to failure of the roll, pitch, and yaw rate

gyros. The sensors used are a solid state rate gyro where

a vibrating element is used to measure rotational veloc-

ity by employing the Coriolis principle. The output range

of the sensor is -4-90deg/sec and its bandwidth is 18Hz.

The output of the sensor has been recorded while simu-

lating the failures. Three different fault modes have been

considered: loss of signal, loss of power, loss of ground

reference. The fault modes along with outputs of the sen-

sor and the values of the correspondent software variable
are listed in Table 1.

3.4 Fault Modeling

We have to point out that even though analytical redun-

dancy does enable us to achieve some level of fault toler-

ance, it does not guarantee arbitrary levels of precision in

detecting, identifying, and accommodating sensor faults.

An exhaustive feasibility analysis covering components

subject to failure, fault modes, and possible state evolu-

tion for actuator, aircraft, and sensor systems is required.

To explain how detectability and identifiability problems

arise we will refer once again to relations (3), (5), (4),
(10), and (12). These relations can be assembled to form

one single relation that captures the system AR at soft-
ware level in terms of sensor measurement and actuator

command histories:



(17)

Here u represents a global uncertainty term collecting all

process uncertainty and measurement error terms in rela-
tions (3), (5), (4), (10), and (12). Variables n, m, and p

represent the depths of the input, output, and uncertainty

sequences respectively. If we consider the space whose

points have coordinates given by the elements involved

in relation (17), we can distinguish those regions of the

space where relation (17) is satisfied, from those where

it is not. Furthermore, we can characterize those regions

related to distortions of relation (17) caused by the given
fault modes.

Following Mili et al. [1, 7], we model a fault toler-

ant scheme by means of a partition of the relevant state

space into a hierarchy of classes that represent degrees of

correctness, degrees ofmaskability, and degrees of recov-

erability. For a program, the relevant state space is the set

defined in terms of all the values taken by all the state vari-

ables of the program; for a set of sensors, the relevant state

space is the set defined in terms of all the values taken by

all the sensor readings. The partitionthat we derive for our

purposes is given in figure 2. Process uncertainties (distur-

bances, simplifying hypotheses, modeling shortcuts, etc)

make the actual partition more complex than the original

model [1, 7]. In its current form, this partition is incom-

plete, and is being refined.
The inner ellipsis of figure 2 represents states for

which the deterministic relationship within relation (17)

holds. The outer ellipsis contains the points for which

the stochastic relation (17) holds. Points outside this re-

gion imply an inconsistency with the analytical model of

the system. The three triangles marked F1, F2, and F3

contain points related to three different fault modes. The

intersection between the region 'F1 U F2 U FY and the

outer ellipsis contains those points that are related to a

fault mode, but that preserve relation (17). Hence, this

region represents those states where a fault mode is not

detectable by means of AR. This region is marked Detec-

tion non Feasible in the figure. The region marked Identi-

fication non Feasible contains those points for which the
identification of a fault cannot be achieved either because

that fault mode has not been considered within the speci-
fications, or because failure effects do not allow us to dis-

tinguish between the fault modes.

To describe accommodation feasibility in analogous

terms we need to consider the space whose points repre-

sent the aircraft states. If after the failure of a component
the FCL can be reconfigured to satisfy the safety require-
ments then accommodation is feasible within the whole

space. If instead there are states that cannot be reached

without violating the safety requirements the space will

be partitioned in regions where accommodation is feasi-

ble and regions where it is not. As a limit case, accommo-

dation is not feasible in the whole space if there is no FCL

that would satisfy the safety requirements.

4 SCR Modeling

The derivation of this specification is part of a larger

project whose purpose is to validate and certify an adap-

tive fault tolerant capability (AR-FTC in figure 1) for a

flight control system, which is concurrently being imple-

mented using a radial base fimction neural network [8].
Our intent is that the specification will be used as an or-

acle in the testing task which aims to validate/certify the

fault tolerant capability. Consequently, it is rather imper-

ative that the specification be written in a language that

is supported by automated tools; so that in the validation/

certification phase, the neural net and the executable spec-

ification can be executed independently to provide a basis

for checking the former against the latter. We have chosen

to use SCR as the specification vehicle, because it lends

itself to this type of application: tabular representations,
which form the semantic foundations of SCR, were used

in [3] to specify the requirements of the Navy's A7-E air-

craft and in [10] to specify nuclear power plants; SCR

was used to specify an autopilot [2], to specify a variety

of high assurance applications [5, 6], and to specify some

functions of the space shuttle software [15].

4.1 Scope of the Specification

Figure 1 shows the structure of the overall aircraft sys-

tem, including the data flow between the aircraft, the flight

control system, the cockpit controls, and the environment.
The first issue we must address is to delimit the bound-

aries of our specification. We have pondered two possi-

ble options, which we denote by option 1 and option 2:

whereas option 1 focuses on the inputs and outputs of the

fault tolerant capability component (re: AR-FTC, in figure

1), option 2 (the aggregate of the flight control system,

with the aircraft) considers the impact of the outputs of

the AR-FTC on the aircraft state. The choice of an option

is driven by the following considerations.

Generality/Abstraction. For a given situation, de-

fined by a set of sensor readings, there are many se-

quences of actions that a flight control system can

follow to achieve/maintain the maneuverability/sta-

bility of the aircraft. At any instant, these actions
may be different, but their combined effect over time

is identical. Hence by virtue of abstraction (we do
not wish to deal with the detailed mechanics of how

the AR-FTC operates) and generality (writing speci-

fications that apply across a wide range of possible
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implementations),thesecondoptionis betterthan
thefirst.

Observability/Controllability. If we choose option

2, then we cannot judge the outputs of the AR-FTC

directly, but we have to observe their effect on the air-

craft. This gives us much lower observability of the

AR-FTC than option 1. Controllability is the same

for both options.

Ultimately, this decision amounts to choosing between
observability (option 1), i.e. the ability to observe and

monitor the exact values that are produced by the FTFCS

implementation, and abstraction (option 2), i.e. the ability

to give the implementer some latitude in how to maintain

maneuverability. We have ruled in favor of abstraction.

4.2 Representation Issues

By virtue of the choice discussed above, the input vari-

ables of the specification are the sensor readings of rel-
evant flight parameters (altitude, speed, acceleration, an-

gle of attack, rate gyros, aileron deflections, elevator de-

flections, rudder deflection) and the actuator input values;

the output variables are the actual values (i.e., the vali-

dated vectors) of the same parameters and a fault report.

Hence, for parameter Y, for example, we define variable

mY (named after SCR parlance: monitored Y) which rep-

resents the sensor reading for Y, and variable cY (con-

trolled Y) which represents the actual value of parameter

Y. Because of sensor failures, cY may differ from _zY.

In addition, because of the latency of the FCS and (espe-
cially) of the aircraft (in reacting to adjusted actuator val-

ues), the value of cY at time _ (cY(_)) is not functionally

related to the value of _zY at the same time _ (_zY(_)),
but rather to previous values of _zY. In addition to the

sensor readings of the flight parameters, the set of input

variables also includes the values of the cockpit controls.

The second and fourth columns of table given in figure 3

show the structure of the input and output spaces. We now

give a mapping of those spaces into the partition of sensor

readings in figure 2.

The innermost ellipsis of figure 2 represents the fault-

free case, whose relation takes the form

where predicate p characterizes the condition of determin-

istic fault freedom. The outermost ellipsis of figure 2 rep-
resents the case in which a measurement error in sensor

readings leads to uncertainty in the fault process; the rela-



Family Input State Output

of (monitored) (Tern1) (controlled)
Variables Variable Variable Variable

Flight

Parametel, Y mY tY cY

Actuator

Inputs, U mU tU cU

Pilot

Command, MR m M t_

Fault

Report, V cV

Figure 3: Space Structure

tion for this ellipsis takes the form

n' = {((.,v, .,u), (cV,cU))]q(.,v, .,u, cV,cU,,j,¢)},

where rl represents the measurement error and _ the pro-

cess uncertainty; predicate q characterizes the condition

of fault status in the stochastic dynamics.

Each triangle Fi of figure 2 represents a different fault

mode, whose relation take the form

= {

where predicate fi characterize the condition of fault

mode i. Different shades and bold lines in figure 2 sep-

arate areas with different fault capabilities. In order for a

fault i to be detected, it must satisfy

RF, _ R = O;

also, to be identified, it must satisfy

RE, N RFj =_ (Vj¢i).

With regard to accomodability, the specification must

reflect the property that the aircraft remains maneuver-

able despite the presence of sensor faults. In particular,

in every triangle Ei maneuverability is a binary function

in variables rnMR(t) and cY (t) (linking pilot commands

to actual flight parameters). Because rnMR(t) and cY(t)

are not instant variables but rather functions of time, it is

conceivable that the value of cY at some time t be a func-

tion of the value of rnMR at a previous time t' < t.

4.3 Modeling Issues

Time is inherent in the specification of the FTFCS. Execu-

tion of the FTFCS takes place in the context of a sequence

of sensor inputs which, except for faults, represents a

physically feasible flight path. The FTFCS is aware of

the passage of time through the advent of clock pulses;

at each clock pulse, the FTFCS takes a snapshot of the

sensor readings, processes them, computes actuator val-

ues, then awaits the next clock pulse. Note that the sensor

readings may well remain constant across two or more

clock pulses; the FTFCS processes them at each clock

pulse all the same. On the other hand, sensor readings

may take several distinct values between two successive

clock pulses; the FTFCS is only aware of their two values

at the successive clock pulses.

Whereas the real-time operation of the FTFCS is driven

by the clock pulses, the execution of the SCR specification

(for the purposes of validating the specification or verify-

ing implementations against it) is driven by the succes-

sive application of the functions defined by SCR's tabular

expressions on the input variables and the state variables.

SCR specifications are executed in a kind of a batch mode,

where the real time between two successive function ap-

plications need not bear any relation to the actual time

between two successive clock pulses.

The concept of time arises naturally in flight dynamics

equations, which are differential equations of flight pa-

rameters and pilot commands. Let us consider some con-

trolled variable cX, and let us assume that this variable

satisfies the following differential equation:

d(cX) _
dt

where t is the time variable, F is a function of t that po-

tentially involves monitored and controlled variables (in-

cluding cX), and dX77- is the derivative of X with respect to

time. If we approximate the derivative by means of finite

differences, we find (cx(t)-cx(t-st)) _ F(t). If we let at

be the interval between two successive clock pulses, and

let this be the unit of time (i.e., at = 1), then cX(t) and

cX(t - at) measure the current value and the past value of

parameter cX. Solving this equation for cX(t), we find

cX(t) = cX(t - at) + f(t). (18)

Each application of this transformation (from cX (t - at)

to cX(t)) represents the effect of the advent of one clock

pulse. In order to distinguish between the current and past

values of variable cX, we use SCR's concept of term vari-

able. To each flight parameter (X) we associate a term

variable, which we denote by prefixing the variable name

with t; the term variable is used to represent the value of

the variable at the preceding clock pulse. In order to rep-

resent the transformation described in equation (18), we

write S CR tables to perform the following transformations

in sequence.

tX := cX;

cX := tX + F;



We cannot merely define two tabular expressions that

compute variables cX and tX according to these formu-

las, for they produce a circular reference (and SCR does

not recognize the sequence command --the order of ex-

ecution in SCR is driven merely by functional dependen-
cies).

A tantalizing alternative is, of course, to use SCR's

primed variable convention, whereby the primed version

of any given (non-primed) variable is the previous value of

that variable. This option does not work for our purposes,

because of the specific interpretation of previous value in
SCR. SCR is event-driven, where each change of value

of any variable is understood to be an event; by contrast,

our model is time-driven, where an event is the advent of

a clock pulse. If, between two successive clock pulses,

three monitored variables change values, SCR considers

that it has witnessed three events, and previous refers to

the most recent one; by contrast, our model considers that

only one event has occurred, and previous refers to the

state of the system at the previous clock pulse.

5 Assessment

In this section, we review our specification project (al-

though it is still in progress) and assess some of our deci-

sions, with partial hindsight.

5.1 SCR Adequacy

We briefly report on our experience with using SCR for

the purposes of our specific situation. We acknowledge

that we have very little prior experience with SCR, and

our comments must be qualified accordingly.

The general pattern of a table in SCR is to compute
a controlled variable in terms of monitored variables and

possibly term variables. Many requirements that we en-
counter are instead best formulated as a relation between

monitored variables (to limit the domain of a relation), or

a relation between controlled variables (to limit the range
of a relation). Also, even if the controlled variable is a de-

terministic function of the monitored variables, it may be

more natural to represent this function by a conjunction of
non-oriented, non-deterministic, relations.

We find it unsettling that in a specification that has a

large number of tables, the only composition operator be-

tween these tables is functional dependency, which is not

even explicit. We would find it more powerful to have a

wide vocabulary of composition operators which we can
use to compose tables together. There is undoubtedly a

sound basis for letting functional dependency be the sole
criterion that determines the order of evaluation of tabu-

lar expressions. But our experience with modeling time

would have been more successful if we had the ability to

impose an arbitrary sequencing between tables, to break

the cycle of circular dependencies. (Note: It is possible to

define a refinement-monotonic sequence like operator, us-

ing demonic semantics). Furthermore, because tables are

combined only with functional dependencies (rather with

refinement-monotonic composition operators) we find no

natural discipline for stepwise specification generation.
Such a discipline would enable us to compose a specifica-

tion in a stepwise manner, and to know that as we produce

more and more tables, the overall specification grows in-

creasingly more refined (until completeness). The struc-

ture afforded by such explicit composition operators can

be used to control the complexity of subsequent validation
and verification tasks.

Because SCR, and the tabular expressions on which it is

based [9, 4], support model-based specifications, it elicits

more detail from the specifier than a behavioral specifi-

cation. This excess detail makes the specification more

complex, and may lead to inconsistencies.

We find that the data type offerings of SCR are more

akin to those of a programming language than to those of

a specification language. In an application such as ours,

we needed a variety of data types, ranging from angles

(degrees) to durations (seconds) to engine speeds (rota-

tions per minute) to positions (meters) to speeds (meters/

second) to accelerations (meters/second/second) to an-

gular velocity (degree/second), etc. We found ourselves

mapping all of them into reals, when a language supported

typing system that provided a wide range of data types and

a corresponding type checking function would have en-

hanced the readability and reliability of our specification.

We also found that it would have been helpful if SCR pro-

vided dimension-checking functions, whereby whenever

we write an equation, it checks the dimensions of both

sides to ensure that they are consistent. Whether this is an

extension of the type checking function, a separate func-

tion, or actually the same (only more elaborate) function,
we do not know.

Many of the issues that we raised here are interrelated

(e.g. a single design decision dictates a host of interrelated

issues), and many stem from legitimate design tradeoffs

(e.g. favoring efficient executability vs expressive power).

We assume that as we become more acquainted with the

spirit of S CR's specification model, some of these issues

will may grow increasingly insignificant.

5.2 Non-determinacy

We faced a dilemma while trying to derive a specification

for the fault tolerant capability flight control system, deal-

ing with the determinacy of the specification. We had two

options:



Make the specification deterministic. This is more

natural, from the standpoint of SCR (which revolves

around the pattern of formulating controlled vari-
ables as a function of monitored variables), and

yields generally simpler specifications. The main
drawback of this solution, of course, is that it forces

us to second guess the designer of the neural net, be-
cause we have to derive a specification for the exact

function that the neural net is implementing. This,

in turn, has two drawbacks: first, it imposes much

coordination between the implementer team and the

specifier team, and is counterproductive from a V&V

viewpoint (V&V relies primarily on redundancy);

second, it imposes early constraints on the designer,

prohibiting him from altering design decisions that

affect the specifier team.

Make the specification non deterministic. The posi-

tion here is to let the specification focus on express-

ing the desired functional properties, without going

as far as to uniquely specify which output will satisfy

these desired properties. This solution is consistent

with traditional guidelines for good specification, but

causes some difficulty in SCR, because SCR does not

handle non-determinacy naturally. This is the most

striking limitation we have encountered using SCR.

In our example (and certainly in many other applica-

tions as well), we often encounter requirements that

are not deterministic; also, many complex require-

ments are best formulated as the aggregate of a set of

simpler, non-deterministic requirements.

We felt very justified in choosing the second option, but

have found that it raises an issue which may, with hind-

sight, cause us to reassess our choice: Under the first op-

tion (deterministic specification), the specification of the

system does not have to capture the criteria under which

differences of output between the specification and the

implementation can be considered tolerable; this decision

can be made during the verification and validation step,

by the V&V team, to take into consideration any special

circumstances that may arise at run-time. By contrast, un-

der the second option, the tolerance margins have to be

hardcoded into the specification, and cannot be adjusted

subsequently by the V&V team to account for special test-
ing/operational conditions. Hence both options force us

to make early decisions: The first option imposes on us to

agree with the implementer on specific design decisions;

the second option imposes on us to agree with the V&V

team on specific tolerance margins.

6 Prospects

6.1 A Testing Plan

Our plan calls for using the target specification as an or-

acle in the test plan of the neural network. Specifically,

the neural net feeds its inputs into a certified flight sim-

ulator, which plays the role of the aircraft components in

the graph of figure 1. This aggregate is placed side by

side with the SCR specification, whereby the SCR is used

as an oracle to test the neural net. Input data is submit-

ted to the system under test and the SCR oracle, to check

for correctness. This input data is the aggregate of sensor

readings and pilot controls, which are collected from pre-

viously collected flight simulation data. The purpose of

the testing plan is to make a ruling on the certifiability of

the neural net as an implementation of the fault tolerant

capability of the flight control system. The system struc-

ture that we have derived for this purpose is presented in

figure 4. The fault reports of the neural net and the SCR
specification are compared for logical equality, producing

the result shown in the lower right comer of the figure. On

the other hand, the actual state of the aircraft, produced by

the flight simulator, is matched against the pilot controls

(by virtue of a law that captures aircraft maneuverabil-

ity), to return a boolean indicator of whether the aircraft

maintains adequate maneuverability (despite the possible

presence of faults).

6.2 Interpreting Flight Dynamics Equa-
tions

In the process of deriving the SCR specification of the

FTFCS system, we are really conducting two activities,

namely modeling and representation:

Modeling. This task deals with such matters as de-

ciding which parameters are of interest, how do we

represent the fault tolerant capability, how do we rep-

resent time, how do we approximate derivatives, how

do we enforce sequencing of tabular evaluations/ex-

ecutions, how do we reflect the dynamic nature of

the system, how do we detect, identify and accom-

modate faults, etc.

Representation. Generally speaking, this matter

deals with how do we map our model into SCR
terms, and how do we formulate our model in such

a way as to take the best advantage of built-in SCR
features.

Ideally, we would like to think of these two activities are

being strictly sequential; i.e. modeling must be completed

before representation can proceed. As attractive as it may
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Figure 4: A Testing Plan for the Neural Net

be, this discipline has proven to be a challenge in prac-
tice, due to time pressures and to the impact of represen-

tation constraints on modeling decisions. This has led us

to consider the possibility of producing a syntax directed

translation of flight dynamics equations into SCR source

code. The main advantage of this solution is that we get to

encode all our modeling decisions in the syntax-directed

rules; this allows us to keep our modeling options open

until very late in the specification lifecycle; most impor-

tant of all, this solution ensures that our modeling deci-

sions are applied uniformly across all the equations of the

specification.

6.3 Analytical Reasoning on Neural Nets

Traditional certification algorithms observe the behavior

of a software product under test, and make probabilistic/

statistical inferences on the operational attributes of the

product (reliability, availability, etc). The crucial hypoth-

esis on which these probabilistic/statistical arguments are

based is that the software product will reproduce under

field usage the behavior that it has exhibited under test.

This hypothesis does not hold for adaptive neural nets,

because they evolve their behavior (learn) as they prac-
tice their function. Of course, one may argue that they

evolve their behavior for the better; but better in the sense

of a neural net (convergence) is not necessarily better in

the sense of correctness verification (monotonicity with

respect to the refinement ordering). Concretely, a neu-

ral net may very well satisfy the SCR specification in the
testing phase, and fail to satisfy it in the field usage phase,

even though it converges. See figure 5.

In light of these observations, we envisage to comple-

ment the certification testing activity with an analytical

method. Such a method would rely on some semantic

analysis of the neural net, as well as some hypothesis re-

garding the data that it receives in the future.

7 Summary

In this paper we have discussed the formal specification,

in SCR, of an adaptive fault tolerant flight control sys-

tem. The specification is due to be used as an oracle in
the certification of a radial basis function neural net that

implements the adaptive scheme. The fault tolerant prop-

erties of the system, the adaptive nature of its implemen-

tation, and the specific application for which the specifi-
cation is intended (certification), contribute to make this

a unique experiment in system modeling and representa-

tion. In particular, the fact that the system implementa-

tion is adaptive (hence does not duplicate its behavior as

it evolves) rules out traditional testing techniques. Also,
the fact that the system's behavior is dependent on input

history precludes the traditional static analysis techniques.

The specification generation is under way, and we expect

many of the modeling and representation decisions that

we have discuss in this paper to remain influx.
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Abstract

We survey mathematical modeling, the mathe-

matical and computational technologies upon which

it relies, and the potential sources of error. We as-

sess formal methods and computational logic in this

light, suggesting that certain well worn paths may

have little to offer. We identify as opportunities

for the future: analyzing requirements, assumptions

and proof obligations for the assessment and confir-

mation of models, extending such techniques to ar-

chitectures for heterogeneous distributed models with

legacy components, using computational logic to ex-

tend the capabilities of computer algebra systems,

and techniques for symbolic analysis.

1 Introduction

The purpose of this paper is to assess formal

methods and computational logic from the point

of view of mathematical modeling. It forms part

of a larger research program assessing formal meth-

ods and computational logic for mathematics and

its applications.

The techniques of mathematical modeling, that

is of regarding a physical phenomenon as a dynam-

ical system for the purposes of understanding and

prediction, arose in the physical sciences during the

twentieth century, were used widely in meteorolog-

ical and defense applications and later spread to

environmental, biological and geological modeling.

They were transformed by modern computation,

and by increasing reliance on modeling in many as-

pects of public policy, and have also become the key-

stone of US undergraduate math curriculum reform

[38]. This paper concentrates on the issues aris-

ing in bioscience and environmental science, rather

than on physical sciences, engineering or control

theory: in particular we are considering computa-

tional rather than physical models.

In the first part of the paper we survey math-

ematical modeling, the math and software that it
relies upon, and possible sources of error and user

concern. We go into some detail, on the grounds

that assessing how formal methods might be used

in practice requires a general understanding of what

the practice of modeling is. In the second part we

consider how formal methods and computational

logic might address these concerns, and identify

some possible new directions.

Section 2 is a methodological aside. Section

3 contains an account of mathematical modeling,
which we encapsulate as a "purposeful representa-

tion of reality". A modeler devises a "model world"

to investigate some "purpose" in the "real world".
A mathematical "model" of the model world is con-

structed using dynamical systems, and the mod-

eler reasons within it. Almost universally today the

reasoning is done with the aid of numeric or sym-

bolic computation, so an "implementation" of the

mathematical model is built in a computer system:

from the "implementation" conclusions are drawn
about the "model" or the "model world" and as-

sessed against the hypotheses of the "model world"

or against observations of the "real world". We may

view this as a pipeline: {reality+purposes} --+ model

world --+ model --+ implementation.

Thus modeling relies on two underlying tech-

nologies: the mathematical theories of differential

equations and dynamical systems, and the compu-

tational tools of numeric or symbolic computation.

In Section 4 we give a brief account of the first

of these, the mathematical theories. We describe

the kind of reasoning that is typically done, and
assess the correctness issues. We note in particular

that the mathematician developing the theories, the

toolsmith using them to devise algorithms and the

modeler using those algorithms may have somewhat
different perspectives.



In Section5 weconsiderthesecondtechnology,
anddescribenumericand symboliccomputation
andsomeofthecorrectnessconcernsthatarise.Nu-
mericalsystemsarewidelyusedbecausetheyalways
giveananswer:it issuggestedthatgeneralsoftware
engineeringissuesratherthanbugsinalgorithmsor
floatingpointarithmeticarethemaincauseof er-
ror. Symboliccomputationsystemsaremuchless
flexible,andfurtherproblemsarisebecauseof fun-
damentaldesignissueswhichmeanthatcontinuous
mathissometimeshandledincorrectly.

Sections4 and5consideredtheunderlyingtech-
nologies:in Section6 we returnto the model-
ing processitselfandassesscorrectnessconcerns.
Whilethesecanariseanywherein the pipeline,it
is theassessmentof a "model"or "modelworld",
againstcompetitorsandagainstpurposesthat at-
tractsmostattentionin themodelingcommunity,
andinmatterssuchasenvironmentalprediction(for
example,queryingassumptionsaboutgroundwater
penetration)theycanbesubjectto heateddebate.
In largeor legacymodelseventrackingbuilt-inas-
sumptionscanbehard.

Section7addresseshowcomputationallogicand
formalmethodsmayaddresssomeof thecorrect-
nessconcernsraisedin theprevioussections.The
correctnessofthemathematicalandcomputational
technologiescanin principlebe addressedusing
techniquesof computationallogic:weindicatethe
mainnotionsfor both. In particularwe report
brieflyon our ownworkusingheavyduty theo-
remprovingin PVSto provideconvenientembed-
dedreasoningtoolsfor computationalmathemat-
icssystems.Howeverweassertthat in generalthe
modelingcommunityareusersratherthancreators
of mathematicsandsoftware,andarenotparticu-
laxlyconcernedto haveformaldevelopmentsof ei-
therthe underlyingmaterialor its applicationsin
modeling,orto replacethemwithnewfoundational
approaches:theseareall regardedlooselyspeaking
as"solvedproblems".Whileinprincipletechniques
basedonimprovedformsof symboliccomputation,
or oncomputationallogic,wouldallowricherrea-
soningaboutmodels,it ishardto seethemmatch-
ingtheflexibilityofnumericalsystemsorovercom-
ingtheinvestmentin existingtechniques.

Correctnessconcernsaboutthe modelingpipe-
line involve,in sofar astheycanbeformalized,
trackingofrequirementsandassumptions,andhere
wejudgethereto bemuchgreaterpotentialforfor-
malmethodsfromtheuser'spointofview.Were-
port brieflyonourownexperiencewith light for-
malmethodsfor trackingrequirements,assump-

tionsandproofobligationsincomputationalmath-
ematicssystems.

In thelight oftheaboveSection8setsout four
mainopportunitiesfor the future: analyzingre-
quirements,assumptionsandproofobligationsfor
theassessmentandconfirmationofmodels,extend-
ing suchtechniquesto architecturesfor heteroge-
neousdistributedmodelswith legacycomponents,
usingcomputationallogicto extendthe capabili-
tiesofcomputeralgebrasystemsandimprovedtech-
niquesforsymbolicanalysis.

2 A methodological note

It wouldbeeasyenoughtotellarosystorywithin
thecontemporaryrhetoricof formalmethodsand
computationallogicof their potentialfor mathe-
maticalmodeling,illustratedwithanecdotesofun-
reliablepredictionsfromunsoundmodelsor bugs
in numericalcode.Wemightthen,withsomeef-
fort, treatasimpledifferentialequationor verifya
numericalalgorithmwithinourformalismofchoice,
arguewiththeaidofalargebibliographyabouthow
suchmethodsare "growingin importance","vital
forsafetycriticalapplicationsofmathematicalmod-
eling","essentialformathematiciansin developing
trustedproofs"andsoforth,andconcludewithan
exhortationto theacademicandcommercialmod-
elingcommunityto takeupourideasforthwith.

We haveattempteda somewhatdifferentap-
proachhere,by identifying,albeitinformally,the
practiceandconcernsof the modelingcommunity
andhowformalmethodstechniquesmightaddress
them.

Theidentificationof "practice"inadisciplinein-
volvesfindingout whatpeopleactuallydo,rather
thanwhattheysaytheydo,or whatothersthink
theyshoulddo.Thusforexamplein [25]weshowed
that practicein puremathematicsresearchdoes
not, asanoutsidermightsuppose,consistin rig-
orousformaldevelopmentbut ratherin thedevel-
opmentof "goodenough"proofs:thisexplainswhy
computationallogicenginesarehardlyusedbypure
mathematicians.

ForsociologistssuchasLatour[22]identifying
practiceinvolvesdetailedobservationsovermany
monthsin laboratories,andcarefulenquiryasto
whetherthereis any suchthing as a universal
orcontext-independentnotionofscientificmethod,
ratherthan "particularcoursesofactionwithma-
terialsto hand"[24].

For the purposesof this paperwegainedan
overviewfromtextbooks,universitycourses,meet-



ings,seminars,newsgroups,bug-reportsanddis-
cussionswith reflectivepractitioners,whoincluded
bothdevelopersandusersof suchsoftware1. I am
not awareof anythoroughstudyinto correctness
concernsfor modelingandwhatcauseserrors,al-
thoughMackenziehastouchedonsuchmattersin
hissociologicalaccountof thedevelopmentof nu-
clearweaponry[24].Certainlythematterhasnot
receivedthe attentiongivento safety-criticalsys-
tems.Thispapercanonlyberegardedasa pilot
investigation:I concludethat, whilecertainindi-
vidualincidentshavebeennotedandstudied,in
generalcorrectnessis takenforgranted,andwhere
it isdiscussedit is thecorrespondenceofmodelsto
reality,ratherthanthecorrectnessoftheunderlying
mathematicsor software,that causesconcern.

3 What is a model?

Whatis a model?A mathematicalrepresenta-
tionof reality?Whatisreality?Whatis amath-
ematicalrepresentationof it? Is it "outthere"or
"purelyformal",orconstructedin themindsofsci-
entistswithall kindsof motivesandpurposes,in-
cludingthe questfor truth (whateverthat might
be)?Questionsofthiskindhaveoccupiedphiloso-
phersof sciencefor centuries.Forthis paperwe
adoptawork-a-daydefinitionbasedonthestandard
studenttextofMooneyandSwift[28]:amathemat-
icalmodelis a purposefulrepresentationof reality
usingthetoolsandsubstanceof mathematics,in-
cludingcomputation.

A classicexampleis the predator-preymodel
whosepurposeis to understandthe long-termbe-
haviorof populationsof predators(for example
lynx) andprey (for examplehares)whichmani-
festcyclicalbehavior:aslynxnumbersx rise more

hares are eaten, so hare numbers y drop, so lynx
numbers drop, so more hares survive, so lynx have

more to eat, so lynx numbers increase, and so on.

This is modeled by two differential equations, where

a,/_, 7, 5 represent parameters which will vary for

different populations.

d x --/_X X

Y -5 )( ) (1)
d_ 7Y Y

We call this Model PP1. From these equations we
may prove that yae-ZYxTe-@ = K and hence de-

duce that in the model x and y do indeed manifest

cyclical behavior over time for certain values of the

parameters. Even without this analytic formula we

1See acknowledgements section for more details

can implement the equations numerically and hence

draw graphs of x, y and t to display the cyclical be-
havior.

A simple account of modeling considers "the real

world" (including hare and lynx), a "purpose" (un-

derstanding population change in hare and lynx),

the "model world" consisting of assumptions we

have made or chosen about the real world (for exam-

ple that lynx die when there are no hares to eat), the
mathematical "model" we have built of our model

world using dynamical systems, 2 and the "imple-

mentation" of that model in a computer system.

From the "model" or its "implementation" we can
draw conclusions about the "model world" which we

can then assess against the hypotheses of the model

or against experimental or other understanding of

"the real world". We may view this as a pipeline:

{reality+purposes} -+ model world-+ model-+ im-
plementation.

The predator-prey model PP1 above is an ab-
straction, whose purpose is to investigate the ap-

parent cyclical nature of such populations. It tells

us that if the hypotheses in the model world about

the behavior of hare and lynx are satisfied, and

if a,/_, 7, 5 take certain values, then certain conse-

quences ensue in the model, and hence by implica-

tion in the "model world". We may then use domain

knowledge to give an interpretation of our conclu-
sions for "the real world".

If we wanted to study a particular population of

hares and lynx this model would not be of much
use. We would need a different "model world" and

a more complicated "model", which we denote by

PP2. We would take other phenomena into account,
for example what hares eat, and consider data, ei-

ther real or simulated, on weather patterns or grass

growth for our particular population. We would

probably no longer have an analytical solution, and

would have to rely on an "implementation" to ob-

tain numerical, graphical or visual estimates for long
term behavior. These estimates would still be con-

tingent upon our assumptions, and the nature and

quality of the data we used. PP2 might not man-

ifest cyclical behavior at all: it might not include

the equations of PP1. The mathematical relation-

ship between our two models might be complex: it

would be unlikely that, in formal method terms,

one was a simple refinement of the other for in-
stance. The distinction between these two kinds of

model, roughly speaking the first more concerned

with abstract principles or putative laws of nature,

2For the purposes of this paper we ignore stochastic and

discrete aspects



the second with simulations and predictions of phe-

nomena, has sometimes been drawn by calling the
former "models" and the latter "simulations". How-

ever there is no hard and fast distinction.

Both PP1 and PP2 are, in modeling terms, fairly

small and straightforward, in contrast to global

models of climate or population, refined over many

years with complex data sets.

Once we have a model, or several models, we may

investigate their solution and other properties, ei-

ther mathematically or through an implementation.

Models are assessed and evaluated against their pur-

poses, or against other models that address the same

or related purposes. Of particular concern is the
definition and assessment of correctness.

4 Mathematical techniques

The theory

In this section we give a summary of some of the the-

ory of differential equations and dynamical systems

from the point of view of mathematical modeling
applications.

What do we mean by a differential equation, and

a solution? At an elementary level in a modeling

text such as Mooney and Swift [28] the notion is
often given only by example: for instance suppose

we wish to model the motion of a particle in terms

of the time and distance from an initial point (y)

and the acceleration (y" = d2y/dt2). The equation

y"(t) + y(t) = 0 (2)

describes the motion at time t, any solution has the

form ¢(t) = Asin(t) + Bcos(t) where A and B are

arbitrary constants, and a solution satisfying the

initial conditions y(0) = 1,y'(0) = 2 is given by

¢(t) = 2sin(t) + cos(t). A solution satisfying the

initial conditions can be evaluated at any value of t,

so that for our solution ¢ at time t = 7r/2 the posi-

tion will be given by ¢(7r/2) = 2. This equation has

an explicit mathematical solution (we call this an

analytic solution), but for many equations we may

know only of the existence of such solutions, and

numerical solutions at particular points (subject to

the accuracy constraints of numerical analysis) may
be all that are available to us.

"Solving" an equation involving an unknown

function y and its derivatives, and conditions on the

value of y at certain points, involves finding a partic-

ular (some possible such y) or a general (all possible

such y) analytic solution in terms of known func-

tions. In texts at the level of [28] various standard

"cook-book" techniques are given, accompanied by
reassurance and motivation for the reader. There is

also particular stress on determining the qualitative

or limiting behavior of the solution: does it decay

over time for example.

Thus for example [28] contains the following
recipe for solving first order linear differential equa-
tions of the form

dy
dx + a(x)y = b(x): (3)

the general solution is (sic, including sloppy variable
naming)

1/y(x) = _(_( #(x)b(x)dx + C) (4)

where #(x) = exp(f a(x)dx). This description elides

many issues concerned with exactly when functions

are defined or differentiable, or solutions exist. The

standard approach of an undergraduate course in

differential equations makes matters more precise:

Suppose that a and b are continuous functions on an

interval I. Let A(x) be a function such that dA/dx =

a(x). If C is any constant then the function ¢ given

by

x

¢(x) = exp(-A(x))(/exp(A(t))b(t)dt + C) (5)

x0

where Xo is in I, is a solution of (3), and every

solution has this form.

The standard treatment continues by considering

existence proofs for solutions. A particularly impor-

tant class is that of linear systems, of the form

L(y) = y(n) +al(x)y(n-1) +...+an(x)y = b(y), (6)

where under suitable conditions solutions always ex-

ist, though they may not have a simple closed form

representation.

In the case when all the ai are constant the so-

lutions to L(y) = 0 are found by computing the

eigenvalues, or roots of the characteristic equation

/_n _}_al /_n--1 _}_... _}_an = O.

Thus for example when n = 2 the equation

L(y) = y" + 2bf + cy = 0

has general solution given by

¢(x) =
exp(-bx)(A + Bx),

exp(-bx)(A exP(v_X ) + B exp(-v_X)) ,

exp(-bx)(Acos(xv/:7) + Bsin(xv/:7) ),

(7)

(8)

7=0

7>0

7<0

(9)



where 7 -- b2 - c. This description of the solution

may be further refined to include its qualitative be-
havior: for example in case 7 -- 0, the system oscil-

lares, and if b > 0 it tends to zero (is damped), if

b < 0, it tends to infinity and if b = 0 it is stable.

Current mathematical research emphasizes dy-

namical systems, that is, roughly speaking, solution
spaces of systems of differential equations like PP1.

Linear systems in n variables can be expressed as a

vector equation X' = AX, where A is an n x n ma-

trix, and the solutions are given in terms of eigen-

values of A. This again allows us to predict the

limiting behavior of such a system, and to identify

fixed points (equilibrium points) where X' = 0, and

behavior near to them: for example does a point

near the equilibrium point move towards it (a sink)

or away from it (a source). In two dimensions an

analysis like (9), called a phase plane analysis, is

possible: in dimensions above two chaotic phenom-
ena can occur.

For non-linear systems like the predator-prey
model there are extensive theories of existence and

uniqueness of solutions. An important practical

technique for investigating qualitative behavior near

a fixed point is that of taking a linear approxima-

tion there and using this to do a phase plane analy-

sis. The full mathematical analysis of such behavior,

and of the underlying dynamical systems, possible
chaotic behavior and so forth, requires the full ap-

paratus of modern differential geometry.

Applications

In the initial stages the modeler may want to ma-

nipulate and transform the model and get a few

rough assessments of its behavior. The next stage

would be a more detailed investigation, to compare

it with alternatives, to calibrate it against data,

theory or other models, and to assess its perfor-

mance. At a more mature stage models may be used

for prediction or for reference points against other

models, as components in larger systems, or refined

as new data or theoretical understanding becomes
available.

For example Hammersley's [12] maxims for ma-

nipulators at an early stage include: "clean up the

notation, choose suitable units, reduce the number

of variables, and avoid rigor like the plague as it

only leads to rigour morris", to which one would

probably add today "visualize the solution".

A typical more detailed investigation might in-
clude:

• solving a system of differential equations sub-

ject to initial values or boundary conditions: ei-

ther analytically or numerically

teachability analysis: determining if there is an

analytic or numeric solution satisfying a set of

constraints, typically that it starts in one region

and passes through another. Thus in example

(2) the point (7r/2, 2) is reachable from (0, 1),
but (r, 3) is unreachable for any value of r

• identification of behavior near a stationary

point: for example by a phase plane analysis

• limiting behavior over time: for example by an

eigenvalue analysis generalizing (9)

• perturbation analysis: to identify behaviors of
the model under local variations

• behavior as some parameter varies: for example

changes in the phase plane as a coefficient varies

Taking a formal methods perspective one might
expect to see more general reasoning about prop-

erties of the solution, for example using temporal

logic. Recent work in the hybrid systems commu-

nity addresses this for control systems using tools

such as HyTech [17], and Dutertre [7] gives exam-
ples of reasoning about upper bounds in the require-

ments of an avionics application, but such work does
not seem to be considered at all mainstream in the

modeling community. For example searches in Cite-

seer [3] turn up little of relevance.

Correctness issues

In analyzing correctness issues for modeling we first

turn to the correctness of the underlying mathemat-
ics.

We note first that applications of modeling are

not in practice a particularly rich source of novel

mathematics. There is in general [28] little en-

thusiasm for spending a long time developing new

equations for a particular modeling problem. Stan-
dard techniques, like linearisation or power-series

approximation, for replacing one equation with an-

other that behaves in roughly the same way, may

be sufficient when experimenting with a number of
models at an early stage. The community tends to

work with a smaller number of systems which are

reasonably well understood or mathematically well-

behaved and which experience or consensus deems
sufficient for the domain at hand.

The researcher in dynamical systems, the applied

mathematician or numerical analyst 'toolsmith' and



themodelerapplyingthosetechniquesaredoingdif-
ferentthings.Theresearcherisconcernedwithgen-
eraltheoriesabouttheexistenceofsolutionsorthe
behaviorof familiesof systems.Thetoolsmithis
developingeffectivetechniquesforsolvingproblems
likethoseabove,with theresearcher'sworkto as-
surecorrectness.Modelersusuallywantto takethe
underlyingmathematicsfor granted,concentrating
insteadon the modelingissuesthat arise: their
mathematicalinterestor understandingisperhaps
unlikelyto gobeyonda work-a-dayaccountat the
levelof [28]. In particularthe researcheris doing
proofsin theunderlyingtheories,thetoolsmithis
doingproofsabouthandor machinecomputation
techniques,andthemodelerisapplyingthosecom-
putationtechniques.

Wehavediscussedat lengthelsewhere[25]atti-
tudesto correctnessin themathematicalcommu-
nity: weidentifiedcurrentmathematicalpractice
with producingconjecturalmathematicalknowl-
edgebymeansofspeculation,heuristicarguments,
examplesandexperiments,whichmaythenbecon-
firmedastheoremsbyproducingproofsin accor-
dancewitha communitystandardof rigour,which
maybereadbythecommunityinavarietyofways.
Mostof the mathematicsusedin applicationsof
modelingis not particularlynovel,andhasbeen
subjectto theusualmechanismsof communityin-
spectionthroughcoursesandtextbooksovermany
years:theredoesnotseemto bemuchconcernfrom
themathematician,thetoolsmithor the modeler
overits correctness.Asis usualin contemporary
mathematicalculturefewaremuchconcernedwith
formalprooformattersoffoundation.

Whena newtechniquearises,for examplethe
recentgrowthof interestin levelsetmethods[35],
thefocusof thediscussionis generallyonnewap-
plications,oronfasterorbetter(forexamplewith
lessinstabilitynearcusps)performancein oldones,
ratherthanonextendeddiscussionsofcorrectness.

5 Computational techniques

Numericalmethods

Thestandard,andalmostuniversal,approachto
computationfor modeling,is numericalmethods,
whichhavebeenpartof appliedmathematicsand
thephysicalsciencesfor almostfifty years.They
arewidelyavailablethroughstandardcommercial
librariessuchasNAG[29]andMatLab[27],and
providethebasisforlargesoftwaresystems,usually
writtenin FORTRANor C andusedin chemical,

physicalorastronomicalresearchaswellasinprac-
tical fieldslikeengineering,meteorologyandaero-
nauticsandincreasinglytodayin visualizationand
animation.Purpose-builtimplementations,for ex-
ample,for biosciences,environmentalmodelingor
geologyarebuilt on top of generalpurposetools
suchasSimulink[36]whichprovidesagraphicalin-
terfaceto MatLab.ForexampleSimulinkmayeas-
ily beusedto runthepredator-preymodelfor dif-
ferentvaluesoftheparameters,generatingnumeric
or graphicaloutput,fromwhichvariousproperties
ofthesystemmaybeinferred.

In additionsuchsystemscanreadilyaccommo-
dateotherinputs,forexamplefromsensorsormea-
suringdevices,orothernumericalprocedures,such
ascurvefitting. Formanyproblems,for example
theinvestigationof chaoticphenomena,thereare
noalternativestandardtechniques.

Fromthe modelerspointof viewthe mainad-
vantageof numericalsystemsis that theywill al-
waysgiveananswer,anddespitethe negativeev-
idencewecitebelow,withsufficientuserexpertise
areacceptedasdoingsosufficientlyquicklyandac-
curately,withestablishedprotocolsfor testingand
erroranalysis.Numericalmethodsandsoftwarelike
NAGor Simulinkaresostandardandsowidely
usedthatit ishardto seethembeingdisplacedby
othertechniques.Howevertheoutput,andproper-
tiesderivedfromit, will alwaysbenumericandnot
analytic,andsupportforinvestigatingpropertiesof
thesolutionorparametersmaybelimited.

Numerical methods:correctness issues

The user of such systems can use default settings

and work in ignorance of the underlying numerics,

or take more detailed control using standard tech-

niques of numerical analysis [18] to ensure results

of required accuracy. Indeed, faster and more ac-
curate numerical methods have been the main re-

search thrust in numerical analysis over the past

forty years.

A particular issue in numerical work is correct-

ness of floating point implementation (for example

the famous Pentium bug): the consistent handling

of floating point arithmetic or the translation be-

tween machines with different word-lengths are re-

curring legacy issues. Another is convergence crite-

ria: is the implementation robust enough to produce

the same answer again for the same inputs. Kahan

[21] maintains a web-site of known problems.

Yet problems persist and even expert users may
be unaware of them. The author was told of a



complexbugin the BritishMet officeimplemen-
tationof themulti-gridfiniteelementmethodthat
wasworthabout2_ accuracyin weatherforecasts.
Hatton[15]reportsonobservationsofnineindepen-
dentlydevelopedlargeprogramsfor seismicdata
processing,andshowsthat althoughtheprograms
usedthesamedataandweredevelopedto thesame
specificationsin the samelanguage(FORTRAN),
numericaldisagreementgrowsat a rateof 1_ in
averageabsolutedifferenceper4000linesofimple-
mentedcode.Theprogramswereusedto analyze
largescientificdatasetswheretypicallyresultsex-
pectaround0.001_accuracy.Heconcludedthat
ingeneralproblemswerecausednotbycompileror
hardwareerrors,but by softwarefaults,oftenoff-
by-oneerrors.Howeverthematterhasnotreceived
muchrecognitionin themodelingcommunity[16].

Symboliccomputation

Symboliccomputationtechniques,suchasthose
embodiedinMapleorMathematica,appeartooffer
awiderangeof additionalfacilitiesto themodeler,
especiallywhencombinedwithnumericalmethods.
Thusthe dsolve command in Maple, or the DSolve

command in Mathematica, can solve a wide variety

of differential equations analytically, and the user

can further interact with the system or write their

own code, to investigate their properties. As the ac-

count of the mathematics above demonstrates, im-

plementations rely on other symbolic computation

techniques, such as integration, polynomial solving

and computing eigenvalues and eigenvectors.

There is continuing lively debate over the respec-

tive merits of symbolic and numeric computation,

and active research on the best way to combine

the two approaches. The main drawback from the

user's point of view is that computer algebra sys-

tems are simply unable to solve many of the prob-

lems listed above, either because of unsolvability or

intractability. Even if there are symbolic solution

techniques such systems do not scale, and there are

not in general well-developed techniques for combin-

ing numeric input or techniques with symbolic ones:

hence they lack the flexibility of numerical systems.

Thus for example while symbolic techniques for

teachability analysis using quantifier elimination

have been investigated [20], they are in general dou-
ble exponential, and intractable in all but the small-

est examples.

There are a few cases where symbolic techniques
are better developed than numeric ones, for example

the use of model checking in systems like Hytech to

reason about hybrid systems, discrete combinations

of control systems. There are also a few applications
where symbolic systems are used in preference to

numerical systems, for example in robotic or satel-

lite motion planning.

Symbolic computation: correctness issues

By contrast with numerical techniques, users often

find symbolic computation or computer algebra sys-

tems (CAS) like Maple frustrating and hard to use:

see Wester [37] for a survey. Even in situations

where the user is expecting them to work they may

fall to produce an "obvious" answer, or produce un-

expected or wrong answers, and their performance

can be very unpredictable, varying widely on appar-

ently similar inputs.
One cause of error is failure to check side-

conditions: this is not so much an error as a de-

sign decision for ease of use, since even small proce-

dures may produce large numbers of side conditions,
often intractable or undecidable. This illustrates

a more general design issue: there are many ex-

amples of processes (for example definite symbolic

integration via the Fundamental Theorem of Cal-

culus) where a CAS may be able to compute an

answer, sometimes correct, on a large class of in-
puts, be provably sound on only a subclass of those

inputs (where the function is continuous) and be

able to check soundness easily on a smaller subclass

still (for example, since continuity is undecidable,

systems use a simpler check for functions with no

potential poles or discontinuities). Some CAS are

cautious, only giving an answer when pre-conditions

are satisfied: however this means they may fail on

quite simple queries. Others try and propagate the

side conditions to inform the user, though this can

rapidly lead to voluminous output. Mathematica

and Maple generally attempt to return an answer

whenever they can and leave to the user the burden

of checking correctness. In [1] we have analyzed this

in some detail for symbolic integration, and pro-

posed a solution based on verified look-up tables.

We extended our ideas to dynamical systems and

mathematical modeling in [26], with a suite of PVS

tools to check definedness and continuity, callable
from Maple.

However there is a deeper reason for appar-
ent unsoundness than failure to check for side-

conditions. Formally CAS compute indefinite in-

tegrals and solve differential equations within the

algebraic framework of the theory of differential

fields [2]: fields with an operator satisfying d(f.g) =



(df).g+ f. (dg). When using an indefinite integral as

part of an analytic calculation, for example solving
a differential equation, the answers obtained alge-

braically may differ significantly from what is ex-

pected. For example, viewed as an element of a dif-

ferential field, the derivative of f(x) = tan-l(x) +

tan-l(1/x) is zero, and it follows that f(x) is a

constant. Viewed analytically it is a step function

with the value -_/2 for x < 0 and _/2 for x > 0.

Thus an "unexpected" answer to a query involving

f(x) may be correct within the theory of differential

fields, but incorrect in the usual analytic framework

for differential equations we have presented above.

Similarly it is easy to get Maple's dsolve command

to display behavior which is unsound analytically,

as it applies (4) without checking continuity of a
and b.

This analysis should be kept in perspective how-

ever: developers of the symbolic software systems

GAP [34], axlom[19] and Aldor [19] indicate that

the majority of bug reports tend to uncover user

misunderstanding, performance, or systems flaws,

especially to do with portability, rather than prob-

lems with the underlying mathematics or algo-

rithms. For example of approximately 1100 bug re-

ports on Aldor only one reported a problem with an

incorrect library implementation, involving a failure
to detect a division by zero.

6 Correctness concerns for modeling

We now return to correctness concerns for

the modeling process, and consider the pipeline,

{reality+ purposes} --+ model world --+ model --+ ira-

plementation.

One may first ask whether the "implementa-

tion" is a correct implementation of the underlying

"model". In particular we may ask which aspects

of its behavior are artifacts of the "implementa-

tion" (for example a poor choice of random number

generator) rather than consequences of the model,

or what hidden or explicit assumptions about the

model have been made and how they affect the uses

to which the system has been put. For example, if

the system is used in a new application and predicts
that x > 3, is this a consequence of the model, or

of some implementation decision being called upon

outside its domain of validity.

Heterogeneous distributed implementations of-

ten incorporate large legacy systems where the un-

derlying assumptions may have varied over time,

where later implementors may not have fully un-

derstood the original assumptions, or have incorpo-

rated variations based on new results, or where the

underlying models may be incompatible. Thus for
example an implementor may have hard-wired an

implicit assumption about, say, the life span of a

predator which is totally inaccessible to later users,

and may lead to nonsensical results when combined

with a different implementation.

The correctness of an implementation concerns

how the "implementation" of a model matches the

"model": of much greater concern in the model-

ing community is the assessment of the "model"

against its "purposes", or against other models with

the same or related purposes. In such discussions

the "model" and its "implementation" may often

be identified, particularly if we only have numerical
information about the model. An excellent account

from the point of view of environmental predictions

is given in Oreskes [31].

The correctness of a "model" is in any case con-

tingent: it says that under the hypotheses of the
"model world" certain consequences occur, and the

output of the implementation may be regarded as

a prediction, with estimates of error being provided

by mathematical analysis in the light of the model

and the reliability of the data. The hypotheses of

the model world may not necessarily be very clear

or explicit, being part of the assumed background

knowledge of domain experts. Care needs to be

taken with data: for example a famous data-set on

Canadian hare and lynx populations was discredited

[11] when it was pointed out that the lynx and hares

lived far apart and had little opportunity to eat each

other. Our ability to test the correspondence of

the "model world" with the "real world" depends in

part on our understanding of the phenomena, and in

part on the availability of sufficiently accurate data.

So questions of correctness of a particular model are

complicated and often subject to heated debate or
compromise.

In some cases predictions may be easy to check:

the occurrence of the full moon for example is read-

ily observed and not subject to major disagreement.

So if a model with a trustworthy implementation

whose purpose is to predict the full moon fails to do

so we may reasonably assume the "model", or the

"model world" is incorrect. Even then it may not be

at all clear which assumption or equation has led to
the error. However most models cannot be checked

in so straightforward a way: for example the aver-

age temperature of the earth needed in models of

global warming is hard to measure or estimate, and

in other cases it may be infeasible to check the pre-

dictions: for example safety thresholds for aircraft



loadsordischargeofpollutants.
Modelsmaybe knownby insidersto be in-

accurate,but none-the-lessusedasa bestguess,
or treatedasaccurateeventhoughtheyarenot.
Mackenzie[24]reportson thedebatesurrounding
theabandonmentofnuclearweaponstesting,draw-
ingattentionto the importanceof tacit knowledge
in the practicaldevelopmentof nuclearweapons,
andthepossibilitythattheymightbe"uninvented"
if this tacitknowledgeis lost.Hereportsscientists'
claimsthat acomputerpredictionis "prettygood"
if theactualyieldiswithin25_of prediction,and
notesthatduringthemoratoriumonnucleartesting
in the1950sdependenceonandconfidenceincom-
puterprogramsincreased:accordingto anintervie-
wee"peoplestartto believethecodesareactually
true,to losetouchwithreality.".

Expertsmaydisagreeasto theacceptabilityof
themodel:Shrader-Frechette[39]reportsdisagree-
mentamongtwoexpertcommitteesin the1993as-
sessmentof the proposedYuccaMountainWaste
repositorysiteasto whetherthe largeandwell-
establishedgeologicalmodelsusedcouldreliably
predictvolcanicactivity.Wemayhaveseveralcom-
petingmodels:for exampleGilpinandAlaya[9]
usedexperimentsoncompetingpopulationsoffruit-
fliesto testdifferentvariantsof thepredator-prey
"model"and"modelworld"againstthepurposeof
accuratepredictionof fruit-fly populations.They
comparedtheirmodelsagainsttheaccuracyoftheir
results,favoringthosewherethemodelworldmade
mostsensebiologically,andthosewherethemodel
wassimpleandgeneral3. Howeverit maynot be
thecasethat wecanalwayschoseamongcompet-
ingmodelssoreadily.

Mattersbecomemorecomplexwhenwecon-
sidermany-layeredmodels,whereforexampletest-
ingagainst"therealworld"maymeanin practice
testingagainstanother"implementation"of a dif-
ferent"model"that hasacquiredthe standingof
"therealworld"forpracticalpurposes.In assessing
modelPP2for examplewewouldneednumbersof
haresandlynx: wouldwedoeverycountby hand
or use"implementations"of established"models"
of wild-lifenumberscalibratedwithkeydatafrom
fieldstudies.Andhowmightthe assumptionsof
thelatteraffectthepredictionsofPP2?

Aswehaveindicatedaparticularconcernis the
combiningof differentmodelsor implementations.

3Amucharguedphilosophicalpoint.It hasbeensug-
gested[31]thatthequestforsimplicityandgenerality,identi-
fledwithOckham'sRazor,owesmoretoseventeenthcentury
theologyandmathematicalconveniencethananyevidence
thatsimplemodelsarebetterpredictorsthancomplexones.

Differentmodelsmayaddressdifferentpartsofour
purposesdifferently,or inchoosingto modelpartof
alargerschemewemayhaveto choosebetweensev-
eralmodelsnoneof whichareentirelysatisfactory.
Assumptionsmaybeincompatibleorunclear:this
isaparticularissueforlegacycomponentswhereas-
sumptionsmaybeconcealed,contradictory,orhave
changedovertime.

7 How can formal methods con-
tribute?

Putting together the ingredients described above

we may identify the business of modeling with

first developing generic mathematical theories, al-

gorithms, and implementations, both numeric and

symbolic, and then modeling particular systems by

implementing them within the chosen framework as

part of the modeling pipeline. Correctness concerns

may be raised at all levels of the process: the math-

ematics, the software systems, the implementations
of the model and the correspondence of the model

with reality. As far as we can tell this last is of most

concern to the modeling community.

Formal methods, broadly construed, offers a va-

riety of approaches.

Mathematical theories

Since the pioneering work of de Bruijn's AU-

TOMATH [4], developed in 1967, the theories of

analysis which underlie differential equations and
mathematical modeling have been developed inside

various theorem provers: for recent manifestations

see Dutertre's implementation of the reals inside

PVS [7] or Harrison's development as far as inte-

gration in HOL [14]. As far as we are aware a full
machine verification of the mathematics outlined in

the previous sections has not yet been done, but it

is perfectly feasible in a number of systems, using

classical or constructive techniques. However while

this is possible, it is hard to see how it would serve

the needs of the modeling community, who regard

the soundness of the underlying math as a "solved

problem", established over many years in text-books

and courses. They rely on mathematicians, and

the usual community mechanisms of mathematics,

which are remarkably averse to rigour [25], to es-

tablish correctness of the necessary mathematics: I
have identified little interest in human or machine

formal proof for the classical mathematics under-

lying the subject, the work of the toolsmith, or its

routine application in modeling. This is not to write



offmachinecheckedmathematicsasanendeavor,
merelyto saythat thiscommunityseeslittle point
to it. Whilelogicians[8]haveconsideredalterna-
tiveaxiomatizationsfor differentialanalysisI have
identifiednointerestamongthemainstreammath-
ematicalormodelingcommunityin thesematters.

Oncesuchadevelopmenthadbeendoneit would,
in principle,bepossibleto investigateour mod-
elsdirectlywithintheprover,recastingthevarious
queriesoutlinedinSection4asproofrequirements,
forexamplethereachabilityresultsofexample(2).
Howeverit ishardto seehowsuchsystemswould
overcomethedimcultieswehavealreadydiscussed
for symboliccomputationsystems:infeasibilityor
intractibilitymeanthat oftentherewill notbean
automaticproofprocedure,anduserswill needto
produceamanualproofofsomethingwhosenumer-
icalequivalentcouldbeproducedautomatically.In
additionanysuchsystemwouldneeda computa-
tionalcomponentif it wasto matchtheexploratory
capacityof existingtechniques,andasSection4
showsmanyofthecomputationsorproofswouldre-
quireadvancedsymboliccomputationfacilities,for
exampleto calculateeigenvalues.

Againstthishoweverweshouldsettheadvan-
tagesofabstraction,higherlevelproofandthehan-
dlingofparameters:for exampleit takeslaborious
numericalsimulationto investigatechangesin the
phaseplaneasacoefficientvaries,whereasa sym-
bolicapproachmerelyproducesa proofobligation
to bedischarged.

Inaddition,aswehavearguedelsewhere[25]spe-
cializeddecisionproceduresmayproveusefulfor
somequeries,forexamplequantifiereliminationfor
reachability[20].

Computational techniques

As we have seen general software engineering issues

have been identified as a major source of problems in

both numerical and symbolic software: since these

problems and formal methods approaches to them

are not peculiar to modeling we do not discuss them

further here. The modeling community relies on the

usual mechanisms of software development, which

are averse to rigour, to establish trustworthiness of

its computer systems: I have identified little inter-

est among commercial vendors in classical formal
methods techniques.

It is in principle possible to implement numerical

or symbolic computation inside a theorem prover,

gaining reliability at a cost in performance, and
both approaches have received much attention in

recent years. The notorious "Pentium bug" drew

attention to the unreliability of floating point imple-
mentations, and inspired Harrison's development of

floating point arithmetic in HOL [13] which has had
considerable commercial impact in the verification
of hardware.

Such implementations of computer algebra sys-

tems have proved harder, partly because, as we

have indicated, they require implementation inside

a prover of specialized algorithms such as factoriza-

tion. In any case, some of the unexpected behaviors

of computer algebra systems arise from the alge-

braic representation of analysis: these would not be

solved by re-implementation inside a prover. We re-

port elsewhere [26] on an alternative approach: we

built a toolkit in the PVS [32] theorem prover which

automatically checks pre and side conditions such

as continuity to computer algebra algorithms such

as Maple's dsolve, thus addressing some of the dif-

ficulties caused by unsoundness in using computer

algebra systems for analytic work at little extra cost
to the user.

Modeling

As we have indicated the main concerns of the mod-

eling community are with the correctness, validation
and confirmation of models.

We report elsewhere [5, 6] on our lightweight
formal methods approach: we built a verification

condition generator in Aldor, an internal language

used in developing the computer algebra systems
axiom and Maple, and are currently developing this
work in collaboration with NAG Ltd. The verifica-

tion conditions are generated at compile time from

user annotations, typically recording pre- and post-

conditions, and can be passed to a theorem prover
or used for information or documentation.

Our original motivation was particularly that of

assisting the user of libraries where the code it-

self might be trusted, but the assumptions or pre-
conditions for its correct use were ill-documented.

We are currently experimenting with the use of

these annotations for documenting requirements

and assumptions in legacy models.

However there appear to be some differences be-

tween the needs here and those of design or require-

ments engineering: in particular there are cases
where it seems useful to record assumptions or do-

main knowledge that does not affect the state or
output of the module where it is recorded or as-

sumed, but may be significant elsewhere. It is

not entirely obvious to us how to map the mod-



elingpipelineto frameworkssuchasthereference
modelof Gunteret al [10],whichis basedondo-
mainknowledge,requirements,specifications,pro-
gramandprogramplatform.

Wenote that thesemattersarebeginningto
receivecommercialattention:Lemma1 Ltd [23]
report on their ClawZsystemwhichtranslates
SimulinkdiagramsintoZspecifications,andtheUK
companyQSS[33]haveinterfacedtheirDOORSre-
quirementstool to Simulink.

8 Some new directions

Theprevioussectionpaintsasomewhatdepress-
ingpicture,suggestingthatmanyareaswhichhave
receivedconsiderableresearchattentionareunlikely
tohavemucheffectonthepracticeofmodeling.We
mightsumupbyobservingthat themodelingcom-
munityareusersratherthancreatorsofmathemat-
icsandsoftware,andby andlargetakeboththe
mathematicaltheoriesunderlyingtheir workand
thelargelycommercialcomputersystemsthat im-
plementthemprettymuchfor grantedas"solved
problems".Themainconcernslie elsewhereand
thereis little interestin or motivationfor change,
anda heavypersonalandfinancialinvestmentin
existingtechnologies.

Wecannone-the-lessoutlinesomewaysahead.
Themodelingcommunity,likemanyothers,arein-
terestedinnewmethodsthatfit theirpresentworld
view,addresstheirmainconcernsor improveorex-
tendexistingtechniquesorsoftware.
The correctness,validation andconfirmation
of modelsis of primaryimportanceto themod-
elingcommunity,andof particularconcernwhen
theseimpactpublicpolicyin matterssuchasnu-
clearwastedisposal.It is the assumptions,data
andchoiceof modelthat seemto matterhere,not
questionsaboutcorrectnessoftheunderlyingmath-
ematicsor softwareoncethemodelhasbeencho-
sen.Wearenotevenawareofasuitableframework
fortheanalysisof requirements,specifications,as-
sumptionsandproofobligationsformodelingwithin
ourpipeline:anextensionofthereferencemodelof
Gunteret al [10]maybeappropriate.Computa-
tionallogichasa usefulroleto playin monitoring
andanalysishere,andhencein reasoningdirectly
aboutthe assumptionsof the "modelworld",the
"model"andthe "implementation".
Heterogeneousdistributed modelsareof par-
ticularcurrentinterest,put togetherfor example
acrosstheInternet,with disparateor legacycom-
ponentswhereassumptionsmaybeconcealed,con-

tradictory,orhavechangedovertime.Anenginefor
managingrequirementsandassumptionswouldbe
akeycomponenttechnologyofrobustarchitectures
for linkingsuchheterogeneousmodels.Particular
carewouldneedto betakenoverthelayeringissues
indicatedabove.ProjectssuchasOpenMath[30],
whichattemptto providereliableinterfacemecha-
nismsfor heterogeneousmathematicalsystemsus-
ingtypeinferenceseemrelevantherealso.
New analytic, numerical or visualization
techniques which leverageoff the established
mathematicaland computationalframeworkand
extendits functionalityareof interest.Forexam-
ple,aswehaveseen,computeralgebrasystemsare
usefulin theanalyticstudyof dynamicalsystems,
especiallythosewithparameters,buttheseareerror
prone:extendingthemusingcomputationallogic
enginesaswehaveindicatedaboveaddsfunction-
alityat little costto theuser.
Symbolic analysisNumericalanalysissoRware
doescontinuousmathematicsnumerically,com-
puteralgebrasoftwaredoescontinuousmathemat-
icssymbolicallybyalgebraicmeans,butnosoftware
yet doescontinuousmathematicssymbolicallyby
analyticmeans,andit isnotclearhowit shouldbe
done.Aswehaveindicatedthis is the underlying
reasonforthedeficienciesof computeralgebrasys-
tems:solvingit wouldindeedmakepossibleanew
generationof usefulcomputationaltools. It isnot
enoughto formalizeexistingcomputeralgebrasys-
temsbasedondifferentialrings:thesewill notgive
ustruecomputationalanalysis.It isnotenoughto
provetheoremsaboutrealanalysisinsideatheorem
prover:weneedto beableto docomputationslike
thosedescribedin Section3aswell.

Weurgetheformalmethodsandcomputational
logiccommunityto takeupthesechallenges.
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Abstract: The safety of modern avionics

relies on high integrity software that can be

verified to meet hard real-time requirements. The

limits of verification technology therefore

determine acceptable engineering practice. To

simplify verification problems, safety-critical

systems are commonly implemented under the

severe constraints of a cyclic executive, which

make design an expensive trial-and-error process

highly intolerant of change. Important advances

in analysis techniques, such as rate monotonic

analysis (RMA), have provided a theoretical and

practical basis for easing these onerous
restrictions. But RMA and its kindred have two

limitations: they apply only to verifying the

requirement of schedulability (that tasks meet

their deadlines) and they cannot be applied to

many common programming paradigms.

We address both these limitations by

applying model checking, a technique with

successful industrial applications in hardware

design. Model checking algorithms analyze finite

state machines, either by explicit state

enumeration or by symbolic manipulation. Since

quantitative timing properties involve a

potentially unbounded state variable (a clock),

our first problem is to construct a finite

approximation that is conservative for the

properties being analyzed if the approximation

satisfies the properties of interest, so does the

infinite model. To reduce the potential for state

space explosion we must further optimize this

finite model. Experiments with some simple

optimizations have yielded a hundred-fold

efficiency improvement over published

techniques.

The safety of hard real-time
software

Modern avionics relies fundamentally on

high integrity software that meets hard real-time

requirements such as schedulability--the

guaranty that all tasks meet their deadlines. It is

common to implement a high integrity real-time

system by means of a cyclic executive, in which

programmers explicitly allocate the execution of

processes or process fragments to portions of a

master control loop. This technique has the

strengths of requiring essentially no runtime

support and of making schedulability analysis

trivial. But the design of a cyclic executive is

expensive and time-consuming, relies heavily on

trial-and-error rather than systematic design

principles, and is highly intolerant of change.

Small modifications to individual processes may

require complete redesign of the master control

loop. In addition, this narrowing of the design

space potentially constrains the introduction of

automation technologies that could improve both

safety and performance.

The alternative to a cyclic executive is some

form of preemptive scheduling in which

processes are scheduled dynamically. Preemptive

scheduling immediately presents two problems:

First, static analysis of program behavior

becomes much more difficult. Second, the

runtime support required to carry out dynamic

scheduling must be efficient and must admit an

implementation simple enough to satisfy the

certification requirements for high integrity

systems. Raven [32] is an example of such a
runtime.

The best-known analysis technique for

preemptive scheduling is Rate Monotonic

Analysis (RMA) [19], which applies to a

restricted but useful class of systems and reduces

schedulability analysis to checking a set of

simple algebraic inequalities. However, RMA

does not provide information about properties

other than schedulability and is not applicable to

*This work was partially supported by NASA Langley, contract NAS 1-20335



manycommonprogrammingparadigms:Figure
1providesanexampleof sucha program.Nor
does RMA cover propertiesother than
schedulability.

Thispaperdescribesanongoinginvestigation
of modelchecking as a supplement to RMA.

Model checking comprises automated techniques

that apply, in principle, to any system

representable as a finite state machine. These

techniques are of two general kinds: explicit

search (clever strategies for visiting all possible

states) and symbolic model checking (combining

symbolic execution and automated reasoning).

Both styles can be used to analyze properties

other than schedulability and systems that do not

meet the design restrictions imposed by RMA.

Our work shows that model checking can be

applied to some systems beyond the reach of

current analytical techniques. The technical

barrier to making these applications practical and

routine is the possibility of state space explosion.

We are investigating optimization techniques

that generate efficient representations of the

system to be analyzed.

1.1 Ravenscar and Raven

The general principles we employ are not tied

to any particular implementation, though the

details will necessarily depend on the

programming language and rtmtime system

being modeled. The Ravenscar Profile [8]

defines a set of Ada tasking features rich enough

to support (among other things) rate monotonic

scheduling, but requiring a minimal runtime.

Ravenscar is supported by the Raven runtime,

developed at Aonix to meet the highest FAA

certification standards for safety critical systems.

The tasking subset we consider can be regarded

as a generalization of Ravenscar, together with a

technical requirement, which we call frame

synchronization, that reduces nondeterminism by

eliminating arbitrary task phasings. Thus, the

analysis we propose can be directly applied to

real systems.
1. The main features of the Ravenscar

subset are as follows:

2. The ntunber of tasks, and the base

priority of each, is fixed and statically
determined.

3. Scheduling is preemptive, using the

priority ceiling protocol.

4. Tasks interact only through protected

objects. No more than one task may ever

be queued on the entry of any protected

call. (This limit on the size of the entry

queues is a dynamic requirement that

cannot in general be enforced by

syntactic restrictions.)
5. Task behavior is deterministic.

Figure 1, based on an example from [16],

illustrates a simple Ravenscar program to which

RMA does not apply. Three sensors periodically

sample flight data and send it via a bounded

buffer to an analyzer that periodically reads the

data from the buffer. The buffer is implemented

as a protected object containing a protected entry

for writing data and a protected procedure for

reading it. A read from an empty buffer returns
some conventional value. The buffer's write

entry blocks the sensors from writing when the

buffer is full. The protected read procedure

blocks the analyzer from reading while the buffer

is being written to. (We make the read operation

a procedure rather than an entry because

Ravenscar forbids protected objects with more

than one entry. That is why read does not block

on any empty buffer, but reads some

conventional value.) RMA does not apply

because each of the periodic sensor tasks

contains a protected entry call, at which it can be
blocked.

1.2 Model-checking real-time

properties

Many existing models for real-time systems

are based on timed automata [2] or, more

generally, hybrid automata [1]. These models

contain state variables that represent the values
of real-time clocks. Notice that a direct model of

time, by means of a variable containing the

current value of the clock, leads to an infinite

state space, since the clock may increase without

bound. Some form of temporal abstraction is

required. The abstraction used to analyze hybrid

automata is to represent regions--sets of

states--symbolically, via logical formulas.

Symbolic manipulation of such formulas [20] is

the heart of model checking tools such as [4].

In [10], Corbett presents a two-stage

construction that models real-time Ada tasking

programs (together with the supporting runtime)

as hybrid automata. The first stage translates a

program to a transition system representing the

possible interleavings of the tasks' execution.

The second stage captures the timing constraints

of the program by transforming the transition
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Figure h A Ravenscar example to which RMA does not apply

system into a hybrid automaton. This hybrid

automaton is then analyzed by the HyTech

verifier [11], which can be regarded as symbolic
model checker.

In [16], we developed a method for

constructing models of real-time tasking

programs in Promela [12], a language for

specifying commtmicating sequential processes.

The program's tasks and the rtmtime system are

represented as Promela processes. The frame

synchronization requirement mentioned above
allows us to eliminate the real-time clocks from

the system's model altogether and thereby to

represent the system as a simple transition

system rather than a hybrid automaton. We

introduce state variables to keep track of upper

and lower bounds on the completion time of each

process, and perform a "dynamic abstraction" of
these time-related state variables to make the

state space finite. In essence, the pair of

completion times for each process defines the

region of states in which the process is running.

This representation is much simpler than

representation by a logical formula. We then

analyzed the Promela program with the Spin

verifier [12].

Many other formal models have been

proposed for concurrent real-time systems [3].

These include Petri nets [14], timed automata

[2], timed process algebras [17], and real-time

logics [13]. For the most part, these models are

intended to represent specification, not

implementation. In [5], general timed automata

are extended to represent such implementation

details as the assignment of tasks to processors,

priorities, worst-case execution times of

operations, and scheduling policies. Our model

compares to [5] much as it does to [10].

2 Asimple illustration

This section uses a trivial example to show

how the "dynamic time abstraction" of [16] can

be combined with reduction techniques from

[10] and illustrate its effectiveness. Although

there are enough differences that a quantitative

comparison is not strictly scientific, we obtain a

htmdred-fold advantage over [10] in both speed

and memory usage and a ten-fold advantage over

[161.

2.1 A schedulability problem

Consider two periodic, non-interacting tasks,

A and B, run on a single processor trader

preemptive scheduling. Task A has higher

priority than B. Although this trivial tasking

pattern can be analyzed by RMA, it allows us to

illustrate essential features of our proposed

strategy and to perform a simple comparison

with Corbett's analysis via a hybrid automaton
model.

A code skeleton is given in Figure 2. We
assume that the variable StartTime records the

value of the system clock at some moment after

the tasks have been initialized but before they

start running. In effect, this implements the

frame synchronization assumption. StartTime

can be initialized to satisfy the assumption by

using a simple Ada coding idiom given in [16].

The code fragments <statements l > and

<statements2> implement periodic activities

whose functionality is irrelevant to the tasks'

timing. Let estimA and estimB be upper bounds

on the amount of CPU time necessary to execute

the bodies of the loops in task A and task B

respectively. We assume that CPU time is the

tasks' only shared resource. The parameters



task A is

pragma Priority(20);
end A;

task body A is
nextA: Time = Starffime;

begin

loop
<statements 1>

nextA := nextA + periodA;
delay until nextA;

end loop;
end A;

task B is

pragma Priority(10);
end B;

task body B is
nextB: Time = Starffime;

begin

loop
<statements2>

nextB := nextB + periodB;
delay until nextB;

end loop;
end B;

Figure 2 : A two-task problem

and periodA and periodB define the periods of

task A and task B. Execution of "delay until t"

blocks a task until the system clock has value t.

If task A reaches its "delay until nextA"

statement when the clock time is greater than

nextA, then task A has missed a deadline. We can
characterize a missed deadline for task B

similarly.

With this definition of deadline, we analyze

the schedulability of tasks A and B in terms of

the task periods periodA and periodB, and the
CPU time estimates estimA and estimB. As

noted, RMA handles the problem easily, but the

point of the example is to exhibit simple

optimization strategies that can dramatically

improve the efficiency of analysis by model

checking.

2.2 A discrete model

In the program of Figure 2, the only variables

affecting the timing behavior of the program are

nextA and nextB. They are the only data variables

represented in our model.

To model the program's control state, we

completely abstract from the code fragments

within the task loops. We represent the

fragments as abstract actions whose executions
take time, and whose executions can be

preempted by higher priority actions. We model

execution of tasks A and B as periodic
invocations of these abstract actions.

In [16] we represented the runtime and each

task as a separate process. As observed in [10],

this simple-minded representation introduces

unnecessary states because the actions of the

runtime are so tightly coupled to the actions of

the tasks. That is, we know a strong im,ariant

that permits a more efficient abstraction of the

state space. Because task A has higher priority

than task B, we can partition the system states as

follows: task A can be either running or blocked

by its "delay until" statement; task B can be

running, or blocked by its "delay until"

statement, or preempted by task A; and the

system as a whole enters an error state if either

task misses a deadline. Thus, we represent the

status of the program by introducing a variable

runtime status that can have the following

symbolic values: runningA2reemptedB,

blockedA runningB, blockedA blockedB,

runningA blockedB, and missed deadline.
We also introduce several variables to model

timing information:

1. The integer variables lb and ub specify

lower and upper bounds for the clock

time at which the currently executing

abstract action will (if not preempted)

complete. The values of these time

bounds vary dynamically, according to

the program's control flow.

2. The integer variable delta contains an

upper bound for the CPU time needed to

complete the currently executing abstract

action. When a preempted action
resumes its execution the value of delta

will typically be revised to reflect the

progress made before preemption.

3. The integer variable preemptB, called the

preemption bound, stores the value of

delta when task B is preempted by A.

We specify the schedulability requirement by



assertingthatthertmtimestatusmissed deadline
never occurs:

Invariant "hard deadline"
! runtime status = missed deadline

The states and transitions of our model are

shown graphically in Figure 3. We define the

effect of each transition using the notation of the

Murphi model-checker [33]. The meaning of

guard = = > Begin <statements> End

is that the transition may take place when the

boolean guard is true; and, if it does take place,

the effect on the state variables is defined by the
Pascal-like code in statements. If several

transitions may take place, then the choice of
which transition to fire is non-deterministic.

(Even if the Ada code is deterministic our model

may be a conservative, non-deterministic,

approximation.) The simple model shown here

does not represent the overhead attributable to

runtime actions such as preempting a task or

restoring the state of a preempted task. Those

costs are accounted for explicitly in [16].

Figure 4 provides definitions for three

representative transitions: 1, 2, and 4. Transition

rules 1 and 2 describe the program's behavior

when A is rmming and B is preempted. Rule 4

describes one of the possible behaviors of the

system when task A is blocked and task B is

running--namely, the possibility that task A may

preempt task B.

Rule 1: If the upper estimate of the clock

time for completing task A is greater than or

equal to the next deadline that is, ub _>

nextA+periodA_en it is possible that A may
miss its deadline; and therefore a deadline

violation will be reported. Our model is a

conservative approximation of the program. The

program will satisfy any invariant satisfied by
the model, but the converse need not be true.

Rule 2: If ub < nextA+periodA, this iteration
of task A will meet its deadline. Transition 2

represents the successful completion of A, after

which A becomes blocked until the beginning of

its next period, and hands off to task B (as

reflected by changing the value of

runtime status to blockedA runningB). To do

the necessary bookkeeping, the other state
variables are modified as follows:

• nextA, the next clock time at which task

A becomes ready to run, is incremented

by the value of its period,

• delta, the estimate of the remaining CPU

time to complete task B, is restored to

the preemption bound of B,

• ub, which now represents an upper
estimate of the clock time at which task

B will complete, is increased by delta,

• since the preemption of B has now been

accounted for, we reset preemptB to
zero.

Rule 4: The guard for transition 4 represents

the following possibility: task B will, if not

preempted, meet its deadline; but task A becomes

ready before the action of task B completes and

therefore preempts B. Among the actions of rule

4, the interesting new feature is a call to

procedure time wrap, which is essential for

making our model finite.

The state variables nextA, nextB, lb, and ub

are regularly incremented. If we allowed them to

increase without bound our model's state space

would be infinite. However, the presence or

absence of a deadline violation depends only on

the relative values of these variables, not on their

absolute values. Therefore, the relevant timing

behavior of our model does not change if we

recalibrate by simultaneously decreasing nextA,

nextB, lb, and ub by the same amount. Procedure

time wrap does the recalibration, decrementing

all these variables by the current value of lb. Our

transition rules will invoke time wrap

immediately after any increment to lb. This is a

form of rolling, dynamic time abstraction.

This recalibration strategy will succeed in

bounding the values of these variables if the

differences between the values of nextA, nextB,

lb, and ub are bounded. It is shown in [16] that,
for all the executions of the model in which no

deadline is missed, the absolute values

InextA-lbl,lnextB-lbl, and lub-lbl will all be less

than 2*max(periodA, periodB). Therefore we can

statically restrict the range of the time variables

to MAX .. MAX, where MAx=2*max(periodA,

periodB). To be more precise, if there is a

deadline violation in the infinite model (from

which all occurrences of time wrap have teen

deleted), then there is a deadline violation in the

recalibrated model, and it will be detected before



runningA blockedB

blockedA blockedB

+
runningA preemptedB

missed deadline

Figure 3: The transition system model

blockedA runningB

Rule"1"
runtime status=

runningA_)reemptedB
& ub>= nextA+ periodA

==>
Begin

runtime status
missed_deadline;

End;

_=

Rule"2"
runtime status

runningA_)reemptedB
& ub< nextA+ periodA

==>
Begin
nextA:=nextA+ periodA;
runtime status

blockedA_runningB;
delta :=preemptB;
ub :=ub+ preemptB;
preemptB:=0;
End;

_=

Rule"4"

runtime_status= blockedA_runningB
& ub< nextB+ periodB
& nextA< ub

==>

Begin

runtime status:=runningA_)reempte
dB;

preemptB:= (ub- nextA< delta)?
(ub nextA) :

delta;
delta :=estimA;
Ib :=nextA;
ub :=nextA+ estimA;
time wrap();
End;

Figure 4: Representative transition rules

execution of the model attempts an update that
puts these variables out of range.

2.3 A comparison

Our experiment analyzed the example of
section 2.1 in three ways: We applied Murphi to
the transition system defined in section 2.2; we

applied HyTech to the hybrid automaton
constructed by the methods of [10] alone; we
applied SPIN to the model constructed by the
methods of [16] alone. The comparison with
[10], for various values of the parameters, is
shown in the charts below.

We suspect that that the advantage of these



estimA=5, periodA = 10, Transition system Hybrid automaton

estimB = 10,periodB = 30

Number of states�regions 11 8

CPU time (see) 0.10 0.24

Memory used 1K 0.82M

estimA = 29, periodA = 59, Transition system Hybrid automaton

estimB = 61, periodB = 181

Number of states�regions 1002 480

CPU time (see) 0.10 13.73

Memory used 25K 4.53M

Transition system Hybrid automatonestimA = 167, periodA = 353,

estimB = 313, periodB = 997

Number of states�regions 5013 2700

CPU time (see) 0.40 106.95

Memory used 163K 20.13M

Figure 5 : A comparison

optimizations will increase as the timing

constraints become more complex, because

manipulating integers is more efficient than

manipulating linear formulas with integer

coefficients. We cannot quantify how much of

the difference might be attributable to the fact

that Murphi is a more mature tool than HyTech.

The advantage over [16] is not quite so

dramatic the improvement is one order of

magnitude, not two.

2.4 Other properties

This section briefly considers problems other

than schedulability. The model and the size of

the state space depend on the property analyzed.

For example, in the terminology of Figure 2, it is

easier to analyze the assertion that "Both tasks

always meet their deadlines" than to analyze the

assertion "Task B always meets its deadlines,"

because uncertainty about the behavior of A
would add nondeterminism to the model. Since

the tasks of Figure 2 do not interact (except

implicitly, via preemption) there is not much to

ask about this example aside from its

schedulability.

When tasks do interact, things become more

interesting. The Ravenscar rules require that no

more than one task be waiting on the entry of

any protected call. The main purpose of this

requirement is to avoid the overhead of

maintaining queues. In general, it is undecidable

whether a program meets the requirement,

though compliance could be guaranteed by

making severe static semantic restrictions on the
code. The Raven runtime raises an error

dynamically if execution ever violates the

requirement. Thus, it is important to be able to

check this rule by static analysis. A

schedulability model of the kind suggested in

this section already encodes enough information

in its state to answer this question. Analysis of

the length of entry queues is insensitive to the
recalibration trick.

Deadlock freedom is another interesting



questionthat shouldbe amenableto our
techniques.Thepriorityceilingprotocolitself
sufficesto guaranteethat a certainclassof
taskingprogramscannotdeadlock,but the
generalquestionisundecidable.(Thisproblem
isalsoinsensitivetorecalibration.)

2.5 Limitations

We might hope for a divide-and-conquer

approach whereby knowing that the system is

schedulable for example, in cases where RMA

is applicable--might permit us to produce a

simpler model with which we might verify other

properties. However, if the precise timing

behavior of the program is necessary to

guarantee those properties, we must represent
that behavior in our model and therefore encode

the schedulability problem within it. In effect,

verifying schedulability is automatically part of

verifying any property at all. Unfortunately, the

intricacies and timing of task interleavings are

the principal source of state space explosion.

Our experience thus far suggests that the

effectiveness of our methods will depend more

on the underlying set of tasking primitives than

on a discipline restricting the patterns in which

they are used. Interrupts are especially

interesting, and present special problems. In the

model of [16] we found that code with interrupts

typically resulted in a state space explosion.

Symbolic model checking may be applicable to

this case. On the other hand, several tasking

constructs omitted by the Ravenscar Profile seem

amenable to model checking analysis: absolute

delay statement; rendezvous; select statements.

3 More realistic examples

This section briefly describes the application

of our model-checking techniques to more

realistic examples. We summarize experiments

using the methods of [16] on a modest work

station, which we have not had the opportunity

to repeat with the optimizations proposed above.

These examples employ the main Ravenscar

tasking constructs such as "delay until"

statements, protected procedures and entries,

interrupts, and sporadic tasks triggered by

interrupts.

The modeling of interrupts and sporadic tasks

is the most complicated part of the model of

[16]. Conceptually, a sporadic task is triggered

by an interrupt and must complete its response

interrupt within a specified response time. Each

interrupt is characterized by its minimum
interarrival time the minimum time between

two consecutive occurrences of the interrupt.

The minimum interarrival time and the response

time for each interrupt are parameters of the
model.

To implement sporadic tasks we use an Ada

idiom required by the Ravenscar programming

discipline: The response to an interrupt I is

performed by a sporadic task T whose body is a

loop. The head of that loop is a call on a

protected entry E, so that task T is blocked at the

head of the loop so long as entry barrier of E is

false; and the last act of the loop is to reset the

entry barrier of E to true. The text of an Ada

program binds interrupt I to a protected

procedure P, which will be executed by the

runtime whenever I occurs; and, in this

programming idiom, P must be implemented so

that its only effect is to change the entry barrier

of E from false to true. Thus, when interrupt I

occurs, the runtime executes P, which sets the

barrier of E to true; that unblocks task T, which

performs the response to the interrupt, resets the

barrier of E to false, and becomes suspended.

We permit tasks to contain both "delay

until" statements and entry calls. For our

purposes, a task containing a "delay until"

statement is periodic. A sporadic task contains a

call on a protected entry whose barrier is set by

an interrupt handler. Since we impose no upper

limit on the interrupt interarrival time, a sporadic

task cannot be guaranteed to satisfy any periodic

deadline. For this reason, sporadic tasks may not

contain 'delay until' statements. The Promela

code checks that all periodic tasks meet their

deadlines and that the response to every interrupt

completes within the response time.

We have analyzed several systems containing

both periodic and sporadic tasks, all on a

SparcServer20 with 64 megabytes of memory.

One is a toy pump control system [29] often

used as a benchmark example, which our

techniques handled in seconds. With some more

complicated systems, however, the model of [16]

encountered a state space explosion. We describe

two such examples:

1. the Olympus attitude and orbital control

system (AOCS) [30],

2. a brewery control program [31].

A pump controller

The pump control system has the following

components:



1. fourperiodictasksgettingdatafromthefour
sensorsandcontrollingthepump,

2. a sporadictask,triggeredby theinterrupt
froma high/lowwaterleveldetector,that
controlsthepump,and

3. twoprotectedobjectsforthepumpandthe
interruptinterface.

Verificationofthisprogramtook20seconds.

TheAOCS
The AOCSdesigncontains17 protected

objects,4 sporadictasksdrivenby interrupts
(withshortinterarrivaltimes),and10periodic
tasks(withrelativelylongperiods).Wewere
ableto verifya reducedversionwithall 10
periodictasksand only one sporadictask
(roughly1.5hoursof computation).Addinga
secondsporadictaskresultedin a statespace
explosionthatSPINcouldnothandle.

A Brewerycontroller

Our techniques successfully identified a

timing error in the brewery control program, but

the analysis required some abstractions

performed by hand, not merely the "standard"

abstractions used to represent the pump
controller.

The brewery control program contains no

interrupts. It consists of an alarm task suspended

on a protected entry, several short-period tasks,

and one long-period task that calculates a

"pattern temperature." One of the short-period

tasks compares the actual temperature to the

pattern and, if the difference between the

temperatures is too great, opens the entry barrier

to trigger the alarm. We model the decision

about whether to trigger the alarm as a

completely nondeterministic event (a

conservative approximation).

We may eliminate the long-period task

altogether if we assume that the pattern

temperature is constant. Under that assumption

(also conservative) our methods took 6 minutes

of computation to find a timing violation.

If we do not assume that the pattern

temperature is constant, the combination of a

long-period task with a short-period task

nondeterministically triggering another task

results in a state space explosion (as explained

below).

The size of our model's state space is

proportional to SP, where:

1. P is the number of possible patterns of the

periodic tasks' arrival times. (A task arrives

whenever it begins a new period.). P is

roughly proportional to (M/D), where M is

the least common multiple of the task

periods and interrupt interarrival times, and

D is their greatest common divisor.

2. S is the average number of non-deterministic

choices exercised by the model during the

execution of any one pattern of arrival times.
A common source of non-determinism is the

runtime process controlling task preemption.

However, this nondeterminism is usually

restricted, since the control-delegating

conditions in the runtime process are often

mutually exclusive. Thus, the runtime

process does not contribute much to the size

of S. On the other hand, nondeterministic

behavior in a short-period task will increase

S, since this behavior is exercised in the

many patterns where the task is running.

Our problem with the brewery control

program is that the short-period task

nondeterministically triggers the alarm, which

increases S. We can still analyze the program if

P is low, but including the long-period task
increases P. This combination increases SP

sufficiently to cause a state explosion.

As for the interrupts, in [16] we model each

interrupt by a Promela process representing a

"quasi-task" that makes calls on the protected

procedure that is its handler. The behavior of

such a task is in many respects similar to the

behavior of a periodic task that non-

deterministically executes the interrupt handler

and has a period equal to the interrupt's
minimum interarrival time.

4 Future research

Our primary technical problem is how to

optimize the model for efficient model-checking.

The optimizations described in section 2 the

rtmtime status abstractions, the encoding of

regions as pairs of integers--are specific to our

problem domain and to the kinds of properties

being analyzed. There is an extensive literature

on general-purpose algorithms for abstractions

and optimizations of untimed transition systems,

and on the automated discovery of invariants.

(See, for example, [21-24]). Future research will

consider the applicability of that literature to our

problem.

Symbolic model checking is another

possibility for dealing with state space explosion.

Problems that do not yield to explicit search



techniquescansometimesbesolvedbysymbolic
modelchecking(andviceversa).Thestate-
machinemodelacceptedbya symbolicmodel
checkeris typically quite low-level and
constrained.Notall symbolicmodelcheckers
permitvariablesofintegertype.Butsome,such
asWSMV[9], areableto treatintegersand
certainintegeroperationssymbolicallybyusing
specialencodingtechniquesthatpermitefficient
representationof addition and integer
comparisons,and thoseare preciselythe
arithmeticaloperationsour methodsrequire.
Thus, WSMV is a promisingenginefor
extendingour resultswith symbolicmodel
checking.
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Abstract

Linear hybrid automata are finite state automata
augmented with real-valued variables. Transitions be-
tween discrete states may be conditional on the val-
ues of these variables and may assign new values to
variables. These variables can be used to model real
time and accumulated task compute time as well as
program variables. Although it is possible to encode
preemptive fixed priority scheduling using existing lin-
ear hybrid automata models, we found it more general
and efficient to extend the model slightly to include
resource allocation and scheduling semantics. Under
reasonable pragmatic restrictions for this problem do-
main, the reachability problem is decidable. The proof
of this establishes an equivalence between dense time
and discrete time models given these restrictions. We
next developed a new reachability algorithm that sig-
nificantly increased the size of problem we could ana-
lyze, based on benchmarking exercises we carried out
using randomly generated real-time uniprocessor work-
loads. Finally, we assessed the practical applicabil-
ity of these new methods by generating and analyz-
ing hybrid automata models for the core scheduling
modules of an existing real-time executive. This ex-
ercise demonstrated the applicability of the technology
to real-world problems, detecting several errors in the
executive code in the process. We discuss some of the
strengths and limitations of these methods and possi-
ble future developments that might address some of the
limitations.

1 Introduction

The first goal of the work described in this pa-
per was to analyze the schedulability of real-time sys-
tems that cannot be easily modeled using traditional
scheduling theory. Traditional real-time task mod-
els cannot easily handle variability and uncertainty in
clock and computation and communication times, syn-
chronizations (rendezvous) between tasks, remote pro-
cedure calls, anomalous scheduling in distributed sys-
tems, dynamic reconfiguration and reallocation, end-
to-end deadlines, and timeouts and other error han-
dling behaviors.

*This work has been supported by the Air Force Office of
Scientific Research under contract F49620-97-C-0008.

The second goal was to verify software implemen-
tations of systems. Task schedulers and communica-
tions protocols are reactive components that respond
to events like interrupts, service calls, task comple-
tions, error detections, etc. We would like to model
important implementation details such as control logic
and data variables in the code. We would like the map-
ping between model and code to be clear and simple
to better assure that the model really does describe
the implementation.

Discrete event concurrent process models are widely
used to model control flow within and interactions be-
tween concurrent activities. Classical discrete event

concurrent process models do not deal with resource
allocation and scheduling or data variables, which lim-
its their usefulness for real-time systems and makes
it awkward to model some implementation details.
Classical preemptive scheduling models do not deal
well with complex task sequencing and interaction,
which limits their usefulness for describing distributed
systems and implementation details. Discrete time
models have been developed for real-time schedul-
ing of concurrent processes[23, 13, 11, 31], and some
work has been done on dense time real-time pro-
cess algebras[10, 14]. This paper describes the use of
dense time linear hybrid automata models to perform
schedulability analysis and to verify implementation
code.

The first problem we faced was the modeling of re-
source allocation and scheduling behaviors using hy-
brid automata. The applicability in principle of hy-
brid automata to the scheduling problem was already
known[4]. We wanted a model that would admit
a variety of complex allocation as well as schedul-
ing algorithms, e.g. load balancing, priority inheri-
tance. We wanted to be able to change the allocation
and scheduling algorithms easily without changing the
models of the real-time tasks themselves. We wanted
to minimize the number of states and variables added

to model allocation and scheduling. We found it most
general and efficient to extend the definition of hybrid
automata to include resource allocation and schedul-

ing semantics rather than try to model the scheduling
function as a hybrid automaton.

We use integration variables to record the accumu-
lated compute time of tasks in preemptively sched-



uledsystems.Allowingintegrationvariablesisknown
to makethereachabilityproblemundecidable[22,17].
Wewerecuriousaboutwhetheranalysisof real-time
allocationandschedulingindistributedheterogeneous
systemsis itselfa fundamentallydifficultproblem,or
if generallinearhybridautomataaremorepowerful
than is reallynecessaryfor this problem.Wewere
ableto showthat theteachabilityproblembecomes
decidablewhensomesimplepragmaticrestrictionsare
placedonthemodel.

Thesecondproblemwefacedwasthe computa-
tionaldifficultyof performinga teachabilityanalysis.
Webeganourworkusinganexistinglinearhybrid
automataanalysistool, HyTech[18],but foundour-
selveslimitedto verysmallmodels.Wedeveloped
andimplementedanewteachabilitymethodthatwas
significantlyfaster,morenumericallyrobust,andused
lessmemory.However,ourprototypetoolallowsonly
constantrates(notrateranges)anddoesnotprovide
parametricanalysis.

Usingthisnewteachabilityprocedurewewereable
to accomplishoneof ourgoals:themodelingandvet-
ificationof a pieceof real-timesoftware.Wedevel-
opedahybridautomatamodelforthatportionofthe
MetaHreal-timeexecutivethat implementsunipro-
cessortask scheduling,timepartitioningand error
handling[I].Wesuccessfullyanalyzedthesemodels,
uncoveringseveralimplementationdefectsin thepro-
cess.Therearelimitsonthedegreeof assurancethat
canbeprovided,but in ourjudgementtheapproach
maybesignificantlymorethoroughandsignificantly
lessexpensivethat traditionaltestingmethods.This
resultsuggeststhetechnologyhasreachedthethresh-
old of practicalutility for the verificationof small
amountsof softwareofaparticulartype.

However,wedonot believeexistingteachability
methodsareadequateyetfor schedulabilityanalysis
of realsystems.In ourjudgement,wewouldneedto
beableto analyzesystemshavinga fewdozentasks
onafewprocessorsinorderforthetechnologyto be-
gin findingusein this area.Wediscussapproaches
that mightleadto suchimprovements.

2 Resourceful Hybrid Automata
A hybridautomatonisafinitestatemachineaug-

mentedwith a setof real-valuedvariablesanda set
of propositionsaboutthe valuesof thosevariables.
Figure1 showsanexampleof a hybridautomaton
whosediscretestatesarepreempted,executingand
waiting; andwhosereal-valuedvariablesarec and t.
Waiting is marked as the initial discrete state, and c
and t are assumed to be initially zero.

Each of the discrete states has an associated set of
differential equations, e.g. _ = 0 and t = 1 for the
discrete state preempted. While the automaton is in
a discrete state, the continuous variables change at the
rates specified for that state.

Edges may be labeled with guards involving con-
tinuous variables, and a discrete transition can only
occur when the values of the continuous variables sat-

isfy the guard. When a discrete transition does occur,
designated continuous variables can be set to desig-
nated values as specified by assignments labeling that

edge.
A discrete state may also be annotated with an

invariant constraint to assure progress. Some dis-
crete transition must be taken from a state before
that state's invariant becomes false. For example, the
hybrid automaton in Figure 1 must transition out of
state computing before the value of c exceeds 100.

The hybrid automata of interest to us are called
linear hybrid automata because the invariants, guards
and assignments are all expressed as sets of linear con-
straints. The differential equations governing the con-
tinuous dynamics in a particular discrete state are re-
stricted to the form _ C [1,u] where [1, u] is a fixed
constant interval (our current prototype tool is fur-
ther restricted to a singleton rate, a_ = [1,/]).

We want to verify assertions about the behavior of
a hybrid automaton. Although it is possible in general
to check temporal logic assertions[4], we make do by
annotating discrete states and edges with sets of linear
constraints labeled as assertions. These constraints

must be true whenever the system is in a discrete state
or whenever a transition occurs over an edge.

The cross-product construction used to compose
concurrent finite state processes can be extended in
a fairly straight-forward way to systems of hybrid au-
tomata. The invariant and assertion associated with a
discrete system state are the conjunction of the invari-
ants and assertions of the individual discrete states.
The guards, assertions and assignments of synchro-
nized transitions are the conjunction and union of the
guards, assertions and assignments of the individual
discrete co-edges. If there is a conflict between the rate
assignments of individual discrete states, or a conflict
between the variable assignments of co-edges, then
the system is considered ill-formed. Note that con-
current hybrid automata may interact through shared
real-valued variables as well as by synchronizing their
transitions over co-edges.

The application of interest in this paper is the anal-
ysis and verification of real-time systems. Figure 1
shows an example of a simple hybrid automata model
for a preemptively scheduled, periodically dispatched
task. A task is initially waiting for dispatch but may
at various times also be executing or preempted. The
variable t is used as a timer to control dispatching
and to measure deadlines. The variable t is set to 0

at each dispatch (each transition out of the waiting
state), and a subsequent dispatch will occur when t
reaches 1000. The assertion t < 750 each time a task

transitions from executing to waiting (each time a task
completes) models a task deadline of 750 time units.
The variable c records accumulated compute time, it
is reset at each dispatch and increases only when the
task is in the computing state. The invariant c _< 100
in the computing state means the task must complete
before it receives more than 100 time units of processor
service, the guard c _> 75 on the completion transition
means the task may complete after it has received 75
time units of processor service (i.e. the task compute
time is uncertain and or variable but always falls in
the interval [75,100]). /

In this example the edge guards selected and
unselected represent scheduling decisions made at



if selected if c> 75

_ assert t<750 "_.,,,__

c.:--O ift=lO00 _ ¢=1 /"

elected _ _

c := 0 if t = 1000
t := 0 and unselected

Figure 1: A Hybrid Automata Model of a Preemptively Scheduled Task

scheduling events (called scheduling points in the real-
time literature). These decisions depend on the avail-
able resources (processors, busses, etc.) being shared
by the tasks. There are several approaches to intro-
duce scheduling semantics into a model having several
concurrent tasks.

Scheduling can be introduced using concepts taken
from the theory of discrete event control[26]. A con-
current scheduler automaton can be added to the sys-
tem of tasks. The scheduling points in the task set
become synchronization events at which the scheduler
automaton can observe the system state and make
control decisions. Many high-level concepts from dis-
crete event control theory carry over into this domain,
such as the importance of decentralized control and
limited observability in distributed systems.

Discrete event control theory provides an approach
to synthesize optimal controllers, which in this do-
main translates to the automatic construction of

application-specific scheduling algorithms. However,
classical discrete event control theory does not deal
with time. The theory has been extended to synthesize
nonpreemptive schedulers for timed automata[9, 2],
but this excludes preemptively scheduled systems. It
is possible to develop scheduling automata by hand
using traditional real-time scheduling policies such as
preemptive fixed priority. Some examples have been
given in the literature, where each distinct ready queue
state is modeled as a distinct discrete state of the
scheduler automaton[4]. This would allow a very large
class of scheduling algorithms to be modeled, but the
size of the scheduler automaton may grow combinato-
rially with the number of tasks.

It is possible to model preemptive fixed priority
scheduling by encoding the ready queue in a variable
rather than in a set of discrete states. A queue vari-
able is introduced that will take on only integer values.
At each transition where a task i is dispatched, 2 i is
added to this queue variable; at each transition where
task i completes, 2 i is subtracted. The queue vari-
able can be interpreted as a bit vector whose ith bit is
set whenever task i is ready to compute. There is no

separate scheduler automaton, the scheduling protocol
is modeled using additional guards and states in the
task automata. This is the approach we took when
we started our work using HyTech. This encodes a
specific scheduling protocol into each task model, and
adds additional discrete states, variables and guards
to the model. It is awkward to model any scheduling
policy other than simple preemptive fixed priority.

In the end, we found it simpler and more general
to define a slightly extended linear hybrid automata
model that includes resource scheduling semantics[28].
The discrete state composition of the task set is per-
formed before any scheduling decisions are made. A
scheduling function is then applied to the composed
system discrete state to determine the variable rates
to be used for that system state. In essence, the com-
posed system discrete state is the ready queue to which
the scheduling function is applied, very much analo-
gous to the way run-time scheduling algorithms are
applied in an actual real-time system. It is not nec-
essary to have different discrete states for preempted
and computing, since this information is now captured
in the variable rates. It is not necessary to model a
scheduling algorithm as a finite state control automa-
ton added to the system, it is not necessary to encode a
specific scheduling semantics into the task automata.
One simply codes up a scheduling algorithm in the
usual way and links it with the rest of the reachabil-
ity analysis code. This approach significantly reduces
the number of discrete states in the model (from 3t
for our HyTech models to 2 t for our extended models,
where t is the number of tasks). This also simplifies
the modeling of the desired scheduling discipline. The
details of this model and its semantics are recorded

elsewhere[28].

3 Deeideability
Most traditional real-time schedulability problems

are solvable in polynomial time or are NP-complete.
However, hybrid automata models that allow multiple
rates and integration variables are undecideable[22,
17]. The hybrid automata models we are using are
much more powerful than traditional allocation and



schedulingmodels,and mostexistingtaskingand
schedulingmodelscanbeviewedasspecialcasesof
themoregeneralhybridautomatamodel.Thisraises
thequestionofwhethertheschedulabilityproblemfor
complexinteractingtasksthat aredynamicallyallo-
catedin distributedheterogeneoussystemsis in fact
undecideable,or whethermodelsofsuchsystemsare
decideablespecialcasesof the morepowerfullinear
hybridautomatamodels.

Theundecideabilityof hybridautomatareachabil-
ity analysiswasprovedby reducingtheteachability
problemfortwo-countermachines,whichisknownto
beundecideable,to thereachabilityproblemfor hy-
brid automata[22,17]. Theconstructionusedin the
proofisfairlystraightforwardinourslightlyextended
modelandcanbeaccomplishedusinga singlepro-
cessor.However,a pragmaticreal-timesystemde-
signerwouldrejectthetheoreticalconstructionasa
baddesignbecauseit reliesin placesonexactequal-
ity comparisonsbetweentimersandaccumulatedcom-
putetimes.In arealsystem,thesewouldberegarded
asraceconditionsor ill-definedbehaviors.Theprob-
lembecomesdecideablegivena fewsimplepractical
restrictions,whicharecapturedin thefollowingtheo-
rem.

Theorem1 The reachability problem is decideable
for resourceful linear hybrid automata if the following
conditions hold.

• The set of possible outputs of the scheduling func-
tion for each possible system discrete state is finite
and enumerable.

• For every task activity integrator variable, the
rate interval remains fixed between resets of that
integrator (i. e. the scheduler does not dynamically
reallocate any task activity in mid-execution to a
new resource having a different rate for that ac-
tivity).

• For every task activity integrator variable, every
edge guard is a set of rectangular constraints of
the form x C [1,u], and either the edgeguard has
a non-singular interval (x • [1,u] with 1 < u)
or else the rate interval for :b is non-singular (i. e.
system behavior does not depend on exact equality
comparisons with exact drift-free clocks or execu-
tion rates).

• However, we allow as a special exception task ac-
tivity integrator variables with singular rate inter-
val and singular rectangular edge guards, provid-
ing the integrator variable is only reset or stopped
or restarted at a transition having at least one
edge guard y • [m, m] with [m, m] and _1 singu-
lar (y may but need not be x), and for every such
singular constraint on that edge 5c = kf] for some
positive integer k (i. e. some types of noninteract-
in9 or harmonically interacting behaviors may be
modeled exactly).

This result should not be surprising. The ability
to test for exact equality is known to add theoretical

power to dense time temporal logics[3], and similar
restrictions are known to make certain other hybrid
automata models decideable[25]. The proof of this
theorem, which we provide elsewhere[28], is by reduc-
tion to a discrete time finite state automaton.

4 Reachability Analysis
A state of a linear hybrid automaton consists of a

discrete part, the discrete state at some time t; and
a continuous part, the real values of the variables at
time t. It turns out that, although this state space
is uncountably infinite, the reachable state space for
a given linear hybrid automaton is a subset of the
cross-product of the discrete states with a recursively
enumerable set of convex polyhedra in _n (where n is
the number of variables)[4]. A region of a linear hy-
brid automaton is a pair consisting of a discrete state
and a convex polyhedron, where convex polyhedra can
be represented using a finite set of linear constraints.
Model checking consists of enumerating the reachable
regions for a given linear hybrid automaton and check-
ing to see if they satisfy the assertions.

Figure 2 depicts the basic sequence of operations
that, given a starting region (a discrete state and a
polyhedron defining a set of possible values for the
variables), computes the set of values the variables
might take on in that discrete state as time passes;
and computes a set of regions reachable by subsequent
discrete transitions.

The first step is the computation of the time suc-
cessor polyhedron from the starting polyhedron (of-
ten called the post operation). For each point in the
starting polyhedron, the time successor of that point
is a line segment beginning at that point whose slope
is defined by the variable rates specified for the dis-
crete state. This is the set of variable values that
can be reached from a starting point by allowing some
amount of time to pass. The time successor of the
starting polyhedron is the union of the time successor
lines for all points in the starting polyhedron. A ba-
sic result of linear hybrid automata theory is that the
time successor of any convex polyhedron is itself a con-
vex polyhedron (which in general will be unbounded
in certain directions)[4].

The second step is the intersection of the time suc-
cessor polyhedron with the invariant constraint asso-
ciated with the discrete state. Polyhedra are easily
intersected by taking the union of the set of linear
constraints that define the two polyhedra. This is the
time successor region that is feasible given the invari-
ant specified for the discrete state.

The remaining steps are used to compute new re-
gions reachable from this feasible time successor re-
gion by some transition over an edge. For each edge
out of the current discrete state, the associated guard
is first intersected with the feasible time successor re-

gion. This polyhedron, if nonempty, defines the set
of all variable values that might exist whenever the
discrete transition could occur. Any variable assign-
ments associated with the edge must now be applied
to this polyhedron. This is done in two phases. First,
a variable to be assigned a new value x := 1 is uncon-
strained (often called the free operation). This oper-
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Figure 2: Hybrid Automata Reach Forward Operations

ation leaves unchanged the relationships between all
other variables, i.e. the polyhedron is projected onto
the subspace _n 1 of the remaining variables. This
result is then intersected with the constraint z = 1.
This polyhedron, together with the discrete state to
which the edge goes, is a new region for which the

above steps may be repeated. In general a set of as-
signments whose right-hand sides are linear formula
are allowed, with some restrictions. The variables to
be assigned are unconstrained and the resulting poly-
hedra are then intersected with the appropriate linear
constraints in some order. With care, fairly complex



sequencesofassignmentsto programvariablescanbe
modeledonasingleedge[30].

Theoverallmethodbeginsat the initial regionof
ahybridautomaton.Theoperationsdescribedabove
areappliedto enumeratefeasibletimesuccessorre-
gionsandthenewregionsreachablefromthesevia
discretetransitions.Asnewregionsareenumerated,
theymustbecheckedto seeif theyhavebeenvisited
before(otherwisethemethodwillnot terminateeven
whentherearea finitenumberof regions).Thisis
donebycomparingthediscretestatesof regionsfor
equality,andbycheckingto seeif thenewpolyhedron
iscontainedin thepolyhedronofa previouslyvisited
region.

Theearliestreachabilitytoolofwhichweareaware,
HyTech,representedpolyhedraasfinitesetsof linear
constraints[4].Operationsonpolyhedrausedquan-
tifierelimination,a methodto manipulateandmake
decisionsaboutsystemsoflinearconstraintsin which
someofthevariablesareexistentiallyquantified.Sub-
sequenttools,Polkaanda laterversionof HyTech,
usedapairofrepresentations:thetraditionalsystem
of linearconstraintstogetherwith polyhedragener-
atorsconsistingof setsof verticesandrays[16,18].
Differentoperationsrequiredduringreachabilityare
moreconvenientin thedifferentrepresentations,and
methodsareusedto convertbetweenthe two as
needed.

Bothof thesemethodsaresubjectto thetheoreti-
calriskthatsomepolyhedraoperationsmayrequirea
combinatorialamountoftime.Anotherpotentialper-
formanceproblemoccurswhenthereachablediscrete
statespaceiscompletelyenumeratedfirstfollowedby
anenumerationof thepolyhedra.Thismightresult
in enumeratingdiscretestatesthat areactuallynot
reachabledueto edgeguardsinvolvingthecontinuous
variables.Finally,inourexperimentswefoundthata
significantfractionofa setofbenchmarkschedulabil-
ity problemswetriedto solveusingHyTechresulted
in numericoverflowerrors.

Wedevelopedanewsetofalgorithmsforthepoly-
hedraoperationsusedduringreachabilityanalysisand
implementedaprototypeon-the-flyreachabilityanal-
ysislibrary.Ourprototypeoperatesonlistsof linear
constraintsof theform1 < e < u where 1 and u are
fixed constant integer bounds and e = ClZ 1 _-c2z 2 @...
is a linear formula with fixed constant integer coeffi-
cients. Our current algorithms restrict variable rates
to be fixed scalar constants, _? = i rather than the
more general 2 C [1, u].

We convert a polyhedron P into Post(P,±), the
time successor of P given a vector of variable rates
±, by applying the two steps

1. Let each constraint li _< ei _< ui where di 7_ 0 be
written so that di > 0, which can be achieved by
multiplying the constraint by -1 if needed. For
each distinct pair of constraints

where di > 0 and dj > 0, add to the set the

constraint

djli - diuj < djei - diej < djui - dilj

2. Replace each constraint 1 < e < u where _ > 0 by
l<e<oo.

We compute Free(P, x), the result of unconstraining
variable x in polyhedron P, using the two steps

1. Let each constraint 1 < e < u in P where e has an
instance of x be written in the form 1 < cx - et <

u, where # involves the remaining variables and
their coefficients and c > 0. For every distinct
pair of such constraints in P

li < cix -- ei < ui
lj < cjx -- ej < uj

combine the two in a way that cancels the x terms,
adding to Free(P, x) the constraint

cjli- ciuj <_ ciej - cjei <_ cjui - cilj

2. Each constraint 1 < e < at where e has no in-

stances of variable x is added to Free(P, x).

These algorithms might be viewed as general-
izations of the difference methods used for timed

automata[12, 8] and exhibit some similarity to
the pragmatic algorithm used earlier for quantifier
elimination[4]. Our prototype invokes a Simplex al-
gorithm as part of the operations to test for feasibility
and containment. We use a bounds tightening pro-
cedure to reduce the size of the constraint list after
certain operations and to rapidly detect most infeasi-
ble polyhedra. Simplex-based reduction and feasibil-
ity testing is only applied when the bounds tightening
procedure is ineffective. Details of our reachability
analysis methods and implementation and proofs of
correctness are documented elsewhere[29].

We benchmarked our prototype tool against
HyTech and Verus[11] (a discrete timed automata
reachability analysis tool that uses BDD techniques)
using randomly generated uniprocessor workloads con-
taining mixtures of periodic and aperiodic tasks. Fig-
ure 3 shows the percentage of problems that were
solved by each of the tools, together with the primary
reasons that solution was not achieved. Figure 4 com-
pares the time required for solution for problems that
were solved by all the tools using a logarithmic scale (a
point appears for both HyTech and our prototype only
for problems that were solved by both). We further
increased the size of model we could analyze by ap-
plying some results from traditional scheduling theory
to simplify the models, and by using a simple partial
order reduction technique, these results are reported
elsewhere[29].

5 Verifying the MetaH Executive
MetaH is an emerging SAE standard language for

specifying real-time fault-tolerant high assurance soft-
ware and hardware architectures[I, 24, 27]. Users
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specify how software and hardware components are

combined to form an overall system architecture. This

specification includes information about one or more

configurations of tasks and message and event connec-

tions; and information about how these objects are

mapped onto a specified hardware architecture. The

specification includes information about timing behav-
iors and requirements, fault and error behaviors and

requirements, and partitioning and safety behaviors
and requirements.

Our current MetaH toolset, illustrated in Figure 5,

can generate and analyze formal models for schedula-

bility, reliability, and partition isolation. The toolset

can also configure an application-specific executive to

perform the specified task dispatching and schedul-

ing, message and event passing, changes between alter-

native configurations, etc. Unlike many conventional

systems that rely on a large number of run-time ser-

vice calls to configure a system by dynamically cre-

ating and linking to tasks, mailboxes, event channels,

timers, etc., our toolset builds most of this informa-
tion into an application-specific executive. There are

relatively few run-time service calls, and the effects of

these are tailored based on the specified application
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architecture and requirements.

Our MetaH executive supports a reasonably com-
plex tasking model using preemptive fixed priority
scheduling theory[5, 6, 7]. Among the features rele-
vant to this study are period-enforced aperiodic tasks,
real-time semaphores, mechanisms for tasks to initial-
ize themselves and to recover from internal faults, and
the ability to enforce execution time limits on all these
features (time partitioning). Slack stealing in support
of aperiodic and incremental tasks is also supported,
but as we will mention later these were not modeled
or verified.

Figure 6 shows the high-level structure of the
MetaH executive. The core task scheduling operations
are implemented by module Threads, e.g. start, dis-
patch, complete. These operations implement tran-
sitions between the discrete task scheduling states,
e.g. dispatch may transition a task from the await-
ing dispatch state to the computing state. These op-
erations must take into account details such as the
task type, optional execution time enforcement, event
queueing, etc. Module Threads invokes operations
in module Time,lice, which encapsulates arithmetic
operations and tests on two execution time accumula-
tors maintained by the underlying RTOS and hard-
ware for each task: an accumulator that increases

while a task executes, and a time slice that decreases
while a task executes. Time,lice may set these vari-
ables to desired values using services provided through
the MetaH RTOS interface. If time slicing is en-
abled for a task, then a trap will be raised by the
underlying hardware and RTOS when the time slice
reaches zero. This trap is handled by one of the oper-
ations in Threads. Module Clock_Handler is periodi-
cally invoked by the underlying system (it is the han-

dler for a periodic clock interrupt) and makes calls to
Threads to dispatch periodic tasks and start and stop
threads at mode changes. Modules Events, Modes
and Semaphores contain data tables and operations
to manage user-declared events, dynamic reconfigura-
tion, and semaphores.

We produced hybrid automata models for the
Threads and Time,Slice modules, about 1800 lines
of code. We did not write a separate model using a
special modeling language, instead we inserted calls
to build the model into the executive code itself. For
example, in the code that implements the dispatch
operation there is logic to decide if a task can be
dispatched, assignments to change program variables,
and calls to set the time slice and execution time coun-
ters. Into this code we inserted a call to a modeling
procedure to create an edge between the correspond-
ing states of the linear hybrid automata model. The
guards for this edge are the conditional expressions
appearing in the code, and the assignments on this
edge are the assignments appearing in the code. This
provides a high degree of traceability between the im-
plementation and the model.

The generation of the hybrid automata models re-
sembled all-paths unit testing. We developed several
simple application specifications that included most
(but not all) of the tasking features. We wrote a test
driver that exercised all relevant paths in the core
scheduling modules. For each application specifica-
tion, the test driver thus triggered the generation of a
linear hybrid automata model of the possible behav-
iors of the core scheduling operations for a particular
combination of tasks and features.

The conditions we checked during reachability
analysis were that all deadlines were met whenever
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the schedulability analyzer said an application was
schedulable; no accessed variables were unconstrained
(undefined) and no invariants were violated on entry
to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appear-
ing in the code were modeled by edges annotated with
assert False.

We also collected information about which edges
were used by some transition during teachability anal-
ysis and compared this with all the possible edges that
might be created (all instances of calls inserted into
the code to create edges). This allowed us to insure
that all modeled portions of the code were covered by
at least one teachability analysis.

A total of 14 real-valued variables and 15 discrete

states were defined to model each task. No single task
model used all 14 variables and 15 states, different
task types with different specified options used differ-
ent combinations. Figure 7 shows the simplest lin-
ear hybrid automata model we generated, a periodic
task with period and deadline of 100000us, compute
time between 0 and 90000us, recovery time between
0 and 10000us. States are also annotated with pro-
cessor scheduling priorities, which are not shown here.
The variable rates were derived from the scheduling
priorities by the analysis tool, which used preemptive
fixed priority scheduling semantics for this study. Ta-
ble 1 summarizes the complete set of applications we
analyzed. A more detailed discussion of the modeling
methods and results is provided elsewhere[30].

We discovered nine defects in the course of our vet-

ification exercise. Four of these were tool defects, two
that could cause bad configuration data to be gener-
ated and two that could cause erroneously optimistic
schedulability models to be generated. Six of these
defects could cause errors only during the handling
of application faults and recoveries, three of these six
only in the presence of multiple near-coincident faults
and recoveries. In our judgement, of the nine defects
we found, one would almost certainly have been de-
tected by moderately thorough requirements testing,
while three would have been almost impossible to de-

tect by testing due to the multiple carefully timed
events required to produce erroneous behavior. The
other five may have been detected by thorough re-
quirements testing of fault and recovery features, pro-
viding the tester thought about possible execution
timelines and arranged for tasks to consume carefully
selected amounts of time between events.

There are a number of significant limitations on the
degree of assurance provided. In our initial exercise,
we chose not to model many behaviors that could have
been modeled in a fairly straight-forward way, e.g.
mode changes, inter-processor communication proto-
col, non-preemptable executive critical sections. In
some cases different behaviors and subsystems can be
modeled and analyzed almost independently, but it is
not clear at what point the teachability analysis will
become intractable as the extent of the model grows.
Some behaviors might be more difficult to model, e.g.
slack scheduling. The MetaH processor interface, un-
derlying RTOS and hardware are unlikely to be fully
model-able for a variety of practical and technical tea-
sons. The MetaH tools were not verified, only a few
specific generated modules and reports for a few ex-
ample applications. Although our approach provides
good traceability between code and model, there is
still a very real possibility of modeling errors. The
teachability analysis tool may contain defects; we dis-
covered two in our tool in the course of this work.
The modeled code does not change from application
to application, and the analyzed applications fully ex-
ercised the code model, but to rigorously assert this
code is correct for all possible applications would re-
quire some sort of induction argument. Even if the
source code is correct, defects in the compiler, linker
or loader software could introduce defects into the ex-

ecutable image.

Nevertheless, we estimate that the effort required
for this exercise was roughly comparable to that re-
quired for traditional unit testing, but the results were
more thorough than would have been achieved using
traditional requirements testing. The method must be
used in conjunction with traditional verification tech-
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niques such as testing, but it is at least intuitively
reasonably easy to distinguish requirements that will
be verified using hybrid automata from requirements
that must be verified using other techniques.

6 Future Work

Our experience leads us to believe that linear hy-
brid automata are very powerful and well-suited for
this domain. We were able to achieve one of our goals,
the modeling and verification of a piece of real-world
real-time software, with a number of limitations. We
do not believe we have achieved the other goal yet,
modeling and schedulability analysis for complex dis-
tributed systems of real-world size. However, there are
a number of potential future developments that might
reduce the verification limitations and provide useful
schedulability analysis capabilities.

It should be possible to use the set of reachable
regions produced by the analysis tool to automatically
generate tests. This could significantly reduce the cost
and increase the quality of requirements testing (which
might still be required by the powers-that-be). Such
tests could also detect defects that could not be found
by model analysis, such as defects in the compiler,
linker, loader, RTOS or hardware. One of the issues
that must be confronted is the ease of constructing,
running and observing the results of tests; for example,
in theory one might encounter transitions in the model
that occur only when two values are extremely close,
which could be practically impossible to do in a test.
Another issue is that such tests would not take into

account the internal logic of unmodeled modules such
as the RTOS; a systematic method for testing multiple
points within each reachable polyhedron might help
address this.

There are a number of potentially useful improve-
ments in analysis methods and tools. Approximation
and partial order methods might significantly increase
the size of the model that could be analyzed[16, 19,
15, 29]. Preprocessing models to modify numeric pa-
rameters in certain ways can result in much more eas-
ily solved models[29]. It is possible to apply theo-
rem proving methods to linear hybrid automata[21],
and some work has been done on dense-time process
algebras[10, 14]. Decomposition and induction meth-
ods currently being explored for discrete state models
might be extensible to linear hybrid automata. There
are a number of possible ways to visualize and navigate
the reachable region space that would be of practical
assistance during model development and debugging
and during reviews. Concise APIs and support for in-
line modeling could reduce both the modeling effort
and the number of modeling defects.

Changes will inevitably be required to the design,
implementation and verification processes to make
good use of these methods. Much of the benefit of
other formal methods has been due to subsequent
changes in development methods that resulted in more
verifiable and defect-free specifications, designs and
code in the first place. An important and not com-
pletely technical question is how verification processes
might be changed to beneficially use these methods.



Description Discrete Distinct Sparc Ultra-2

States Polyhedra CPU Seconds

one periodic task 7 7 0

one periodic task, enforced execution time limits 7 10 0

one periodic task, enforced execution time limits, one semaphore 8 29 15

one period-enforced aperiodic task 9 18 0

one period-enforced aperiodic task, enforced execution time limits 9 27 2

one period-enforced aperiodic task, enforced execution time limits, one 11 124 125

semaphore

two periodic tasks 36 60 3

two periodic tasks, enforced execution time limits 36 108 24

two periodic tasks, one with period transformed into two pieces, 41 97 10

two periodic tasks, one shared semaphore 48 118 36

two periodic tasks, one with period transformed into two pieces, enforced 41 174 87

execution time limits

two periodic tasks, one with period transformed into four pieces, enforced 40 334 103

execution time limits, recovery limit greater than compute limit

two tasks, one periodic and one period-enforced aperiodic 44 623 115

two periodic tasks, one with period transformed into four pieces, enforced 41 351 170

execution time limits

two tasks, one periodic and one period-enforced aperiodic, enforced ex- 44 425 184

ecution time limits

two tasks, one periodic and one period-enforced aperiodic, one shared 70 638 840

semaphore

two periodic tasks, one with period transformed into two pieces, enforced 55 963 5658

execution time limits, one shared semaphore

Table 1: Modeled Applications

What evidence would be required, for example, to con-

vince a development organization or regulatory au-

thority to replace selected existing verification activ-

ities with modeling and analysis activities, or to add

modeling and analysis to current verification activi-
ties?
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Orpheus: A Self-Checking Translation Tool Arrangement

for Flight Critical Hardware Development

David Greve* Matthew Wilding* Mark Bickford t David Guaspari t

Abstract

We describe Orpheus, our vision for a de-

velopment and verification environment for

flight critical hardware devices. Orpheus pro-

vides an arrangement of translation tools that
are self-checking and that integrate synthe-

sis, high-speed simulation, and formal anal-

ysis. Implementation of the Orpheus ar-

chitecture would allow tight integration of

these formerly distinct activities and facil-

itate the use of formal analysis in flight-

critical system certification. Further, flexibil-

ity in the choice of design representation pro-

vided by Orpheus would support both current

design practice and hardware/software code-

sign. This paper describes the notion of self-

checking tools, the Orpheus tool architecture,

and how commercially-available tools could be

used to implement such a system.

1 Current Practice

1.1 Background

Certification of flight critical systems is to-

day a labor-intensive, manual process. Verifi-

cation and certification of flight critical soft-

ware and application-specific integrated cir-

cuits (ASICs) require an almost heroic effort

*Rockwell Collins, Inc. Advanced Technology Cen-
ter, Cedar Rapids IA

tOdyssey Research Associates, Ithaca NY

of intense inspections and process documenta-

tion. The complexity of systems and devices

will increase, because increases in cockpit au-

tomation and application integration offer im-

portant safety benefits, and because astonish-

ing improvements in digital computing tech-

nology can potentially improve performance
and decrease cost. The current approach to

verification and certification may not be ade-

quate in the face of this increased complexity.

In order to reap fully the safety benefits of

these technological advances we must develop
new methods for verification and certification

of flight critical devices.

Several recent developments permit a supe-

rior approach to verification and certification.

First, flight critical ASICs can now be de-

veloped using standard hardware description

languages (HDLs) because recent advances in

equivalency-checking tools provide an inde-

pendent check that synthesis preserves func-

tional correctness. Second, theorem proving

tools have emerged that enable mechanical

formal analysis of device properties. Third,

translation tools are emerging that allow the

integration of mathematical analysis into the

conventional fabrication/simulation-based de-

velopment environment.

1.2 Flight Critical HDL Use

Modern hardware devices are typically devel-

oped using one of several hardware description
languages (HDLs), such as Verilog or VHDL.
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In the area of flight critical hardware, how-

ever, this has been the case only within the last

few years. The delay in adopting these design

techniques has been a result of concerns about

the reliability of the process by which an im-

plementation expressed in an HDL is used to

fabricate the actual device. The complexity of

HDLs means that tools that manipulate HDL

designs are complex. As a result, the move to-

ward using standard HDLs was hindered be-

cause requirements could not be traced to the

device without trusting the synthesis tools and

supporting libraries.

Fortunately, tools now exist that allow

highly-dependable HDL fabrication. Figure 1
shows how 4 fabrication-oriented tools can be

used to make the fabrication process immune

from corruption by a fault in any single tool.

A synthesis tool converts an HDL design into
a netlist, and a place-and-route tool converts
the netlist into CIF data that can be fabri-

cared. The CIF data is checked against the

netlist using an LVS (layout-versus-schematic)
tool. The netlist is checked against the VHDL

model using equivalence-checking tools.

The dependability of the connection be-

tween the design and physical device afforded

by an independent tool chain as presented in

Figure 1 has changed how flight critical hard-
ware is developed. Incorporation of this in-

novation into the development process has al-

lowed developers of airborne hardware to ben-

efit from modern design practices such as syn-
thesis and optimization.

1.3 Device simulators

It is commonly the case that a high-speed sim-
ulator is developed in parallel with an HDL
model of a device. There are several reasons

for this.

• Execution of the VHDL model is often too

slow to support testing activities. This is

especially true for large test suites such as

are typical for regression testing.

• Software or other parts of the system that

rely on the device must be developed be-
fore the HDL model is complete.

High performance is critical for device sim-

ulators, so simulators of this type are typically

constructed using a high-level language (HLL)

such as C or C++ for which there are compil-

ers that generate efficient code 1.

1Multiple simulators are routinely built during de-

vice development. For example, a microcoded mi-

croprocessor's simulators would typically include both
an instruction-level simulator and a microarchitecture

simulator. The device simulator we are describing here

is a low-level, cycle-accurate simulator.



The required functionality of complex com-

putational devices is typically implemented us-

ing a combination of hardware and software,

and an early design decision in the develop-

ment of these systems is where to draw the

line between these two kinds of implementa-
tions. The distinction between hardware and

software in implementions adds complexity to

these systems, since it requires that an inter-

face be defined. Furthermore, this interface

between hardware and software can change

during a design cycle as implementation is-
sues make clearer the tradeoffs between im-

plementing various functions in hardware or
in software. It would therefore be desirable

to develop hardware and software using the

same languages and tools, and delay decisions

about the exact form in which they will be im-

plemented. Designing could be done, for ex-

ample, using C. Functions whose design will

ultimately appear in hardware can be fabri-

cared using the HDL representation. This has
the potential to simplify development efforts

since no hardware/software interface need be
considered during development.

Figure 2 shows the artifacts resulting from

current practice: two models that are expected
to be identical in substance but that are writ-

ten in different languages. This is typical of

the current state-of-the-art design practice for
airborne hardware devices.

2 Formal Analysis

Current certification processes provide some

hard-to-quantify assurance that critical air-

borne hardware devices meet their require-

ments. Teams of inspectors "walk through" a

design, assessing whether the implementation
indeed meets the stated requirements. This

process generates a paper trail that documents
the level of effort of the inspectors and ensures

that all relevant parts of the design have in

fact been examined against the requirements.

For complex designs this type of examination

is very labor-intensive, but there is currently

no viable alternative. Even so, the quality of

the device is, to a large extent, measured in-

directly via the inspection process.

Several aspects of the current process for de-

veloping and certifying safety-critical devices
are not ideal. It would be better if certifica-

tion practice measured the quality of the de-

vice directly, rather than measuring the effort

applied to the verification. Further, as the

trend is toward using more complex devices for

critical airborne activities, current verification
and certification threaten to become increas-

ingly inadequate. It has long been hoped that

mathematical reasoning -- rather than careful
documentation of the efforts of inspectors --

could ferret out design flaws more effectively
than manual inspections. The potential for

establishing by direct, formal reasoning that
a device meets its requirements has obvious

appeal, and is increasingly recognized as a vi-

able verification methodology by certification
authorities.

Mathematical proofs about computing de-

vices tend to be very complex and detail-

laden, which makes them impractical to de-

velop or check by hand. There has been con-

siderable research applied to the development

of automated theorem provers that are ca-

pable of checking and/or generating mathe-

matical proofs. Leading tools include ACL2,

HOL, and PVS, and each is increasingly find-

ing application in industrial settings where

safety or wide product distribution makes es-

tablishing design correctness imperative. Var-

ious verification projects have used theorem

provers to analyze computer system models

[1, 2, 4, 6, 8, 13, 14, 17]. A dramatic re-

cent example of the possibilities of applying

formal analysis to computing systems is the
ACL2-checked verification of AMD's Athlon

(formally "KT") floating-point operations [16].
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Figure 3: Formal analysis requires designers

build yet another model.

The increased industrial use of automated

theorem provers results from improvements in

the tools themselves and increased availability

of reusable libraries of results [7, 9, 16]. AI-

though we expect these tools will be increas-

ingly common, poor integration with other as-

pects of the design environment remains an

impediment to their adoption [12]. We be-

lieve that formal analysis will become perva-

sive only when the tools are properly integrated

with other aspects of the design environment.

Figure 3 identifies the artifacts resulting

from a process augmented to support formal
verification: three models of the same device

written in three different languages each sup-

porting its own development or verification ac-

tivity. In a recent effort Rockwell Collins de-

veloped three separate device models -- one

each for fabrication, simulation, and formal

analysis -- in order to benefit from each of

these activities [11]. However, the high cost of

building and maintaining models alone makes

this approach unsustainable. Even more trou-

blesome is that the multiple models might be

inconsistent with each other, so a property
proved about the formal model or the observ-

able behavior of the simulator used to develop

other parts of the system might not be re-
flected in the actual fabricated device.
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Figure 4: Executable formal models reduce the
number of models

3 Orpheus

We propose a comprehensive development

and verification environment for safety-critical

hardware devices called Orpheus. In Greek

mythology, Orpheus subdues the fearsome,

three-headed, dog-like Cerebus. As we

have seen, verification and certification of

increasingly-complex safety-critical devices re-

quires us to overcome another three-headed

challenge: to support device fabrication, high-

speed simulation, and formal analysis in an in-

tegrated way. Orpheus does so without requir-

ing the development of multiple models that

are expensive and possibly inconsistent. The

Orpheus approach can be integrated into cur-

rent approaches for flight critical device devel-

opment. The Orpheus tools are self-checking,

so as to guarantee that no single translation
tool can introduce an error into the verifica-

tion process. The approach allows flexibility

of design paradigm: it supports HDL devel-

opment, hardware/software codesign, and de-

signs derived from formal specification.

3.1 Reducing Three Models to

Two

In part to address the issue of multiple distinct

models, Rockwell Collins recently developed
techniques that allow formal models written

in a particular style in the ACL2 logic to be



compiledintoCfor useasa high-speedsimu-
lator[10,18].Thisworkeffectivelycombines
theformalandsimulatormodels,therebyre-
ducingthe numberof modelsfromthreeto
two. Figure4 showstheimpactofthis inno-
vation.Theintegrationincreasesconfidence
in thevalidityof theunifiedmodel,sincethe
same model is used both as a simulator and

as a target of formal analysis. This impor-

tant capability--high speed execution of for-

mal logic definitions--has since been added to

two theorem proving systems:

DESIGNER

Ex_ut able Fot_a]

Model T_lmiques _ formal modelHLL to HDL tr_lslator

FABRICATION HIGH-SPEED SIMULATION FORMAL ANALYSIS

Figure 5: Formal models could provide a sin-

gle, unified model

• A recent PVS extension provides a trans-
lator from PVS functions into Common

Lisp. Rockwell Collins' preliminary tests

using a version of the benchmark from [18]

in PVS 2.3 [15] indicate that execution
speeds are within an order of magnitude

of the speed of a model written conven-

tionally in C. We expect that PVS will

ultimately develop the capability to inte-

grate models expressed in the PVS logic
into other tools.

• Single-threaded objects have been added

to ACL2 2.4 and provide for high-

speed execution of certain definitions [5].

Single-threaded objects are an extension
of the notion of ACL2 "state" that per-
mrs the introduction of user-defined state

elements. ACL2 enforces syntactic re-

strictions on the use of single-threaded

objects to guarantee that the optimiza-

tions are legitimate. Rockwell Collins'

experiments suggest that complex de-

vice models can be expressed despite the

syntactic restrictions enforced on single-

threaded objects, indicating that these
restrictions do not make the ACL2 lan-

guage impractical. Rockwell Collins has

recently shown that ACL2 code can be

integrated with other tools [18].

3.2 Reducing Two Models to
One

An approach has recently emerged that poten-

tially allows the integration of high-speed sim-

ulation models and device designs written in
HDL. Several commercial tools are now avail-

able to translate high-level language (HLL)
models into HDL models suitable for fabrica-

tion. Among the leading tools of this type

are CynApps' C++-to-Verilog converter and

C level's C-to-HDL converter, which gener-

ares either Verilog or VHDL. These tools pro-

mote an HLL-based design methodology that

integrates simulation and fabrication. The ex-

istence of such tools and the emerging push

for system level design and hardware/soRware

codesign practices suggest that the commer-
cial world will continue to develop and improve
these tools.

The ability to compile a formal model into a

simulation model, as described above, reduces

the three models to two. Figure 5 suggests

an obvious way to reduce the two models to

one, by compiling the simulation model into
a fabrication model expressed in an HDL. We

discuss in Section 3.4 our initial testing of one
of these tools, C level's C-to-HDL tool, and

this experience suggests that Orpheus may be
a realistic path for some applications.
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model generator

Figure 6: The Orpheus translation circle uses

a single model to combine fabrication, high-

speed simulation, and formal analysis

3.3 Closing the Loop with Or-

pheus

Although the tools outlined above allow the

translation of high-level artifacts to HDL, and

while such a process supports methodology

changes that could reduce design errors, there

are problems with using these tools for flight
critical applications. First, the process out-

lined above requires that device development

be accomplished by constructing a model or

specification in formal logic. This is impracti-

cal, as hardware development is most appro-

priately done in an HDL or, in the case of

hardware/software codesign, in an HLL.

The second issue is tracibility. Specifically,

there must be a way to trace the requirements

to the device through the tools. This issue is

analogous to the one discussed in Section 1.2

that has until recently bedeviled those who
wished to use an HDL for flight critical hard-

ware design. Note that, unlike the fabrica-

tion tools of Figure 1, the compilation tools

described in Figure 5 are not arranged to be

self-checking. As a result the two compilers

employed in this process would have to be

thoroughly vetted before they could be used

in a process for developing flight critical de-

vices, which is problematic.

The Orpheus system addresses these two
important issues by adding to the chain an-

other tool, a model-generator, that converts an

HDL design into a formal model. Figure 6

shows how the Orpheus tools are arranged.

The translators form a circle in which a rep-
resentation is converted in turn into each of

the other representations and ultimately back

into its original representation language. For

example, a device model could be developed in

an HDL that supports fabrication. The model-

generator then creates a formal model that can

be analyzed using a theorem prover. Using

executable formal models techniques, the for-
mal model is translated into an HLL model

that supports high-speed simulation. Finally,

the HLL model is translated back into HDL,

and shown to be equivalent to the initial HDL

model using an equivalency checker of the kind
used in the HDL fabrication process.

There is only a single model, yet three
distinct device representations are involved

to support the three different uses: fabrica-

tion, high-speed simulation, and formal analy-
sis. These three activities support each other,
both for model validation and in the fabrica-

tion/verification process, because they involve
the single model in different ways.

As previously discussed, although the nec-

essary formats can be generated without com-

pleting the circle of translations, the question

of translation correctness remains open. The

certification of flight critical devices must ad-

dress this issue. If the circle is completed, and

the initial design and final design are shown

equivalent, then each representation of the de-

sign is guaranteed correct so long as at most
one of the tools has erred. Much as the fab-

rication tools diagrammed in Figure 1 are ar-

ranged to be self-checking, so too are the Or-
pheus translation tools. Even if more than one

tool errs, the probability of catching the error

is still very high since otherwise the multiple

mistaken tools would have to fail in ways that
mask each other's errors.

This kind of self-checking tool arrangement



providesa verystrongargumentfor the ab-
senceoftranslator-inducederrors,andmakes
thiskindofdevelopmentpracticaljustasmod-
ernself-checkingfabricationtoolspermitHDL
usein safety-criticaldevices.Orpheusthere-
foreprovidesaframeworkfortightandhighly
reliableintegrationofformalanalysis,simula-
tion,andfabrication.

3.4 Orpheus Translation Circle

Example

To assess the technical feasibility of the Or-

pheus approach, we have done a small exper-

iment with using current versions of Orpheus

components in a manner consistent with the

tool arrangement of Figure 6.

As discussed previously, one of the advan-

tages of Orpheus is that it allows a developer

to use any of the representations for his de-

vice. We might expect VHDL to be the lan-

guage of choice for hardware designers, while C

might be preferred for hardware/software co-

design. This experiment begins from a formal

ACL2 model of an interrupt controller that

forms part of a proprietary device developed

by Rockwell Collins. We will navigate around

the Orpheus circle to generate a simulation
model, a VHDL model, and a second formal

model. We have already discussed the benefits

accruing from these different representations.
The point of the experiment is to observe that
the two formal models have sufficient similari-

ties in structure, complexity, and level of detail
to indicate that a proof of their equivalence --
and therefore a self-check of all the transla-

tions -- is feasible.

The Common Lisp model of this device

uses a macro package developed by Rockwell

Collins to ease modeling in Common Lisp.
The line

(ST. SYNCI = (& (ST. SYNCO) (HxFFDF)))

expresses the following behavioral detail:

SYNC1 is an element of the machine state,

a register. It is updated each clock tick with

the result of applying a constant bit-mask to

another state variable, SYNC0.

We also wish to simulate this device. We

might choose merely to execute the Common
Lisp code. However, there would be two dis-

advantages to that approach. First, it would

be slow. Our experiments with running ap-
plicative Common Lisp models indicates that

these models execute roughly 100 times slower

than equivalent C language models [18]. Sec-
ond, it is difficult to integrate raw, applicative

Common Lisp into other tools.

Rockwell Collins has been working on this

challenge for two years and, as described

above, has sped applicative Common Lisp ex-

ecution and integrated this code into other ap-

plications. This approach, broadly called "ex-

ecutable formal models," is outlined in two

recent publications [10, 18]. Using these op-

timizations and a Lisp compiler, we gener-

ate a C program that executes at roughly the
same speed as hand-coded C, and can be inte-

grated with other software. Rockwell Collins

in the past has integrated code of this type
into various simulation and development envi-

ronments [18].

We apply this technique to the example

above. The line of the resulting C code that

corresponds to the given line of Common Lisp
reads as follows:

VI2= (D.SYNCl = ((((((Vii)), Q.SYNCO))

((-(33))))),((V11)));

We also wish to fabricate this device. To

do so we have applied a C-to-HDL tool (devel-

oped by C level) to convert the auto-generated

C program produced into VHDL. Many trans-

formations are done, such as converting vari-
ables in the C code that maintain state into

registers in the VHDL. The line of C code



shownabovetranslatesintothefollowingline
ofVHDL:

D_var (SYNCl_2'range) := (Q_var (SYNC0_2'range)

and "iiiiiiiiii011111") ;

Ultimately, we wish to fabricate devices

from VHDL using the approach outlined in

Figure 1. We applied a Synopsys VHDL syn-

thesizer to this VHDL code, and the result ap-

pears correct. As described in Section 1.2, it is

this synthesis step from VHDL that current-

available tools such as the Chrysalis equiva-

lence checker can verify.

We really want to check much more than

this final step. We want to verify that the syn-

thesized design implements the formal model

with which we began, so we complete the cir-

cle with a model-generator developed by ORA

[2, 3]. This tool currently generates a de-

scription in first-order logic, rather than ACL2
code, and there are other modest problems
related to differences between the VHDL li-

braries assumed by the C level tool and the

libraries assumed by the ORA tool. How-

ever, with minor manual changes to the VHDL

needed to overcome the library issue, we were

able to use the model-generator to construct a

specification in first-order logic. In this nora-

tion, the value assigned to SYNC1 is:

(slice(s.q, 79, 64) and

flip(shift(vector("llllllllll011111"), 78))))

The "slice" expressiondenotes the 16-bit

sliceofvectorq that,by definition,represents

SYNC0. The "flip" expressionisofcoursethe

mask. (Itis"flipped"because q has been de-
finedto run down from 79 to 64 rather than

up from 64 to 79.) Although itisexpressed

in a different syntax (i.e. Larch/VHDL rather

than ACL2) the generated formal model corre-

sponds term-by-term to the original Common

Lisp (ACL2) model.

Sophisticated digital design, simulation and
test-generation, and machine-checked formal
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Figure 7: Orpheus Supports and Integrates

Each Design Activity

analysis, each individually pose technical chal-
lenges that are not solved by using the Or-

pheus approach. However, Orpheus provides

a framework for integrating these separate do-

mains, and we believe that the simple exper-

iment reported here indicates that this novel

technical approach can succeed.

4 Summary

Current verification and certification of de-

vices appears increasingly inadequate in the

face of increasing complexity of flight critical

systems. Figure 7 summarizes the Orpheus

approach. Orpheus supports hardware de-

velopment and hardware/software codevelop-

ment in a way that allows for formal analysis,

fabrication, and high-speed simulation. The

Orpheus tools are self-checking, just as mod-
ern HDL fabrication tools are, to insure their

reliability. Orpheus supports a verification ap-
proach that forms the basis of a superior certi-

fication approach that provides a way to meet
this looming challenge.
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Abstract

This paper describes an integrated design methodology for the use of formal methods with existing tools in the

context of developing FormalCORE PCI/32. The primary goal is to develop technology for the design and

verification of formally verified IP cores that includes all the features, documentation, and support necessary to

insure integration into designs with the high degree of reliability provided by the application of formal

methods. Validation techniques used in developing these cores include formal specification, formal synthesis,

simulation, hardware emulation, theorem proving, and model checking.

1 Introduction

The PCI[6,7] Local Bus is a high performance, 32-bit or 64-bit bus with multiplexed address and data lines.

The bus is designed for use as a high-speed interconnect mechanism between peripheral components and

processor/memory subsystems.

FormalCORE TM PCI/32 is a synthesizable VHDL[4] 32-bit, 33MHz PCI interface core targeted to

programmable hardware. The VHDL description is formally synthesized using our DRS [1,2] formal synthesis

system and formally verified using the Verysys PropertyProver model checker to be compliant with the v2.1

PCI specification.

The overall goal of the project is increased assurance by using a variety of formal methods technologies in

concert to attack a practical problem. We have developed the methodology for the design and validation of

VHDL cores with a variety of tools that can serve as documentation, and increase assurance. In meeting the

primary goal of the project we achieve a reduction in the development time as well. Once the design flow was

in place, correcting specification bugs and rechecking the properties was a routine task rather than a challenge.

A key benefit to this approach is that it allows for the deployment of formal methods into current engineering

practice via pre-designed, pre-verified components that meet the stringent reliability and safety requirements

that are necessary in avionics and space applications. These components can then be integrated into larger

designs providing the building blocks for complex designs and the foundation for design reuse.

In developing the FormalCORE technology we rely heavily on both formal and traditional design and

verification tools. We recognize at the early stages of planning that a comprehensive approach to the

integration of formal verification techniques to an existing design flow is critical to the success of the

technology. A well implemented design and verification strategy, incorporating formal techniques at key

points in the design flow minimizes the likelihood of design errors.

2 The PCI Bus Protocol Standard Revision 2.1

The PCI bus specification was first developed by Intel Corporation and was released in June 1992. It was

intended to define an industry standard for local bus architectures. Revision 2.1 became available in early

1995 and is managed by a consortium of industry partners known as the PCI Special Interest Group. The

specification is a 282-page English language document describing the protocol, electrical, mechanical, and

configuration specification for PCI components and expansion boards.



ThePCIspecificationdefinestwopossiblePCIagents,amaster and a target. The master is the device that

initiates a transfer. The target is the device currently addressed by the master for the purpose of performing a

data transfer. The master and target state machines are independent. However, a master device must

incorporate a target device for the purpose of responding to system configuration requests.

The minimum PCI compliant device satisfies the requirements of a target-only device. This device requires 47

pins and can only respond to a master initiated transaction. A master device requires two additional signals,

(REQ# and GNT#), for it to handle data and addressing, interface control, arbitration, and system functions.

Figure 1 illustrates the required and optional signals for a PCI compliant device. The signals on the left are

required pins for target and master devices. The signals on the right are optional pins and are used to support

the 64-bit extension to the specification, exclusive access (LOCK#), interrupts, cache support, and the JTAG

(IEEE 1149.1) boundary scan interface.

Required
Pins

AD[31::0] _--_
Address C/BE{3::0]
& Data PAR

FRAME#
TRDY#

Interfac6
IRDY#

Control
STO P#

3EVSEL#
IDSEL

Error _ PERR# _--_

Reporting [ SERR#

Arbitration{ GNT#REQ#---_

CLK ---_System RST# ---_

PCI

COMPLIANT

DEVICE

Optional
Pins

AD[63::32]'[ 64 Bit

_--_ C/BE[7::4]_] Extension

_--_ PAR64 }
_--_ REQ64# Interface
_--_ AC K64-# Control

_--_ LOCK#

---_ INTA# }

---_ INTB#

--_ INTC# Interrupts

---_ INTD#

_--_ SBO# _ Cache

_--_ SDONE ] Support

TDI }

---_ TDO
JTAG

_-- TCK (IEEE 1149 1)
TMS

TRST#

Figure 1: PCI Compliant Device Signals

The heart of the PCI Bus Protocol is the burst transfer mechanism. A burst transfer consists of a single address

phase followed by two or more data phases. The start address and transaction type are issued during the

address phase. The target device latches the start address into an address counter and is responsible for

incrementing the address from data phase to data phase. Figure 2 illustrates a sample read transaction.

A basic bus cycle involves the FRAME#, IRDY#, TRDY#, C/BE# control signals as well as the multiplexed

address/data AD[31:0] lines and the parity signal PAR and DEVSEL#. The bus cycle starts with an address

phase. This is the first clock after FRAME# is asserted by the master. During this cycle, the address lines

carry the desired address and the C/BE# signals the bus command. Bus commands encode the address space

and direction of transfer. There are also some special bus cycles, like interrupt acknowledge and various

memory transfer modes. After the address phase, the master goes into the data phase.

The addressed target, will then decode the address to determine if it needs to take the bus cycle. It can decode

either as a fast/medium/slow decoder, which are 1,2,3 cycles after the address phase. Once it has decoded and

accepted the bus cycle, it asserts the DEVSEL# signal to signal that it will take the bus cycle. When the master

has sent data via the AD[31:0] or when it is ready to receive data, it will assert the IRDY# signal. The target

indicates its readiness with the TRDY# signal. Only when the TRDY# and IRDY# signals are both asserted,

will a data transfer take place. Otherwise wait states are inserted. The master controls how much data is
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Figure 2: PCI Timing Diagram

transferred. When it is done transferring data, it will de-assert FRAME# on the last data phase. When the
target sees neither FRAME# or IRDY#, the master has finished.

The target uses the STOP# signal to signal the master that it has to terminate the current transaction. The PCI
Target asserts combinations of TRDY#, DEVSEL#, and STOP# to signal different termination conditions.
The PCI protocol is specified in plain English. The specification contains rules such as:

"Data is transferred when IRDY# and TRDY# are asserted."

"When either TRDY# or IRDY# is deasserted, a wait cycle is inserted and no data is transferred."

3 FormalCORE PCI/32 -- A Formally Verified PCI Interface
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Figure 3: FormalCORE PCI/32 System Architecture



FormalCORE PCI/32 is a synthesizable VHDL 32-bit, 33 MHz PCI interface targeted to programmable

hardware, formally verified to be compliant with the v2.1 PCI specification. Figure 3 is a block diagram of the

FormalCORE PCI/32 system architecture.

The design is composed of three primary modules. A PCI Interface Module, Decoder/Device Configuration

Module, and PCI Application Module. The PCI Interface Module is the primary interface to the PCI bus and

user application. It contains the Target and Master state machines, parity circuit, and implements the bus

protocol. The Decoder/Device Configuration Module contains the PCI configuration registers and address

decode circuitry. The PCI Application Module is a stub module defining a backend interface. This module is

used to integrate the user's application into the PCI core. It is not specified in v2.1 since it is dependent on the

specific device. For example, the Application Interface would vary widely between a video device and a

modem. This partitioning allows us to swap different application backends to the existing core with minor
modifications.

4 Design and Verification Tools

The software tools comprising our design and verification suite included:

DRS (Derivational Reasoning System), formal synthesis system from Derivation Systems, Inc. to develop

high-level formal behavioral specification, high-level simulation, hardware emulation, and formal

synthesis to VHDL and gate-level netlist. We use DRS to derive a structural specification from the top-

level behavioral description, synthesize VHDL code and PVS theories. The system was also used for

functional simulation of the top-level specification, and as the interface to hardware emulation of the

synthesized design.

• PVS[5] (Prototype Verification System) from SRI for validating safety and liveness properties of the top-

level behavior specification.

Verysys PropertyProver[8] and StructureProver[8]. PropertyProver is a state-of-the-art model checker that

can verify model properties at the Behavior, RTL and Gate levels. StructureProver is a high-performance,

high capacity equivalence checking tool that can be used at the RTL and Gate levels. The Verysys tool

suite was chosen for its support of the IEEE 1076 VHDL standard and hierarchical verification. In

addition, PropertyProver generates an input sequence and a VHDL testbench for counter-examples. The

built in VHDL simulator can be used to simulate the counter example.

Verysys Circuit Interface Language[3,8] to formally describe circuit properties. These properties are

described using temporal relationships between the various input and output ports of the circuit. CIL is

used to describe the PCI Compliance Model to validate the VHDL core. Properties are written in an

assumption-commitment style. Predicates in the logic are written using VHDL syntax.

• ModelSim from Model Technologies for VHDL simulation. ModelSim is chosen because it is a full

featured VHDL simulator providing accurate modeling of the language. It provides a rich set of features.

Xilinx Foundation Express[9] for VHDL synthesis, gate-level timing analysis, gate-level simulation, and

FPGA programming. Foundation Express incorporates the Synopsys Express VHDL compiler and Aldec

gate-level timing analyzer and simulator. Foundation Express provides a low-cost, comprehensive

solution for FPGA programming. The entry to the tool can be VHDL, Verilog, Schematic entry, or gate-

level netlist. Xilinx offers a variety of chips that are PCI compatible and is an industry leader in

programmable hardware.



5 Design and Verification

The primary design criteria for FormalCORE PCI/32 was to synthesize a VHDL model from DRS that would

run at 33Mhz, optimized for size, and compatible with the various VHDL level tools. The generated VHDL

had to be compatible with the Verysys model checker, Synopsys FPGA Express compiler, and Model

Technologies VHDL simulator.

From the PCI Specification document, we developed a formal PCI compliance model in CIL, Verysys circuit

interface language. These properties are described using temporal relationships between the various input and

output ports of the circuit. They are extracted from the PCI rules in the specification document.

Formal design and verification is a theme that runs throughout the lifecycle of the FormalCORE PCI/32

development. Verification tools were used continuously once the design reached a state where the tools were

applicable. DRS synthesis served as a backplane for the design flow. Changes in the design were reflected in

the DRS top-level specification and the VHDL was re-synthesized.

The need for verification in this project was two fold. First the specification had to be proven to meet the PCI

specification properties. The correctness of the specification in derivation is assumed, not proven. Secondly,

even though DRS guarantees correctness of its transformations in the original specification, the state

representation and the VHDL translation are not reasoned about. Therefore, the generated VHDL had to be

shown to satisfy the same properties as the initial DRS specification.

Once a stable DRS specification was established, PVS was employed to validate the DRS top-level

description. DRS was then used to derive a structural description from the top-level specification and generate

VHDL. Verysys model checker, Model Technologies VHDL simulator, and Synopsis VHDL compiler were

used for VHDL property verification, simulation and synthesis. The synthesized gate-level design was
simulated with the Xilinx simulator.

Several modes of validation were always running in parallel. We performed functional simulation of the top-

level and structural DRS descriptions. We simulated the design both at the VHDL and gate-level. Formal

verification at the high-level, and formal verification at the VHDL level were used to validate properties of the

design. The design flow (Figure 4), from high-level formal specification to running hardware can be

characterized as five stages of design.

Specification Development )

( Formal Synthesis )

(VH D L Validation & Synthesis)

(Netlist Validation & Mapping)

( Post-designValidation )

Figure 4: Design Flow

The design flow reflects a top-down design methodology. It provides for the formal specification and

verification at an abstract behavioral level, and a systematic process to refine the design to a concrete VHDL

implementation. The design flow incorporates formal and traditional validation techniques. The use of DRS



andformalmethodscontributestothesoundnessofthespecificationandimplementation,andVHDLprovides
anindustrystandardlanguagetointerfaceto othertools.Figure5detailsthedesignandverificationflowand
thetoolsused.Shadedboxesdenoteformaltools. Shadedovalsdenoteformalspecifications.Clearboxes
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_ Formal Tool/Specification

5.1 Specification Development

In the first stage the top-level behavior specification is developed and validated using simulation and formal

verification. Verification begins early using the DRS functional simulator. A high-level behavioral model is

written in DRS and run against test vectors. This behavior model becomes the reference model for all

subsequent verification and synthesis.

[b__busy

(i ambda
(let

(if

(add_reg cbe_reg idsel_reg . . .)

([devsel io o HI] [serf io o

[stop io o (not (and

HI] [trdy io o HI]

(or t abort term)

(or wrcmd (and rdcmd tar_dly) ) ) ) ]

• . . )

(and (or frame (not d done)) (not hit))

(b__busy ...)

(if (and (or frame irdy)
(and hit (and (or (not term) (and term ready))

(or free (and locked 1 lock io)))))

(s data . . .)

...))))]

Figure 6: Code fragment for Target Interface b_busy state



The top-level DRS specification is a collection of communicating state machines. Each state machine is

defined in terms of a set of mutually recursive function defmitions. A fragment of the b_busy state of the

Target Interface is depicted in Figure 6. Because of the reactive nature of the protocol specifications, the

specification is written at a fine level of granularity. The specification captures the complete synchronous

behavior of the PCI core circuit.

DRS descriptions were written for the master and target state machines along with their lock machines, the

configuration/decode circuit, the parity circuit, and a basic application backend. The chip-level glue-logic was

also written integrating all the modules into a single core. Figure 7 illustrates the modules and their

interconnectivity.

=" Generator
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Figure 7: DRS Specification Hierarchy

An abbreviated form of the top-level DRS description is shown below. The module instantiations are show in

bold.

(define mchip

(lambda (cbe_lo ad par idsel frame_lo irdy_lo trdy_lo stop_lo lock_lo

perr_lo serr_lo devsel_lo gnt_lo)

(stream-letrec

([tsbuf lambda (o oe) (if oe o #\z))]

[parity lambda ( (dO . . . d31) (cO cl c2 c3) ) (b-xor . . .) ]

• . . )

(letrec (..) ;; -- Component descriptions

(system-letrec

([(add_reg cbe_reg idsel_reg . . .) (target_xface ad cbe_lo par )]

[(conf_data hit d_done cfcmd . . .) (target_conf add_reg ad . . ]

[(ad_o cbe lo o tstatus t_abort . . .) (backend mxfer add_reg ]

[(lock io oe own lock . . .) (master xface par idsel frame io ]

[(tfree tlocked) (target_lock frame_lo lock_lo l_lock_lo hit )]

[(lock free) (master lock frame io lock io own lock)]

[par_c (parity (if par_dir ad_out ad)

(if par_dir cbe io out cbe_lo))]

[ad out (tsbuf32 (if (b-or ior cmdwr) ado conf data)

(b-or ad oe mad oe))]

[frame io out (tsbuf frame io o frame io oe)]

[irdy lo out (tsbuf irdy lo o irdy lo oe)]

• . . )

(list ad_out cbe lo out par_out frame lo out trdy lo out irdy lo out

stop lo out perr lo out serr lo out devsel lo out req_lo

lock io out ...))))))



The DRS behavior model is automatically translated into a PVS theory to perform formal verification. The

primary goal is to verify that the specification satisfies a set of high-level safety and liveness properties.

Inconsistencies in the top-level specification found by PVS are then manually corrected in the DRS

specification.

The DRS->PVS translator generates a PVS function corresponding to the state to state transition of the DRS

model. PVS was used to analyze the functional properties of the specification. For example, we show that the

trdy 2o o signal is asserted only when t abort is false and ready is true with the PVS theorem:

trdy on write: THEOREM

(FORALL (t abort: bit, tar_dly: bit, ready: bit) :

compute_trdy lo(write, t abort, tar_dly, ready)

IFF NOT(t abort) AND ready) .

= true io

The From_idle_goto_busy theorem states that from IDLE, only when frame lo i is asserted, the

Target sequencer goes to the BUS BUSY state.

From_idle_goto_busy: THEOREM

(FORALL ((frame lo i: bit), (irdy lo i: bit , (trdy lo i:

(stop io i: bit), (pert io i: bit) (serf io i:

(devsel lo i: bit), (ready: bit), t abort: bit)

(term: bit), (state: state type),

(cbe_reg: [bit, bit, bit, bit]

(par dat: bit), (par_en: bit),

(pert dat: bit), (r_perr: bit)
idTe(frame io i, irdy io i,

perr lo i, serr lo i,

t abort, term, state,

par en,
= bus busy

IFF (frame lo i = true lo))

bit) ,

bit),

, (tar_dly: bit) ,

(par i: bit) ,

(rperr_reg: bit) :

trdy lo i, stop lo i,

devsel lo i, ready,

cbe_reg, tar_dly, par_dat,

par_i, perr_dat, r_perr, rperr_reg)

Many of the functional properties verified in PVS were also verified in the Verysys model checker. Both PVS

and Verysys were useful in finding errors in the design. Early in the design process, we used sample equations

from the PCI specification as a guide to developing the DRS specification. PVS uncovered overlaps in some

of the equations. A set of conditions would satisfy two different equations.

5.2 Formal Synthesis using DRS

In the second stage, formal synthesis is used to manipulate the design hierarchy and derive a VHDL

description from the top-level behavior specification. This process requires manual guidance from the

designer. DRS provides automated support for transforming the specification to a concrete implementation,

however, design decisions are made by the designer. DRS maintains correctness and does not allow the

introduction of errors. The key benefit is that it provides the designer with direct control over the synthesis

process.

DRS can manipulate a large class of designs including datapath and/or control oriented circuits. The PCI

specification is a control-dominated circuit geared for bus protocol. DRS allowed us to manipulate the PCI

design hierarchy providing a means of managing the complexity of the verification and defining the

synthesized VHDL modules. We found that manipulating the design hierarchy of the VHDL would impact

how the VHDL compiler would synthesize the design. Hierarchy played an important role in the speed of the

synthesized circuit. The synthesizer did better when the design was in logically organized major blocks than a

totally flat description or when there were many small modules instantiated in the larger ones.



The derivation was limited to obtaining a structural specification and generating the support modules from

DRS libraries. We added four valued logic libraries to DRS. This enabled DRS to generate tristated

input/ontpnt signals which are essential in a bus implementation.

The following table summaries the number of derivation steps, the specification and implementation size for

each of the modules, along with the top-level mchip module.

Add4 Dec4 Backend Txface Mxface Tconf Tlock Lock mchip_

DervSteps 14 14 15 128 77 30 19 9 55
Spec Size 899 899 4440 12800 13906 5507 732 347 6209

Imp. Size 3194 3434 14286 12554 7471 10632 563 416 55790
VHDL Size 2669 2849 11909 11832 8425 8792 1002 858 48973

VHDL Comp 2669 2849 5493 9163 8425 8792 1002 858 9722

DRS and VHDL sizes include all the modules that make up the component. The component VHDL size lists

only the size of that component. All sizes in bytes.

5.3 VHDL Generation, Validation and Synthesis

5.3.1 VHDL Generation

Once the design is refined to a concrete architecture in DRS, VHDL files are automatically generated and the

VHDL Validation and Synthesis process begins. Model Technologies ModelSIM is used to simulate the
VHDL. To streamline our simulation environment, we created interfaces from the DRS simulator to the

VHDL and netlist simulator. This provided us the ability to localize our test vector generation within the DRS

framework, and then automatically generate test vectors to validate the netlist generated by the VHDL

compiler, and VHDL simulator.

The tools we used understood only a restricted subset of the VHDL language. We had to tune the VHDL

generation toward the common syntax used among these tools. For example, the Verysys VHDL type checker

could not resolve predicates of the form: ad ( 1 : 0 ) = "0 0". The DRS VHDL generation had to produce

expressions ofthe form: ad (1) = '0' and ad(0) = '0'

The VHDL compiler infers registers in a design depending on the way the code is written. Rather than an

implicit mechanism to infer registers, we controlled the introduction of registers in the design by an explicit

register entity, that served as a state holding abstraction and directly corresponded to DRS registers. The

combinational logic is expressed as simple equations of assignments and entity instantiation. The resulting

VHDL follows the intended implementation architecture closely.

To improve performance we experimented with several hierarchical design layouts. When flattening

hierarchies the circuits were logically equivalent. However the circuit speed varied widely.

In generating VHDL, DRS constructs had to be mapped carefully over to VHDL constructs to ensure the

semantics of the DRS expression is maintained. One problem we ran into was generating VHDL code for

nested DRS if-then-else expressions. These expressions cannot be converted to selected signal assignments

(WITH statement) unless the else branch guard is ANDed with the negated test expression. However,

conditional signal assignment behaves just like a nested DRS if-then-else expression and is used instead of the

WITH statement. In fact, the Verysys model checker uncovered this bug in the DRS VHDL generation.



5.3.2VHDLValidation

TheVerysysmodelcheckerisusedto validatetheVHDLagainstthePCIcompliancemodelwrittenin CIL.
Theunderlyingmodelcheckingtechnologyusedby theVerysystoolsis theSiemensCircuitVerification
Environment(CVE)[3]. ThesystemisaBDDbasedsymbolicmodelchecker.It supportsEDIFandVHDL,
andgeneratesVHDLtestbenchesforcounterexamples.

Circuitpropertiesarewrittenin CIL (CircuitIntervalLanguage).CIL formulaearebuilt up fromtimed
predicatesthatconsistof astatepredicateandatemporalspecification.Thetemporalspecificationdescribes
whenthemachineshouldbein a statethatsatisfiesthestatepredicate.Thestatepredicateis givenin the
subsetof BooleanexpressionsinVHDL.Thetemporalspecificationsrefereitherto aparticularpointoftime,
orto awholeperiod.A pointoftimeis specifiedafterthekeywordat. A periodisspecifiedbyaninterval,
whichisauniformrepresentationofthreedifferenttypes:[t 1, t 2], referstothetimebetweent 1 andt 2
inclusively,[t 1, infinite] , refersto t andeverypointaftert, [t, p], refersto thetimebetweent
andthelastpointof timebeforethestatepredicatelvissatisfiedforthenexttime.

Anintervalisprecededbyduring or within to specify whether the state predicate holds during the whole

period or at least once in the interval. Times are either integer constants or defined relative to a variable t

which is universally or existentially quantified by alway s and f in ally.

As an example, we express the property that the "Target Sequencer will never deadlock" as:

theorem target_deadlock;
assume: (set = '0' during [0, infinite]);
prove: always(possibly state = idle within

end theorem;
[t, infinite]);

The assumption eliminates the reset state, and the proof guarantees that no matter what state the Target

Sequencer is in, there exists a path to the idle state.

We prove that the Target Sequencer that implements the sustained tristate signals correctly with the following
theorem:

theorem target_sustained_tristate_trdy;
assume: (set = '0' during [0, infinite]) ;

prove: always((trdy lo oe = 'i' at t-l) and
(trdy lo oe = '0' at t)

implies (trdy lo o = 'i' at
end theorem;

t-l)) ;

In order for a signal to adhere to the sustained tristate property, it must drive the signal high one clock cycle

before tristating the signal.

Most of the effort at this stage was spent developing the PCI compliance model. Itwas critical to be able to

ask the "right" question. This was difficult since we had no prior understanding of the PCI protocol. Once the

protocol was understood, writing the CIL properties from the PCI specification was fairly straight forward and

the actual running of the model checker was automatic. Counter examples generated by the model checker
were validated with the ModelSIM simulator at the VHDL level as well as in the DRS simulator. This

capability allowed us to pinpoint if the problem was in the top-level DRS specification, VHDL generation, or
VHDL code.

The design environment of this project consisted of two dynamic aspects: on the one hand the engineering

process and on the other the formal process. From initial specification to working hardware the model checker

did not find any errors that our hardware engineer did not find using traditional techniques. The model



checkingwaslaggingbehindin thisprocess.Errorsuncoveredbytheengineeringprocessledtorevisionsin
theDRSspecification.

Afterworkinghardwarewasachievedthemodelcheckerstartedfindingerrorsin thedesignthatthesimulator
did notuncover.Thiswasdueto threefacts. First,thesimulationtestswerenotexhaustive.Second,
hardwareandspecificationreacheda levelof maturitywherethecoreappearedto workfor mostcases.
Thirdly,wedevelopedabetterunderstandingofthePCIprotocol.

ThecompliancemodelprovidesacomprehensiveformalvalidationofPCIcomplianceandbecomesextremely
valuableinprovidingexhaustiveanalysisof theVHDLmodel.InconsistenciesfoundinthePCIspecification
weredocumented,anddesigndecisionsweremadetoresolvethem.

5.3.3VHDLSynthesis

TheVHDLfilesareinputtoSynopsysFPGAExpresscompilerfornetlistsynthesis.Theissuein thisprocess
isthatminorchangestotheVHDLwouldresultin significantperformancechangesin thesynthesizednetlist.

5.4 Netlist Validation and Mapping

The next stage involves simulating the netlist, and using the model checker to validate that the VHDL

synthesis has not introduced any errors. Timing analysis is also done at this time. The netlist is then mapped

to the appropriate target technology for hardware programming. At this stage, the logic netlist is validated

using the Aldec netlist simulator. Test vectors written for the DRS architectural simulation are used at the
VHDL and netlist level.

The logic netlist is formally verified using Verysys StructureProver. This ensures that the synthesized netlist

behaves identical to the VHDL model in order to eliminate the possibility that logic bugs that would be

introduced during VHDL synthesis. The equivalence checker compares the finite state machine models of the

VHDL source and EDIF files of the synthesized netlist. There were no errors in the VHDL synthesis.

The Xilinx mapper then synthesized the appropriate configuration files for the target device.

5.5 Post-design Validation

Traditional hardware techniques were used for post-design validation.

The DRS Functional Test Environment (FTE) was used for hardware emulation of the synthesized PCI core.

The FTE consists of the DRS simulation environment communicating with a Ampro EBX form factor Pentium

based single board computer (SBC) and the PF2000 PC/104 FPGA module. The synthesized core is

downloaded on to the PF2000 FPGA module. Then the DRS simulator drives the inputs of the circuit, single

steps the clock, and samples the outputs, displaying them in the DRS simulator. In contrast to the functional

simulation of the model in DRS, the FFE was used to compare the functional behavior of the model to that of

a design that has been processed by implementation specific back end tools.

The core has been targeted to Xilinx XC4000 and Virtex family of FPGA devices. A working prototype is

running in two different environments. The first system is a standard PCI/ISAbus AT motherboard with a

AMD-K5 processor clocked at 133MHz. It includes an NE2000 compatible ISAbus based Ethernet card and a

PCI VGA card.. The second system is an AMPRO PC/104+ system consisting of a Ampro EBX form factor

Pentium based single board computer (SBC). Both systems are configured with 32Mb of memory and runs

Linux RedHat 6.0, which is based on a 2.2.5 Linux kernel.



6 Conclusions

The methodology developed to build the FormalCORE PCI/32 is an example of how formal tools and

traditional simulation and synthesis tools are integrated for the design and validation of VHDL IP cores. These

cores can then be integrated into larger designs providing the building blocks for complex designs.

The FormalCORE PCI/32 and associated PCI compliance model consists of pre-designed, pre-verified VHDL

components that can be integrated into larger designs and a validation suite providing exhaustive analysis of

the VHDL models using a commercial model checker. The core has been designed to be flexible and can be

adapted to a variety of designs with little or no modification to the VHDL or compliance model.

One observation is in the early stages of this project, traditional techniques led the design process. The

ModelSIM VHDL simulator, Aldec netlist simulator, and hardware Logic Analyzer were used to debug the

design. The model checker did not find any errors that either simulation or hardware debugging did not catch.

The traditional techniques were satisfactory in achieving a working prototype. In the later stages of the

project, the formal techniques led the design process. The model checker was able to find errors in the design

that were not tested for in simulation. Using the DRS system, we were able to routinely make changes to the

top-level specification, manipulate the design hierarchy, and re-synthesize the VHDL core. We could then re-

validate the core against the compliance model automatically.

Both PVS and the Verysys model checker were useful in developing the PCI core. PVS was used to verify

functional properties of the DRS top-level specification. Verysys was used to verify functional and temporal

properties of the DRS generated VHDL. The Verysys verification effort was more extensive since the end

goal was to develop a verified VHDL PCI core and compliance model.

This work has significantly enhanced our capability to design and validate VHDL cores. The enhancements

added to the DRS system are general and can be used to synthesize a wide array of designs.

The future work on this topic is to extend the PCI core and Compliance model to the 64-bit PCI standard,

retarget the core to operate at 66Mhz, and update the design to Revision 2.2 of

the PCI specification. In addition, we would like to perform an independent validation of the compliance

properties.
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Abstract 1 Introduction

Formal capture and analysis of the required behav-

ior of control systems have many a&,antages. For in-

stance, it encourages rigorous requirements analysis,

the required behavior is unambiguously d@ned, and

we can assure that various safety properties are satis-

fied. Formal modeling is, however, a costly and time

consuming process and if one could reuse the formal

models over a family of products, significant cost sav-

ings would be realized.

In an ongoing project we are investigating how to

structure state-based models to achieve a high level

of reusability within product families. In this paper

we discuss a high-level structure of requirements mod-

els that achieves reusability of the desired control be-

havior across varying hardware pla(orms in a prod-

uct family. The structuring approach is demonstrated

through a case study in the mobile robotics domain

where the desired robot behavior is reused on two di-

verse pla(orms_ne commercial mobile pla(orm and

one build in-house. We use our language RSML-e to

capture the control behavior for reuse and our tool

NIMBUS to demonstrate how the formal specification

can be validated and used as a prototype on the two

platforms.

Keywords: Requirements, Formal Models, Re-

quirements Reuse, Control Systems, RSML -e
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Reuse of software engineering artifacts across

projects has the potential to provide large cost savings.

Traditionally, the research in the reuse community has

focused on how to construct reusable software com-

ponents, and how to classify and organize these com-

ponents into libraries where they can be retrieved for

use in a particular application. We know, however, that

coding errors are not the main source of problems and

delays in a software project; incomplete, inconsistent,

incorrect, and poorly validated requirements are the

primary culprit [4]. Thus, we hypothesize that reuse

of requirements in conjunction with reuse of design

and code will provide greater benefits in terms of both

cost and quality. In tiffs paper we present an approach

to structuring formal requirements models for control

systems that make the control requirements reusable

across platforms where the hardware (sensors and ac-

tuators) may vary. We also illustrate the structuring

approach with an example from the mobile robotics

domain.

The beginnings of our approach is a high-level re-

quirements structuring technique based on the rela-

tionslffp between system requirements and the soft-

ware specification. We developed tiffs structuring

technique to enable a software development approach

we call specification-based prototyping [23] where

the formal requirements model is used as a prototype

(possibly controlling the actual hardware--hardware-

in-the-loop-simulation) during the early stages of a

project. Here we present how tiffs structuring ap-

proach also enables reuse of the lffgh-level require-

ments across members of a product family with vari-

abilities in the hardware components. The approach is



demonstrated via a case study in the mobile robotics
domain where the desired robot behavior is reused on

two diverse platforms---one commercial mobile robot

and one built in-house. We use our language RSML-e

to capture the desired control behavior for reuse and

our tool NIMBUS to demonstrate how the formal spec-

ification can be validated and used as a prototype on

both platforms.

The rest of the paper is organized as follows. Sec-

tion 2 describes related work on requirements reuse

and product families. Then, Section 3 describes our

approach to structuring the high-level system require-

ment and the software specification. Section 4 de-

scribes the mobile robotics platforms that we are using

as the case study in the paper and presents a simple

analysis of their commonalities and variabilities. The

requirements of the mobile platforms in the family are

presented in Section 5. The refinement of these system

requirements to a software specification is presented in

Section 6. In this section we also show how the sys-

tem requirements are reused across the members of the

product family. Finally, Section 7 presents a summary
and conclusion.

2 Related Work

The fotmdations for reuse of can be traced back to

the early work on program structure and modularity

pioneered by David Parnas and others [3, 20, 21, 22].

This work establishes the basis for reuse: the concept
of a self contained module with well-defined inter-

faces. Nevertheless, the guidelines for how to encap-

sulate and structure a model (in this case implemen-

tations) for reuse is not sufficiently addressed in this

early work. Thus, subsequent research in the field of

software reuse seeks to further define and provide ad-

ditional tools and techniques for reuse.

In the area of requirements reuse, Lam et al. pro-

vides some guidance on specific teclmiques which can

be used by organizations to introduce requirements

reuse into their software process [15]. In addition,

Lam addressed requirements reuse in the context of

component-based software engineering [ 14]. Our area

of interest is more in structuring of specifications to

achieve reuse; nevertheless, this work presents some

ideas about how to package and specify generic re-

quirements and how to factor requirements into plug-

gable requirements parts [15]. Of particular interest is

the relationship of their work to the product families

work being done at Lucent Technologies [2, 24].

Product family engineering is related to the work

presented in this paper; in particular, the FAST (Fam-

ily Oriented Abstraction, Specification and Transla-

tion) approach is of interest. FAST provides a pro-

cess for how to identify commonalities and variabili-
ties across a product family. This commonality analy-

sis can then be used to provide domain specific devel-

opment tools that will greatly reduce the development

costs for later generations of the product family. FAST

does not explicitly address the structuring of product

requirements. The FAST concepts of the domain anal-

ysis and the commonality analysis can, however, be di-

rectly applied to our work with formal specifications;

FAST provided some of the inspiration for the work

presented here.
Little work has been done on how to structure and

develop a formal specification in a language such as

RSML -e. One notable exception is the CoRE method-

ology [5, 6, 7] developed by the Software Productivity
Consortium. CoRE includes much useful information

on how to perform requirements modeling in a semi-

formal specification language (similar to the formal

SCR defined at the Naval Research Laboratory [12]).

Even so, the structuring mechanism proposed in the

CoRE guidebook is based on the physical structure of

the system as well as which pieces of the system that
are likely to change together--these two (often con-

flicting) structuring mechanisms may or may not be

beneficial to reuse. Furthermore, the way in which

the structuring techniques achieve reuse is not spec-

ified in the guidebook--reuse is not specifically ad-

dressed. Our work is based on many ideas similar to

those fotmd in CORE, but we have extended and re-

fined these ideas to address structuring of state-based

requirements models to achieve (1) conceptual clar-

ity, (2) robustness in the face of the inevitable require-

ments changes to which every project is subjected, (3)

robustness of the requirements as hardware evolves,

and (4) reuse of models as well as V&V results.

3 Structuring

In our work we are primary interested in safety crit-

ical applications; that is, applications where malfunc-

tion of the software may lead to death, injury, or en-

vironmental damage. Most, if not all, such systems

are some form of a process control system where the

software is participating in the control of a physical

system.

3.1 Control Systems

A general view of a software controlled system can

be seen in the center of Figure 1. This model con-

sists of a process, sensors, actuators, and a software

controller. The process is the physical process we are
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Figure 1. A traditional process control

model (center) and how it is captured
with the four variable model

attempting to control. The sensors measure physical
quantities in the process. These measurements are pro-

vided as input to the software controller. The con-
troller makes decisions on what actions are needed

and commands the actuators to manipulate the pro-

cess. The goal of the software control is to maintain

some properties in the physical process. Thus, un-

derstanding how the sensors, actuators, and process

behave is essential for the development and evalua-

tion of correct software. The importance of tlfis sys-

tems view has been repeatedly pointed out in the liter-

ature [19, 17, 12].

To reason about tlfis type of software controlled

systems, David Paruas and Jan Madey defined what

they call the four-variable model (outside square of

Figure 1) [19]. In tlfis model, the monitored vari-

ables (MON) are physical quantities we measure in

the system and controlled variables (CON) are phys-

ical quantities we will control. The requirements on

the control system are expressed as a mapping (REQ)

from monitored to controlled variables. For instance,

a requirement may be that "in case of a collision, the

robot must back up and turn 90 degrees left." Natu-

rally, to implement the control software we must have

sensors providing the software with measured values

of the monitored variables (INPUT), for example, an
indication if the robot has collided with an obstacle.

The sensors transform MON to INPUT through the IN
relation; thus, the IN relation defines the sensor func-

tions. To adjust the controlled variables, the software

generates output that activates various actuators that

can manipulate the physical process, for instance, a

means to vary the speed of the robot. The actuator

function OUT maps OUTPUT to CON. The behavior

of the software controller is defined by the SOFT rela-
tion that maps INPUT to OUTPUT.

The requirements on the control system are ex-

pressed with the REQ relation; the system require-

ments shall always be expressed in terms of quanti-

ties in the physical world. To develop the control soft-
ware, however, we are interested in the SOFT relation.

Thus, we must somehow refine the system require-

ments (the REQ relation) into the software specifica-
tion (the SOFT relation).

3.2 Structuring SOFT

The IN and OUT relations are determined by the

sensors and actuators used in the system. For example,
to determine if the robot has collided with an obstacle

we may use a bumper with micro-switches connected

to a digital input card. Similarly, to control the speed

of a robot we may use a digital to analog converter

and DC motors. Armed with the REQ relation, the 1N
relation, and the OUT relation we can derive the S OFT

relation. The question is, how shall we do this and how

shall we structure the description of the SOFT relation
in a language such as RSML-e?

As mentioned above, the system requirements

should always be expressed in terms of the physical

process. These requirements will most likely change

over the lifetime of the controller (or family of simi-

lar controllers). The sensors and actuators are likely to

change independently of the requirements as the con-

troller is reused in different members of a family or
new hardware becomes available; thus, all three rela-

tions, REQ, IN, and OUT, are likely to change over

time. If either one of the REQ, IN, or OUT rela-

tions change, the SOFT relation must be modified.

To provide a smooth transition from system require-

ments (REQ) to software specification (SOFT) and to

isolate the impact of requirements, sensor, and actu-

ator changes to a minimum, the structure of the soft-

ware specification SOFT should be based heavily on
the structure of the REQ relation [18, 23].

We achieve this by splitting the SOFT relation into

three pieces, IN -1, OUT -1, and SOFTnEQ (Figure 2).

IN -1 takes the measured input and reconstructs an es-

timate of the physical quantities in MON. The OUT -1

relation maps the internal representation of the con-

trolled variables to the output needed for the actuators

to manipulate the actual controlled variables. Given

the IN -1 and OUT -1 relations, the SOFTREQ rela-

tion will now be essentially isomorphic to the system

requirements (the REQ relation) and, thus, be robust if

it is reused on a new platform (manifested as changes
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Figure 2. The SOFT relation can be split

into three composed relations.

in the IN and OUT relations). Such changes would

only effect the IN -1 and OUT -1 portions of the soft-

ware specification. Thus, the structuring approach out-

lined in this section will makes the SOFTnEQ portion
of the software specification reusable over members of

a product family exhibiting the same high-level behav-
ior.

4 Mobile Robotics Platforms

When evaluating our work, we wanted to find a do-

main were a variety of similar platforms could be con-

structed on a university budget in a timely and cost
effective manner. Furthermore, we wanted this do-

main to be realistic--with the inclusion of noisy sen-

sors and actuators and the possibility of complex sen-
sor fusion and error detection. The mobile robotics

domain seemed ideally suited for these needs.

The mobile robotics platforms that we are using in

our research range in size from about the size of the

Mars Pathfinder to a small lego-bot. The robots have

a limited speed, and can operate either autonomously

(via a radio modem or radio Ethernet) or via a tether

cable going to a personal computer. The robotics plat-
forms come from various vendors and have a wide va-

riety of sensors and actuators available.

The platforms that are discussed in this paper are

shown in Figure 31. One platform, the Pioneer [1],

is built and sold by ActivMedia, Inc. The Pioneer in-

cludes an array of sonar sensors in the front and sides

that allow it to detect obstacles. To detect collisions,

the Pioneer monitors its wheels and signals a collision
when the wheels stall. The Pioneer includes an exten-

sive control library called Saplfira. The Pioneer is con-

trolled by a radio modem that plugs in to the personal

computer's serial port. Saphira manages the commu-

nication over the radio modem. Saphira is capable of

implementing complex rule-based control functions;

however, in our work we are using only the simplest

1Photograph by Thnothy F. Yoon

Figure 3. A picture of the robotic plat-

forms used in this paper

of Saphira functions that allow us nearly direct access

to the sensors and actuators. Nevertheless, the level of

abstraction presented by the Saphira library is signif-

icantly higher than on the other platform in this case

study: the lego-bot.

The lego-bot is a smaller platform built from Lego

building blocks and small motors and sensors. The

lego-bot uses a tank-like track locomotion system and

has infrared sensors for range detection. The lego-bot

is controlled via a tether to the robot from the per-

sonal computer. This tether is connected to a data-

acquisition card and the software specification for the

lego-bot behavior must directly manage the low-level
voltages and signal necessary to control the robot;

there is very little support for the actuators and sen-
sors.

Despite the significant difference between the plat-

forms, we wanted them to exhibit nearly identical vis-

ible behaviors; the only difference would be in the

hardware determined speed of the robot's movements.

Therefore, the visible behavior (the REQ relation) for

each robot is the same. Note that we are not addressing

non-behavioral requirements such as power consump-

tion and wear and tear of hardware components in our

discussions of reuse. We have focused solely on the

behavior captured in the requirements.

5 The REQ relation

The first step in a requirements modeling project is

to define the system boundaries and identify the mon-
itored and controlled variables in the environment. In

this paper we will not go into the details of how to



scopethesystemrequirementsandidentifythemon-
itoredandcontrolledvariables--guidelinesto help
identifymonitoredandcontrolledvariableshavebeen
discussedinnumerousotherplaces[6,13,18].Hereit
sufficestosaythatthemonitoredandcontrolledvari-
ablesexistin thephysicalsystemandactasthein-
terfacebetweentheproposedcontroller(softwareand
hardware)andthesystemtobecontrolled.

Forthemobilerobots,thegoalwastoconstructa
simplereactivecontrolbehaviorthatwouldcausethe
robottoexploreitsenvironment.Toaccomplishthis
objective,therobotmustbeabletoperformseveral
tasks:

• If therobotdetectsanobstacle,it shallattemptto
avoidit.

• If therobotcollideswithanobstacle,it shallat-
tempttorecoverfromthecollisionandcontinue
exploration.

• Intheabsenceofacollisionorobstacle,therobot
shallproceedtomoveforwardatfull speed.

Inthiscasestudy,wewantedallrobotsoftheprod-
uctfamilytoexhibitthesameexploratorybehavior.To
capturethisbehaviorwemustdiscovermonitoredand
controlledvariablesintheenvironmentthatwillallow
ustobuildtheformalmodel.Inaddition,whileeval-
uatingcandidatesformonitoredandcontrolledvari-
ableswemustkeepinmindthattheREQmodelshall
applytoallmembersoftheproductfamily.

Weidentifiedarobot'sspeed and heading as con-

trolled variables. Speed ranges from 0 to 100 and can

be mapped into a speed for each family member using
the maximum speed of the particular robot. Heading

ranges from -180 to 180 and indicates the number of

degrees that the robot may have to turn to avoid an ob-
stacle.

We identified CollisionDetected, Range, and Ob-
stacleOrientation as monitored variables. The Colli-

sionDetected variable is simply a Boolean value which
is true when there is a collision and false otherwise.

The Range variable is the distance from the robot to
the nearest obstacle and the ObstacleOrientation de-

notes whether the obstacle is straight ahead, or on the

right or left of the robot. These variables clearly reside

in the system domain and are sufficient to model the
desired behavior. If the monitored and controlled vari-

ables are chosen appropriately, the specification of the

REQ relation will be focused on the issues which are

central to the requirements on the system.

Since our work is based around a modeling lan-
guage called RSML -e (Requirements State Machine

Language without events), a state-based language suit-

able for modeling of reactive control systems, we pro-

vide a short introduction to the notation before we con-

tinue with a discussion of the REQ relation for the mo-
bile robots.

5.1 Introduction to RSML -¢

RSML -¢ is based on the language Requirements

State Machine Language (RSML) developed by the

Irvine Safety Research group under the leadership of

Nancy Leveson [17]. RSML -e is a refinement of
RSML and is based on hierarchical finite state ma-

chines and dataflow languages. Visually, it is some-

what similar to David Harel's Statecharts [10, 8, 9].

For example, RSML -e supports parallelism, hierar-

chies, and guarded transitions. The main differences
between RSML -e and RSML are the addition in

RSML -e of rigorous specifications of the interfaces
between the environment and the control software,
and the removal of internal broadcast events. The re-

moval of events was prompted by Nancy Leveson's

experiences with RSML and a new language called

SpecTRM-RL that she has evolved from RSML. These

experiences have been chronicled in [16].

An RSML -¢ specification consists of a collection

of state variables, I/0 variables, interfaces, flmctions,

macros, and constants, which will be briefly discussed
below.

In RSML -e, the state of the model is the values

of a set of state variables, similar to mode classes in

SCR [12]. These state variables can be organized in
parallel or hierarchically to describe the current state

of the system. Parallel state variables are used to rep-

resent the inherently parallel or concurrent concepts in

the system being modeled. Hierarchical relationships

allow child state variables to present an elaboration of

a particular parent state value. Hierarchical state vari-

ables allow a specification designer to work at multiple

levels of abstraction, and make models simpler to un-
derstand.

For example, consider the behavioral requirements
for our mobile robots outlined in the introduction to

this section. The state variable hierarchy used to model
the requirements on this system can be represented as

in Figure 4. This representation includes both parallel

and hierarchical relationships of state variables: Fail-

14re and Normal are two parallel state variables and
RobotJ_ecoverAction is a child of Normal.

Next state fimctions in RSML -e determine the

value of state variables. These functions can be orga-

nized as transitions or conditional assignments. Con-

ditional assignments describe under which conditions

a state variable ass14mes each of its possible values.
Transitions describe the condition under which a state



Figure 4. The REQ relation state hierarchy

variable is to change value. A transition consists

of a source value, a destination value, and a guard-

ing condition. The two state function types are log-

ically equivalent; mechanized procedures exist to en-

sure that both types of functions are complete and con-
sistent [11].

The next state functions are placed into a partial

order based on data dependencies and the hierarchi-
cal structure of the state machine. State variables are

data-dependent on any other state variables, macros,

or I/O variables that are named in their transitions or
condition tables. If a variable is a child variable of

another state variable, then it is also dependent on its

parent variable. The value of the state variable can be

computed after the items on which it is data-dependent

have been computed. For example, the value of the

Robot_void_ction state variable would be computed
after the Obstacle3)istance state variable because the

action to take is dependent upon the range of the ob-
stacle.

Conditions are simply predicate logic statement

over the various states and variables in the specifica-

tion. The conditions are expressed in disjunctive nor-

mal form using a notation called AND/OR tables [17]

The far-left column of the AND/OR table lists the logi-

cal phrases. Each oftfie other columns is a conjunction

of those phrases and contains the logical values of the

expressions. If one of the columns is true, then the ta-
ble evaluates to true. A column evaluates to true if all

of its elements match the truth values of the associated

columns. An asterisk denotes "don't care." Examples
of AND/OR tables can be found later in this section and
in the next section.

I/O Variables in the specification allow the analyst
to record the monitored variables (MON) or values

reported by various external sensors (INPUT) (in the

case of input variables) and provide a place to cap-
ture the controlled variables (CON) or the values of

the outputs (OUTPUT) of the system prior to sending

them out in a message (in the case of output variables).

To further increase the readability of the specifi-

cation, RSML -e contains many other syntactic con-

ventions. For example, RSML -e allows expressions

used in the predicates to be defined as functions and

familiar and frequently used conditions to be defined

as macros. Finally, RSML -e requires rigorous speci-

fication of interfaces between the environment and the
model.

5.2 REQ Relation Overview

Due to space constraints, the entire model of the

REQ relation cannot be given in this paper and we will

focus on an illustrative subset. Figure 4 shows that the

REQ relation definition at the top level is split between
two state variables: Failure and Normal. The Failure

state variable encapsulates the failure conditions of the
REQ relation, whereas the Normal state variable de-



scribesthehowtherobottransitionsbetweenthevari-
oushigh-levelbehaviorsdiscussedattheintroduction
tothissection(obstacleavoidance,collisionrecovery,
etc.).ForthereminderofourdiscussionofREQ,we
will focusontheNormal state variable where this as-

pect of the requirements is captured (Figure 5).

The Normal variable defaults to the startup value.

This allows the specification to perform various ini-
tialization tasks and checks before the main behav-

ior takes over. The first transition in Figure 5 states

that after two seconds, the specification will enter the
Cruise Forward state.

The next two transitions govern the way that

the Normal state variable can change from the

CruiseForward value. If a collision is detected, then

the state variable changes to the CollisionJ_ecover

state. If an obstacle is detected, then the specifica-

tion will enter the Avoid_Obstacle state. Otherwise,
the value of the Normal state variable will remain un-

changed.

If a collision or obstacle is detected, the machine

needs to begin the Cruise_orward behavior when the

avoidance/recovery action has been completed. We ac-

complished this in the mobile robotics specification by

providing a "done" state in each of the sub-behaviors.

This is illustrated by the fifth and sixth transitions in

Figure 5.

Finally, it is also possible to transition from

Avoid_Obstacle directly to CollisionJ_ecover if, for

example, the robot hits an tmdetected obstacle; this

case is covered by the final transition in Figure 5.

Given this definition of the REQ relation high-
level behaviors, the definitions of the sub-behaviors

can be constructed in a similar and straightforward

manner. For example, if the robot hits an obsta-

cle, it will attempt to back up, turn, and then pro-

ceed forward again. This behavior is specified in
the RobotJ_ecover_ction state variable by having the

variable cycle though the values Backward, Turn, and

finally Done.

6 The SOFT relation

Normal

Location: Reacdve Connol

Transition: St almp---_ Cluis e Fol_val d

Condition:

Transition: Cruise Folwald--_Collision Recovel

Condition:

CollisionDetectedMacl o 0 = TRUE T
..Failule IN STATE Ok T

Transition: Cruise Folw01d ---_Avoid Obstacle

Condition:

ObstacleDetectedMacm 0 = TRUE T

CollisionD et ect edMac m 0 = FALSE T

..Failule IN STATE Ok T

Transition: Collision Recovel---IbClllise Fol_vald

Condition:

Plev Step(..Robot Recovm ActioniN STATE Done) T

..Failule IN STATE Ok

Transition: Avoid Obstacle _ Clllise FOl_vald

Condition:

Plev Step(..Robot Avoid Action IN STATE Done) T

..Failule IN STATE Ok

Transition: Avoid Obstacle --_ Collision Recovel

Condition:

Collis ionD etect edMacm 0 = TRUE T

..Failule IN STATE Ok

When refining the specification from REQ to
SOFT, we select the sensors and actuators that will

supply the software with information about the envi-
ronment, that is, we must select the hardware and de-

fine the IN and OUT relations for each platform. Con-
sequently, we will also need to define the IN -1 and

OUT-1 for each platform. We do not have the space

to discuss the IN, OUT, IN -1, and OUT -1 for every

monitored and controlled variable. Instead, we will
focus our discussion on two areas where the Pioneer

Figure 5. The definition of the Normal
state variable



and the lego-bot presented illustrative and challenging
differences.

6.1 Obstacle Detection--

Sonar versus Infrared

As members of the mobile robot product family that

we specified in Section 5, both the Pioneer and the

lego-bot have the ability to sense the distance to ob-

jects in their surroundings. Distance sensors typically

function by emitting some sort of signal (for example,

a sound in the case of sonar) and then measuring the

amount of time between the emission of the signal and

its being received back at the sensor. Given how fast
the signal can travel, the distance to the closest object

can be determined. Although the distance sensors may

be somewhat similar in their operation, different sen-

sors provide very different accuracies and ranges. For

example, a laser range finder is far more accurate and
has much less noise than the sonar sensors.

The Pioneer uses sonar sensors and the Saphira
software package to accomplish obstacle detection

whereas the lego-bot uses a set of simple infrared

range finders. This significant difference in the type
of sensors as well as differences in the number and

placement of the sensors leads to two quite different IN
relations. The differences of the IN relations necessi-

tate different IN -1 in the computation of the estimated

value of the Range monitored quantity.

PTransformRange

Type: 1NTEGER

Parameters:

iInRange IS INTEGER

:=iInRange/7/F

Figure 7. IN -1 Range for the Pioneer

The difference between the SOFT relations for the

two platforms (with respect to the range to obstacles)

can be encapsulated in a function which transforms the

input variables from the range sensors to estimates of

the monitored quantity Range. The computation of

LTransformRange

Type: 1NTEGER

Parameters:

i_lRange 1S 1NTEGER

: 0117

[ klRange <= 200i_lRange > 900

:= (900 - iIttRange)/8 117

I HilrtRange <= 900

Figure 8. IN -1 Range for the lego-bot

IN -1 for the Pioneer is pictured in Figure 7 and for

the lego-bot is in Figure 8. For the Pioneer, the sonar

inputs range from 0 to 700 and must be scaled appro-

priately to a number between zero and 100.

For the lego-bot, the transformation is more com-

plex. Both the sonar and the infrared distance sensors
have a certain range close to the sensor where the sig-

nals cannot be used for range detection (in the case of

the sonars, the signals that are emitted bounce back to

the sensor too fast for the sensor to detect). Thus, the

sensor will report that no obstacle is present when, in

fact, an obstacle is very close. In the case of the Pi-

oneer, this problem is handled by the Saplfira library.

For the lego-bot, however, the RSML -e specification

must include a minimum threshold as well as a scaling

factor for the maximum values. In our case, readings
below 200 from the infrared sensor cannot be trusted

and we simply treat any reading below 200 as if the

distance is 0, indicating that no obstacle has been (or

can be) detected (Figure 8).

Thus, we have shown that even though the sensors

and the way in which we have access to the sensors

differs widely between the Pioneer and the lego-bot,

we can still use the same SOFTnEQ model for both
robot platforms. In this way, we make the high-level

behavior robust and reusable in the face of changes in

the range finder.

6.2 Speed--

Saphira versus Pulse Modulation

The previous section focused on platform depen-
dent variabilities in the IN and IN -1 relations. The

Pioneer and the lego-bot have more significant differ-



Figure 6. The state machine for the lego-bot

ences in the way that they control their propulsion and

in their steering systems (the OUT and OUT -1 rela-

tions).

The Pioneer's Saplfira library provides a lfigh-level

control of the Pioneer's motors so that the specifica-

tion for SOFT on the Pioneer platform is very simi-

lar to REQ. The transformation of the desired speed
performed in OUT -1 for the Pioneer (Figure 9) only

requires some minor scaling with respect to the Pio-
neer's maximum speed. The result of this transforma-

tion can then be directly sent to the Pioneer platform

and Saphira will control the hardware to achieve the

desired speed.

PTransformConSpeed

Type: INTEGER

Parameters:

iConSpeed IS INTEGER

: 0IF

lico pe =0 ITI
:= (PMaxSpeed * iConSpeed)/100 IF

lico pe =0

Figure 9. OUT -1 Speed for the Pioneer

On the other hand, the OUT -1 specification for the

speed of the lego-bot is significantly more complex.

MotorPulseStatus

Location: ..MotolOn

Transition: Off@ On

Condition:

TIME >= PREV STEP (..MotolPulseStatus TIME ENTERED Off) + T

LMot ol P WMTime Out (He ading, ConSpeed)

PREV STEP(..MotmPulseStatus IN STATE Off) T

Transition: On@ Off

Condition:

TIME >= PREV STEP(..MotolPulseStatus TIME ENTERED On) + LPWMOnTimeOut T

PREV STEP(..MotolPulseStams IN STATE On) T

ConSpeed = 100 F

:=On

Condition:

I C°nSp eed = 100 ITI

Figure 10. The part of OUT -1 for the

Lego-bot that performs the pulsing on
the motors



This is because the SOFT relation for the lego-bot

must control the motors directly with low-level hard-
ware signals. The speed of the lego-bot is controlled

by a teclmique called pulse-width modulation of the

DC motors: the speed of the motors is determined by

the length of time which passes between pulses of cur-

rent applied to the motor. Therefore, the SOFT specifi-

cation cannot simply output the speed value with some

transformation applied; instead, we must use the com-

puted value for the controlled variable Speed to deter-

mine the pulse width for the motors and then output

the pulses accordingly; the motors will then provide

enough propulsion to move the lego-bot at the desired

speed.

This control strategy necessitates a more complex

OUT -1 relation for the desired speed; the OUT -1 re-

lation can no longer be a simple function--in this case
we need to add an additional state machine. To model

the pulse modulation we add a state variables to the

SOFT specification so that the machine can output the

required pulses. These additions are shown in Fig-

ure 6. The MotorPulseStatus state variable is the part
of the OUT -1 specification that determines the pulse

width. Figure 10 shows the definition of tlfis state vari-
able.

A key component of the pulse-width modulation is
the LMotorPWMTimeOut function which determines

the length of time to pulse the motors (Figure 11). No-

tice that because of the lego-bot's tank-track propul-

sion system, the motors must be pulsed both in the case
of a turn and in the case that the robot is moving for-

ward. Thus, the LMotorPWMTimeOut function takes

as parameters the controlled variables for speed and

heading and produces the correct timeout values.

The values for the pulse intervals were were cho-

sen by rtmning experiments to determine which pulse

interval would achieve which speed. We have, there-

fore, encapsulated these constants so that if we were to

change motors on the lego-bot in the future we could

simply change the constants rather than having to re-

visit the pulse-width modulation process.

Thus, despite the fact that the Pioneer and the lego-

bot differ significantly in the way that the motors are

controlled, the SOFTnEQ relation can again be reused
across the platforms. Furthermore, changes in the

REQ relation (and analogous changes to SOFTnEQ)
will be independent of changes in the OUT and
OUT -1 relations.

LMotorPWMTimeOut

Type: TIME

Parameters:

iHeading IS INTEGER

iConSpeed IS INTEGER

: LSlowPWMOflTimeOut IF

iHeading= 90 T F F

iHeading= 90 F T F

iConSpeed= 25 F F T

iHeaNng =45 T F F F

iHeaNng = 45 F T F F

iConSpeed = 50 F F T F

iConSpeed = 50 F F F T

iHeaNng=20 T F F

iHeaNng= 2O F T F

iConSpeed= 75 F F T

:=0 slF

I iC°nSp eed = 100 ITI

Figure 11. The timeout function for
pulse-width modulation on the Lego-bot.

7 Conclusions

This paper describes how structuring the require-

ments based on the relationship between the system



requirements and the software specification can lead

to benefits in terms of maintainability and reusability.

Specifically, we describe a teclmique for structuring

high-level requirements for reuse in the face of hard-

ware changes.

From the four variable model for process control

systems, we have described how the REQ relation can

be refined to the SOFT relation while maintaining a

separation between the part of SOFT which is related

to REQ (S OFTnEQ) and the parts of S OFT which han-

dle the particular sensors and actuators in the system

design (IN -1 and OUT-l). Tiffs allows us to sepa-

rate changes in the requirements from sensor and ac-

tuator changes and achieve better maintainability and

reusability.

This techniques was demonstrated on a case study

in the mobile robotics domain using two quite differ-

ent robots. One robot is commercially produced and

is equipped with a rich control library that provides

many complex control functions, for example, travel-

ing at a requested speed. The other robot was build in-

house from Lego building blocks and off-the-shelf mo-

tors and sensors. This robot is controlled completely

by the software specification in RSML -e through our

NIMBUS toolset.

We demonstrated the usefulness of the structur-

ing approach by reusing the lffgh-level requirements

(REQ) across a (currently quite small) family of mo-

bile robots. Nevertheless, there are numerous issues

left to address. In the future, we plan to define more

complex control behaviors and investigate how indi-

vidual behaviors (or operational modes) can be suc-

cessfully reused.
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Abstract

This paper describes the intermediate results of a

project to develop automated, high integrity, software

verification and validation techniques for aerospace ap-

plications. Automated specification validation and test

case generation are made possible by the targeted use

of formal methods. Specifically, the restricted domain of

use is exploited to reduce the set of mathematical prob-

lems to those that can be solved using constraint solvers,

model checkers and automated proof tactics. The prac-

ticality of the techniques is enhanced by the tight inte-

gration of the formal methods to intuitive specification
notations, existing specification modelling tools and a

traditional software development process.

This paper presents evidence to support an emerging

appreciation amongst the software engineering commu-

nity that, for the benefits of formal methods to be widely

exploited in industry, an approach must be taken that in-

tegrates formal analysis with intuitive engineering nota-

tions, traditional engineering approaches and powerfid

tool support.

1. Introduction

It is widely accepted that verification and validation

(V&V) activities for high integrity systems are expen-

sive (typically over 50% of total software development

costs [2]). The requirements for such systems are of-

ten subject to change throughout the project so the high

V&V costs are normally incurred not only once, but

many times. Also, the cost of fixing errors later in the

development life-cycle can be many times more than
if they were identified during the phase in which they

were introduced. Additionally, commercial pressures to

reduce time to market, technological conservatism and
the need to meet standard test metrics make the software

V&V process a highly fragile and risky component of

system development.

The use of formal methods has long been advo-

cated as a means of improving the development of high

integrity systems. Despite evidence to support this

claim, e.g. [14, 17], formal methods have still to gain

widespread use in the software industry. Industrial ac-

ceptance of formal methods requires the development of

powerful tools to support formal analysis, pragmatic ap-

proaches to using these tools within a software process

and more industrially applicable examples of the suc-

cessful use of formal methods [6, 15]. Also, for the en-

gineers with the system domain knowledge to be able

to perform V&V there is a need, as Ould [22] put it, to

"disguise" the formality so that an impractical amount

of formal methods skill is not a pre-requisite to effective
V&V.

This paper describes the results of a project that

has achieved practical integration of automated formal

methods for V&V into an industrially applicable soft-

ware development process. The paper is structured as

follows: Section 2 introduces the backgrotmd and ob-

jectives of the work reported here. Section 3 describes

the translation of domain specific, intuitive engineer-

ing notations into formal specifications. Section 4 de-

scribes how these intermediate formal specifications can

be used to automatically analyse certain properties of

the requirements specification. Section 5 describes a

method of automated test case design and test data gen-

eration, based again on the intermediate formal spec-

ification. Section 6 presents some results of applying

the techniques in practice and gives an evaluation of the
work so far. Section 7 presents some conclusions and

suggests directions for future work.



2. Background and objectives

The work reported here is being undertaken as part

of a process improvement programme to demonstrate a

"better, faster, cheaper" software process for develop-

ing Electronic Engine Controllers (EECs) for aircraft en-

gines. These are real-time, safety critical, fault-tolerant

computer systems embedded in complex engineering

products. The contribution of the V&V strand of the

process improvement work (the subject of this paper) is

to develop efficient and effective V&V techniques that

can be smoothly integrated into a practical engineering

process.
The use of formal methods is intended to increase

the integrity of engineering activities already performed

such as specification and testing. These improvements

must be implemented within a process that engineers

can use with the minimum amount of re-training. There-

fore intuitive engineering notations have been retained

as a means of software specification and teclmiques have

been developed to increase the integrity of these specifi-

cations through the use of automated formal analysis.

Although this research is targeted towards specifica-

tion validation and software testing, it is acknowledged

that significant benefits in these areas can not be at-

tained without improving the rigour and consistency of

the requirements specifications. Specification notations

are therefore used that are both "engineer friendly" and

amenable to formal analysis. The savings demonstrated

in the validation and testing phases serve as drivers to

encourage investment in these improved specification

activities. It is expected that the most significant cost-

benefits can be achieved by capturing more requirements

and software specification errors at the specification val-

idation phase (therefore reducing the number of itera-

tions of the software design, coding and testing phases)

and by automating test case generation (one of the most

time consuming parts of the present process).

3. Translating engineering notations into

formal specifications

Domain specific graphical engineering notations are

popular with engineers, but their semantics are often un-

clear from inspection of the diagrams alone. In reality,

it is also unlikely that only one notation will be used to

specify a system, or indeed that notations will be used

consistently between projects. The resulting loose spec-

ification and inconsistency complicates the task of au-

tomating specification validation and test case genera-
tion based on these notations. Indeed as the notations

change so frequently (as a result of commercial trends,

new or outdated tool-support etc.) it may not even be

cost effective to invest in automated V&V tool support

which may in practice only have a limited life-span and
audience.

Translation of the graphical requirements into a core

formal notation removes the vagueness of the original
notations and makes the behaviour implied by the spec-

ification explicit for the purposes of V&V. Validation

may thus be supported by rigorous (or formal) reason-

ing using the formal representation. Also, by explicitly

rendering all specified behaviour, the intermediate repre-

sentation is a strong basis for automated test case design.
The use of a common formal notation to model several

engineering notations facilitates re-use of the analysis

and test techniques. The introduction of a new notation

requires only a translation to the formal notation, after

which the previously developed tools and heuristics can

be re-used. A strict translation process allows a fixed

structure to be enforced on the resulting formal specifi-

cation that can be exploited in the development of au-

tomated heuristics, e.g. test data generation procedures

and proof tactics.

The work reported here focuses on the specification,

validation and verification of the discrete aspects of en-

gine controllers (well-established mathematically based

processes were already in place for modelling and vali-

dating the continuous aspects of the control software -

e.g. the control laws). The Practical Formal Specifica-

tion (PFS) notation [7, 19] is used to specify the func-

tional software requirements. The PFS notation consists

of hierarchical state machines (in particular, a dialect of
statecharts I [9]) and tabular forms, such as those em-

ployed in SCR (Software Cost Reduction) e.g.[12]. The

notation has so far proven popular with the engineers

introduced to PFS 2. PFS also provides a theory for com-

bining components specified in the notation- based on

weakest precondition reasoning- and a set of suggested

"healthiness properties" that specifications should dis-

play to be considered valid.

One of the cornerstones of the PFS approach is that

engineers are not only required to specify the intended

behaviour of components of the system, they are also

obliged to state explicitly the assumptions on which

each component relies, i.e. its domain of applicability.

Healthiness conditions can then be stated and discharged

to demonstrate that, for instance, within the assumptions

of each component the behaviour is completely and un-

ambiguously defined. Additionally, healthiness condi-
tions are stated to demonstrate that where behaviour is

scoped by assumptions, it is only ever used when the

required assumptions hold.

tThe state based notation employed in this paper, a sub set of Stat
echarts, differs slightly from that usually employed in PFS.

2Who have stated that they find the notation vahiable e_enwithout
the added rigour provided by a formal undelpinning.



Reversed Thrust

Hydraulic Ram

__/)1 )_jN_ Hinge '

_and Lock

Reversed Thrust

Figure 1. Thrust Reverser System (De-

ployed)

Due to the restricted domain, the specifications

shared some common attributes which reduced the set of

(mathematical) problems that needed to be solved when

applying the formal analysis:

The software requirements did not involve the stor-

age and maintenance of complex information struc-

tures, typically only fixed-point numbers, condi-

tions and enumerated types were used.

• In the control software domain, non-determinism

(looseness) as a means of abstraction is difficult to

apply 3. In the example given here, the requirements

were tightly specified, only one outcome was to be

specified for each situation 4.

PFS components are either reactive (the outputs de-

pend only on the current set of inputs) and specified us-

ing tables, or else state-based (the outputs depend on

both the current inputs and the current state of the sys-

tem) and specified using annotated state-machines.

The example used to illustrate the techniques re-

ported in this paper is the specification of a flarust re-

verser deployment mechanism. The thrust reverser pro-

vides part of the retarding force for an aircraft on land-

ing (see figure 1). It slows the aircraft by using pivot-

ing doors to redirect the engine flarust. For the purpose

of clarity and brevity, we will present a much simpli-

fied version of the specifications, although their essence

is retained. A real thrust reverser system was used as

3The controlled envh'onment is _mderstood in terms of the gieat

many l_lationships between physical quantities, as a l_sult the expl_s
sion of l_quh'ements ale highly explicit and deterministic.

4Although PFS notation does allow some non detenniinstic ab
stractions to be used in certain situations [7].

the primary case study for evaluating the techniques de-

scribed here. The software specification used for the

case study consisted of 70 pages of PFS tables and stat-

echarts, component combination diagrams and support-

ing text.

Examples of software requirements written in PFS

are given in figures 2 and 3. Figure 2 describes a func-

tion that returns a boolean value (DoorDeployed) corre-

sponding to whether a door is locked into its deployed

position or not. The assumption defines the context

in which the component may be safely used (in this

case, the conditions under which sensor values may be

deemed to be valid). The guard/definition pairings de-

fine the conditions (guards) under which the function

returns particular values (definitions). A state-machine

that specifies which commands should be sent to the

door actuators based on the pilot actions and current

door position is given in figure 3. The part of the tran-

sition labels before the '/' defines the condition under

which the transition is taken. The rest of the label de-

fines the action to be performed on taking the transition.

The values for DoorDeployed, DoorStowed and Pilot-

Command are calculated based on functions defined in

the reactive notation. Likewise the DoorActuators com-

mand would be transformed into actuator signals based

on the command and a number of environmental and po-

sitional inputs. This function would also be specified in

the reactive notation.

Both the reactive and state-based components are

translated into formal specifications (we use the model-

based notation Z [24] due to the large amount of local

experience and existing in-house tool support). The se-

mantics of PFS notations has been formally specified

also using Z and this is used to define the translation

from the reactive components into Z. The state-based

components are modelled using Statemate [10] (a com-

mercially available tool that allows Statecharts to be en-

tered and animated via a mouse-driven interface). The

semantics used by the tool are well-documented [11] and

have also been formally specified [20, 29]. These se-

mantics are used to define the translation from the State-

charts into Z. The formal specifications for both notation

types are structured as follows:

• Auxiliary definitions: These may include defini-

tions of types, constants and relations used to con-

strain the system according to the static semantics

of the engineering notation.

• GlobaIState (for Statecharts only): Contains all in-

formation relating to the persistent state of the sys-

tem. This may include a set of currently active be-

havioural states, active events and the values of all

data variables local to the statechart. The global

state is constrained by semantic relations specified



Function: DoorDeployed

Assumption: FullyRetracted < RamPosition <

FullyExtended AND 0 < Hinge < 90

Guard 1: RamPosition > DeployedPosition AND Hinge >
80 AND DeployLock = Activated

Definition 1: True

Guard 2: RamPosition < DeployedPosition OR Hinge <

80 OR DeployLock = Deactivated

Definition 2: False

Figure 2. Reactive component for sensing thrust reverser door deployment

remand
Deploj, .,_ DoorStowed True/

DoorDeployed True/ ) DoorActuators OffDoorActuators Off

(_Deploying] PilotCommand Deploy[ Stowing ]

C_5
not (PilotCommand Stow) and not (PilotCoimnand Deploy) and
DoorDeployed False/ DoorStowed False/
DoorActuators Deploy DoorActuatol_ Stow

Figure 3. State-based component for controlling door deployment

in the auxiliary definitions (defined in terms of a
state invariant).

Operations: The dynamic behaviour of the system

is specified as a set of operations. Each operation

defines a transformation of the global state (for stat-

echart operations only) and inputs to the compo-

nent in terms of a pre-condition. A post-condition

constrains the next value of the global state (for

Statecharts operations only) and a definition of the

outputs of the component. One operation is speci-
fied for each reactive definition and for each state-

chart transition. These operations form the basis of

the specification validation and test case generation

activities described in the following sections.

The Statemate [10] tool provides an "Application

Programming Interface" (API), that allows direct access

to the internal form of the specification. An interfacing

tool, called StateZ, was written by the authors, that takes

this internal form and, based on an understanding of the

formal semantics of the Statecharts, directly generates
a formal specification of the statechart in Z. Included

in this specification are the accompanying proof conjec-

tures required to discharge particular healthiness checks

of the specifications (see section 4) and automatically

generated English language annotations. This informal

text provides the traceability between the formal opera-

tions and their corresponding part in the original require-

ments or a description of the property which the conjec-
tures are used to prove. These annotations not only allow

the generated Z document to be reviewed for correctness

with respect to the original requirements (verifying the

automated translation) but also form the basis of the test

descriptions which are used to associate each test with

the property in the requirements being checked. The ad-

dition of the informal text generation to the translation

tool was fotmd to greatly increase the readability and us-

ability of the formal specification and associated tests.

The Statemate and StateZ tools can be run in parallel,

allowing the Z to be re-generated whenever a change is

made to the Statecharts. Coupled with the automated

theorem proving described below, this allows the formal

analysis to be used as a development aid rather than a

separate post development activity.

At present, no tool support exists for translating the

PFS reactive notation into Z (this step is done by hand)



andthereforethecheckingof thereactivecomponents
wasnotastightlyintegratedintothespecificationpro-
cessasfortheStatecharts,howeverwepredictthatthis
shouldnotpresentanytechnicaldifficulties,givenasuit-
ablemethodof electronically recording and managing
the reactive tables.

4. Specification validation

In current industrial practice, many requirements er-

rors are only found once the system has been imple-

mented. Detecting them at an earlier stage in the de-

velopment would greatly reduce the cost of (both imple-

mentation and V&V) re-work. This can best be achieved

by applying a variety of diverse methods to validate the

requirements specifications. These can include peer re-

view, model animation (as supported by tools such as

Statemate) and automated formal analysis. The use of

intuitive engineering notations would normally exclude

the possibility of applying formal analysis. However,

based on the same mapping used to generate the formal

specification, specification healthiness conditions can be

couched as formal constraints. Formal analysis can then
be used to show the truth (or otherwise) of these con-
straints.

Completeness 5 and determinism 6 are two of the

healthiness conditions suggested by the PFS approach.

If the behaviour of a component is defined as a set of

operations {Opa, Op2,...Op, } over the inputs and state,
then a conjecture on the completeness of the specifica-

tion of that component can be formulated as follows:

F V GlobaIState, Inputs • Assumptions

pre Opl V pre Op2 V ... pre Op,

Informally, for each possible value of the global state

(if there is one) and each combination of inputs that sat-

isfy the validity assumptions of the component, the pre-

condition of at least one operation is satisfied.

A similar conjecture can be defined to show the de-

terminism of the operations. Each combination of global

state and inputs that satisfies the component validity as-

sumption must satisfy at most one operation.

F V GlobaIState, Inputs • Assumptions =_

Vi: 1..n- 1 •Vj: i+l..n•

_(pre Opi A pre Opj)

5The behaviour of a system is defined for each combination of in

puts and curient state.

6The behaviour of a system is unambigalously defined for each

combination of inputs and curlent state.

Completeness and determinism conjectures for the

example reactive definition and state-based component
are shown in figures 4 and 5 respectively.

F VRamPosition : 1N; Hinge : IN;

DeployLock : Activated [ Deactivated •
(FullyRetracted <_RamPosition <_FullyExtended

A 0 <_Hinge <_ 90) =_

(RamPosition > DeployedPosition A

Hinge > 80 A DeployLock = Activated) V

(RamPosition < DeployedPosition V

Hinge < 80 V DeployLock = Deactivated)

Figure 4. Completeness conjecture for Do-

orDeployed

F VState : Idle [ Deploying [ Stowing;

PilotCommand : Off [ Deploy [ Stow;

DoorDeployed : Boolean;
DoorStowed : Boolean •

State = Stowing

_(DoorStowed = True A

_PilotCommand = Deploy A

DoorStowed = False) A

_(DoorStowed = True A

PilotCommand = Deploy) A

_(_PilotCommand = Deploy A
DoorStowed = False A

PilotCommand = Deploy)

Figure 5. Determinism conjecture for Stow-

ing

Closer inspection of these two conjectures show that

they are invalid. For the reactive component, no out-

come is specified if the hydraulic ram is exactly at the

deployed position or the hinge is at exactly 80 degrees.

For the state-based component, it is not clear to which

state the machine should move while in the Stowing

state if the pilot requests deployment at the same mo-

ment as the doors become stowed. Depending on the

behaviour specified within the Idle and Deploying states

(these could be super-states encapsulating more detailed

behaviour) taking one transition over another may have

a serious impact on the behaviour of the system.

The conjectures that arose from the case studies were

proven using CADIZ [26, 28]. CADIZ is a general pur-
pose Z type checker and theorem prover that allows a

user to interactively browse, type check and perform



_DoorDeployedOperation
RamPosition? : N

Hinge? : N

DeployLock? : Activated I Deactivated

DoorDeployed! : Boolean

(FullyRetracted <_RamPosition? <_ FullyExtended A 0 <_Hinge? <_ 90)

( (RamPosition? > DeployedPosition A Hinge? > 80 A DeployLock? = Activated) A

DoorDeployed! = True) V

( (RamPosition? < DeployedPosition V Hinge? < 80 V DeployLock? = Deactivated) A

DoorDeployed! = False)

Figure 6. Z operation schema for DoorDeployed

proofs upon a Z specification. CADIZ allows gen-

eral purpose proof tactics to be written in a lazy func-
tional notation [27], these can be invoked from within

a CADIZ window and applied to any proof obligation

on the screen. This level of proof tactic re-nse is possi-

ble because of the consistent structure of the complete-

ness and determinism conjectures. A proof tactic has
been written to prove the determinism and completeness

conjectures. The tactic first simplifies the constraint and

then calls either the SMV [3] model checker (most suit-

able for predicates involving finite types) or a simulated

annealing based constraint solver [4] (used for counter-

example generation for predicates involving mixed nu-

meric types including integers and reals). If the check

fails, a counter-example is given. This information has

been found to be extremely valuable when tracking the

error in the specification. Conjectures that can not be au-

tomatically discharged in this way involve a mixture of

enumerated and infinite numeric types. This combina-

tion is not currently supported by the constraint solvers.

Restricting the numeric types to sensible finite ranges

allows these constraints to be checked automatically.
The healthiness checks that failed have been found to

be due to areas of omission or ambiguity in the original

system requirements that were not detected through re-
view or animation. This illustrates that there is much

benefit to be obtained by verifying relatively simple

properties of the specifications and the high level of au-

tomation ensures that the only additional work required

is that of locating the errors in the specification based

on the counter-examples. This work would otherwise be

done at a later stage with perhaps less illuminating data
to work from.

The lfigh level of automation allows the analysis to be

re-run each time the specification is changed, further re-
ducing the cost of rework. Although the interactive ver-

sion of CADIZ allows the proof effort to be automated

it still requires some repetitive work from the user to

load the generated Z file and select each proof obliga-

tion in turn to apply the proof tactics. Work is under-

way to encapsulate the functionality of CADIZ within

an API. This will provide the opportunity to fully in-

tegrate the formal analysis into specification modelling

tools. Instant feedback on the properties being analysed
can then be presented to the user using the same format

as the original specification. The details of the analysis

would be recorded (as the intermediate specification and

proofs in Z) for review by engineers with the relevant
formal methods skills.

5. Automatic test case generation

The formal specification describes each atomic action

defined by the requirements specification. These opera-

tions can be used as basic test specifications. If data can

be found to satisfy these constraints, the results of apply-

ing the data to the implementation can be used to gain

confidence in its correctness with respect to the specifi-

cation. The success of testing depends on the ability to

select data that demonstrates the presence of a fault in

the program. Category-partitioning [21] is a method of

deriving tests based on a formal specification and testing

heuristics based on common error types. Test data gen-

erated for the partitioned specification is then assumed

to have a greater chance of detecting errors in the imple-

mentation (at least errors of the type used to formulate

the testing heuristic). This approach was first applied

to formal specifications by Ostrand and Balcer [21] and

has been developed and applied to the formal specifica-

tion notation Z by Stocks and Carrington [25].

The category-partition method is based on the theory

of equivalence classes [8]. The input domain of the test
specification is partitioned into sets of data that exhibit

the same behaviour in the specification. If the equiva-



_DoorDeployedOperationPartitionl
RamPosition? : N

Hinge? : N

DeployLock? : Activated I Deactivated

DoorDeployed! : Boolean

(FullyRetracted <_RamPosition? <_ FullyExtended A 0 <_Hinge? <_ 90)

([RamPosition? = DeployedPosition ] A

(RamPosition? > DeployedPosition A Hinge? > 80 A DeployLock? : Activated) A

DoorDeployed! = True) V

( (RamPosition? < DeployedPosition V Hinge? < 80 V DeployLock? = Deactivated) A

DoorDeployed! = True)

_DoorDeployedOperationPartition2
RamPosition? : N

Hinge? : N

DeployLock? : Activated I Deactivated

DoorDeployed! : Boolean

(FullyRetracted <_RamPosition? <_ FullyExtended A 0 <_Hinge? <_ 90)

([RamPosition? = DeployedPosition + 1] A

(RamPosition? > DeployedPosition A Hinge? > 80 A DeployLock? : Activated) A

DoorDeployed! : True) V

( (RamPosition? < DeployedPosition V Hinge? < 80 V DeployLock? : Deactivated) A

DoorDeployed! : True)

_DoorDeployedOperationPartition3
RamPosition? : N

Hinge? : N

DeployLock? : Activated I Deactivated

DoorDeployed! : Boolean

(FullyRetracted <_RamPosition? <_ FullyExtended A 0 <_Hinge? <_ 90)

([RamPosition? > DeployedPosition + 1 ]A

(RamPosition? >_ DeployedPosition A Hinge? >_ 80 A DeployLock? : Activated) A

DoorDeployed! : True) V

( (RamPosition? < DeployedPosition V Hinge? < 80 V DeployLock? : Deactivated) A

DoorDeployed! : True)

Figure 7. Test partitions for DoorDeployed

lence class hypothesis is assumed to hold in the imple-
mentation, only a selection of data from each equiva-

lence class is needed to show that the implementation

satisfies the specification for all data in that class.

As an example, the operation defining the DoorDe-

ployed function (from figure 2, but corrected based on
the completeness analysis described above) will now be

partitioned to verify that the boundary used to define

when the hydraulic ram is in the deployed position is

correctly implemented in the code. The Z specification



VX,Y: N eX _> Y¢:>
X=YV

X=Y+IV

X>Y+I

Figure 8. Generic test heuristic for _>

of the operation is given in figure 6. The ? and / dec-

orations are used to distinguish between the input and

output parameters to the schema. Based on the assump-

tion that errors often occur on or around boundaries, ap-

plying a botmdary value analysis partitioning strategy

would result in the partitions shown in figure 7. The ad-

ditional constraints added by the partitioning are shown

in bold. These partitions together with those generated

for the condition where the hydraulic ram is not in the

deployed position, from the second guard in figure 2,

fully test the boundary.

The category-partition method has been automated as

extensions to the CADIZ theorem prover. Partitioning

heuristics are specified as lemmas and general-purpose

proof tactics are used to apply the heuristics via the

graphical user interface. The predicate to be partitioned

is highlighted and a proof tactic invoked via a menu

option which automatically introduces the partitioning

heuristic into the operation conjecture, instantiates the

generic heuristic with the operands of the predicate and

simplifies the whole conjecture to reveal a disjtmction

of partitions. Each partition is then converted into a sep-

arate schema operation. The lemma used to create the

partitions shown in figure 7 is given in figure 8. The

user is also given the opportunity to amend the support-

ing English language description of the operation being

partitioned, to include for example the rationale behind

using the particular partitioning strategy.

The method of specifying the heuristics as lemmas,

stored in a separate Z library file, which are then 'cut'

into the operation has several important advantages.

Properties of the heuristics themselves can be proven

(e.g. that the partitions together maintain the state-space

of the operation). If more heuristics are required (e.g.

based on common errors specific to the system under de-

velopment), they can be added without making a change

to the software itself. The test specifications can be in-
stantiated with test data via a similar mechanism to the

test partitioning. The test specification is highlighted

and an option called from within a CADIZ menu. A

proof tactic is then automatically applied that simplifies

the constraint and applies either the SMV model checker

or simulated annealing constraint solver to generate a set

of data satisfying the test specification.

Once the test data has been generated, CADIZ pro-

duces a corresponding AdaTEST [16] test script. AdaT-

EST provides a harness for automating the execution,
checking and documentation of tests for software writ-

ten in the Ada language. AdaTEST can also record the

structural code coverage achieved by running the tests.

Manually producing these test scripts, consumes a large

proportion of the test engineers time. By automating

this step, effort that was previously required for test im-

plementation can now be redirected towards more rigor-

ous test design. The generated test scripts also include

the informal text derived from the original requirements

and annotated with the test rationale during partition-

ing. This text is automatically included in the AdaTEST

test results file and provides the traceability between any

suspected fault in the program, the requirement under

test and the heuristic used in designing the test.

The test specifications for the case study were first

partitioned to give Modified Condition/Decision Cover-
age 7 (MC/DC) of each operation. Additional tests were

then generated based on other heuristics, such as bound-

ary value analysis. If full MC/DC (as mandated by
certification standards such as D0-178B [23]) was not

achieved by running these tests, it was assumed that the
untested code represented refinements in the design or

potential errors. Additional manual test effort then con-

centrated on writing tests for and reviewing these po-

tentially problematic areas of code. The targeting of

testing resources in this way was made possible by the

high amount of automation achieved in generating the

requirements covering tests.

6. Results and Evaluation

A summary of the specification validation and test-

ing work performed for the thrust reverser case study

is shown in figure 9. The numbers include only auto-

matically generated proof obligations and tests and the

requirements errors fonnd by discharging the proofs. An

activity is said to be automated if it requires at most

a single interaction from the user to perform (e.g. a

proof is discharged by selecting a completeness conjec-

ture and choosing "Completeness Check" from the on-

screen menu). Consequently these activities take very

little time to perform. Many of the proof obligations

stretched over 4 pages of formal text. Each of these

would have taken an engineer a significant amount of

time to prove or disprove. On a Pentium II 400 MHz

computer running the linux operating system, the largest

of these proofs took no more than a second to discharge.

The activities in the process described in this paper

that have so far been automated are: automatic genera-

tion of a formal specification and associated healthiness

7MC/DC is achieved by showing that each condition within a de
cision can independently affect that decision's outcome[23].



State-basedcomponents:
State-maclfines 9

States 48
Transitions 112

Z operations 112

Specification validation proofs 74

Automatically discharged proofs 74

Requirements errors found 18

Automatically generated tests 262

Reactive components:
Tables 34

Definition/Guard pairings 84

Z operations 34

Specification validation proofs 62

Automatically discharged proofs 52

Requirements errors found 18

Automatically generated tests 237

Figure 9. Summary of results

property proof obligations from a Statechart modelled

using STATEMATE, automatic proof or generation of a

counter-example for PFS (Statechart and tabular) com-

pleteness and determinism healthiness properties, auto-
matic partitioning of formally specified operations (de-

rived from Statecharts of tabular requirements) into test

cases based on pre-defined heuristics and the automatic

generation of test data for the partitions and associated

AdaTEST test script. Activities that we believe can be

automated or are already in the process of being auto-

mated are; automatic generation of a formal specifica-

tion and associated healthiness proof obligations from

PFS tabular requirements (given a consistent form of

recording and managing these requirements), automatic

identification of the healthiness property proof obliga-

tions within the Z specification and application of the

appropriate proof tactics and the automatic selection of

partitioning strategies to generate test sets to satisfy par-

ticular structural specification coverage criteria.

The results show that a significant number of require-
ments errors were detected for little additional effort.

All the requirements errors detected using this method
manifested themselves as either non-determinism or in-

completeness of the specification (as would be expected

based on the nature of the checks). On analysis of
these errors we discovered two distinct causes. The first

type of error was the result of a mis-interpretation of

some higher level requirements that resulted in an in-

correct specification with respect to these requirements.

These errors accounted for the greater proportion of to-

tal requirements errors found. The second type of error
was non-determinism or incompleteness as the result of

some omission or ambiguity in the higher level require-

ments. Although these errors were less frequent (poten-

tially because the analysis was not specifically targeted
at validating the higher level requirements) they were

deemed to be very valuable.

A far greater number of tests were generated than

would have been written for a specification of this size

using the traditional process. The number of tests that

can be written are typically restricted by the time it

takes to design, implement and evaluate each test, in

the process described here much of this effort has been

automated, greatly reducing the amount of effort per

test case. When the analysis or test revealed an er-
ror, the time taken to review and rework the error var-

ied according to the nature of the problem. However,

the impression amongst those involved was that the

counter-example information and supporting informal

text greatly contributed to the process of tracking down

the errors in the requirements. It was also noted that as

the case study progressed the number of requirements

errors being detected decreased significantly. The feed-
back from the formal analysis was thought to have influ-

enced the style of requirements specification, i.e. the au-

thor of the requirements was consciously writing speci-

fications to meet the healthiness conditions specified by

the PFS methodology, s

In [18], Knight presented the following criteria for

industrial acceptance of formal methods. Based on the

evidence from the case study and experience of work-

ing with our industrial partners we can now assess the

industrial suitability of our work along similar lines.

1. Formal methods must not detract from the accom-

plishrnents achieved by current methods

2. Formal methods must augment current methods so

as to permit industry to build "better" software

3. Formal methods must be consistent with those cur-

rent methods with which they must be integrated

4. They must be compatible with the tools and tech-

niques that are currently in use

These criteria emphasise the need to develop formal

methods for the types of practical tools and notations

used in industry and also for formal methods to com-

plement and not preclude existing practices. It is the

authors' opinion that the work described in this paper

has gone some way to satisfying these criteria, although

admittedly for a particular domain and set of V&V ac-

tivities. This was accomplished by basing the formal

8The final validation of the system will tell whether the lequh'e
merits indeed hnproved o1"whether en'ors were instead being intro
duced into aleas not coveled by the healthiness conditions.



analysisandtestcasegenerationactivitiesonanauto-
maticallygeneratedformalrepresentationof theintu-
itiverequirementsspecifications,writtenusingexisting
modellingtools.In addition,theactivitiesperformed
herecomplementmethodsalreadyinusesuchasreview
andanimation.Assuchtheycanbeseenasnaturalex-
tensionstotheexistingmodellingprocess.

Formalspecificationsaretypicallyverysensitiveto
change.However,duetoautomation,theformalspec-
ificationscanbere-generatedandverifiedwhenever
achangein therequirementsoccurred,atlittleextra
cost.Theintuitiveengineeringrequirementsremained
thefirstclasscitizensoftheprocessandthestandard
interfacetotheengineers.Theongoingextensionsto
CADIZto providea 'silent'interfaceviaanAPIwill
allowmodellingenvironmentssuchasStatematetoex-
ploitanintermediateformalrepresentationof there-
quirementstoperformchecksandgeneratetestswhile
hidingthedetailsoftheanalysisfromtheengineer.This
wouldfurtherencourageaniterativedevelopmentofthe
requirements(i.e.donotpassontothecodingphaseun-
til therequirementshavebeenproperlyvalidated)and
increasetheefficiencyofthetestgenerationprocess.

7. Conclusions and Future Work

In this paper we described our experiences in inte-

grating formal methods into an industrial software de-
velopment process. Intuitive engineering notations were

translated into intermediate formal specifications which

formed the basis of automated proof and test case gener-

ation activities. The high level of automation was made

possible by restricting the work to a particular domain

(discrete engine control requirements) and a tight sub-

set of an otherwise highly expressive formal notation

(Z). The automated analysis and tests allowed a signifi-
cant amount of errors to be detected earlier than would

have been possible had a manual, ad-hoc approach been
taken.

The findings support other work [5, 13, 1] that has

similarly used formal semantics of engineering nota-

tions to facilitate an effective approach to verification.

The work presented here contributes to this field by

showing that general purpose formal analysis tools such

as CADIZ and SMV can be used to support automated

analysis and test generation based on different engineer-

ing notations given a suitable translation from the nota-

tions to a formal specification.

In developing these teclmiques we have identified the

following generic process for applying formal methods

to engineering notations for automated V&V.

1. Use intuitive Engineering notations with fixed

semantics: Record and maintain the requirements

specifications in notations most suitable for the do-

main and whose semantics can be formally speci-
fied.

2. Couch healthiness conditions as mathematical

constraints: Identify "healthiness properties" that

should be common to all specifications e.g. com-

pleteness and determinism. Based on the formal

semantics of the notations, couch these properties
as mathematical constraints. Automate the transla-

tion if possible.

3. Formally specify the behaviour under test: De-

fine a translation between the original notation and

a formal specification of the properties under test
based on the formal semantics. Automate the trans-

lation if possible.

4. Exploit existing tool-support: Apply a combina-

tion of automated proof, model checking and con-

straint solving to analyse the healthiness properties,

to generate test specifications and to generate test
data.

5. Complement the formal specification and tests
with informal text: To aid the review and docu-

mentation of the analysis and test results, informal

text descriptions should be generated and main-

tained to describe the formal specification of the

healthiness properties and tests.

Ongoing work aims to increase the level of automa-

tion and integration of the formal techniques into exist-

ing specification modelling environments with the de-

velopment of a CADIZ API. In addition to this, we also

hope to expand the generic process and the toolset to

cover more areas of the verification process. In par-

ticular, the refinement of the intermediate formal spec-

ification into program annotations that can be used to

discharge correctness proofs on the code and the auto-

matic efficient sequencing of test cases to reduce the

amount of effort required to physically run the generated

tests. Other work will concentrate on developing further

the constraint solving abilities of the CADIZ theorem

prover. This will allow a wider range of specifications

and properties to be automatically verified than the cur-

rent system.
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Abstract

We describe an approach to integrating the Z speci-

fication notation into Cleanroom-style specification and

verification. In a previous attempt, a group at IBM used

formal refinement of the Z in their development. They

concluded that this was not cost-effective in a commer-

cial environment, and the attempt was not judged suc-

cessful. The current approach avoids formal refinement,

and instead begins by converting the Z to a fully con-

structive form, expressing all state changes using an

assignment notation. The development then proceeds

in Cleanroom style, with sections of the Z specifica-

tion simply distributed among the program components

to serve as their specifications. In a pilot project, this

approach was found to work quite well, with develop-

ment proceeding smoothly and predictably as normally

expected with Cleanroom methods.

1 History of the problem

In the early 1990s, a group of technical staff at the

IBM laboratory at Hursley Park (near Winchester, Eng-

land) attempted to integrate two software engineering

technologies which IBM had previously used separately
with considerable success: the Z specification notation
and the Cleanroom method.

The Z notation [15] [6] [13] [17] [18] is based on set

theory and other basic elements of discrete mathematics,

and incorporates novel structuring constructs (schemas
and the schema calculus). Z technology also includes

methods for the formal refinement of specifications into

designs and code.

The core of the Cleanroom method [10] [8] [16]

is formal or semiformal specification, and correspond-

ing verification done by a development group in review
meetings. Other elements of the method include no-

tations and techniques for stepwise refinement, testing

based on expected usage patterns, statistical analysis of

test results to predict product quality, and incremental

development.

IBM had had considerable experience with both tech-

nologies. The Cleanroom method was developed largely

at IBM, by Harlan Mills and his colleagues in the Fed-

eral Systems Division. By the time of the Hursley ex-
periment, it had been used successfully on a number

of industrial-sized projects at IBM and elsewhere. The

results were striking: very low levels of defects in the

products, with no net loss and often a net gain in pro-

ductivity [8] [3].

IBM had just finished a substantial development

project at Hursley using Z, in collaboration with its de-

velopers at Oxford University [5]. The project was a

major new release of the CICS transaction processing

system: 268,000 lines of new and modified code, of

which 37,000 lines were specified and designed using

Z and another 11,000 lines were partially specified in Z.

For the parts produced using Z, IBM reported a higher

percentage of defects eliminated early in the develop-

ment, a lower level of defects in the final product, and
an estimated 9% reduction in development costs. IBM

and Oxford were jointly given the Queen's Award for

Technological Achievement for 1992 on the basis of this
work.

The CICS group at Hursley hoped that Z and Clean-

room methods could be used together, and would com-

plement each other to produce products of even higher

quality than with either separately. The approach that

they took was to write specifications in Z initially; to

proceed with formal refinement steps as normally done
in Z; to write the correctness criteria for these refine-

ments as mathematical theorems; and to prove these the-

orems in review meetings, as normally done in Clean-
room.

The experiment was not judged a success. In partic-

ular, the group found it too hard to do the formal refine-

ment from Z into code. The postmortem [12] concluded
that "it is not cost-effective in a commercial software

environment to do even semi-formal refinement without

machine assistance" (which was not available).

Despite this discouraging result, we felt that there



was much to be gained if Z and Cleanroom methods

could be integrated successfully. In the following, we

describe a quite different approach. We avoid formal

refinement in Z altogether, and instead begin by trans-

lating Z specifications into a form that more closely re-

sembles Cleanroom-style specifications. From there, the

development proceeds in Cleanroom style, but retaining

fragments of Z notation where appropriate. We fotmd

that, using this approach, the Z notation can complement

Cleanroom methods quite effectively.

2 Z and Cleanroom specification styles

The Z notation is well suited to expressing the spec-

ification of a system as a whole, or of major parts of
a system. It provides a great deal of useful mathemat-

ical vocabulary, and the vocabulary of discrete mathe-

matics in particular, which can be used very effectively

to specify aspects of an information-processing system

at a high level. Furthermore, it provides the schema

notation and the schema calculus, by means of which

many different aspects of a specification, each perhaps

derived from a different requirement of the system, can

be expressed separately and then combined into a single

specification.

The Cleanroom method, on the other hand, provides

relatively little built-in notation. Indeed, one of its

strengths is that many kinds of notation, from a wide

variety of domains and at many levels of formality, can

be imported into it and used in its specifications. What it

does provide is, in particular, a straightforward method

of placing specifications on the lower-level components

of a program, down to the level of the control construct

or statement, and verifying that these components sat-

isfy their specifications.

It would seem to be a natural idea, then, to begin

by writing the top-level specification of a system using

Z, and then to proceed with the development in Clean-

room fashion, distributing the Z specification among

the program components and verifying those compo-

nents against the specification fragments using Clean-

room protocols in review meetings.

However, there is a gap that must be bridged before

the Z notation can be incorporated into Cleanroom-style

specifications. This is because there are fundamental
differences in the styles of the specifications of Z and
Cleanroom.

The Z notation is based on predicates, which express

preconditions and postconditions on operations, invari-
ants on data, and other assertions and constraints on the

data objects and inputs and outputs of a system. In par-

ticular, the specification of an operation defines a rela-

tion among inputs, outputs, previous values of state vari-

ables, and new values of those variables.

A fundamental property of Z is that such specifica-

tions may be nonconstructive: they may express prop-

erties that outputs and new values of variables must sat-

isfy, without giving any clue as to how these values can

be calculated from inputs and previous values of vari-

ables. In fact, specifications may even be nondetermin-

istic: they may not constrain each output and updated

variable to a unique value.

Here is an example which is both nonconstructive

and nondeterministic, from the specification of a text-

processing system: [6, p. 172]:

[CHAR]
TEXT == seq CHAR

__Format

t, t t : TEXT

words tt = words t

Vl : ran (lines t') * #l <_ width

In the specification of an operation in Z, the name of

a state variable is "decorated" with a ' symbol to refer
to its new value; the undecorated variable name refers

to its previous value. (Input variables are decorated with

? and output variables with I.) Thus, this schema says

that a Format operation leaves the sequence of words

in t unchanged and that each line of t after the opera-

tion must be no longer than width (the functions words
and lines and the constant width are defined elsewhere).

The specification says nothing about how to aclfieve this

result and, in fact, there will usually be many ways of

dividing t into lines that will satisfy tlfis specification.

Z practitioners see the ability to write nonconstruc-

tive and nondeterministic specifications as an advantage:

Non-deterministic operations are important

because they sometimes allow specifications

to be made simpler and more abstract [15,

p. 131].

Nonconstructive specifications aclfieve ex-

pressivity and brevity at the expense of exe-
cutability ... they leave the programmer free

to choose among different implementation

strategies [6, p. 38].

In the Cleanroom method, on the other hand, the gen-

eral rule is that specifications are both deterministic and

constructive. Specifications are written in the "func-

tional" style [9], in which each operation, control con-

struct and statement in a program is viewed as comput-

ing a function on the program's state:

X :=f(X)



HereX isastatevectorthatencompassesallofthe
program'sstatevariables,includingitsinputandoutput
streams.Specificationsarewrittenin theformof in-

tended functions which explicitly give values for every

state variable which changes value. The usual notation

is the concurrent assignment, such as the following:

[ sum, i, trend :=

sum + a[i], i + 1, (sum + a[i])/(i + 1) ]

A variant is the conditional concurrent assignment,

which specifies a state change by cases, such as the fol-

lowing:

[ i > 0 --+ trend := surn/i

I i = 0 --+ sum, trend := O, trendo ]

Each case has a precondition and a concurrent assign-

ment which is the state change to be performed when the

precondition is satisfied; the computation is undefined

whenever no precondition is satisfied.

The usual situation is that the preconditions of a con-

ditional concurrent assignments are mutually exclusive

(there is no state in which any two are both true) and

that the right-hand side of each concurrent assignment

contains only single-valued expressions which are obvi-

ously computable. In this case, the specification is deter-
ministic and constructive. Exceptions are occasionally

made, and occasionally a specifier will depart from this

notation entirely. However, the rest of the Cleanroom

method, and the verification in particular, will usually

proceed more smoothly if the above conventions are fol-

lowed. One reason for this is that a common manipula-

tion in verification is to substitute the result of a compu-

tation into the specification of a following computation

and then simplify.

3 The transition from Z to Cleanroom

The first step in our adaption of a Z specification to

Cleanroom-style development and verification, then, is
to transform the Z into a deterministic and constructive

specification, so that it can be expressed using the in-

tended functions required by the Cleauroom method. It

might seem that this would be a nontrivial task, requir-

ing a great deal of effort and introducing many opportu-

nities to make mistakes that will jeopardize the success

of the project.

However, in our experience rims far, we find that the

job is usually not as hard as one might think. Tiffs is

largely because many parts of typical Z specifications

are already deterministic and constructive. In particular,

we find that many Z predicates are of the form

or

P A 1' 1 : el A v2 : e2 A ...

or

(P1A 1'11 ---ell A 1'12 ---e12 A ...) V

(P2 A v21 :e21A v22 :e22 A ...) V ...

where each v is a changed state variable or an output
variable (i.e., an variable decorated with ' or I) and such

variables do not occur in any P or e, and where (in the

third form) the Pi are mutually exclusive. Such pred-

icates define computations that are clearly both deter-

ministic and constructive, assuming that each P and e is

single-valued and there is an obvious way to compute
it. Furthermore, it is trivially easy to rewrite any such

predicate in conditional-concurrent-assignment form. In

fact, they are essentially in that form already, except for

the symbols used.

Fortunately, such forms are natural to use in many

situations in Z specifications, and Z users seem to use

them rather commonly. In 28 case studies presented in

six prominent Z books [15, ch. 1] [4, parts B-D] [6,

ch. 16-25] [13, ch. 8] [17, ch. 15 and 20-23] [18, ap-

pendix A], over 67% of the 353 schemas which imply

state changes or output are already in one of the above

forms, once the schemas that are defined by including

or combining other schemas are expanded out into their
full forms. Another 6% contain instances of (for exam-

ple) the new value of one variable being defined in terms
of the new value of another, in contexts like

d:f(a) A
b'=g(a')

in which the departure from the above forms can eas-

ily be eliminated by an obvious substitution. Again, the

translation to conditional-concurrent-assignment form is

straightforward.

We could proceed, then, by translating all of the

specifications of operations directly from Z predicates

to conditional concurrent assignments, routinely in the

easy cases and using more complex transformations
in the other cases. However, to make the transition

smoother, we devised an intermediate form which com-

bines characteristics of both notations. It is very much
like standard Z -- in fact, it can be considered a non-

standard dialect of Z -- except that all state changes are

specified explicitly and constructively.

Here are the principal differences between this nota-
tion and standard Z.

* State changes are written in the form

1'1 : e I A 1,2 : e 2 A . . . X :: E



This is equivalent to the standard Z

x_=E

but the change in notation emphasizes the explicit,

constructive definition of the state change. The

same assignment notation is used to specify the

computation of outputs.

• Every change to a state component is specified in

tlfis way; it is implied that no other state compo-

nent changes its value. With this convention, all
assertions of the form

XtzX

are omitted as redundant from schemas that specify

state changes.

There are no implicit changes to one state com-

ponent induced by changes to another state com-

ponent and constraints between them. All state

changes are written out explicitly.

* In the same spirit, where it is asserted that part of a

structured state component is changed, it is implicit

that the rest of the component remains unchanged.

In particular, where the state component is a map-

ping (in Z represented as a function), a change to its
value on one element of its domain can be written

in the form

f a:=E

If this is the only change to f that is specified in

the schema in which this appears, it is implied that

f remains unchanged otherwise, and the above is

equivalent to the standard Z

f'=fO{a_--_E}

where @ is the "override" operator.

More than one change to the same function can be

specified:

f al :---- E1 A f a2 := E2

means

f'----fO {al _El,a2 _E2}

which, of course, is well-defined (i.e., f' is still a

function) only if al _ a2 or E1 --- E2.

A change to a (curried) function of two arguments
can be written as

f ab:=E

which (if no other changes tof are specified in the

schema in which this appears) is equivalent to

f' =fO { a _--_((fa) • {b _--_E}) }

and so on for functions of more arguments.

* Since the syntax x := E is really a predicate, it can

appear anywhere a predicate can appear, such as

within the scope of a quantifier. An example is

Vx:T[xES*

f x:zc!

which means

f' =fO {x: T [x_S,x_a}

* The symbols A and E are now superfluous in most

places and may be omitted.

* All computations of new states and outputs appear

only in contexts which are unconditional, or in con-
ditional structures (using V and A) with mutually
exclusive conditions.

Many of these notation conventions are similar to

constructs in the notation of the B method [ 19], although
that notation is more restrictive than AZ in a number of

ways.

Since state changes are specified in the form of as-

signments, we tentatively call this variant of the Z nota-

tion "Assignment Z", or AZ. (We considered the name
"Constructive Z", but this name is already in use with a

somewhat different meaning [11].) We present AZ not

as another formal specification notation, but merely as

an informally-defined intermediate form between Z and

conditional concurrent assignments.

Where the Z specifications are not already construc-
tive, we transform them into a constructive form as we

rewrite them in AZ notation. For example, we would
rewrite

Pop

stack, stack t : seqltem

If:Item ....

[stack = (x!) A stack'

as



_Pop

stack : seq Item
x! : Item

x! := head stack

stack := tail stack

Often, as here, making a state change constructive is

rather easy, but it can require considerable manipulation.

There is sometimes more than one way to express

the constructive version, and whatever choice is made

will usually suggest a design or implementation pos-

sibility more strongly than the nonconstructive version

did. Similarly, where the specification is nondetermin-

istic, making it deterministic typically involves either

making arbitrary choices as to the result that is speci-

fied, or making choices influenced by design or imple-

mentation considerations. An example is an allocation
of a resource from a set of numbered resources:

_Allocate

free : IFiN
allocated' : 1N

allocated' E free

free' = free \ allocated'

(Here IF means "finite set of" and IN denotes the natu-

ral numbers.) As we convert this to AZ form, we might

make it deterministic by arbitrarily choosing the free re-
source with the minimum number:

_Allocate

free : IFiN
allocated : IN

allocated := rain free

free := free \ {rain free}

Another way of resolving the nondeterminism would

be to define free to be a sequence rather than a set, and

choosing the first element of the sequence every time:

_Allocate

free : seqiN
allocated : IN

allocated := head free

free := tail free

Clearly, this version encourages a different implementa-

tion. It is important to realize that the transformations

that we perform to make the specification constructive

and deterministic are not just changes in notation, but

are true development steps, and may involve nontrivial

and significant design decisions.

It is probably not necessary to be too dogmatic about

removing all nonconstructive and nondeterministic as-
pects of the specification at this stage. Consider this ex-

ample:

__DisplayPeople

knownPeople : IFPERSON

people!: IFPERSON

people! = knownPeople

This is reasonable Z, but of course if a set is displayed

as an output, it must be displayed in some order. A pos-

sible conversion to AZ might be:

__DisplayPeople

knownPeople : IFPERSON

peoplel : seqPERSON

people! = alphabeticaISort knownPeople

where alphabeticalSort denotes sorting by name in

phone-book order. One might object that tlfis is still both
nonconstructive and nondeterministic, since it does not

suggest how the sorting is to be done, and it may al-

low more than one outcome if more than one person can

have the same name. But any other way of writing this

specification is likely to be more complicated and less

satisfactory. Furthermore, it is obvious that any compe-

tent programmer can create an implementation that will

satisfy it. In such situations the pragmatic thing to do

may be to allow specifications such as this one, although

we should do so only after careful consideration.

4 A pilot project

To try out the techniques presented above, we at-

tempted use them on a development project of modest

size. As it happened, we had a project that we were al-

ready planning to undertake.

The project was to develop a "rehearsal scheduler's

assistant": a program to help with the planning and

scheduling of the rehearsals and other preparation for

a theatrical production. The central job to be done is to

manage the interacting schedules of many activities and

many people. We had a real client, Doug Dunston, the

faculty member in charge of the music program in our

college. (The project is described in somewhat fiction-

alized form in section 11.3 of [16].)

The first step of the development, after discussing re-

quirements with the client, was to prepare a specification



instandardZ.AsiscommonpracticewithZ, thespeci-
ficationtooktheformof a document, with sections of Z

interspersed with explanatory text in English. The spec-

ification contained 43 schemas, and 16 other Z sections

containing definitions of various kinds.

The specification document contained one other im-

portant specification notation: color pictures of the

screens and other components of the graphical user in-

terface (GUI). Here is an example:

We used pictures like these to include in the specifi-

cation a general idea of what the GUI would look like.

However, we adopted the convention that the pictures

would represent only an approximation to the appear-

ance of the interface, which might vary somewhat ac-

cording to the eventual implementation. Colors and di-

mensions (for example) might be slightly different from

the way they appear in the pictures, and there might

be implementation-dependent features not shown in the

pictures, such as additional ways to move from one
screen to another.

On the other hand, some aspects of the pictures are

quite specific. In particular, some of the elements of

each picture are tied to the Z specifications through la-

beling conventions. In the picture, an annotation of

the form s_nne/V_m_e: (which appears in a distinguished
color, magenta, when the specification is printed or dis-

played in color) is not to appear in the actual GUI as

displayed, but indicates that the corresponding part of

the GUI corresponds to the construct of the same name

in the Z specification. If there might be any doubt as to

what part of the display is being referred to, a box of the

same color is drawn around the relevant part; again, this

will not actually appear in the GUI.

Here is the Z schema that corresponds to the above

picture:

__PersonScreen

PersonData

ScheduleSelector

PersonScheduleDisplay

Menu [SCREEN]

screen = personScreen

preselected! := normal

date = today

rnenuChoices! :=

{ editPersonScreen

"view or change activities",

personScheduleScreen

"change schedule",

showConflictsScreen
"view conflicts",

deletePersonScreen

"delete this person" }
screen := chosenltem?

The annotation _creen ==overscmScreen in the picture

indicates that screen has the value personScreen when

what the user sees is the screen shown in the picture.

The variables date and preselectedI are defined in the

schema ScheduleSelector; preselectedI defines which of

the two selector buttons is initially shown as selected.

Whenever a schema defines a GUI component, we de-

fine informally in the accompanying text how the Z com-

ponents relate to what the user sees and can manipulate.

We adopted several other conventions to reduce the

amount of repetitive detail in the specification. For ex-

ample, in many places in the GUI there is a box in which

the user can fill in or edit a value. Wherever a picture

contains such a box labeled with the name (for example)

x, and x is a variable of type T, we treat that annotation

as implicitly introducing a Z schema of the form

_ Edit_x

displayed_x! : TEXT
entered_x? : TEXT

:c: T

displayed_x! := TtoTEXT x

x := TEXTtoT entered_x?

where TtoTEXT and TEXTtoT are appropriate conver-

sion functions. The box labeled da_e: is an example



ofthis;theschemapersonScreen also specifies that the

value initially displayed for date is today's date.

The specification document, then, contains English

text, Z notation, and pictures, all interrelated. It should

be apparent that some parts of the specification are for-

mal and other parts are quite informal. In all, the docu-

ment is 42 pages long.

The next step, after meeting again with the client to

discuss that specification and obtain his approval, was

to prepare another version of the document in which the

parts of the Z sections were rewritten in AZ form. This

turned out to be quite easy in most places, especially

since most of the state changes were specified in such a

way that the translation was trivial, as discussed in the

previous section. In many cases, the resulting specifica-

tions turned out to be considerably simpler than the orig-

inal, largely because of the AZ convention for express-

ing changes to components of structured objects. For ex-
ample, the specification used curried functions like the

following in many key places:

SCHEDULESTATUS ::=

free I bookedlotherObligations I conflict
DAYSCHEDULE --

TIME --_ SCHEDULESTATUS

WEEKSCHEDULE --

DAYOFWEEK --+ DAYSCHEDULE

_NormaISchedules

,, ,

People
normaISchedule :

PERSON --_ WEEKSCHEDULE

This was a natural way of constructing

normaISchedule, especially since we sometimes

wanted to refer to the whole weekly schedule of a

person, sometimes for that schedule on a particular day,

and sometimes to that schedule at a particular time. But

then specifications of state changes like the following

became complex and tedious:

normalSchedule' = normalSchedule @

{ currentPerson _-+

(normalSchedule currentPerson) @

{ day _+

(normaISchedule currentPerson day) @

{ t 6 possibleTimes day I

from <_ t < to *

t _-+ selected? } } }

The AZ form of this is much more straightforward:

V t E possibleTimes day [from <_ t < to *
normaISchedule currentPerson day t

:= selected?

In determining what needed to be rewritten to make

it constructive, we were guided by pragmatic considera-

tions. For example, the original specification contained
a number of state changes specified using set compre-

hensions, in forms such as

result := {a 6 SIP(a) }

But in each such case, S was a finite set and so, in

principle at least, the set of its elements satisfying P
could be constructed by a simple-minded enumeration

of the set, testing each element. Indeed, for this reason a

mathematician would probably consider such an expres-

sion quite constructive, and we judged all such specifi-

cations to be "constructive enough" for our purposes. In

fact, in the implementation, each such set turned out to

be reasonably small, and so this is exactly how almost

every such state change was actually implemented.

For a number of reasons, including portability (the

program was to be developed on our Linux machines

but would eventually run on Dr. Dunston's Macintosh),

we chose the Python programming language and the Tk-

inter GUI library for the implementation.

We found it easy to implement many parts of the

AZ specification using Python constructs, in ways that

so obviously matched the specification that verifica-

tion was hardly necessary. This was especially true of

state changes that called for modifying values of func-

tions. We implemented the ftmction normalSchedule,

for example, as a dictionary indexed by Person and

Activity objects, containing lists indexed by numbers

representing days of the week, where those lists con-

tained dictionaries indexed by Time objects and contain-

ing ScheduleStatus objects. Thus, for example, the im-

plementation of the state change specified by

V t E possibleTimes day [from <_ t < to *

normaISchedule currentPerson day t
:= selected?

turned out to be simply

for t in possibleTimes(day) :

if fromTime <= t < toTime:

normalSchedule[currentPerson] \

[day] [t] \

= selected

which is essentially identical to the specification.

We used one other significant piece of software en-

gineering technology in the project: a form of "literate



programming"[7].Thismeansthattheprogramispre-
paredandpresentedin theformof adocument,with
explanatorytextaccompanyingeachsectionofprogram
code.Thustheprogramanditsdocumentationarein-
tegrated,andstoredinasinglefile.Therearesoftware
toolsthatprocessthatfileeitherto stripoutandorder
thecodesectionsforcompilationandexecution,or to
formatthedocumentforviewingorprinting.

Intheusualkindof literateprogramming,thecode
fragmentsmayappearinthedocumentinanyorder,but
theauthormustusemarkupcommandstodefinetheir
orderingandnestedstructurein thefinalprogram.We
adoptedamuchmore"lightweight"approach,inwhich
thecodefragmentsappearintheprograminthesameor-
derinwhichtheyarepresentedinthedocument.Thisis
reasonablewithPython,inwhichtheorderofelements
inaprogramisrelativelyunconstrained.Andit means
thattheprogramthatstripsoutthecodefragmentsfor
executiondoesnotneedto doanyreordering,which
madeit averysimpleprogram.Evenmoreimportant,
it meansthattheprogrammerdoesnotneedtoinclude
markuptostructuretheprogramfragments.In fact,the
onlyextramarkupnecessaryisapairofcommandsde-
finedinthemarkuplanguage(DTEXinourcase)tomark
thebeginningandendofacodefragment.

Withverylittleextraeffort,then,wewereableto
maintainthecodeandadescriptionofit asareadable
document.Inmanyplaceswealsoincludedsectionsof
ZandpicturesoftheGUI,cut-and-pastedfromthespec-
ificationdocuments.Theresultisadocumentverysimi-
lartothosedocumentsinstyleandappearance,butwith
codesectionsadded.Eachcodesectionisaccompanied
bycommentaryand,inmanycases,theZandpictorial
specificationsfromwhichthecodewasderived.

InmanyplaceswealsoextractedfragmentsofZfrom
thespecificationandincorporatedthemintointended
functionsinthecodefragments.Hereisanexample:

I vl

def emptyDaySchedule (d):

[returnedvalue: adictionaly
{ t • possibleTimes(d) • t _ free)}]

result = { }
for t in possibleTimes(d) :

result [t] = free
return result

I I

By the way, the annotation "v" in the corner of the
box indicates that tiffs section of code has been verified.

An annotation "VT" would indicate that it had also been

tested. We used such annotations to keep track of the

status of each fragment directly in the program docu-

ment during the development, and we found tiffs very

helpful.
We did not follow Z protocols for formal refinement

at all. The implementation was constructed using ordi-

nary programming skills, as well as Cleauroom-based

methods in which intended functions are implemented

in a stepwise manner in terms of code and lower-level

intended functions [16, ch. 5]. We constantly used the

structure of the Z specification as a guide, and tiffs made

many parts of file implementation almost trivial to con-
struct.

We verified both the translation of the Z to AZ,

and the program code developed from the AZ. Unfor-

tunately, we were unable to adhere strictly to Clean-

room methods in doing tiffs. Cleauroom is inherently

a group process; in particular, verification is done in

review meetings, with the author and colleagues dis-

cussing each correctness criterion and examining the

program for other aspects of quality. The goal is to dis-

cover and eliminate as many defects as possible while

attempting the verification. Normally this requires a

group of at least three people, since each person often
notices defects that the others miss.

But only one other person trained in Cleanroom
methods was available at the time, and the amount of

time that he had available was quite limited. There-

fore, parts of the program were verified in a two-person

group, and some parts were done strictly as a solo effort.
We found that verification under these circumstances

was far less reliable than normally expected with Clean-

room methods, which typically achieve a level of defects

of three per thousand lines of code or better before first
execution [8] [3].

To add to our difficulties, we were somewhat unfa-

miliar with the Python language and the Tkinter library,

and made a number of minor mistakes in usage, espe-

cially early in the project. Since Python is an interpreted

language, the mistakes that escaped our notice during

verification were not caught in compilation, but in first
execution.

To attempt to compensate, we eventually developed

an alternate protocol. The project plan called for the pro-

gram to be developed in rather substantial increments, as
is normal with the Cleanroom method. We divided each

of these into a number of very small increments, each

adding perhaps only one simple new feature to the pro-

gram; these increments ranged in size from about tlfirty
to two hundred new and changed lines.

After each of these increments was coded, we in-

spected it several times, using a checklist and checking

different aspects each time. We checked such things as

points of syntax and usage which had caused us prob-



lemsbefore,matchingofeachfunctionandmethodcall
againstitsdefinition(comparingbothintendedfunctions
andnumberandtypesof parameters), and correspon-

dence of intended functions with the Z in the specifi-

cation document. Finally we inspected for correctness
of each section of code with its intended functions. In

some cases, as in the normalSchedule example above,

we judged the code obviously correct "by inspection";

in other cases we carried through more detailed correct-

ness arguments, mentally or on paper [16]. We caught

and eliminated many defects by means of these inspec-

tions, about four defects per hundred lines on average.

Each increment was then integrated into the program;

thus we were, in effect, "growing" the program gradu-

ally, as advocated by Brooks [1, p. 18]. At each integra-

tion step we ran a few cursory tests to execute each new
piece of code for the first time, and many more defects

showed up immediately. The defect density on first exe-

cution was about five per hundred lines on average, not

nearly as good as normally expected with Cleanroom

methods. Thus, our one-person inspection protocol does

not come close to competing with a full Cleanroom-style

verification review by this measure.

Fortunately, this had little effect on the effectiveness

of the development! Almost all of the defects that sur-

vived the inspections were caught on first execution and

were simple oversights: typographical errors, mistakes

in punctuation, mistakes in names of variables, omitted

initialization, and the like. Each took only a few minutes

to track down and fix. There were no deep algoritlma

flaws, no subtle bugs which would cause malfunctions

only rarely, and no places in which we had implemented

algorithms that would do something quite different from

what was specified. This is typical of what normally

happens in a Cleanroom-style development: the really

nasty bugs are the ones that specification and verification
seem to be most effective at preventing or eliminating.

Most important for the subject of this paper, the entire

development went very smoothly. At no time did we feel
that the mixture of notation was a hindrance or added ex-

cessive complexity to the process. On the contrary, we

felt that it was definitely helpful to have a Z specification

to use a a basis for the development, and that specifying

the program using the vocabulary of discrete mathemat-

ics right from the beginning probably made the design
cleaner than it would otherwise have been. We also felt

that using Cleanroom-style intended functions and step-

wise refinement definitely contributed to the quality of

the product, as did inspections, imperfect as the latter

were. These are subjective judgments for the most part,

of course, but we think they are justified.

At the time of writing, the third of the five major in-

crements called for in the project plan has been com-

pleted, resulting in 1409 nonblank, non-comment lines

of code in the Python language. (We estimate that sev-

eral times as many lines would have been needed in a

lower-level language such as C or Java.) We found only

five defects in further testing; this means that the defect

density that we obtained after inspection and first test

during integration is comparable to the defect density

normally obtained after verification in Cleanroom.

Dr. Dunston has begun to use the program experi-

mentally, and intends to put it into full production use

for his next musical comedy. By that time the remain-

ing increments will be constructed and installed. Mean-

while, we have begun to use the program in our own

work, to help schedule the activities of the staff of an in-

troductory computer science course (lecturers, teaching

assistants, tutors and graders) around all of their other

obligations. The program has been quite helpful with

this. As of the time of writing, no further defects have

been found in the program.

5 Conclusions

We consider that the integration of Z and Cleanroom,

as described above, was successful. We believe that the

use of specification via pictures and of "lightweight"

literate programming contributed to the success of the

project as well. Results obtained from one project of

this size are not conclusive, of course, but all indications

are positive rims far.

We definitely intend to use similar combinations of

technologies in future projects, and are eager to try them

on substantially larger projects. Since Z and Cleanroom

have been used separately on projects of substantial size

with considerable success, we see no reason why the

same should not be true when they are used together,

but only actual experience will tell us with certainty.

Beyond this, we believe that our results confirm and

support several ideas already noted by other writers and

researchers regarding the way to use formal methods

most effectively. First, formal methods are not mono-

litlfic: it is quite possible to use some parts or aspects

of a method without using all of the method. For exam-

ple, it makes perfect sense to write specifications in Z

even if one has no intention of using the accompanying

methods for formal refinement, and doing this seems to
be rather common among Z users.

Similarly, it is perfectly reasonable to use more than

one formal method or notation in a project, according to

which is most suitable for each part of the project. A
notable example of this was the development project for

the CDIS air traffic control display system [2], which

successfully used a variety of formal notations: VDM,

VVSL, CSP and CCS, as well as data-flow diagrams and



finite-statemachines.
Finally,fullformalityisnotonlynotnecessarytoob-

tainthebenefitsofformalmethods,butisfrequentlynot
evenproductiveorcost-effective.Inthepostmortemto
theHursleyexperiment[12,p. 293],MarkPleszkoch
oftheIBMCleanroomSoftwareTechnologyCenteris
quotedassaying:

I believethatthekeytoapplyingCleanroom
inacost-effective,highlyproductivemanner
is tonotforcedeveloperstogoto alevelof
formalitybeyondtheirneeds(andabilities),
whileatthesametimenotlosingthebene-
fitsofprecisedocumentationthatmakesclear
whateachpieceofcodeisdesignedtodo.

A number of other writers have been expressing sim-

ilar opinions in recent years (see, e.g., [14] and [2,

pp. 74-75]). The general principle is that there is an ap-

propriate level of formality for every situation, and more

rigor is not always better. If this is not yet the consensus

of the formal methods community, perhaps it eventually
will be.
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Abstract. Over the last few years, several alternatives for adding mobility to Asynchronous Transfer Mode (ATM)

signaling protocols have been presented in the literature. However, most of the current approaches for wireless
mobile ATM (WmATM) network development include basically text and information flows. As a result of the

complexity involved in handling mobility, communication and handoff procedures for WmATM networks, current
approaches can lead to ambiguities, gaps, inconsistencies and undesirable interactions at the later stages of the

development process where changes can be costly and provoke backward incompatibility. With these problems in
mind, this work proposes a development approach that includes a technique called Use Case Maps (UCMs), and the
following formal methods: Language of Temporal Ordering Specifications (LoTOS) and Message Sequence Charts

(MSCs). UCMs are applied at the requirements capture and analysis stages, followed by LoTOS and MSCs at the
design stage. Besides providing a better and precise description of the system at the early stages, our main goal is to

combine these teclmiques and help to solve design problems like the ones mentioned above. As a case study,
WmATM network procedures are specified using the proposed approach.

Keywords. Causal Scenarios, Use Case Maps, Formal Techniques, Language of Temporal Ordering Specifications,

Message Sequence Charts, Wireless Mobile ATM Networks.

1. INTRODUCTION

Although Formal Description Techniques (FDTs) have been successfully used to specify and validate

protocols in different application domains achieving clear and concise specifications, most current

development approaches for Wireless mobile ATM (WmATM) networks include basically text and

information flows at the early stages. As a result of the complexity involved in handling mobility,

communication and handoff procedures, these approaches can lead to ambiguities, gaps, inconsistencies

and undesirable interactions at the later stages.

FDTs, such as LoTOS [21], the Language of Temporal Ordering Specifications, and Message

Sequence Charts (MSCs) [18], have not only shown resiliency in the usability, but also tool support and

training have improved in the last 15 years [4][12][13]. Even though LoTOS and MSCs can be used at

different levels of abstraction, it requires precision on the description of action sequences and exchanged

messages. Thus, these formal techniques are more suitable to be applied at intermediate stages of the

development process. In contrast, visual techniques such as Use Case Maps (UCMs) [8][9] give to the

designer capability to work with whatever amount of detail is available being appropriate for the early

stages.

In this context, we propose the application of UCMs, LoTOS, and MSCs at different stages of the

system development process. UCMs are applied at the requirements capture and analysis stages, followed

by LoTOS and MSCs at the design stage. The proposed approach is applied to the development of a

prototype for WmATM networks. Mobility, communication and handoff procedures are firstly described

with UCMs and, in conformance to that, formally specified and validated with LoTOS. MSC scenarios

are automatically generated from the LoTOS specification in order to represent the results of the

validation and facilitate the implementation of protocols.

This paper is divided into 7 sections. An overview of the WmATM networks is given in Section 2.

Section 3 illustrates the proposed development approach. A big picture of the relationship among

mobility, communication and handoff procedures for WmATM networks are described with UCMs in

Section 4. After that, the corresponding LoTOS specification is presented in Section 5. Section 6 shows

1 Ph.D. Candidate at SITE, Professor at the Computer Science Department, Federal University of Cear_i, Brazil,

and sponsored by CAPES (Brazilian Federal Agency for Graduate Studies).



thegeneratedMCSsscenariosand,last,Section7 discussesourmaincontributions.Relatedworksare
alsomentionedinSections4, 5and6.
2. CASE STUDY: WIRELESS MOBILE ATM NETWORKS

Asynchronous Transfer Mode (ATM) was developed in the 90s to support high-bandwidth multimedia

applications and provide bandwidth on demand, traffic integration, cost effectiveness, as well as flexible

data networking [23]. Nowadays, ATM is viewed as a strong candidate to extend these services to

portable systems using wireless technologies [1][28][30]. Accordingly, several alternatives for adding

mobility to ATM signaling protocols have been presented in the literature [5][6][7][10][24][31]. For

example, [7] and [28] present WmATM networks as a wireless extension of ATM networks with mobility

and any modification in the existing ATM signaling protocols. On the contrary, [24], [30] and [31]

believe that minimum challenges should be done in the ATM networks to support mobility and achieve a

global WmATM network environment. In [5] and [6], the authors present two different signaling

protocols to support both alternatives.

2.1. A Typical WlnATM Network Environlnent

Figure 1 illustrates a possible environment that can support the concepts involved in designing a global

WmATM network. The wireless service area is divided into cells and each cell is equipped with a base

station transceiver (BST) that is responsible for the use of the allocated spectrum. A base station (BS) is

responsible for a set of BSTs that are connected to the BS through wireless access ports. Several mobile

stations (MSs) share the capacity of each BST. A wireless ATM network backbone is composed of

WmATM switches attached through high-speed transmission links. Databases are responsible for keeping
information about mobile users. The wireless backbone can communicate with the ATM network

backbone using wired access ports.

We choose a simplified wireless mobile ATM network as a case study, since it is representative of

large and complex systems and touches upon common problems in the development process of these

systems. The WmATM reference architecture considered in our work includes mobile stations, WmATM

switches and databases. An ATM network composed of ATM switches and fixed stations is also described

to allow the communication between fixed and mobile stations. Since we focus on signaling protocols for

upper layers, base stations are not considered. Mobile stations communicate directly with WmATM

switches and mobility occurs every time the mobile station changes a location area (represented by

changing the WmATM switch).

Wireless ATM Network Backbone Wireless Access
Ports

f ATMc_l_tow°rk_ _[____ Cells

[ /WrnATIVI/I " I\ Base _ ,__/',,
_ "'e'_',.',_;_,_,-/ _ \ 1Station ,' ,

___.___ Transmission\ "_ ,_Base Station

Wired Access _ _k I V I Link _ .) / " _ X_ransceiver

Mobile Statio"" ns ° °

Databases _

Figure 1 A Possible Wireless Mobile ATM Network Environment

(adapted from Figures 2, 3 and 4 of [24][7] and [1], respectively)

In the ATM fixed networks [17], there is no need for databases since each fixed station has a user's

identification that determines where the user is and how to route a call to the user. Our work focuses only



on the specification and validation of connections between mobile users and between mobile and fixed
users.

During the development of the WmATM network environment, each component of the reference
architecture is specified with its corresponding protocols related to mobility, communication and handoff.

Informally, mobility management functions provides a secure environment for mobile users, updates

location information and perform the user de-registration in an old location area when a mobile user
roams and registers in a new location area. Communication management functions are used to establish,

release and maintain calls between two mobile users, from mobile to fixed users, and from fixed to

mobile users at their request. Meanwhile, handofffunctions give to the mobile user freedom of motion
beyond a wireless coverage area by maintaining the quality of a link whenever a user moves from one
location to another.

2.2. Current Development Approaches

Several signaling protocols alternatives for wireless mobile ATM networks have been presented in the

literature and their development approaches involve informal descriptions as text at the early stages

followed by flow charts [7] [31 ], state models [10], or information flows [5] [6] [24] as shown in Figure 2.

"" ........... "'" ////]C r"_K _ "" .......... ""
,/"l_esented in [5][6][24i",, urrent WmATM netwo /'Presented in [7][3_]".,

, Description _ ".1 I I t../ [ I DescriptionI ,
, I I I I I , I . I I

',, + / ',, + /
", I Infomlafion l ,/ ____"_>_/_____ ", I FlowCharts l ,/

". Flows .-'_ .... Presented in [10] .... 2-[ ! I

........ [ Infomlal _ Infomlatlon [__ State Models [',

'. Description 1"1 Flows 1"1 1/'

Figure 2 Different Development App roaches for WmATM Networks

When signaling protocol requirements are described only with text, they can lead to redundancies and

become cumbersome to read, understand and manage at the later stages. An attempt to solve these

problems is usually done following informal description by information flows (also known as sequence
diagrams or message sequence charts). However, they are only necessary for detailed design, when design

decisions about messages, parameters, data, and system components need to be taken. State models are
also suitable for later stages, since they demand full precision during the definition of each state and

underlying architecture. As a result, from the informality of the text to these formal models, a description

gap can be identified that leads to protocol inconsistencies and undesirable interactions at the later stages.
Even though flow charts are more adequate after informal descriptions to reduce this gap, they quickly

become difficult to manage due to the increasingly complexity involved in the description of architecture

and protocols of large systems such as WmATM networks. Besides this, information flows and flow
charts produce disjoint scenarios that can not be validated. Thus, completeness and consistency can only

be checked at the implementation stage.

3. THE PROPOSED DEVELOPMENT APPROACH

In order to overcome the problems mentioned earlier, this work proposes the combination of techniques

such as UCMs, LoTOS and MSCs in the system development process. The proposed approach splits this
process into a number of steps, called stages, each of which produces a more detailed view of the system.

By decomposing a system into manageable units, we are applying a strategy used by object- and function-
oriented software community when dealing with the complexity of large systems [11]. Besides this, we

are adding rigor to the approach by using formal techniques. Figure 3 depicts the proposed development

approach with requirements capture, analysis and design stages. Arrows show how these stages interact
and represent the relation dependency on. Several development cycles represent the gradual and iterative



characteristicsof theapproach.Sinceimplementationandtestingarenotconsideredfor ourwork,we
omitthesestagesin thefigure.

[

Requirements
_Ca2_m_reS_ta..ge__

AnalysisStage

DesignStage
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Bound Use Case Maps
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Design Model ]deLOTOS pends on

Scenario Model

Message Sequence
Charts

Figure 3 Proposed Development App roach

The requirements capture stage is the first input for the development of a system. The elicitation of

meaningful requirements identifies and documents what the system is supposed to do and which are the
main functions to be described. Use cases are used for most software community to describe the sequence

of events of an actor (an external agent) using a system to complete a process [19]. To avoid ambiguities

caused by narrative documents such as simple text or even textual use cases, these informal descriptions
are replaced by a requirements model developed with UCMs. Since the notation is informal and intuitive,

it is suitable for the early stages when the user needs are described in a high-level of abstraction and
designers are discussing about, visualizing and explaining the overall behavior of a system. For example,

at the beginning, when organizational structure details are not available, this visual technique describes

high-level scenarios in terms of causal relationships between responsibilities (called unbound UCMs).
The stub notation is used to hide functions that are detailed at the later stages.

Design decisions regarding which system component is responsible for a specific action, event or

transaction are taken during the analysis stage. The functional behavior is further investigated and
mapped to system components (part of the reference architecture). The analysis model is generated with

bound UCMs. Detailed descriptions about what the system does are represented in terms of UCM
notation: plug-ins, detailed responsibilities, detailed pre- and post-conditions.

Even though UCMs are supported by a drawing tool (the UCM Navigator) [20] and by a user group

[29], due to its informality, validation and verification techniques are not possible. Two formal methods
are included at the design stage, LoTOS [21] and MSCs [18], to describe how system components

communicate or interact in order to fulfill the analysis model. Details regarding data types, parameters

and exchange messages are introduced in a design model (behavior and reference architecture are
described with LoTOS) and successful and unsuccessful outcomes are shown in several MSCs (scenario

models).

LoTOS specifications represent a system prototype by describing temporal relations with externally
observable behavior. Abstract data types are also included in this formal technique. Details about LoTOS,

standardized by ISO, can be found in [21]. This FDT is supported by tools that offer ways of checking

completeness and consistency. For instance, LOtos LAboratory (LOLA) is a set of tools developed by the
Department of Telecommunication Engineering (ETSIT) of the University of Madrid [22] that includes: a

step-by-step executor, a tool for obtaining the labeled transition system, and a tool for testing.

MSCs [18], standardized by ITU-T, describe interactions between system components. Each MSC
represent exactly one scenario by focusing on the communication behavior of system components and

their environment through message exchanges. We use MSCs to represent the results of the LoTOS

validation and these scenarios are used as input to the implementation and testing stages. Recently, a



Lotos2MSCConverteris beingdevelopedby BernardStepien[25] in orderto generateMSCsdirectly
fromLoTOStraces.Thefirstversionisalreadyavailableandappliedtoourwork.

As a casestudy,we iterativeandgraduallyspecifyandvalidatea simplifiedWmATMnetwork
environment.The systembehaviorincreaseswith designeranduserneeds.Eachdevelopmentcycle
bringsmoredetailsregardingnewfunctionalrequirementsaswell asnewsystemcomponents.At the
beginning,mobilitymanagementaredescribed(developmentcycle1),followedby communicationand
handofffunctions(developmentcycle2 and3). Next sectionspresentthe descriptionof the system
functionalbehaviorandreferencearchitectureusingourapproach.
4. WmATM DESCRIPTION WITH USE CASE MAPS

This section presents the requirements capture and analysis stages of the proposed development approach
depicted in Figure 3. These models are based on the description of WmATM signaling protocols

presented in [5][6] as well as on our experience with wireless network standards [3][4]. By focusing on

the functional requirements with the UCM notation, firstly, it is possible to describe the whole scenario of
how the simplified WmATM network environment works. The system is decomposed in the following

functions: mobility (authentication, registration and de-registration), communication (connection

establishment and disconnection) and handoff functions. These functions are gradually described in terms
of sequential actions with unbound UCMs (the requirements model) followed by more details about the

system behavior and the addition of the reference architecture with bound UCMs (the analysis model).

We present the first development cycle related to mobility management functions. Scenarios related to the
other functions as well as exceptions (such as network failure, lack of network resources, database failure

and so on) are left to the next development cycles.

4.1. Requirements Model: Unbound UCMs

The whole behavior of the system and, consequently, the relationship among the functions mentioned
earlier are better understood by following the UCM flows shown in Figure 4. Based on the root map,

users and designers can discuss about early decisions regarding the sequence in which these functions are
performed. This map describes the system behavior that starts when a pre-condition is triggered, for

example, the user powers on a mobile station (filled circle labeled S). A stub (such as MM, HP and CM in

the figure) identifies places where details are delayed to a sub-UCM, called plug-in. The stub notation is
applied to our work not only to hide details, but also to decompose the system into small manageable

units. In this paper, we focus on the MM Stub to show the development approach step-by-step.

Communication management and handoff functions are not described for space limitation.

[ ]

S: Start (user powers on mobile station)

CM: Communication Management Procedures

HP: Handoff Procedures

MM : Mobility Management Procedures

[el]: [handoff inter-WmATM switches]

[a2] : [mobility management functions]

[a3] : [successful handoff]

[a4] : [A handoff failure aborts MM and CM sub-maps]

[a5] : [no communication is requested]

[a6] : [communication is requested]

[a7]: [(un)successful communication]

E1 : endHP (user powers off mobile station)

E2: endHFA (a failure has occurred)

E3: endCM (user powers off mobile station)

E4: endMM (user powers off mobile station)

Figure 4 WmATM Network Root Map: Unbound UCMs



This scenario ends with one or two of the following post-conditions: user powers off mobile station (bars

labeled El, E3 and E4) or a handoff failure occurs (bar labeled E2). A route is a path that links an initial

cause to a final effect. For example, <S, [a2], MM, E4> represents a route for registration followed by an

user powers off event. The zig-zag notation ([a5] path) exists to describe exception paths, however, we

propose its use also to describe synchronous interactions between stubs such as HP and CM (HP replaces

CM in case of handoff failure). Direction arrows help designers to visualize the UCM flow as in the HP

stub where an outgoing path returns to the same stub in order to trigger the plug-in. And-forks represent

composite UCMs that split a path into parts (sub-paths) that proceed concurrently ([al] and [a2] in the

figure). Or-joins represent composite UCMs that can be concatenated in only one path (represented by

[a3] joining [al], [a5] joining [a2], and [a7] joining [a6]). There is no level of concurrency associated with

OR-joins.

Figure 5 depicts the second level of the requirements model when mobility management procedures

are decomposed into small units represented by Auth and Update stubs in the Location Registration plug-

in bound to the MM stub in the root map. Alternative paths (called OR-forks) represent composite UCMs

that can be split into two different paths (no level of concurrency is associated with them). For instance, a

responsibility point (cross labeled cR in the figure) is activated along the [b2] path to decide whether the

mobile station is registered or not at the current location area. The alternatives sub-paths (labeled [b3] and

[b4]) are generated after this decision. Auth stub has two outgoing paths labeled [bl] and [b2] that

correspond to end points of the authentication plug-in (respectively, unsuccessful and successful

outcomes). The Update stub groups all the functions related to updating user information.

Leqend :
S' : Start
Auth : Authentication

Update: Location Updating
oR: check Registration
El': endUnsucAuth
E2': endUpdate
[bl],[b2]: [auth. Denied], [Auth. Success]
[b3],[b4]: [not Registered], [Registered]

Z:uth
l_[b21

¢cR

[b3] _[b4]

Update

m El' mm E2'

Figure 5 (a) Location Registration Pl ug-in for MM Stub

The main advantage of applying unbound UCMs when comparing with information descriptions is the

visual representation of the overall system behavior since the early development stages. Under such

circumstances, the system description becomes more readable and design decisions regarding to the

mapping of the reference architecture, exchanged messages and data types are easier to handle at the later

stages.

4.2. Analysis Model: Bound UCMs

At the analysis stage, the previous stubs are detailed with responsibility points along the paths that

identify actions, events, or operations on data items. Figure 6(a) details the Auth stub. First, the mobile

station processes the user authentication and sends the authentication result to the network (sI

responsibility). Then, the aAA responsibility performs the same authentication operation at the network

side. The cAR responsibility generates the successful or unsuccessful outcomes (respectively, E2" or

El" end points). In case of denied authentication, the mobile user is notified (nAD responsibility).

Otherwise, the network is notified (nN responsibility).

Figure 6(b) shows what happens inside the Update stub. For example, cL generates different

outcomes according to whether the mobile user is roaming or not. uP and uTP responsibilities are

operations on database items. Sub-paths labeled [cl] and [c2] are concatenated after the network is

notified (nN responsibility) about the successful operation.



S"Auth, S"Updt : Start

sh send Authentication Information
aAA: apply Authentication Algorithm
cAR: check Authentication Result
nAD: notify Access Denied
[cl] : [successful Authentication]
[c2] : [unsuccessful Authentication]
El"_t.: endUnsucAuth
E2"_t.: endSucAuth
cL: check Location
uP : update Home User Profile
uTP : update Visitor User Profile
nN : notify Network
[all] : [visiting location area]

[d2]: [home location area]
E2"upat: endUpdate

(a) Authentication (b) Update hffolmation

''. ,, 0 S"Updt

,,u_n _ ck

S] _daAA [ 2]

[c_-'_c2] _n'N'__nN

nN _ .... _ nAD

tzz Auth ._a_._ El"Auth _ g2,,Updt

Figure 6 (a) Authentication and (b) Update Information Plug-ins

Besides describing detailed scenarios as causal paths with new plug-ins bound to the stubs at this stage,

organizational structures of system components (represented by rectangular boxes as shown in Figure 7)

are added. For instance, WmATM components involved in the authentication and update information
functions, Mobile Stations, WmATM switch and Home and Visitor Databases are mapped to the unbound

UCMs described at the requirements model.

(a) Authentication

_ S"Auth

I _)_ SI IMobile Station
1

aAA
'_ cAR W_v_TM

[C_c2] Switch

.L
E2"Auth E1 ' 'Auth

(b) Update hlfonnation

S"updt

ck WmATM

tctl

I_ uP ,_. u_ iHom e

DatabaseVisit°r_ Database

....a.... E2' 'Updt

Figure 7 Bound UCMs: Authentication and Update Information Plug-ins

Related and Future Work. With the increasing popularity of the Unified Modeling Language (UML) for

modeling systems using object-oriented concepts, UCMs are currently being investigated as another UML
artifact to help the system development process. According to [2], UCMs can help to bridge the gap

between the use case model and the analysis and design models represented by behavioral diagrams

(sequence, state charts, and activity diagrams) in the UML. We intend to apply UCMs as an alternative
for the early stages of the function-oriented development process combined with a strong formal method

such as LoTOS and MSCs. In short, our approach brings more powerful tools to tackle the verification

problem (how can a designer solve a given problem systematically so that requirements are realized) in
large systems. Object-oriented analysis and design that are the subject of UML is one step further and it is
considered as future work.

Besides the comparison with UML, as a graphical notation, UCMs resembles petri nets at a first

sight, but many differences can be quickly perceived. For instance, use case maps are based on causality

events while petri nets are based on states or events. Also, semantics are not defined for UCMs, they are
often applied to the early stages of the development process to give a global picture of the system, they

are light-weight, easy to learn, and the underlying architecture can be also expressed using this notation.

On the other hand, petri nets have strict semantics, are rich in analysis methods, have automated tools that
are rigorous and soundness. Besides this, the latter is more appropriate to the design stage and more



feasible to be compared to formal languages like LoTOS and Specification and Description Language

(SDL). A mapping of UCMs to petri nets can be investigated as future work.

5. WMATM SPECIFICATION AND VALIDATION WITH LOTOS

At the design stage, a formal model is generated based on the bound UCMs described earlier. LoTOS has

many advantages to specify and validate complex and large systems. For example, different levels of

abstraction can be used to describe functional behavior at different development cycles, not to mention

the LoTOS ability of process instantiation and parallel composition to specify the system reference

architecture with the sequence of responsibilities defined previously at the requirements and analysis

models. LoTOS tools like the LOLA environment are available to automatically support validation and

verification methods. These methods allow the detection of design errors, inconsistencies and

incompleteness at the time the LoTOS specification is being developed.

Since the behavior and structure models are iterative and incrementally generated at the requirements

and analysis stages, the LoTOS specification becomes easier to develop. In addition, the gap between

stages is also reduced by moving from bound UCMs (such as Figure 7) to LoTOS processes and gates

shown in Figure 8. Even though the processes are derived from the UCM system components, design

decisions related to how they communicate through gates are not always straightforward and depend on

real interfaces and synchronization needs.

WirelessMobileATMNetwork

I
I

_ MobileStation

WmATMS witch

vlr wsh

Visitor Home

Database Database

to the ATM

Network
I

Figure 8 Graphical Representation of the LoTOS Specification Architecture

At the highest level of abstraction, the specification is composed of Wireless mobile ATM Network, ATM

Transmission Link (depicted in gray in the figure to differentiate from the processes described also as

UCM system components at the previous stages) and ATM Network processes. Wireless mobile ATM

Network includes mobile stations (originating and terminating sides), WmATM switches (same process for

previous and current WmATM switches), home databases (referred to Home Location Register - HLR in

the specification), and visitor databases (referred to Visitor Location Register - VLR) sub-processes.

These processes are synchronized through the following gates: ms_wsh, vlr_wsh, wsh_link, and

hit_link. ATM network process contains fixed stations and ATM switches connected through gate fs_sh

(not shown in the figure for lack of space). ATM transmission link process are added to this stage in order

to overcome a LoTOS limitation and provide the communication among WmATM switch processes

(through gate wsh_link) and among ATM switches processes (through gate sh_link). Gates e_ms and

e_fs provide the interaction of mobile and fixed stations with the environment (for simulation purpose).

Figure 9 depicts how theses processes synchronize through the gates (111represents the interleaving

operator and I[gate list]l the selective parallel operator). The use of these LoTOS operators allows process

synchronization and the ability to simulate and test the whole system behavior. Data types are designed to

guarantee information exchange among processes. In particular, each MobileStation is identified by its

identification number (user_A, user_B, and User_C in the figure), electronic serial number, random

variable, secret key (these identifiers are represented by info_A, info_B and info_C), home database

(hlr_l and hlr_2) and current zone (zone_l and zone_2). Each WmATM switch has its identification

(zone_l and zone 2 in the figure). HLR and VLR processes keep an identity and information about mobile
stations in a set of-database record (called HLRRecSet and VLRRecSet, respectively).



behavior

hide ms to wsh, vlr to wsh, hlr to link, wsh to link, fs to sh, sh to link in

(( WirelessMobileATMNetwork [e to ms, ms to wsh, wsh to link, vlr to wsh,

hlr to link] I I I ATMNetwork [e to fs, fs to sh, sh to link] )

I [wsh to link, sh to link, hlr to link] I

ATMTransmissionLink [wsh to link, sh to link, hlr to link] )

where

process WirelessMobileATMNetwork [e to ms, ms to wsh, wsh to link, vlr to wsh,

hlr to link]: exit :=

( (* users power on the mobile station *)

( MobileStation [e to ms, ms to wsh] (user_A, info_A, zone_l, hlr_l, 0)

I I I MobileStation [e to ms, ms to wsh] (user_B, info_B, zone_l, hlr_l, 0)

I I I MobileStation [e to ms, ms to wsh] (user_C, info_C, zone_2, hlr_2, 0) )

I [ms to wsh] I

((WmATMSwitch [ms to wsh, wsh to link, vlr to wsh] (zone i)

I [vlr to wsh] I VLR [vlr to wsh] (vlr_l, InitialVLRSetl) )

I I I (WmATMSwitch [ms to wsh, wsh to link, vlr to wsh] (zone 2)

I [vlr to wsh] I VLR [vlr to wsh] (vlr_2, InitialVLRSet2) ) )

I [hlr to link] I (HLR [hlr to link] (hlr i, InitialHLRSetl)

I I IHLR [hlr to link] (hlr 2, InitialHLRSet2) ) ) ...

Figure 9 Highest Level of Abstraction of the LoTOS Specification

The behavior of each process is first generated based on the sequence of UCM responsibilities (for
instance, from Figure 4, Figure 5, and Figure 7 to Figure 10). After that, both informal descriptions and

information flows presented in [5] and [6] are considered to add more details to the specification such as
data types and specific messages. During this stage, duplicate behavior and incomplete scenarios related

to the signaling protocols are detected and corrected using the simulation and testing Lola tools. For

example, in our specification the same procedure is used for connection establishment between two
mobile users as well as between mobile and fixed users minimizing duplicated behaviors. Also, more

unsuccessful scenarios are described, such as power off, handoff failure and disconnection (represented

by the [> disable operator). These scenarios happen at any time after the user powers on or the connection
establishment. Figure 10 depicts part of the behavior of the MobileStation process when a mobile user

powers on and authentication and update information plug-ins are triggered as shown in Figure 7.

process

myzoneid: ZonelDN, hlrid:DatabaseIDN, n: Nat) :exit :=

( _. e to ms !usrid ?czid:ZoneIDN; (* change location area *)

( [h(myzoneid) ne h(czid)] -> (* registration begins *)

( ms to wsh !usrid !czid !InitiateRegREQ;

ms to wsh !usrid !czid ?M:Message [h(M) eq h(InitiateRegCONF) ];

(* authentication process takes place *) _.

ms to wsh !usrid !czid !hlrid !r !AuthUserResult;

ms to wsh !usrid !czid ?M:Message;

( [h(M) eq h(AuthSuccess)] ->

MobileStation [e to ms, ms to wsh] (usrid, userInfo, czid, hlrid,

[] [h(M) eq h(AuthDenied) ] ->

_. MobileStation [e to ms, ms to wsh] (usrid,_.,czid, hlrid, n))))

[> e to ms !usrid !myzoneid ?M:Message[h(M) eq h(PowerOff)]; stop

>> MobileStation [e to ms, ms to wsh] (usrid, myzoneid, hlrid, 0)

endproc (* MobileStation *)

MobileStation [e to ms, ms to wsh] (usrid: UserIDN, userInfo: InfoIDN,

0)

Figure 10 Partial Behavior of the Mobi leStation Process

LOLA is a transformational and state exploration tool that supports execution and testing of LoTOS
specification. To do this, LOLA provides a set of tools that help designers to analyze the behavior of a

system before the implementation stage. The following tools are applied to our specification: simulation

or debugging that simulates the behavior step by step and evaluates data value expressions; and testing
that calculates the response of a system specification to a test according to testing equivalence. The one



expansiontransformationtool is alsousedto generatea file witha trace(onepossiblescenario).Next
sub-sectionpresentsMSC scenariosthat areautomaticallygeneratedfrom LoTOSvalidationtraces
containedin thesefiles.

6. SCENARIOS WITH MESSAGE SEQUENCE CHARTS

MSC is the favorite notation to describe scenarios of current systems and many basic sequence diagrams
are used at the early phases of the development of large systems, standards and to represent early behavior

model in object-oriented approaches. Nevertheless, these diagrams are static and disjoint, only one
sequence of events can be observed at once. Due to these characteristics, validation and verification

techniques are not possible and in [4], we propose their use as a complement of formal methods such as

LoTOS and SDL [16]. Recently, High-Level MSCs include control structures that can combine several
MSCs representing more than one scenario, however, they are not considered in our work. By adding

these scenarios to the proposed approach, we aim to represent the results of the LOLA validation
activities. Successful and unsuccessful MSC scenarios can be more readable and attractive than LoTOS

traces and they can be used for implementers to generate the protocols.

The generation of MSCs is done automatically with the Lotos2MSC converter tool. This tool uses a

configuration file that interprets the LoTOS traces and generates proper MSC scenarios. To make this
possible, the converter uses conventions and additional configuration information to decode a LoTOS

action and its elements (the sequence of values) to derive MSCs components, messages and parameters.
The converter restricts LoTOS capability of full-duplex communication through gates (no direction is

associated to the execution of LoTOS actions among processes) by demanding that gates represent

directions and components. Since LoTOS generic concept of action defines messages and parameters

implicitly in terms of abstract data types, as mentioned above, the tool can only recognize messages and
parameters when they are described in the LoTOS action. A direct mapping of LoTOS to MSC concepts

is not done due to LoTOS synchronization of many simultaneous actions in contrast to MSCs exchange of

messages between components. This converter also allows filtering specific LoTOS actions that the
designer wants to be displayed on the MSC graph using gate names as filtering criteria. More details
about this converter can be found in [25].

Figure 11 illustrates two disjoint scenarios that represent specific behaviors of the system in

conformance not only with the LoTOS specification (Figure 10) but also the bound UCMs (Figure 7(a)).

For sake of clarity, we represent WmATM switch process as current WmATM switch.

MobileStation ]

Change
Zone

InitiateRegREQ(us,

InitiateRegC ONe(

,,q

AuthUsrResult (use

AuthSuccess(usel

Current ]

WmATMSwitch]

_r A, zone 1)

lser A, zone 1)

r A, zone 1,hh" 1,r)

A, zone 1)

IMobileStation ]

Change
Zone

InitiateRegREQ(us_

InitiateRegC ONe((

AuthUsrResult (use

_.dAmhUnSuccess(u

Ctlrrent

WmATMSwitch

1" A, zone 1)

lser A, zone 1)

• A, zone 1,hh" 1,rl)

_er A,zone 1)

Figure 11 (a) Successful Authentication (b) Unsuccessful Authentication

By comparing these MSCs with some of the protocols presented in the literature, decisions such as the

authentication result initially being done at the MS side and also network side is clearer and guarantee
security through the air interface (more complete design). Also, details about parameters make the

implementation easier.

Due the popularity of sequence diagrams, most tools for formal methods bring options in how to
generate MSCs from the validation results. For instance, the SDL Development Tool set (SDT) and the

SPIN tool support the process of going from the formal design to MSCs. Work on providing the

requirements first in terms of sequence diagrams and then applying more formal verification techniques

such as the ones supported by the SPIN model checker [15] to these diagrams is presented in [14]. This
process is also a recent research interest for the SDL and LoTOS communities. We believe that these



solutionsaswellasourapproacharevaluableandleadto amoreeffectiveandattractivewayto designa
systemandpresentthevalidationandverificationresultsto usersanddevelopers.
7. CONCLUSION

Current development approaches for wireless mobile ATM (WmATM) networks describe all specific

information related to the signaling protocols at once. However, a good approach should iterative and
gradually add details during different development stages and life cycles, while checking for ambiguities,

inconsistencies, and undesirable interactions. In this context, the main contribution of this work is to
introduce the combination of different techniques at appropriate stages of the system development

process. As a case study, mobility, communication and handoff procedures for WmATM networks are

developed using the proposed approach.
In short, at the requirements capture stage, unbound Use Case Maps (UCMs) are used as first

scenarios by focusing on the causality relationship between responsibilities, without any concern about

components. At the analysis stages, system components and more behavior details are added to these
maps, generating bound UCMs. This notation provides a better human understanding of the system and it

helps network designers to produce descriptions of the requirements more legible as well as facilitates the

system development and maintenance. At the design stage, a formal specification is developed with
LoTOS adding rigor to the approach and many possible behaviors are described concurrently with details

such as data types, parameters and specific events. A set of LoTOS tools assures the completeness of the
system and verifies correctness and consistency properties. MSCs scenarios are automatically generated

from the results of the LoTOS validation in order to facilitate future protocol implementation.

The proposed approach improves the existing current development process for wireless mobile ATM

networks in different ways as follows: by achieving a better model, by helping human understanding and
by reaching technical quality with the formal specification for future maintenance. Using our approach,

inconsistencies of parameters and incompleteness of the informal description are detected and corrected.

In addition, the UCM technique can reduce the gap between early and later stages. Our results also intend
to show how the combination of informal and formal techniques at the appropriate development stages

can really aid designers on generating good systems, ready to be reused and easy to maintain and add new
features.

The motivation for choosing WmATM networks resides in their under development status and also

the amount of information available about the signaling protocol alternatives. This makes feasible to
produce the design prototype with the proposed approach. Our approach can also be applied to other

wireless mobile communication systems. The Ottawa University LoTOS Group has successfully applied

LoTOS to the specification and validation of mobile network standards, such as Global System for
Mobile Communication (GSM) [27], and UCMs to the description of Wireless Intelligent Network

standards [26] as presented in [3]. Currently, the combination of these techniques is being one of the main
research topics of our group.
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Abstract

This paper describes two separate efforts that used the

SPIN model checker to verify deep space autonomy flight

software. The first effort occurred at the beginning of a

spiral development process and found five concurrency

errors early in the design cycle that the developers ac-

knowledge would not have been found through testing.

This effort required a substantial manual modeling effort

involving both abstraction and translation from the pro-

totype LISP code to the PROMELA language used by

SPIN. This experience and others led to research to ad-

dress the gap between formal method tools and the de-

velopment cycle used by software developers. The Java

PathFinder tool which directly translates from Java to

PROMELA was developed as part of this research, as well

as automatic abstraction tools. In 1999 the flight software

flew on a space mission, and a deadlock occurred in a
sibling subsystem to the one which was the focus of the

first verification effort. A second quick-response "clean-

room" verification effort found the concurrency error in a

short amount of time. The error was isomorphic to one

of the concurrency errors found during the first verifica-

tion effort. The paper demonstrates that formal methods

tools can find concurrency errors that indeed lead to loss

of spacecraft functions, even for the complex software

required for autonomy. Second, it describes progress in

automatic translation and abstraction that eventually will

enable formal methods tools to be inserted directly into

the aerospace software development cycle.

1 Introduction

Complex concurrent software is difficult to debug and

even more difficult to test with adequate coverage. With

the increasing power of flight-qualified microprocessors,

NASA space enterprises are experimenting with a new
generation of non-deterministic flight software that pro-

vides enhanced mission capabilities. A prime example is

the Remote Agent (RA) autonomous spacecraft controller

developed at NASA. In May 1999, the RA was success-

fully demonstrated in flight on Deep Space 1 (DS-1), the

first flight of NASA's experimental New Millennium pro-

gram. The RA is a complex, concurrent software system

employing several automated reasoning engines using ar-

tificial intelligence technology. The verification of such

complex software is critical to its acceptance by science

mission managers.

This paper describes formal methods verification ef-

forts for one of the three subsystems of the RA - specifi-

cally, the RA Executive, which provides operating-system

level capabilities for goal-directed software. Two differ-
ent verification activities were conducted, before and af-

ter flight, using different technologies and in very differ-

ent contexts. As such, this paper provides two succes-

sive snapshots of progress towards making formal meth-
ods verification cost-effective.

In 1997, while the RA was still in the development

stage, we modeled and verified a subset of the core ser-

vices of the RA Executive using the SPIN [10] model

checker. That verification unveiled several concurrency



bugsthatwereacknowledgedbyRAExecutivedevelop-
ers[7].

Asa resultof thiseffort,it wasdecidedto develop
modelcheckingtechnologyforamainstreamprogram-
minglanguageinordertoreducetheamountoftimespent
onmodelingthebehaviorofprogramsinSPIN.Theresult
wasatranslator,calledJavaPathFinder,fromJavatothe
modelinglanguagePROMELAof SPIN.In addition,a
toolwasdevelopedforabstractingJavaprogramstore-
ducetheirstatespace,makingmodelcheckingtractable.

Then,duringtheactualRAexperimentin1999,adead-
lockoccurredwithinlessthan24hoursofoperation.Al-
thoughtheproblemwaspromptlyidentifiedandcircum-
ventedbytheDS-1team,wetookthechallengeof try-
ingtodiagnosetheerrorinafast-response"cleanroom"
experiment1.Afterisolatingasuspiciouspartofthepro-
grambyvisualinspection,wemodeledit inJava,andthen
usedJavaPathFindertoexhibitaconcurrencyerrorthat
indeedturnedouttobetheonethathadoccurredinflight.

Onekeyobservationof thesetwosuccessiveexperi-
mentsis thattheerrorthatcausedthedeadlockis ex-
actlyisomorphictooneofthosefoundusingSPINtwo
yearsbeforeinanotherpartofthecode.It isaconcur-
rencyerror,whoseactivationdependsonaprioriunlikely
schedulingconditionsbetweenconcurrenttasks.Infact,
thiserrordidnotappearinover300hoursofsystem-level
testingonJPL'sflightsystemtestbed.Theconditionsun-
derwhichit occurredinflightwerenotanticipatedduring
testing.Aprincipalbenefitofmodelcheckingtechnolo-
giesis tobeabletoexhaustivelycoverschedulingalter-
natives.Thispapergivesacompellingillustrationofhow
modelcheckingfoundanerrorthatwasaprioriunlikely
butdidactuallyoccur.Italsodiscussesgapsbetweenpre-
viousformalmethodtoolsandrequirementsformaking
themeasilyaccessibleto systemdevelopersfor 'in the
loop'verification.Technologicaladvancestowardsnar-
rowingthisgaparedescribedin thecontextoftheRA
verification.

Section2describestheRAexperiment.Section3de-
scribestheverificationeffortbeforeflight,whileSection
4 describestheverificationeffortafterflight.Thesec-
tionalsopresentsJavaPathFinder.Section5 describes
theJavaabstractiontool,andfinally,Section6containsa
conclusion.

1By "dean room" we ale l_ferring to the fact that, while the vefifica

tion was post facto, the team had no interaction with the actual debug

ging team.

2 The Remote Agent Experiment

To prepare for space exploration programs of the next

decades within a reduced budget, NASA has set up the

New Millennium program: a series of technology vali-

dation flights whose objective is to accelerate the quali-

fication for flight of new spacecraft technology. One of

the objectives of the New Millennium program is to in-
crease spacecraft autonomy, moving from the low-level

control sequences currently in use towards mission-level

planning and autonomous health monitoring and recov-

ery.
Deep Space 1 (DS-1), the first New Millennium Mis-

sion, was launched from Cape Canaveral on October 24,

1998 and ended its primary mission in September 1999

(it is still operating and is on its way for a comet en-

counter in 2001). During that mission, it successfully

tested 12 cutting-edge technologies such as ion propul-

sion, on-board optical navigation, and the AI-based Re-

mote Agent, marking the first operational use of artificial

intelligence during space flight.

In its initial design, the RA Experiment (RAX) on DS-

1 consisted of a short, limited 12-hour scenario designed

to gain confidence in the RA, followed by a complete

6-day scenario that was the full RA test. Later, the ex-

periment had to be compressed into a single 2-day sce-
nario, to accommodate external mission constraints. The

original scenarios were designed to cover a formal list

of validation objectives. To protect the main DS-1 mis-
sion from possible misbehaviors of RA, the design in-

cluded a "safety net" that allowed the RA experiment to

be completely disabled with a single command, issued ei-

ther from the ground or by on-board fault protection.

The RA went through a thorough qualification process

before being allowed to run on DS-1. Though some for-

mal verification tasks, such as the one reported here, were

performed as feasibility studies, the formal qualification

process relied on more conventional testing approaches.

However, since the RA was a flight experiment, and not

flight software, it was not subjected to the testing stan-
dards of the latter.

This section is a short summary of the flight qualifica-

tion and experience of the RA [2, 13].

2.1 Remote Agent

The RA is an autonomous spacecraft controller developed

by NASA Ames conjointly with the Jet Propulsion Labo-

ratory (JPL) [12]. It comprises three components:



• ThePlannerandScheduler(PS)[11]generatesflex-
ibleplans,specifyingthebasicactivitiesthatmust
takeplace.Givenamissiongoal,it producesse-
quencesoftasksforachievingthisgoalusingavail-
ablesystemresources.

• TheSmartExecutive(EXEC)[14]receivestheplan
fromthePlanner/Schedulerandthencommands
spacecraftsystemstotakethenecessaryactionsto
achieveandmaintainthespecifiedspacecraftstates.

mostlikelyoff-nominalvariantswererunonmedium-
fidelitytestbeds,whileonlynominalscenariosandcer-
tainperformanceandtimingrelatedtestswereperformed
onhigh-fidelitytestbeds.Thefinalstagewasapairof
"dressrehearsal"operational readiness tests (ORTs), in-

volving actual communication with the mission control

center. The bulk of the problems identified during testing

were fotmd with the low-fidelity testbeds. The ORTs only

identified minor shortcomings that were resolved prior to

flight.

• The Mode Identification and Recovery component

(MIR), called Livingstone [16], monitors the state

of the spacecraft, detects and diagnoses failures and

suggests recovery actions to the Executive.

The Executive subsystem is the focal point of the verifi-
cation work discussed in this article. It combines features

of multi-threaded operating systems with aspects of AI

languages based on sub-goaling, such as Prolog. It is con-

ceptually composed of three layers: a set of core services

that implement a robust operating system for executing

concurrent tasks, a set of engine modules including a plan

runner, and a set of mission-specific task programs. The
Executive schedules the execution of concurrent tasks. It

also monitors a set of properties associated with system

resources, and takes recovery actions on property viola-

tions. The Executive is written in a multi-threaded LISP,

using a set of LISP macros called the Executive Sequenc-

ing Language (ESL) developed at JPL.

2.2 Testing the Remote Agent

Because autonomous systems such as the RA need to re-

spond robustly in a wide range of situations, verifying that

they respond correctly in all situations would require a

huge number of test cases. Furthermore, these tests ide-

ally have to be run on high-fidelity testbeds that are highly

oversubscribed, hard to configure, and, running at real

time speeds, take hours or days for a single run.

To address these problems, the RAX team followed a

"baseline testing" approach, starting from nominal sce-

narios and testing a number of nominal and off-nominal
variations around these scenarios. A wide range of varia-

tions were run on more available and faster low-fidelity

testbeds, leading to the identification and resolution of

100-200 bugs during 18 months. An automated test-

ing tool was designed for this purpose. Some of the

2.3 Remote Agent in Flight

On Monday, May 17th, 1999, 11:04 am PDT, a telemetry

packet confirmed that the RA had taken control of DS-

1. The scenario went on smoothly, achieving 70% of the

objectives, until Tuesday 7:00 am, when it became appar-

ent that a command had not been executed as expected

by the RA. The RA Executive was blocked, although the

rest of the RA and the spacecraft were otherwise healthy.

The Executive's low-level commands were used to gather

a maximum of information, and then the experiment was

interrupted.

By late Tuesday afternoon, the RAX team had found

the source of the problem in the Executive code. They

designed a 6-hour scenario that was run on Friday morn-

ing and went successfully through the remaining 30% of

the objectives. A patch was also generated, but the DS-1

mission decided not to uplink it, considering the insuffi-

cient testing of the patch and the very low probability of

the problem recurring.

The blocking was due to a missing critical section
that had lead to a race condition between two concurrent

threads. Under some very precise and unlikely timing cir-

cumstances, both threads could end up in a deadlock con-

dition in which each one was waiting for an event that

only the other one could provide, which is exactly what

happened in flight.

3 Formal Analysis Before Flight

In April-May 1997 we analyzed part of the RA Executive

using the SPIN model checker [7]. This effort lead to the
discovery of five errors in the LISP code which are de-

scribed below. As discussed in Section 4.3, one of these

errors is isomorphic to the error that actually occurred

during flight, causing a deadlock. First we give a short de-

scription of SPIN and its modeling language PROMELA.



ThenweexplainhowaPROMELAmodelwasextracted
fromtheLISPcode,andhowpropertieswerestatedand
verifiedinthemodel,leadingtothediscoveryofthefive
errors.Weconcludewithadiscussionofthemethodology
thathasbeenfollowed.

3.1 The SPIN Model Checker

SPIN [10] is a tool for analyzing the correctness of fi-

nite state concurrent systems with respect to formally

stated properties. A concurrent system is modeled in

the PROMELA modeling language, and properties to be

verified are formalized as assertions in the program or

as formulae in the temporal logic LTL (Linear Temporal

Logic). SPIN provides a model checker, which automat-
ically examines all program behaviors in order to decide

whether the PROMELA program satisfies the stated prop-

erties. In case a property is not satisfied, an error trace

is generated, which illustrates the sequence of executed
statements from the initial state to the state that violates

the property. These error traces can then be executed in
a simulator. The set of states reachable from the initial

state must be finite in case a property needs to be proven

correct for the whole state space.

A PROMELA program consists of a set of sequential

processes that communicate via message passing through
bounded buffered channels and via shared variables. Pro-

cesses can be created dynamically. The behavior of an

individual process is described using the statement lan-

guage which provides many standard constructs such as

variable assignments, channel commtmications, loops,

conditionals, and sequential composition. Variables are

typed, where a type can either be primitive, such as in-

teger, or composite in the form of arrays and records.

PROMELA provides inline procedures, which is a lim-

ited notion of procedural abstraction that is implemented

via macro expansion.

Each process represents a finite automaton, and the

global behavior of the system is then obtained by comput-

ing on-the-fly an asynchronous interleaving product of all

these automata, creating the global state space. To per-

form model checking, SPIN translates (the negation of)

any LTL formula into a Btichi automaton, and computes
the synchronous product of this and the global state space.

The result is again a Btichi automaton. If the language of

this automaton is empty it means that the formula is sat-

isfied. SPIN searches the state space depth-first, creating

the states on-the-fly. A partial-order reduction technique

is used to prune the set of transitions to be explored.

3.2 Creating a PROMELA Model

The modeling activity focused on the core services of the

plan execution module. The RA Executive core is de-

signed to support execution of software-controlled tasks

on board the spacecraft. A task often requires specific

properties to hold during its execution. When a task is

started, it first tries to achieve the properties on which it

depends, after which it starts performing its main func-

tion. Several tasks may try to achieve conflicting proper-

ties; for example, one task may try to turn on a camera

while another task tries to turn it off. To prevent such

conflicts, a task has to lock in a lock table any property

it wants to achieve. Once, a property is locked, it can be

achieved by the task locking the property.

Properties may, however, be unexpectedly broken

while tasks depending on them are executing. A property
is defined as broken when it is locked in the lock table by

some task, has been achieved (an extra boolean field in

the lock table), but for some reason falls to hold on board

the spacecraft. For the purpose of detecting which prop-

erties hold on board, a database is maintained of all prop-

erties being true at any time. Hence, an inconsistency can

be detected by relating the lock table with the database.

Tasks depending on a broken property must be interrupted

and informed about the anomaly. For this purpose, a dae-

mon monitors the changes on board the spacecraft, and in

particular the consistency between the lock table and the

database. The daemon is normally asleep, but is awak-

ened whenever there is a change in the lock table or the

database, where upon it checks their consistency.

The PROMELA model focuses on operations on the

lock table. Hence, it is an abstraction of the LISP pro-

gram, omitting details irrelevant for the lock table opera-

tions. The LISP program is approximately 3000 lines of
code while the PROMELA model is 500 lines of code.

Furthermore, the model only deals with a limited number

of tasks and properties in order to limit the search space

the SPIN model checker has to explore. Most abstrac-

tions were made in an informal manner without any for-
mal proofs showing that bugs are maintained. Hence, in

the abstraction phase we may have left out errors in the

LISP code. However, all the errors we found in the model
were also errors in the LISP code.

To give an idea of the modeling, we show how the dae-

mon was translated, since it was the daemon that con-



(defun daemon ()

(loop

(if (check-locks)

(do-automatic-recovery))

(unless

(changed?

(+ (event-count *database-event*)

(event-count *lock-event*)))

(wait-for-events

(list *database-event*

*lock-event*)))))

Figure 1: Daemon in LISP

tained the error pattern which also occurred during flight,

and which was found using the model checker. The actual

LISP code describing the behavior of the daemon is given

in Figure 1.

The daemon goes through a loop, where in each itera-

tion it checks the lock table, comparing it to the database,

and recovers any inconsistencies that may be detected (if

the check-locks function returns true). After that, it

goes to sleep by calling the wait-for-events func-

tion, which as parameters takes a list of events to walt

for. Whenever one of these events is signaled, i.e. the
database or the lock table is modified, the daemon will

wake up and continue.

In order to catch events that occur while the daemon is

executing, each event has an associated event counter that

is increased whenever the event is signaled. The daemon

only calls wait- for-event s in case these counters have

not changed, hence, there have been no new events since
it was last restarted from a call of wait-for-events.

The PROMELA model of this LISP code is presented

in Figure 2. The if-construct decides whether the daemon

should stop and wait for a new database event or lock
event to occur (call of wait_for_events), or whether
it should continue for another iteration. Another itera-

tion is needed if a database event or a lock event has oc-

curred since the daemon was restarted last time; that is, in
case the event counter event_count differs from the sum

of the event counters for the database and lock events.

If there is a difference, it means that there has been an

event since the last time event_count was updated, and

the daemon must perform another iteration before calling

wait_for_events, first updating event_count to hold
the new event counter sum.

proctype daemon(Taskld this) {

byte event count = 0;

do

:: check_locks_and_recover;

if

:: (Ev[DATABASE_EVENT] .count +

Ev[LOCK_EVENT] .count

== event count )

->

wait for events(this,

DATABASE_EVENT,LOCK_EVENT)

:: else ->

event count =

Ev[DATABASE_EVENT].count +

Ev[LOCK_EVENT] .count

};

fi

od

Figure 2: Daemon in PROMELA

3.3 Stating and Verifying Properties

The model was analyzed with respect to the following

two properties, here expressed informally. The release

property reads: "A task releases all of its locks before it
terminates". The abort property reads: "If an inconsis-

tency occurs between the database and an entry in the

lock table, then all tasks that rely on the lock will be ter-

minated, either by themseh,es or by the daemon in terms

of an abort". The release property was formulated by in-

serting an assertion in the code at the end of each task.
This assertion stated that all locks should be released at

this point. The second property was stated as a linear tem-

poral logic property of the form:

[] (propertyJoroken -> <>tasks_informed)

This property says: whenever a property is broken,

then eventually all tasks depending on this property will

be informed about it (in fact terminated). The names

propertyJoroken and tasks_informed are macro

names standing for predicates on the state space.

The attempted verification of the two properties led to

the direct discovery of five programming errors - one

breaking the release property, three breaking the abort
property, and one being a non-serious efficiency problem
where code was executed twice instead of once. The first

four of these errors are classical concurrency errors in the

sense that they arise due to processes interleaving in un-

expected ways.



Theerrorwewanttofocusoninthispresentationisthe
oneisomorphicto theRAXanomaly.Theerrorcaused
theabortpropertytobeviolated.Theerrortracegener-
atedbySPINdemonstratedthefollowingsituation.The
daemonispromptedtoperformacheckofthelocktable.
It findseverythingconsistentandcheckstheeventcoun-
terstoseewhethertherehavebeenanyneweventswhile
it hasbeenrunning.Thisisnotthecase,andthedaemon
thereforedecidestocallwait-for-events. However,
atthispointaninconsistencyis introduced,andasignal
issentbytheenvironment,causingtheeventcounterfor
thedatabaseeventto beincreased.Thisisnotdetected
bythedaemonsinceit hasalreadymadethedecisionto
wait,whichit thendoes,andtheinconsistencynowisnot
discoveredbythedaemon.Oursuggestedsolutionatthe
timewastoenclosethetestandthewaitwithinacritical
section,whichdoesnotallowschedulinginterruptstooc-
curbetweenthetestandthewait.Furthermore,twoother
flawedcodefragmentsviolatedtheabortproperty.

Thereleasepropertywasviolatedin thesensethat
locksdidnotalwaysgetreleasedbyatask.Theerrortrace
generatedbySPINdemonstratedthatduring a task's re-

lease of a lock, but before its actual release, the task may
get interrupted by the daemon if the property gets broken.

This means that the task terminates without releasing the

lock. The error is particularly nasty in the sense that all

code, except the lock releasing itself, had been protected

against this situation: in case of an interrupt the lock re-

leasing would be executed.

The model was verified exhaustively using SPIN's

partial order reduction algorithm and state compression.

Typically between 3,000 - 200,000 states were explored

in the different models, using between 2 - 7 Mb of mem-

ory, and using between 0.5 - 20 seconds.

3.4 Discussion of Methodology

The verification effort has been regarded by all involved

parties as a very successful application of model check-

ing, and of SPIN in particular. According to the RA pro-

gramming team, the effort has had a major impact, lo-

cating errors that would probably not have been located
otherwise, and identifying a major design flaw.

The modeling effort, i.e. obtaining a PROMELA

model from the LISP program, took about 12 man weeks

during 6 calendar weeks, while the verification effort took

about one week. The modeling effort consisted concep-

tually of an abstraction activity combined with a trans-

lation activity. Abstraction was needed to cut down the
program to one with a reasonably small finite state space,

making model checking tractable. Translation, from LISP

to PROMELA, was needed to obtain a PROMELA model

that the SPIN model checker could analyze.

The abstraction was done without any knowledge about

the properties to be verified, since these were stated later.

The abstraction maintained important operations on the

lock table and ignored most other details of the orig-

inal LISP program, hence, a kind of program slicing.

No formal attempt was made to show that the abstrac-

tions preserved errors. It is interesting that such an ad

hoc approach still was extremely effective. The transla-

tion phase was non-trivial and time consuming due to the

relative expressive power of LISP when compared with
PROMELA.

Based on these observations, two research efforts were

initiated that should make application of model checking

within the software development cycle less resource de-

manding. In one effort a translator from the Java pro-

gramming language to PROMELA has been developed;
see Section 4.2. In another effort, an abstraction tool

has been developed, which can perform so-called predi-

cate abstractions on Java programs; see Section 5. Both

tools have been applied in the verification of the RA as

described in the following.

4 Formal Analysis After Flight

Shortly after the anomaly occurred during the Remote

Agent Experiment, on Tuesday May 18, the ASE team

at NASA Ames heard that something had broken down

in the RA while it was in control of the spacecraft and

offered their help to the RAX team. On Friday morning,

after a few emall exchanges, the RAX team provided ac-
cess to the source code of the Executive, without identi-

fying where the error was, and offered the ASE group the

challenge of seeing "how long it would take for formal

methods to come up with it".

On Friday afternoon, we decided to run a "clean room"

experiment to determine whether or not the technology

currently used and under development in the group couM

have discovered the bug before it actually happened. At
that time, we knew that debugging information collected

from the spacecraft had enabled the DS- 1 team to identify

the bug and continue the experiment, and that the failure

had something to do with a "handshaking" communica-

tion between a Planner process and an Executive process.



Otherthanthesemessageswehadnofurtherinformation,
andnooneintheASEgrouphadanycontactwithRAX
personnelduringthatweek.

Thissectionfirstdescribeshowtheexperimentwas
conducted.ThentheJavaPathFindertranslatorthatwas
usedtomodelchecktheflawedcodeisdescribed.This
is followedbyadescriptionoftheerrorandhowit was
foundusingJavaPathFinder.Weconcludewithadiscus-
sionofthemethodologythathasbeenfollowed.

4.1 The Clean Room Experiment

To make this clean room experiment credible, we de-

cided that we would need to complete this exercise over

the weekend, prior to the return of the RAX team from

the DS-1 mission control at JPL the following Monday.

This was both to avoid undue influence by people fa-

miliar with the details of the bug, and also to meet the

"short-turnaround" challenge, mimicking what would be

required if we were actually called on to provide "on-line"
assistance.

The experiment was set up as follows. A front-end

group would try to spot the error by human inspection,

or at least identify problematic parts of the code. On the

basis of that, it would extract a more or less self contained

portion of the code containing the problematic code por-

tions, of a tractable size for a model checker. This ex-
tracted code would then be handed over to the back-end

group without any hints as to what could be the error. The

back-end group would then try to locate the error using

model checking. The situation was comparable to some-

one doing visual inspection of code, and finding suspect

sections which he wanted to explore further.

The front-end team began perusing the code on Fri-

day afternoon, and extracted roughly 700 lines containing

questionable code 2. The full group met again on Satur-

day afternoon, and the front-end team gave the back-end

team the extracted code. In accordance with the design of

the experiment, they did not tell where the suspected bug

was, but they briefed the back-end team on the control and

data structures of the extracted code. The back-end group

spent most of the time understanding that code in order to

model it, and on Sunday morning came out with a fairly

abstract model of the suspicious code. That model was
written in Java and verified with the Java model checker

Java PathFinder, as described below. It reported a dead-

2Though they wele not sine that they had indeed captmed the con
Clll]_ncy elTor,

lock, which turned out to be the one that had happened in
flight five days before.

4.2 The JPF Translator

Java PathFinder (JPF) [8, 6] is a translator from a non-

trivial subset of Java to PROMELA. Given a Java pro-

gram, JPF translates this into a PROMELA program,

which then can be model checked using SPIN. Java is an

object-oriented programming language with a built-in no-

tion of threads. Objects are instantiated dynamically from

classes, which can be defined using single class inheri-

tance. Threads, which are special objects with an activity,

can communicate by making calls to methods defined in

shared objects. Such methods can be defined as synchro-

nized, thereby turning these shared objects into monitors,

allowing only one thread to operate in the object at a time.

In the default mode, the SPIN model checker will find

any deadlocks present in the Java program. Such dead-

locks can occur when several threads compete for access

to the monitors. Properties can also be formulated explic-

itly by the user, either as assertions in the program, or as

linear temporal logic formulae. That is, a Java program

can be annotated with assertions written as calls to a spe-
cial assert method which takes a boolean argument ex-

pression over the variables in the Java program. Any such

call is translated into a corresponding PROMELA asser-

tion, which will then be checked during the state space

exploration whenever reached. Finally, SPIN's own lin-

ear temporal logic can be used to formulate properties

over the Java program's static variables (a static variable

in Java is defined within a class, but is only allocated once,

and hence is shared between all objects of the class).

A significant subset of Java is supported by JPF: dy-

namic creation of objects with data and methods, static
variables and static methods, class inheritance, threads

and synchronization primitives for modeling monitors

(synchronized statements, and the wa±t and rzotS_sy

methods), exceptions, thread interrupts, and most of the

standard programming language constructs such as as-

signment statements, conditional statements and loops.

The translator is written in 6000 lines of LISP, and was

developed over a period of 8 months. JPF has been ap-

plied to a number of case studies, amongst them a 1500
line game server [9], a NASA file transfer protocol for

satellites, and a NASA data transmission protocol for the

space shuttle ground control.

A related attempt to provide model checking technol-



ogyforJavaisdescribedbyDemartiniet.al.[5],which
alsotranslatesJavaprogramsintoPROMELA.However,
theirapproachdoesnothandleexceptionsorpolymor-
phismasdoesJavaPathFinder.In anotherrelatedap-
proach,Corbett[4]describesatheoryoftranslatingJava
toatransitionmodel,makinguseofstaticpointeranaly-
sistoaidvirtual coarsening, which reduces the size of the
model.

4.3 The RAX Error

The suspected and eventually confirmed error was a miss-

ing critical section around a conditional wait on an event.

The relevant piece of code (anonymized for confidential-

ity purposes) is shown in Figure 3.

(loop

(when

*I*) (or (/= count (esl::event-count eventl))

*2*) (warp-safe (wait-for-event eventl)))

(serf count (esl::event-count eventl))

*3*) (signal-event event2)))

Figure 3: The RAX Error in LISP

This is the body of one of the concurrent tasks and con- }
sists of a loop. The loop starts with a when statement

whose condition is a sequential-or statement 3 that states:

if the event counter has not been changed ('7 *), then

wait ('2 *), else proceed. This behavior is supposed to

avoid waiting on the event queue if events were received

while the process was active. However, if the event oc-

curs between (*3_*) and ('2"), it is missed and the pro-

cess goes asleep. Because the other process that produces

those events is itself activated by events created by this

one in (* 3 *), both end up waiting for each other, a dead-
lock situation.

This follows a similar pattern to the code shown in Fig-
ure 1 that had been identified as a source of error during }

the verification of the Executive in 1997, as described in

Section 3.3. This similarity was spotted by members of

both the front-end and back-end teams, and contributed

greatly to narrowing down the verification effort to this

particular potential problem.

3(or X Y)isevaluatedltkeif x then true else Y.

4.4 Demonstrating the Error with JPF

The modeling focused on the code under suspicion for

containing the error. The major two components to be

modeled were events and tasks, as illustrated in Figure 4.

The figure shows a Java class Event from which event

objects can be instantiated. The class has a local counter

variable and two synchronized methods, one for waiting

on the event and one for signaling the event, releasing all

threads having called wait_for_event. Note how the

counter is incremented by signal_event in order to al-
low the tasks to check whether new events have arrived.

The increment is modulo 3 in order to reduce the state

space to be searched by the model checker. This is an in-

formal abstraction in the sense that it has not been proven

to preserve errors. Section 5 explains how an alternative

counter abstraction for this program can be made and au-

tomatically proved correct.

class Event{

int count = O;

public synchronized void wait_for_event(){

try{wait() ;}catch(InterruptedException e){};

}

public synchronized void signal_event(){

count = (count + 1) % 3;

notifyAll() ;

}

class FirstTask extends Thread{

Event eventl,event2;

int count = 0;

public void run(){

count = eventl.count;

while(true){

if (count == eventl.count)

eventl.wait_for_event() ;

count = eventl.count;

event2.signal_event() ;

}
}

Figure 4: The RAX Error in Java

Figure 4 also shows the definition of one of the tasks.

This is an abstraction (in Java) of the LISP code pre-

sented in Figure 3. The task's activity is defined in the

run method of the class FirstTask, which itself ex-



tendstheThread class, a built-in Java class that sup-
ports thread primitives. The body of the run method

contains an infinite loop, where in each iteration a con-
ditional call of wait_for_event is executed. The con-

dition is that no new events have arrived, hence the event

counter is unchanged. After having applied JPF, the SPIN
model checker revealed the deadlock situation described

in Section 4.3. In the Java context a new event arrived af-

ter the test (count == eventl, count), but before the
callevent I.wait_for_event ().

4.5 Discussion of Methodology

The formal analysis of the Executive after the occurrence

of the anomaly was preceded by a code inspection, which

identified the possible source of the error. Some of us

spotted the potential error situation because it resembled

the similar error we had found using SPIN in 1997, as de-

scribed in Section 3.3. Due to the focus on the particular

code fragment, it was relatively easy to perform the ab-

straction needed to extract a Java program with a small

finite state space. This took about two hours. However,

the suspicion was only a suspicion, and a demonstration

that the code was flawed was provided using JPE This

showed the usefulness of using a model checker to an-

swer focused queries.

Since the original source code was in LISP, we still

had to translate it by hand in Java, which goes against

JPF's intended purpose. To avoid that, one would need
an abstraction tool and a translator for LISP. Since LISP's

future within NASA is questionable we have focused on

providing these technologies for Java. Java is a very con-

venient modeling language, providing most of the high

level features of the powerful Common LISP Object Sys-

tem (CLOS), such as dynamically created objects with

methods and data. The major experience with all ex-
periments done with JPF are obviously that a non-trivial
amount of abstraction is needed in order to reduce the size

of a program's state space. This problem is addressed in
Section 5.

5 An Abstraction Tool for Java

As a part of the JPF project, we have been developing

an automated abstraction tool which converts a Java pro-

gram to an abstract program with respect to user-specified

abstraction criteria. The user can specify abstractions by

removing variables in the concrete program and/or adding

new variables (currently the tool supports adding boolean
types only) to the abstract program. Given a Java pro-

gram and such abstraction criteria, the tool generates an

abstract Java program in terms of the new abstract vari-

ables and uuremoved concrete variables. To compute the

conversion automatically, we use a decision procedure,

SVC (Stanford Validity Checker), which checks the va-

lidity of logical expressions [1].

The abstraction tool is designed to deal with object-

oriented programs. The user can specify abstraction cri-

teria for each class by removing field variables in the class

and/or adding new abstract variables to the class. There-

fore, it can be used to abstract subcomponents in a pro-

gram when the whole program is too complicated to ap-

ply abstraction globally. In addition, the user can specify

new abstract variables which depend on variables from

two different classes (inter-class abstraction).

There has been similar work by others [3, 15], all of

which require use of only global variables to describe

a system in simple languages similar to guarded com-

mands. However, our tool targets a real programming lan-

guage Java and is able to deal with many problems caused

by its object-orientation.

5.1 Application of the Tool to the RA

As we do not have enough space in this paper for a de-

tailed explanation of the abstraction algorithm, let us il-

lustrate the abstraction performed by the abstraction tool

on a part of the RA Java code shown in Figure 4. As

stated before, state explosion occurs because of the un-
bounded increase of the count variable in the Event class

(in the original LISP code) and the assignment of the

count variable in the FirstTask class (as well as in

the SecondTask class which is not shown). Therefore,

we use abstraction to remove those count variables by

specifying Abstract. remove ( count ) in the classes of

Event and FirstTask. In place of these variables, we

add new abstraction predicates which appear in the pro-

gram with the count variables. For instance, we put

Abstract. addBoolean ("FcntEqEcnt" ,
count==eventl.count) in the definitionof the

FirstTask class to specify an abstraction predicate:
FirstTask. count is equal to Event. count (For im-

plementation convenience, object names are used to re-

fer to class types.). We also used more inter-class ab-

stractions such as FcntGeEcnt (FirstTask. count is

greater than or equal to Event. count), ScntEqEcnt



(SecondTask. count isequal to Event. count), etc.

This is an example of an inter-class abstraction.

Dealing with such inter-class abstractions is more in-

volved than dealing with the abstractions inside one

class. For each inter-class abstraction, the tool gener-

ates an additional class definition in the abstract pro-

gram, which contains new boolean variables correspond-

ing to the specified predicate. The boolean variables
in the new class are defined as a two-dimensional ar-

ray where each index refers to an object in either of

the two classes. In Figure 5, the new abstract variable

FcntEqEcnt .prea [Fobj ] [Eobj ] corresponds to the

user-defined predicate FcntEqEcnt for an object Fobj

of FirstTask class and an object Eobj of Event class,
i.e.,Fobj .count = Eobj . count.

Given the abstraction criteria, we now need to compute

the value of the abstract variables in the abstract program

so that they are consistent with the values of concrete vari-

ables in the program. Figure 5 shows how the abstraction

tool converts the assignment statement, count : count

+ 1 (without the modulo operation) in Figure 4. First,

the concrete assignment statement is omitted in the ab-

stract program because the variable to be assigned has

been removed. Instead, the tool checks which of the new

abstract variables are possibly affected by this assign-

ment and generates corresponding assignments to those

abstract variables. For the example statement, a set of

boolean variables that refers to 'this' Event object will

be affected: FcntEqEcnt.pred [i] [this] in Figure 5

(Actually, we use functions that return the corresponding

index of a given object). To update those abstract vari-
ables, a for-statement is used. For each of the abstract

variables, the pre-images that leads the abstract variable

to be true (or false) by the assignment are computed.

Then the pre-images are mapped into the abstract domain

by checking validity of the corresponding logical expres-

sions. Finally, the results are used as a guard condition
to set the abstract variables to true (or false). In the ex-

ample, the variable FcntEqEcnt .pred [i] [this] will
be set to false if it was true (or if some condition with

another abstract variable holds). Otherwise, the variable
is set to a non-deterministic boolean value. Because the

concrete assignment statement is regarded as atomic, a set

of these abstract assignments are declared as atomic for

the JPF model checker. The additional statements for up-

dating other abstract variables such as FcntGeEcnt are

not shown in the figure.

Verify.beginAtomic();

// count = count + i;

for(int i = 0; i < FcntEqEcnt.numFirstTask; ++i){

if(FcntEqEcnt.pred[i] [FcntEqEcnt.getEvent(this)]

II FcntGeEcnt.pred[i] [FcntGeEcnt.getEvent(this)])

FcntEqEcnt.pred[i][FcntEqEcnt.getEvent(this)] =

false;

else FcntEqEcnt.pred[i] [FcntEqEcnt.getEvent(this)]

= Verify.randomBool();

}

// similar code for updating other inter-class

// abstract variables such as FcntGeEcnt, etc.

Verify.endAtomic();

Figure 5: Output of the abstraction tool for the assignment
statement

5.2 Discussion of Methodology

Using the tool, we have been able to obtain an abstract

Java program of the RA code automatically. In the exam-

ple, the unbounded integer variables are replaced by a set

of boolean variables, hence the abstract program is free

from the state explosion. Moreover, use of the tool helps

to avoid error-prone abstractions based on human reason-

ing. The tool generates a sound approximation of the

concrete program using an automated validity checker, al-

though it is not necessarily the most accurate one.

However, the user must give reasonable abstraction cri-

teria for the tool to generate a meaningful abstract pro-

gram in order to check some desired properties. In case

the abstraction criteria are not good enough, the result will

be a too rough abstract program which can not preserve

the properties to be checked.

6 Conclusion

This paper describes two major verification efforts carried
out within the Automated Software Engineering Group
at NASA Ames Research Center. The first effort con-

sisted of analyzing part of the RA autonomous space craft

software using the SPIN model checker. One of the er-

rors found with SPIN, a missing critical section around a

conditional wait statement, was in fact reintroduced in a

different subsystem that was not verified in this first pre-

flight effort. This error caused a real deadlock in the RA

during flight in space.

Such concurrency-related errors only happen as the re-

sult of particular scheduling circumstances. Scheduling is

totally uncontrolled when tests are run, and is highly sen-



sitivetovariationsintheoperatingenvironment(e.g.op-
eratingsystem,otherrunningtasks).Thisexplainswhy
theanomalyhappenedin flight,thoughit hadnotoc-
curredevenoncein thousandsof previousrunsonthe
variousgroundtestbeds.

Developingtheformalmodeloftheprogramwas,how-
ever,a timeconsumingtask,requiringamanualtrans-
lationfromtheRALISPcodeto thePROMELAlan-
guageoftheSPINmodelchecker.In addition,codede-
tailshadtobeabstractedawayinordertoobtainasmall
enoughfinitestatesystemthatcouldbeeffectivelymodel
checked.Thetranslationdifficultyspawnedtheinitiative
toautomatethetranslationfromhighlevelprogramming
languagestomodelinglanguagesforformalverification,
suchasPROMELA.Javawaschosenasthesourcelan-
guagebecauseofitsmodemprogramminglanguagecon-
structs,suchassupportforobject-orientedprogramming,
andthestandardizationacrossimplementationsofitscon-
currencyconstructs.AnautomatictranslatorfromJavato
PROMELAwasdesignedandimplemented,calledJava
PathFinder(JPF).WithJPFonecanmodelchecksmaller
Javaprogramsfor assertionviolations,deadlocks,and
generallineartemporallogicproperties.Thetranslator
coversasubstantialsubsetofJava,illustratingthefeasi-
bilityoftheapproach.

In thesecondeffort,JPFwasusedfor modelingthe
RAXdeadlockafterit occurred.Thatis,afterthefront-
endteamisolatedareducedsubsetofthecodethatlikely
includedtheerror,theback-endteamdevelopedaJava
programwhichexposedtheerror.Thetranslatortrans-
latedthisintoaPROMELAmodel,andthemodelcheck-
ingof thismodelthenimmediatelyrevealedtheerror.
Javaturnedoutto beanexcellentchoiceasamodeling
language,withahighlevelofabstraction,duetoitsobject
orientedfeatures.In laterwork,asystemthatautomates
certainaspectsofpredicateabstractionwasdevelopedand
successfullydemonstratedonthesameexample.

Thisexperiencegaveacleardemonstrationthatmodel
checkingcanlocateerrorsthatareveryhardtofindwith
normaltestingandcanneverthelesscompromisea sys-
tem'ssafety.It standsasoneofthemoresuccessfulap-
plicationsofformalmethodstodate.In itsreportofthe
RAXincident,theRAXteamindeedacknowledgesthat
it "providesastrongimpetusforresearchonformalveri-
ficationofflightcriticalsystems"[13].

A posteriori,giventhesuccessfulpartialresults,one
canwonderwhythefirstverificationeffortwasnotex-
tendedto therestof theExecutive,whichmighthave

spottedtheerrorbeforeit occurredin flight.Thereare
tworeasonsforthat.First,thepurposeoftheeffortwas
toevaluatetheverificationtechnology,nottovalidatethe
RA.TheASEteamdidnothavethemissionnorthere-
sourcesneededforafull-scalemodelingandverification
effort.Second,thepartofthecodeinwhichtheerrorwas
foundhasbeenwrittenaftertheendofthefirstverifica-
tionexperience.

Regardingsoftwareverification,theworkpresented
heredemonstratestwomainpoints.Firstof all,webe-
lievethatit isworthwhiletodosourcecodeverification
sincecodemaycontainseriouserrorsthatprobablywill
notrevealthemselvesinadesign.Hence,althoughdesign
verificationmayhavetheeconomicalbenefitofcatching
errorsearly,codeverificationwill alwaysbeneededto
catcherrorsthathavesurvivedanygoodpractice.Code
will alwaysbydefinitioncontainmoredetailsthanthe
design- anysuchdetailbeingapotentialcontributorto
failure.

Second,webelievethatmodelcheckingsourcecodeis
practical.Thetranslationissuecanbefullyautomated,
aswehavedemonstrated.Theremainingtechnicalchal-
lengeisscalingthetechnologytoworkwithlargerpro-
grams- programsthatcouldhaveverylargestatespaces
tmlesssuitablyabstracted.Abstractionisofcourseama-
jorobstacle,butourexperiencehasbeenthatthiseffort
canbeminimizedgivenasetofsupportingtools.
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Abstract

We describe a systematic approach to building tools

for the automated analysis of specifications expressed

in higher-order logic (hol) independent of a conven-

tional, interactive theorem proving environment. In

contrast to tools such as HOL and PVS, we have taken

"the hol out of HOL" by building automated anal-

ysis procedures from a toolkit for manipulating hol
specifications. Our approach eliminates the burden of

skilled interaction required by a conventional theorem

prover. Our lightweight approach allows a hol specifi-

cation to be used for diverse purposes, such as model

checking, and the algorithmic generation of test cases.

After five years of experience with this approach, we

conclude that by decoupling hol from its conventional

environment, we retain the benefits of an expressive

specification notation, and can generate many useful

analysis results automatically.

1 Introduction

Formal methods have come a long way. Industrial

standards such as IEC 61508, and DO-178B include

explicit references to the use of formal methods as a

means of increasing confidence in safety-related sys-

terns. Formal methods add precision and checkability

to various aspects of the system development process.

A decade ago, there was a wide chasm between

specialized automated methods such as model check-

ing [6], specification-intensive methods such as the use

of Z [33], and general proof-based reasoning found in

tools such as HOL [16]. The input notations of the

analysis tools matched the analysis capabilities of the

tool. For example, the SMV [26] notation describes
finite state machines, whereas the use of higher-order

logic (hol) 1 as the specification language of PVS cor-

responds to the intended use of PVS [28] as an inter-
active theorem prover.

Progress is being made rapidly on bridging this

chasm and uniting the capabilities of the various tools

1We will use "hol" or "Hol" for higher-order logic by itself,
and "HOL" to refer to the HOL theorem proving system.

under one roof. For example, the SCR toolset in-

cludes a consistency checker, a simulator, and links to

a model checker, and a theorem prover [3, 20]. PVS
has integrated a number of automated decision pro-

cedures [27]. Most of these examples are, however,
either application-specific such as the SCR toolset, or

start from a heavyweight theorem prover.

We have been exploring a different point in the de-

sign space of these combined systems. For the past

five years, in an industry/university collaborative re-

search project, we have used hol as a specification no-

ration and applied automated analysis techniques such

as refutation-based approaches (i.e., those that gen-

erate counterexamples), and test generation to these

specifications. We have taken "the hol out of HOL"

by building these automated procedures on top of just

a parser and typechecker to eliminate the burden of

skilled interaction required by a conventional theorem

prover.

The combination of hol with automated analysis

may seem crippled from the beginning: we do not have

all the tools we might need to work with our specifica-

tion. However, our experience shows that less power is

often better. The expressiveness of higher-order logic
allows us to embed more familiar notations within hol.

The difficulties for new users come when the only tool

support available has a high learning curve, and they

struggle to understand the feedback the tool provides

them about their specification. We offer a solution

that lessens the learning curve, delaying the need to

use a theorem prover until the problem requires it and

the user is ready for it.

In Sections 2, and 3 we present our reasons for

choosing to work with higher-order logic outside of

a theorem proving environment. In Section 4, we de-

scribe our toolkit, a collection of cooperating utilities

that manipulate hol expressions in "truth-preserving"

ways, i.e., the result of every transformation could also
have been produced by a formal derivation using infer-

ence rules in HOL. In Section 5, we describe how the

blocks are used in combination to construct analysis

procedures such as symbolic model checking, and test

generation.



Unlikeourrelatedpresentationsof thisproject[8,
9, 10,14,23],in thispaperwefocusonthecapabili-
tiesofthetoolandhowit isengineered.Thispaper
is intendedto beahigh-levelviewof thearchitecture
ofouranalysistool,illustratinghowourtoolkitfacil-
itatessignificantreuseof componentsfor diverseap-
plicationssuchastestgenerationandmodelchecking.
Wehavealsocreatednewanalysismethodssuchas
constraint-basedsimulation.Ourfocusonautomated
analysiscompelsusto providetheuserwithcontrol
ofperformancefactorssuchasBDD[4]variableorder.
Wehavealsocreatedmethodsthat allowusto main-
tain the informationnecessaryto producereadable,
traceableresultsgivenin termsof theoriginalspec-
ification.Referencesareprovidedto moretechnical
descriptionsofthecomponentsofourtoolkit.

By providinga lightweightinterfacebetweena
general-purposenotationandautomatedanalysis,we
offera middlegroundbetweenspecial-purposeanal-
ysistoolsandgeneral-purposetheoremprovers.Our
goalis to bringthe powerof a rangeof automated
analysistechniquesto specifierswithoutsacrificing
suitabilityandexpressivenessof notation.

2 Why higher-order logic?

Initially, we chose higher-order logic as a specification

notation independently of consideration for tool sup-

port. Our notation S [23] is a syntactic variant of
the object language of the HOL theorem proving sys-

tem. S was also influenced by Z, in that it includes

constructs for the declaration and definition of types

and constants. It was developed to support the prac-

tical application of formal methods in industrial scale

projects. In this section, we explain our reasons for

choosing to work with S.

First, S is a general-purpose notation; it does not

impose any particular style of specification. We have

used it to capture a stimulus-response style of specifi-

cation, as well as embedding other notations such as

statecharts [17], and tables in S [2, 9]. By placing spe-

cialized notations within a general-purpose environ-

ment, we can take advantage of many general-purpose

features such as parameterization, and re-usable aux-

iliary definitions and infrastructure. In the specifica-
tion of an aeronautical telecommunications network

(ATN) written in our embedded statecharts style, we

witnessed these benefits, which reduced the specifica-

tion effort, and resulted in a more concise and read-

able specification [2]. Also, we do not have to repeat
the effort of building analysis tools for particular no-

rations. Once a notation is embedded in S, many of

our analysis tools can be applied.

Second, S is a logic. We have found that uninter-

preted constants in a logic play a key role in allowing

us to match the level of abstraction found in require-

ments specifications. Joyce has called uninterpreted

constants, "a modern-day Occam's razor" 2 and points

out their value in filtering non-essential details and

in improving the readability of the specification [25].

Uninterpreted constants can be used to represent ele-

ments that have meaning to domain experts but whose

definition is irrelevant for analysis of a requirements

specification. For example, many air traffic control
specifications depend on the "flight level" of an air-

craft. The details of how the flight level is determined

may be irrelevant for analysis of some aspects of the

system. The calculation of the "flight level" can be

captured by an uninterpreted constant. Analysis re-

sults produced for a specification hold for any inter-

pretation of the uninterpreted constants. While a fi-

nal specification should be complete including defini-

tions for all the constants, the use of uninterpreted

constants during the process of writing a specification

allows some results to be produced without having to

specify all of the details.

Furthermore, a logic contains quantifiers, which of-

ten allow the expression of formal requirements to

more closely correspond to their expression in natu-

ral language. Quantified statements can be used to

capture domain knowledge that describes the environ-

ment of the specification. The ability to use a quanti-

tier eliminates the need to spell out all instances where

the environmental assumption is relevant.

Finally, S is expressive; while we will never be able

to prove automatically every property of our specifi-

cations, our notation is unlikely to limit adding more
automated analysis capabilities as they are developed.

3 Why not use a theorem

prover?

In our approach, we have focused on automated anal-

ysis of our specifications. There have been a vari-

ety of successful efforts to combine theorem provers

with automated decision procedures, such as PVS and

Forte [1]. Our experience with HOL-Voss [24] suggest
that having the theorem prover control the link to the

decision procedures is not the optimal approach for

automated analysis.

First, the infrastructure of the theorem prover is un-

necessary for automated analysis and makes the ap-

proach clumsy and intimidating to the novice speci-

tier. These difficulties are a factor in industry's resis-

tance to formal methods. For example, we particularly

wanted to avoid the need to learn a meta-language to

2The Aristotelian principle, often attributed to William of
Occam (1300-1349), that the simplest theory that fits the facts
of a problem is the one that should be used.



accomplishthespecificationtask.Therefore,wemade
Stheinputlanguageto ourtool,andhaveverysimple
commandsto invokeouranalysisprocedures.A sec-
ondexampleisthatrewritingbymeansoftacticappli-
cationwasusedfor expansionof definitionsin HOL-
Voss.Thisstepwasdifferentforeachspecificationan-
alyzed.Wehaveshownthatanautomatictechnique,
calledsymbolicfunctionalevaluation,is sufficientfor
thistaskandrequiresnouserintervention.

Second,theoremproversareverification-basedanal-
ysistools.Theoutputofatheoremproveristhecon-
firmationof a conjecture.Often,moreusefulresults
of analysisareeitherevidencethat refutesaninter-
pretationof therequirements,or truth-preservingre-
arrangementsof the specificationin orderto distill
atomicbehaviour.Refutation-based techniques pro-

duce a variety of results other than just theorems.

For example, when analyzing a table for inconsis-

tency, refutation-based techniques can clearly isolate

the source of the inconsistency. Consequently, it is

easier to interpret the result of a successful refutation

attempt than a failed verification attempt. In using

formal methods for an independent validation and ver-

ification effort, Easterbrook and Callahan abandoned

the use of PVS to carry out completeness and consis-

tency checks because of the difficulty of determining

the source of an inconsistency in a failed proof [15].

Third, the results should be expressed in terms of

the original specification. In contrast to our approach,

translating the specification for input to a specialized
decision procedure often results in output in terms of
the translated version.

Fourth, most theorem provers do not currently pro-

vide hooks to control analysis parameters such as BDD

variable order. To work with large examples, control

over these parameters is absolutely necessary.

Theorem provers definitely have a role to play in

the analysis of complex systems. We advocate an ap-

proach that complements the use of theorem provers
because we work with the same notation. Novice users

and experts can work side-by-side. We have a tool

that translates our S specifications to input for the

HOL theorem prover [23].

4 The Toolkit

Our toolkit consists of techniques that manipulate S

expressions in truth-preserving ways. In this section,

we describe the collection of techniques that are com-

bined to build analysis procedures such as symbolic
model checking. Figure 1 captures the architecture of

our tool. In addition to the specification and com-

mands, the input of semantic definitions allows the

specifier to work with notations, such as statecharts,
embedded in S.
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Figure 1: Architecture

The representation of S expressions is encapsulated

in an abstract datatype. The representation is cre-

ated through the process of parsing and typechecking,

common to all analysis procedures. Analysis proce-

dures consist of a sequence of calls to the toolkit ele-

ments, which manipulate S expressions to accomplish

the analysis task. Each of the toolkit elements are in-

dependent allowing them to be used systematically in

combination to implement analysis procedures. Also

the separation of concerns allows each toolkit element

to evolve, and additional elements be added, without

affecting other components of our tool.

Some of the techniques, such as abstraction to

propositional logic, can also be found in tools such

as PVS. Others, such as symbolic functional evalua-

tion (SFE) for expanding S expressions, we developed

because we wanted to be independent of a theorem

proving environment. In some cases, we rely on syn-

tactic conventions for particular styles of specification.

For example, we distinguish between the stimuli and

responses for test generation based on vocabulary con-
ventions.

We also provide user access to performance tuning

for some of these automated techniques. For example,

while SFE is automatic, the user can control the depth

of evaluation. For BDD-based analysis, we provide a

way to input a variable order.

4.1 Symbolic Functional Evaluation

A specification consists of a collection of constant def-

initions, and declarations of types and constants. If

we are using an embedded notation, then a set of se-

mantic definitions is added to this collection. Often,



thefirststepin analysisis to expandallofthesedefi-
nitionsto determinethemeaningofthespecification.

Symbolicfunctionalevaluation[8](SFE)is atech-
niquethatwedevelopedto "evaluate"orunfoldSex-
pressions,i.e.,carryoutthelogicaltransformationsof
expandingdefinitions,beta-reduction,andsimplifica-
tionofbuilt-inconstantsin thepresenceofquantifiers
anduninterpretedconstants.It extendsmechanisms
fromfunctionallanguageevaluationto carryout lazy
evaluationof Sexpressions.Unlikeusingquotesym-
bolsin a languagesuchasLisp,SFEgivestheuser
controloverthedepthof evaluation.Weillustrate
thiscontrolwith thefollowingdeclarationsanddefi-
nitions:

Zl : num;
fl, f2, fa :num --* num;

z2 /1 (za);

z3 /2(z2);
f4(a) f3(a);

The constants z1, fl, f2, and f3 are uninterpreted.

When we evaluate the expression f4(z3), we can in-
struct SFE to evaluate to one of three levels of eval-

uation. At the level of "complete" evaluation, it is

expands all the definitions and returns the expres-

sion f3 (f2 (fl (za))). At the "point of distinction" level,

SFE stops after it determines the tip of the expression

is an uninterpreted function, and returns f3(z3). One

further level called "evaluated for rewriting" proved

useful and evaluates the arguments of an uninter-

preted function at the tip to the point of distinction.

In this case, it would return f3(f2(z2)).
The choice of level of evaluation is linked with the

choice of abstraction to be used for the automated

analysis. For example, when abstracting an expres-

sion to propositional logic (see Section 4.3), the point

of distinction level is most appropriate because any

details revealed by evaluation are lost in abstraction.

Our implementation benefits from the use of struc-

ture sharing in the representation of expressions, and

caching of results.

SFE can be used to carry out symbolic simulation

of specifications of hardware circuits as has been done

previously in theorem provers, e.g., [34, 35].

SFE provides functionality similar to that of PVS's

experimental ground evaluation, which translates a

subset of PVS into Lisp for evaluation [32]. How-

ever, SFE works for any expression in higher-order

logic, including uninterpreted functions, and quanti-

tiers. Our levels of evaluation provide a systematic

means of controlling evaluation of these symbolic ex-
pressions. A second difference is that we use SFE as

the first step in the analysis process. In PVS, evalu-

ation currently is stand-alone and does not affect the

proof process. For our purposes, SFE is sufficiently

fast for large specifications, however the PVS ground

evaluation is no doubt faster using existing Lisp eval-

uation and destructive updates where possible.

4.2 Rewriting

Once a specification has been sufficiently unfolded,

several analyses require logical manipulation of the

resulting S formula. A rewrite toolkit component is

useful for performing this task. For example, the fol-

lowing set of rewrite rules could be used to rewrite a

specification so that negation (7) is only applied to

predicates:

VX, Y.X _ Y _X v Y

VX, Y._(X A Y) _X V _Y

VX, Y._(X V Y) _X A _Y
VX._X X

VP._W.P(x) 3x._P(x)

vP._3_.P(_) w._P(_)

Some analysis algorithms can be implemented as

a series of rewriting operations. An example is the

derivation of tests from an S specification using a series

of sets of rewrite rules [10, 13]. Implementing the test

generator using rewriting is a better way to preserve

logical soundness than an implementation as a series

of ad-hoc manipulations.

Our lightweight rewrite system differs from some
well-known rewrite systems, such as the one found in

HOL. For performance reasons, our rewrite system co-

operates with other means of simplification such as

evaluating expressions with concrete values. The user

of the rewrite system must ensure that each set of

rewrite rules is confluent otherwise, rewriting may
not terminate. The user must also ensure that the

rewrite rules are themselves sound. The checking of

the rules need only be performed once as part of the

development of an analysis procedure, and can be ac-

complished using a theorem prover such as HOL or
PVS.

Rewrite rules are stated as universally quantified

equalities, e.g., Vx.]_l(X ) ]_2(x), where x is a vec-

tor of variables. For rules specifying rewrites involv-

ing quantifiers and lambda abstraction: 1) variable

capture is avoided using alpha conversion; and 2) if

variable release occurs, the rewrite fails.

The concept of variable release is the opposite of

variable capture. During rewriting, if a variable is

quantified in an expression matching the left-hand

side of the rewrite rule and is not quantified in the

corresponding instance of the right-hand side, vari-
able release has occurred. For example, applying the

rewrite rule VP, Q.(Vz.P V Q) ((Vz.P) V Q) to

Vx.f(x) V y succeeds. However, applying the same

rule to Vz.f(z) Vg(z ) fails because the z ofg(z ) is re-
leased, i.e., z is no longer quantified because it was free



in Q. The rewrite system also recognizes alpha equiv-

alence, e.g., (Am.E(m)) Aa.E(a). By failing rewrites

in which variable release occurs and recognizing alpha

equivalence, we are able to describe as rewrite rules

quantifier manipulation that requires conversions in a

theorem prover.

The rewrite system provides routines for applying

a single rewrite to an expression, or to an expression

and all its subexpressions. Sets of rules can also be ap-

plied. The depth of a rewrite operation can be limited

by providing a call-back function that examines the

current subexpression and signals the rewrite system

to continue with this subexpression or go no deeper.

4.3 Abstraction to Propositional Logic

By abstracting our specifications to propositional

logic, we can produce conservative analysis results au-

tomatically. As in Rajan [29], we decompose our S ex-

pression based on the logical operators of conjunction,

disjunction, and negation. The fragments are assigned

unique Boolean variables with alpha-equivalent subex-

pressions matched to the same variable. We maintain

a table matching the fragments to their Boolean vari-

ables to apply and reverse this process.

We also deal with enumerated types so that they are

represented by multiple, related Boolean variables as

in Ever [22]. Sections 4.5 and 4.7 discuss elements of
the toolkit that complement this abstraction process.

We represent the expressions built from the Boolean

variables using BDDs. A key to making this process

efficient is to cache the match between S expressions

and BDD expressions. Once a BDD expression is cre-

ated, an analysis procedure can manipulate it with

the usual BDD package operations such as negation,

conjunction, and quantification.

BDD variable order affects the size of the BDD rep-

resentation of our S expression. For small examples,
it is sufficient to create the BDD variable as needed

in the abstraction process, but for larger examples, a

better method was required. In PVS, it is possible

to request that dynamic variable order be carried out

within the BDD package doing propositional simpli-

fication [31]. But, we found it critical to have direct

support for providing the abstraction process with a

BDD variable order to allow us to reuse a good order,

as well as store and manipulate abstractions of ex-

pressions. Furthermore, we wanted the variable order

stated in terms of expressions of the specification, not
in terms of the Boolean variables that are substituted

for those expressions during abstraction.

Therefore, we developed a way of supplying a

variable ordering for BDDs as a list of S expres-

sions. There are three types of substitutions: a single

Boolean variable matched with a Boolean S expres-

sion, partitions discussed in Section 4.5, and enumer-

ated types. Each type of substitution is accompanied

by a list of numbers giving the position in the order

of the Boolean variables used to represent the S ex-

pressions. We provide some utilities to help the user

determine a good variable order by subcontracting the

problem to existing verification tools such as the Voss

Verification System [30]. Further details on our ap-

proach can be found in Day [7].

Creating a Boolean abstraction of an S expression

and then reversing the process, can be a useful method

of simplifying expressions that include quantification

over Boolean variables. The resulting expression is

logically equivalent to the original. Our tool provides

a command that evaluates an expression to the de-

sired level of evaluation using SFE, creates a BDD

representation of the expression, and then creates an

S expression from the BDD. We used this process in

constructing a large next state relation by construct-

ing conjuncts representing concurrent states individu-

ally first.

4.4 Distinguishing Current and Next
Values

Specifications written in notations such as finite state
machines describe a next state relation. Since S has

no built-in notion of dynamic behaviour, a means is

required to distinguish the value of a variable in the
current state from its value in the next. Our toolkit

implements three approaches to this problem based on

syntactic conventions.

The first approach is to make each variable a func-

tion mapping system states to values for that variable,

similar to the concept of variables as functions of time.

The approach is well-suited for embedded state tran-

sition notations, where the system state is implicit in

the use of the variable. In this approach, we avoid

the need to group the variables in a record structure

explicitly as has been done in PVS [29].

To support this approach to handling dynamic

behaviour, an element of the toolkit separates the

Boolean variables representing the current state val-
ues from those for next state values after abstraction

to propositional logic. In the semantics for embedded

notations, we adopt the syntactic convention that the

variable cf represents the current state, and cf' the

next state, thus a Boolean expression such as m(cf')
refers to the value of the variable z in the next state.

Expressions such as y(cf') (y(cf) + 1) that contain

both cf and cf' are considered as one Boolean variable

belonging to the next state.

A second approach is to adopt the convention of Z,

where a prime (') is used to distinguish current state
values from next state values. Thus, in the specifi-



cation(z g(x, 5)) _ (z' g(x, 10)), z g(x,5)
refers to the current state because it does not contain

a primed variable. The presence of z I indicates that

z _ g(x, 10) is a condition on the next state.

A third approach uses the syntactic convention that

a literal beginning with a lower case letter indicates a

next state predicate. A command can specifically label

a literal as referring to either state, overriding this con-

vention. This mechanism is appropriate in situations

where the vocabulary used to specify next state values

is different from that of specifying current state values,

e.g., some applications of system-level requirements-

based testing [14].

In some cases, the convention used to distinguish

values in time is intrinsically linked to the type of anal-

ysis, and cannot be supported by an independent part

of the toolkit. For example, the test generation pro-

cess guides the rewrite system to distinguish stimuli

from responses, placing expressions in certain forms.

4.5 Interval Checking

The process of abstracting to propositional logic is

very conservative. It abstracts expressions such as

x < 5, (5 _< x A x _< 10), and 10 < x to unrelated

Boolean expressions, potentially causing the analysis

results to return impossible cases. In this section, we

consider options for avoiding this difficulty. One ap-

proach is to rewrite predicates involving inequalities

into a canonical form to find relationships between ex-

pressions such as x < 5 and 5 > x. However, this fails

to capture the relationship between x < 5 and 10 < x.
A second alternative is to use an external tool to add

constraints based on the numeric relationships [5].

Instead of any of these choices, we chose a simple

approach that was complementary to the process of

abstracting to propositional logic, and that depended

on the structure of the notation. Our approach treats

related expressions that partition a numeric value as

an enumerated type. Based on known structure of

a particular notation, we can identify some related

expressions without a global search of the complete

specification. We encountered linear inequalities in

tabular specifications where the cells of a row of a

table partitioned the values of a numeric expression.

We can identify the row structure within the speci-

fication by searching for the Row keyword used in the

embedding of the tabular notation. To exploit the

structure we extended our tool with a registry mech-

anism such that when certain keywords are encoun-
tered by SFE, particular procedures are carried out.

The Row keyword is associated with a simple "inter-

val checking" algorithm that takes the list of expres-

sions in a row and determines if they represent a non-

overlapping partition. Our registry mechanism makes

it possible to extend easily SFE with other structure-

specific rules.

In our current implementation, interval checking

works for S expressions that contain numeric compar-

ison operators and have a concrete value on at least

one side of the operator. Interval checking also returns

any ranges not used in the row entries. By treating the

partition as an enumerated type, the related numeric

expressions are encoded as related Boolean variables

in the abstraction process.

4.6 Readable Results

A significant challenge in requirements analysis is re-

turning results that are understandable and in the

same terms as the specification despite the abstrac-

tions used in analysis. One step towards this goal is

maintaining the information to reverse the Boolean
abstraction as described in Section 4.3.

We are able to produce even better results by track-

ing information through the expansion and logical ma-

nipulation processes of SFE and rewriting.

4.6.1 Unexpansion

Through an enhancement of the representation of S

expressions, we are able to return an expression in its

unevaluated, and usually more compact, form. Tech-

nically, lazy evaluation replaces a subexpression with

its evaluated form, so the work of evaluation is done

only once for all common subexpressions. We have

modified our representation of expressions to include

a pointer to the original, unevaluated version of the

expression.

At the expense of memory, we are able to keep both

the evaluated and unevaluated forms of the expres-

sions during SFE. Some analysis procedures choose

to output the unevaluated form of the expression to
present a more abstract representation of the output.

4.6.2 Traceability

Unexpansion is not sufficient when manipulations

other than expansion are performed. For analyses that

perform rewriting, it is often critical that the results
be traceable to their source in the specification.

For example, tests generated from a specification

are logical consequences of it. If a test is produced
that represents clearly unintended behaviour, then its

source in the specification needs to be located before
it can be corrected. In the case of a non-trivial in-

put specification, identifying the source of a test can

be surprisingly difficult especially when there is signifi-

cant "collaboration" between individual requirements.

An extension to our parser allows subexpressions

within the S specification to be tagged with user de-



finedidentifiers[11].Thisuseof identifiersis consis-
tentwithmanyrequirementsspecificationtechniques
nowusedin industry.Duringrewriting,thetagsare
propagated.Bydisplayingthesetagswiththeanalysis
results,thesourceof theresultscanbedetermined.

4.7 Quantification

Our specifications can include quantifiers. In abstrac-

tion, a quantified subexpressions can be treated as a

single Boolean variable for the purpose of automated

analysis. However, we can do better than this con-

servative approach in certain circumstances. The sub-
stitutions described in this section can be done either

during SFE or rewriting, or as a separate function.
For quantified variables of types with a finite num-

ber of members we can substitute the possible values

for the variable, e.g., universal quantification over a

finite set of values can be expanded into a conjunction

of conditions. For example, given the following type

definition and predicate declaration:

:chocolate: Cadburys ] Hersheys ] Rogers;

tastesGood : chocolate --_ bool;

the expression

V(x: chocolate).tastesGood(x)

can be rewritten as:

tastesGood(Cadburys) A

tastesGood(Hersheys) A

tastesGood(Rogers)

For quantified variables of infinite or uninterpreted

types, we have experimented with methods for instan-

tiating universally quantified variables. When the an-

tecedent of a logical implication is a universally quan-

tified term, the universally quantified variable can be

instantiated by any uninterpreted constant of the ap-

propriate type. This substitution is a form of pre-

condition strengthening. Because (Vx.P(x) ) _ P(a),

we can prove (Vx.P(x)) _ Q by proving P(a) _ Q.

This substitution is useful as part of various analysis
tasks such as completeness and consistency checking.
It transforms constraints on the environment stated

in terms of quantification into a non-quantified form

that can be used in automated analysis. For example,

given the following declarations and definitions,

A,/3 : flight;

env V(f :flight).

(is_flying_level(f) A is_climbing(f));

in a specification, we use the instances of the univer-

sally quantified environmental constraint for A and/3,

namely:

_(is_flying_level(A) A is_climbing(A)) A

_(is_flying_level(BB) A is_climbing(BB) )

We found this form of substitution very useful for en-

vironmental assumptions, which are often stated with

universal quantification.

The approach used in test generation is based on

a test coverage point of view. The user identifies the

type of a quantified variable, treated as a set, as either

static or dynamic. A type is dynamic if it can be

different in different contexts of the specification. For

example, quantification over the "flight" type might

be dynamic, since there can be different numbers of

aircraft within an airspace at any given time. A type

is static if it is not dynamic, e.g., the set of natural

numbers is a static specification element.

When a quantified variable has a type that is a dy-

namic set, we consider what instances of the type

should be analyzed to ensure adequate coverage in

testing. This type of simplification can be performed

in at least three modes: none, single, or all. In the

"single" mode of coverage, for the expression:

Vx: x. P (x) v F (x) v... v Pn(x)

we substitute a single value of type X, because this

expression can be satisfied if one value has one of the

properties Pi. For example if the type X contains a

value c, the quantified expression above would be re-

placed by Pl(C). In the "all" mode, we substitute n

points, each one addressing a different Pi. Any con-

stants introduced must be new, and free in the speci-
fication.

4.8 Codifying Domain Knowledge

Domain knowledge, or environmental assumptions,

are conditions that must be taken into account during

analysis to disregard infeasible combinations of con-

ditions, and simplify expressions. In system-level re-

quirements, we found there are relatively few depen-

dencies between conditions, and therefore these can

be expressed concisely using quantified axioms.

For some types of analysis, domain knowledge can

be combined with the specification in the analysis. It

is the antecedent of the analysis goal, or conjuncted

with the symbolic representation of the state set to

enforce the constraint. In these cases, the substitu-

tion of relevant constants in the quantified expression

described in Section 4.7 proved very useful.

In other types of analysis, such as test generation we
cannot combine the statements of the domain knowl-

edge with the specification because every part of the

output must be traceable to the inputs. For these



cases,weidentifiedthreeschematathat capturethe
formof manyoftheaxiomsthat areoftenused:

1. Vx.G_ MutEx[Pl(X);P2(x);... Pn(x)],

2. Vx.G _ Subsm[Pl(X); P2(x); ... Pn(x)], and

3. Vx.G :::} States[xPl(X); P2(x);... xPn(x)].

These schemata map the problem of simplifying an ex-

pression containing elements that match the patterns

given in the schemata list to the problem of satisfying

the guard G for the same instance of x. For exam-

ple, conditions that form partial orders can be defined

using Subsm. Conditions on the right subsume con-
ditions on the left in the Subsm list. The statement

gx, y,z.x < y _ Subsm[x < z;y < z] captures the

information that if k < i then i < j _ k < j. The op-

tional guard G, in this case x < y, provides a means of

converting the dependency into a standard domain for

which the analysis tool has a decision procedure. An

expression such as 5 < x A 10 < x, is simplified by the
schemata to 10 < x because it can check 5 < 10. The

MutEx form is used to define dependencies between

mutually exclusive conditions. The States form de-

fines conditions that represent a set of states; exactly

one is true. These forms, combined with the pattern-

matching capabilities provided by the rewrite system,

are a powerful method of allowing the user to provide

input to the tool as domain knowledge.

Though we found that the above approaches meet

our needs, they have certain limitations. First, when

there are more dependent relationships dictated by the

environment, a formal model of the environment may

be more concise than just axioms. Second, for more

complex relationships it may be more efficient to pro-

vide a specially coded decision procedure, rather than

pattern matching and basic evaluation to simplify ex-

pressions.

5 Analysis Procedures

The procedures in our toolkit are combined together

to form analysis procedures. In this section, we de-

scribe the procedures we have applied in examples.

Table 1 is a partial list of the commands currently
available in our tool.

5.1 Generating a Satisfying Assign-
ment

To further one's understanding of the meaning of a
complicated Boolean S expression, it can be useful to

examine a satisfying assignment for that expression.

This analysis procedure first expands any defined sym-

bols in the expression using symbolic functional eval-

uation, and then constructs a Boolean abstraction of

the expression represented as a BDD. The user chooses

the evaluation level for SFE. Using an algorithm found

in the Voss system due to Seger, we provide two pos-

sible ways of producing a satisfying assignment. One

attempts to choose as many true assignments to vari-

ables as possible and the other has preference for false

assignments.

5.2 Symbolic CTL Model Checking

Our model checking procedure takes constants with

definitions that are 1) a CTL formula, 2) a next state

relation, 3) an initial condition, and 4) an optional

environmental constraint. We have a representation

of CTL formula as an S datatype. Internally the ex-

pression representing the CTL formula is decomposed

to invoke procedures based on the definitions of the
component formulae. The next state relation, initial

condition, and environmental constraint are all evalu-

ated using SFE, and abstracted to propositional logic
as a BDD. The current and next state variables are

determined for the next state relation.

We currently have counterexample generation for
AG and EF CTL formulae.

5.3 Simulation

For state machine specifications, a non-exhaustive

form of configuration space exploration is simulation.

The presence of uninterpreted constants in the speci-

fication forces our simulation to be symbolic.

Our analysis procedure does simulation based on

the BDD representing the next state relation and con-
straint satisfaction. The user can constrain the set of

assignments possible for the initial state and each sub-

sequent state using a list of conditions. A particular

assignment to the Boolean variables is chosen at each

step. This assignment becomes the previous config-

uration for the next step. By choosing a particular

assignment each time, this form of simulation does

not encounter the state space explosion problem as in

model checking.

A sequence of steps may not exist that satisfies the

listed conditions. An arbitrary choice of a particular

state that satisfies the constraints made early in the

simulation may result in a satisfying sequence of steps

not being found when one does exist. An alternative,
slightly more expensive, analysis procedure carries out

"one-lookahead". At each step, it chooses a configu-

ration that satisfies the applicable constraint and has
a next state that satisfies the next constraint in the

list.



Command Action
70setorder<const> usetheBDDvariableordergivenbythe

expressionlist <const>
70save_bdd<const><fname> saveaBDDassociatedwithaconstantin thefile
701oad_bdd<const><fname> loadaBDDfromthefileintoconstant
70bddsimp <const> <ret_c> simplify <const> using BDDs; put result in <ret_c>

70bddsatisfies <const> using BDDs, provide a satisfying assignment

70ctlmc <ctl> <nsr> <ic> <env> do symbolic CTL model checking given next state relation,

initial condition, and environmental assumption

_0simulate <nsr> <c_list> simulate the next state relation by satisfying the

constraint list in each step

_comp <const> <env> do completeness check of a tabular expression

_cons <const> <env> do consistency check of a tabular expression

_sym <const> <env> do symmetry check of a two-parameter tabular expression

7.tcg <options> <const> produce test classes and test frames for <const>

Table 1: Analysis Commands

5.4 Completeness, Consistency, and

Symmetry Checking

We use the same criteria as Heimdahl and Leve-

son [19], and Heitmeyer et al. [21] for the complete-

ness and consistency of tabular specifications. Com-

pleteness analysis evaluates the expression consisting

of the disjunction of the table's rows using SFE. After

Boolean abstraction, we check if the expression is a

tautology. If not, we reverse the abstraction, and use

unexpansion to produce results in a column format,
enumerating the cases that are not covered in the ta-

ble. This presentation is possible because SFE main-

rains the unevaluated versions of expressions, and it

addresses some of the problems identified by Heimdahl

in tracing the source of inconsistencies through nested

tables where the output is completely expanded [18].

A similar procedure is carried out for consistency

checking, where all pairs of columns are checked for

overlap.

For symmetry checking, the analysis procedure con-
structs two versions of a two-parameter table with the

parameters swapped, and checks if the two tables are
the same.

5.5 Test Generation

System-level requirements-based test generation is an

analysis that makes extensive use of rewriting. The

rewrite rules used were verified using HOL. The S

specification is assumed to be a relation between the

stimuli and responses of the system.

After unfolding the specification to the desired

level of detail, the resulting formula is transformed

into its logically equivalent Test Class Normal Form

(TCNF) [10, 13]. The TCNF is a conjunction of test

classes, which describe particular stimulus/response

behaviours as implications with the stimuli in the an-

tecedent and responses in the consequent.
The antecedents of the test classes are rewritten fur-

ther to reduce the size of quantified subexpressions.

Choices (disjuncts) within an antecedent represent dif-

ferent test descriptions, referred to as test frames. A
test frame is a test class that has no choice in the

antecedent (other than instantiation). Domain knowl-

edge is applied to simplify the test frames, and remove

any that are infeasible.

Test frames are the results of the analysis, and are

logical consequences of the given specification. Test

frames are selected to cover the Boolean function rep-

resented by the test class antecedent using BDDs. The

selection of test frames is determined by one of several

coverage criteria chosen by the user.

6 Conclusions

We have described a lightweight approach for applying

automated analysis techniques to higher-order logic

specifications. To support this approach we have cre-
ated utilities that manipulate higher-order logic ex-

pressions in truth-preserving ways. These utilities

handle the features of a logic, such as uninterpreted

constants and quantification, in evaluation and ab-
straction.

We have demonstrated that a common core of utili-

ties allows us to implement diverse analysis procedures
such as test generation, and model checking. The com-
mon toolkit facilitates re-use of code and extension

of the suite of analysis procedures with new methods

such as symmetry checking and constraint-based sim-

ulation. We have also shown methods particular to



embeddednotationscanbecreatedsuchasthecom-
pletenessandconsistencyanalysisof tables.

Twootherinnovationsofourapproachare:weallow
usersto controlperformancefactorssuchasBDDsin
termsofthelanguageofthespecification;andthrough
theanalysisprocesswemaintaininformationthatpro-
ducesreadable,traceableresultsinthelanguageofthe
specification.

Spacedoesnotpermitusto describethereal-world
examplesthat wehavespecifiedandanalyzedusing
ourtools.Examplesincludeanaeronauticaltelecom-
municationsnetwork(ATN)[2,7], aseparationmin-
imafor aircraft[9,12],asmallheatingsystem[7],a
steamboilercontrolsystem[13],andpartsof a pro-
prietaryair trafficmanagementsystem[14]. These
examplesarenon-trivial.Forexample,theparame-
terizedformalATNstatechartspecificationisapprox-
imately43pages.TheexpandedS representationof
theATNnextstaterelationconsistsof 52076nodes
in acanonicalform.

In thefuture,wewouldlike to explorehowother
automatedabstractiontechniquescanbeusedin our
framework.Forexample,lessconservativeresultscan
beachievedbyabstractingto avariantof first-order
logic.Wewouldliketo exploredecompositionstrate-
giesto lessenthestatespaceexplosionproblem.Our
approach,whichusesthesamespecificationlanguage
asahigh-poweredtoolwherethesestrategiescanbe
verified,allowsexpertsto hardcodetheirverification
methodto makeit accessibleto non-experts.
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Abstract

To become practical for assurance, automated for-

real methods must be made more scalable, automatic,

and cost-effective. Such an increase in scope, scale, au-

tomation, and utility can be derived from an emphasis on

a systematic separation of concerns during verification.

SAL (Symbolic Analysis Laboratory) attempts to address

these issues. It is a framework for combining differ-

ent tools to calculate properties of concurrent systems.

The heart of SAL is a language, developed in collabora-

tion with Stanford, Berkeley, and Verimag, for specifying

concurrent systems in a compositional way. Our instan-

tiation of the SAL framework augments PVS with tools

for abstraction, invariant generation, program analysis

(such as slicing), theorem proving, and model checking

to separate concerns as well as calculate properties (i.e.,

perform symbolic analysis) of concurrent systems. We

describe the motivation, the language, the tools, their

integration in SAL/PVS, and some preliminary experi-

ence of their use.

1 Introduction

To become practical for debugging, assurance, and

certification, formal methods must be made more cost-

effective. Incremental improvements to individual ver-
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ification teclmiques will not suffice. It is our basic

premise that a significant advance in the effectiveness

and automation of verification of concurrent systems is

possible by engineering a systematic separation of con-

cerns through a truly integrated combination of static

analysis, model checking, and theorem proving tech-

niques. A key idea is to change the perception (and im-

plementation) of model checkers and theorem provers

from tools that perform verifications to ones that calcu-

late properties such as slices, abstractions and invariants.

In this way, big problems are cut down to manageable

size, and properties of big systems emerge from those of

reduced subsystems obtained by slicing, abstraction, and

composition. By iterating through several such steps, it

becomes possible to incrementally accumulate proper-

ties that eventually enable computation of a substantial

new property--which in turn enables accumulation of

further properties. By interacting at the level of proper-

ties and abstractions, multiple analysis tools can be used

to derive properties that are beyond the capabilities of

any individual tool.

SAL (Symbolic Analysis Laboratory) addresses

these issues. It is a framework for combining dif-

ferent tools for abstraction, program analysis, theorem

proving, and model checking toward the calculation of

properties (symbolic analysis) of concurrent systems ex-

pressed as transition systems. The heart of SAL is an

intermediate language, developed in collaboration with

Stanford, Berkeley, and Verimag for specifying concur-

rent systems in a compositional way. This language will

serve as the target for translators that extract the tran-

sition system description for popular programming lan-

guages such as Esterel, Java, or Verilog. The intermedi-

ate language also serves as a common description from

which different analysis tools can be driven by translat-

ing the intermediate language to the input format for the

tools and translating the output of these tools back to the

SAL intermediate language.

This paper is structured as follows. In Section 2 we



describethemotivationandrationalebehindthedesign
oftheSALlanguageandgiveanoverviewof itsmain
features.Themainpart,Section3,describesSALcom-
ponentsincludingslicing,invariantgeneration,abstrac-
tion,modelchecking,simulation,andtheoremproving
togetherwiththeirintegrationintotheSALtoolset.Sec-
tion4concludeswithsomeremarks.

2 The SAL Common Intermediate Lan-

guage

Mechanized formal analysis starts from a description

of the problem of interest expressed in the notation of

the tool to be employed. Construction of tiffs descrip-

tion often entails considerable work: first to recast the

system specification from its native expression in C, Es-

terel, Java, SCR, UML, Verilog, or whatever, into the

notation of the tool concerned, then to extract the part

that is relevant to the analysis at hand, and finally to re-

duce it to a form that the tool can handle. If a second tool

is to be employed for a different analysis, then a second

description of the problem must be prepared, with con-

siderable duplication of effort. With rn source languages

and n tools, we need m*n translators. Tiffs situation nat-

urally suggests use of a common intermediate language,

where the numbers of tools required could be reduced to

m + n translators.

The intermediate language must serve as a medium

for representing the state transition semantics of a sys-

tem described in a source language such as Java or Es-

terel. It must also serve as a common representation

for driving a number of back-end tools such as theorem

provers and model checkers. A useful intermediate lan-

guage for describing concurrent systems must attempt to

preserve both the structure and meaning of the original

specification while supporting a modular analysis of the

transition system.

For these reasons, the SAL intermediate language is a

rather rich language. In the sequel, we give an overview

of the main features of the SAL type language, the ex-

pression language, the module language, and the con-

text language. For a precise definition and semantics of

the SAL language, including comparisons to related lan-

guages for expressing concurrent systems, see [31].

The type system of SAL supports basic types such

as booleans, scalars, integers and integer subranges,

records, arrays, and abstract datatypes. Expressions

are strongly typed. The expressions consist of con-

stants, variables, applications of Boolean, aritlmaetic,

and bit-vector operations (bit-vectors are just arrays of

Booleans), and array and record selection and updates.

Conditional expressions are also part of the expression

mutex : CONTEXT =

BEGIN

PC: TYPE = {trying, criti-

cal, sleeping}

mutex [tval:boolean] : MODULE

BEGIN

INPUT pc2: PC, x2: boolean

OUTPUT pcl: PC, xl: boolean

INITIALIZATION

TRUE --> pcl

xl

= sleeping;

= tval

TRANSITION

pcl = sleeping

--> pcl' = trying;

xl' = (x2=tval)

[]

pcl = trying AND

(pc2=sleeping OR xl=

--> pcl' = critical

[]

pcl = critical

--> pcl' = sleeping;

xl' = (x2=tval)

END

(x2/=tval))

system: MODULE =

HIDE xl,x2

(mutex[FALSE]

I I RENAME pc2 TO pcl,

x2 TO xl,

pcl TO pc2,

xl TO x2

mutex[TRUE])

mutualExclusion: THEOREM

system l-

AG(NOT(pcl=critical

AND pc2=critical))

eventuallyl: LEMMA

system I- EF(pcl=critical)

eventually2: LEMMA

system I- EF(pc2=critical)

END

Figure 1. Mutual Exclusion



language and user-defined functions may also be intro-
duced.

A module is a self-contained specification of a tran-

sition system in SAL. Usually, several modules are col-

lected in a context. Contexts also include type and con-

stant declarations. A transition system module consists

of a state type, an initialization condition on tlfis state

type, and a binary transition relation of a specific form

on the state type. The state type is defined by four pair-

wise disjoint sets of input, output, global, and local vari-

ables. The input and global variables are the observed

variables of a module and the output, global, and local
variables are the controlled variables of the module. It

is good pragmatics to name a module. This name can be

used to index the local variables so that they need not be

renamed during composition. Also, the properties of the

module can be indexed on the name for quick lookup.

Consider, for example, the SAL specification of a

variant of Peterson's mutual exclusion algorithm in Fig-
ure 1. Here the state of the module consists of the

controlled variables corresponding to its own program

counter pcZ and boolean variable xZ, and the observed

variables are the corresponding pc 2 and x2 of the other

process.

The transitions of a module can be specified variable-

wise by means of definitions or transition-wise by

guarded commands. Henceforth, primed variables X'
denote next-state variables. A definition is of the form

X = f (Y, z). Both the initializations and transitions

can also be specified as guarded assignments. Each

guarded command consists of a guarded formula and an
assignment part. The guard is a boolean expression in

the current controlled (local, global, and output) vari-

ables and current-state and next-state input variables.

The assignment part is a list of equalities between a left-

hand side next-state variable and a right hand side ex-

pression in both current-state and next-state variables.

Parametric modules allow the use of logical (state-

independent) and type parameterization in the definition

of modules. Module mutex in Figure 1, for example, is

parametric in the Boolean tval. Furthermore, mod-

ules in SAL can be combined by either synchronous
composition I I, or asynchronous composition [ ]. Two

instances of the mutex module, for example, are con-

joined synchronously to form a module called sys tem

in Figure 1. This combination also uses hiding and re-

naming. Output and global variables can be made local

by the HIDE construct. In order to avoid name clashes,

variables in a module can be renamed using the RENAME
construct.

Besides declaring new types, constants, or modules,

SAL also includes constructs for stating module prop-
erties and abstractions between modules. CTL formulas

are used, for example, in Figure 1 to state safety and live-

ness properties about the combined module s y s t em.
The form of composition in SAL supports a com-

positional analysis in the sense that any module prop-

erties expressed in linear-time temporal logic or in the

more expressive universal fragment of CTL* are pre-

served through composition. A similar claim holds for

asynchronous composition with respect to stuttering in-

variant properties where a stuttering step is one where

the local and output variables of the module remain un-

changed.

Because SAL is an environment where theorem prov-

ing as well as model checking is available, absence of

causal loops in synchronous systems is ensured by gen-

erating proof obligations, rather than by more restrictive

syntactic methods as in other languages. Consider the

following definitions:

X = IF A THEN NOT Y ELSE C ENDIF

Y = IF A THEN B ELSE X ENDIF

This pair of definitions is acceptable in SAL because we

can prove that X is causally dependent on Y only when

A is true, and vice-versa only when it is false--hence

there is no causal loop. In general, causality checking

generates proof obligations asserting that the conditions

that can trigger a causal loop are unreachable.

3 SAL Components

SAL is built around a blackboard architecture cen-

tered around the SAL intermediate language. Different
backend tools operate on system descriptions in the in-

termediate language to generate properties and abstrac-
tions. The core of the SAL toolset includes the usual

infrastructure for parsing and type-checking. It also al-

lows integration of translators and specialized compo-

nents for computing and verifying properties of transi-

tion systems. These components are loosely coupled

and communicate through well-defined interfaces. An

invariant generator may expect, for example, various ap-

plication specific flags and a SAL base module, and it

generates a corresponding assertion in the context lan-

guage together with a justification of the invariant. The

SAL toolset keeps track of the dependencies between

generated entities, and provides capabilities similar to

proof-chain analysis in theorem proving systems like
PVS.

The main ingredients of the SAL toolset are special-

ized components for computing and verifying properties

of transition systems. Currently, we have integrated var-

ious components providing basic capabilities for analyz-

ing SAL specifications, including



• Validationbasedontheoremproving,modelcheck-
ing,andanimation;

• Abstraction and invariant generation;

• Generation of counterexamples;

• Slicing.

We describe these components in more detail below.

3.1 Backend translations

We have developed translators from the SAL inter-

mediate language to PVS, SMV, and Java for validat-

ing SAL specifications by means of theorem proving

(in PVS), model checking (in SMV), and animation (in

Java). These compilers implement shallow structural

embeddings [26] of the SAL language; that is, SAL

types and expressions are given a semantics with re-

spect to a model defined by the logic of the target lan-

guage. The compilers performs a limited set of semantic

checks. These checks mainly concern the use of state

variables. More complex checks, as for example type

checking, are left to the verification tools.

3.1.1 Theorem Proving: SAL to PVS

PVS is a specification and verification environment

based on lfigher-order logic [27]. SAL contexts con-

tainlng definitions of types, constants, and modules, are

translated into PVS theories. This translation yields a se-

mantics for SAL transition systems. Modules are trans-

lated as parametric theories containing a record type to

represent the state type, a predicate over states to rep-
resent the initialization condition, and a relation over

states to represent the transition relation. Figure 2 de-

scribes a typical translation of a SAL module in PVS.

Notice that initializations as well as transitions may be
nondeterministic.

Compositions of modules are embedded as logical

operations on the transition relations of the correspond-

ing modules: disjunction for the case of asynchronous

composition, conjunction for the case of synchronous

composition. Hiding and renaming operations are mod-

eled as morphisms on the state types of the modules.

Logical properties are encoded via the temporal logic of

the PVS specification language.

3.1.2 Model Checking: SAL to SMV

SMV is a popular model checker with its own system

description language [25]. SAL modules are mapped to

SMV modules. Type and constant definitions appearing

module[para:Parameters]

BEGIN

State : TYPE = [#

input : InputVars,

output : OutputVars,

local : LocalVars

#]

state,next : VAI% State

: THEORY

initialization(state) :boolean =

(guard_init_l AND

output(state) .... AND

local(state) .... )

OR ... OR (guard_init_n AND ...)

transitions(state, next) :boolean =

(guard_trans_l AND

output(next) =

output(state) WITH [...]

local(next) =

local(state) WITH [... ])

OR ... OR

(guard_trans_m AND ...)

OR

(NOT guard_trans_l AND . .. AND

NOT guard_trans_mAND

output(next) = output(state)

local(next) = local(state))

Figure 2. A SAL module in PVS

in SAL contexts are directly expanded in the SMV spec-

ifications. Output and local variables are translated to

variables in SMV. Input variables are encoded as param-
eters of SMV modules.

The nondeterministic assignment of SMV is used to
capture the arbitrary choice of an enabled SAL transi-

tion. Roughly speaking, two extra variables are intro-

duced. The first is assigned nondeterministically with a

value representing a SAL transition. The guard of the

transition represented by this variable is the first guard

to be evaluated. The second variable loops over all tran-

sitions starting from the chosen one until it finds a tran-
sition which is enabled. This mechanism assures that

every transition satisfying the guard has an equal chance

to being fired in the first place. Composition of SAL

modules and logical properties are directly translated via

the specification language of SMV.

3.1.3 Animation: SAL to Java

Animation of SAL specifications is possible via compi-
lation to Java. However, not all the features of the SAL



language are supported by the compiler. In particular,

the expression language that is supported is limited to
that of Java. For example, only integers and booleans are

accepted as basic types. Elements of enumeration types

are translated as constants and record types are repre-

sented by classes.

The state type of a SAL module is represented by

a class containing fields for the input, output, and lo-
cal variables. In order to simulate the nondeterminism

of the initialization conditions, we have implemented a

random function that arbitrary chooses one of the initial-

ization transition satisfying the guard.
Each transition is translated as a Java thread class.

At execution time, all the threads share the same state

object. We assume that the Java virtual Machine is non-

deterministic with respect to execution of threads. The
main function of the Java translation creates one state

object and passes the object as an argument to the thread

object constructors. It then starts all the threads. Safety

properties are encoded by using the exception mecha-
nism of Java, and are checked at mn time.

3.1.4 Case Study: Flight Guidance System

Mode confusion is a concern in aviation safety. It oc-

curs when pilots get confused about the actual states of

the flight deck automation. NASA Langley conducts

research to formally characterize mode confusion situ-

ations in avionics systems. In particular, a prototype

of a Flight Guidance System (FGS) has been selected

a case study for the application of formal techniques to

identify mode confusion problems. FGS has been spec-

ified in various formalisms (see [23] for a comprehen-

sive list of related work). Based on work by Ltittgen

and Carrefio, we have developed a complete specifica-

tion of FGS in SAL. The specification has been auto-

matically translated to SMV and PVS, where it has been

analyzed. We did not experience any significant over-

head in model checking translated SAL models com-

pared to hand-coded SMV models. This case study is
available at http ://www. icase, edu./-munoz/

sources .html.

3.2 Invariant Generation

An invariant of a transition system is an assertion--

a predicate on the state--that holds of every reachable

state of the transition system. An inductive im, ariant is

a assertion that holds of the initial states and is preserved

by each transition of the transition system. An inductive

invariant is also an invariant but not every invariant is
inductive.

Let sP(T, O) denote the formula that represents the

set of all states that can be reached from any state in 0

via a single transition of the system T, and ® denote the

formula that denotes the initial states. A formula 0 is
an inductive invariant for the transition system 7- if (i)

0 -+ 0; (ii) SP(7-, 0) -+ 0.

We recall that for a given transition system 7- and

a set of states described by formula O, the notation

SP(7-, O) denotes the formula that characterizes all

states reachable from states O using exactly one transi-
tion from 7-. If O denotes the initial state, then it follows

from the definition of invariants that any fixed-point of

the operator F(O) = SP(7-, O) V O is an invariant.

Notice that the computation of strongest postcondi-

tions introduces existentially quantified formulas. Due

to novel theorem proving techniques in PVS2.3 that are

based on the combination of a set of ground decision

procedures and quantifier elimination we are able to ef-

fectively reason about these formulas in many interest-

ing cases.

It is a simple observation that not only is the greatest

fixed point of the above operator an invariant, but ev-

ery intermediate Oi generated in an iterated computation

procedure of greatest fixed point also is an invariant.

00 : true

¢iq-1 : SP(7-, 0i) V O

A consequence of the above observation is that we do

not need to detect when we have reached a fixed point in

order to output an invariant.

As a teclmical point about implementation of the

above greatest fixed point computation in SAL, we men-

tion that we break up the (possibly infinite) state space

of the system into finitely many (disjoint) control states.

Thereafter, rather than working with the global invari-

ants 0i, we work with local invariants that hold at par-

ticular control states. The iterative greatest fixed point

computation can now be seen as a method of generating

invariants based on affirmation and propagation [6].

Note that rather than computing the greatest fixed

point, if we performed the least fixed point computation,

we would get the strongest invariant for any given sys-

tem. The problem with least fixed points is that their

computation does not converge as easily as those of

greatest fixed points. Unlike greatest fixed points, the

intermediate predicates in the computation of the least

fixed point are not invariants. We are currently investi-

gating approaches based on widening to compute invari-

ants in a convergent manner using least fixed points [8].

The techniques described so far are noncomposi-

tional since they examine all the transitions of the given

system. We use a novel composition role defined in [29]

allowing local invariants of each of the modules to be

composed into global invariants for the whole system.



Thiscompositionruleallowsustogeneratestrongerin-
variantsthantheinvariantsgeneratedbytheteclmiques
describedin[6,7].Thegeneratedinvariantsallowsusto
obtainbooleanabstractionsoftheanalyzedsystemusing
theincrementalanalysistechniquespresentedin[29].

3.3 Slicing

Program analyses like slicing can help remove code

irrelevant to the property under consideration from the

input transition system which may result in a reduced

state-space, thus easing the computational needs of sub-

sequent formal analysis efforts. Our slicing tool [18]

accepts an input transition system which may be syn-

chronously or asynchronously composed of multiple
modules written in SAL and the property under verifica-

tion. The property under verification is converted into a

slicing criterion and the input transition system is sliced

with respect to this slicing criterion. The slicing crite-

rion is merely a set of local/output variables of a subset

of the modules in the input SAL program that are not

relevant to the property. The output of the slicing al-

goritlma is another SAL program similarly composed of

modules wherein irrelevant code manipulating irrelevant
variables from each module has been sliced out. For ev-

ery input module there will be an output module, empty

or otherwise. In a nutshell the slicing algoritlma does

a dependency analysis of each module and computes

backward transitive closure of the dependencies. This

transitive closure would take into consideration only a
subset of all transitions in the module. We call these

transitions observable and the remaining transitions are

called _- or silent transitions. We replace silent transi-

tions with skips.

We are currently investigating reduction techniques

that are simpler than slicing and also ones that are more

aggressive. One example is the cone-of-influence re-

duction where the slicing criterion is a set of variables

V, and the reduction computes a transition system that
includes all the variables in the transitive closure of V

given by the dependencies between variables [21]. In

comparison with slicing, the cone-of-influence reduc-
tion is insensitive to control and is therefore easier to

compute but generally not as efficient at pruning irrele-

vance. Slicing preserves program behavior with respect

to the slicing criterion. One could obtain a more dra-

matic reduction by admitting slices that admitted more

behaviors by introducing nondeterminism. Such aggres-

sive slicing would be needed for example to abstract

away from the internal behavior of a transition system

within its critical section for the purpose of verifying

mutual exclusion. Slicing for concurrent systems with

respect to temporal properties has been investigated by

Dwyer and Hatcliff [ 16].

3.4 Connecting InVeSt with SAL

So far we have described specialized SAL compo-

nents that provide core features for the analysis of con-

current systems, but we have also integrated the stand-
alone InVeSt [5] into the SAL framework. Besides com-

positional techniques for constructing abstraction and

features for generating counterexamples from failed ver-

ification attempts, InVeSt introduces alternative methods

for invariant generation to SAL. InVeSt not only serves
as a backend tool for SAL but also has been connected

to the IF laboratory [10], Aldebaran [9], TGV [17] and

Kronos [15].
The salient feature of InVeSt is that it combines the

algorithmic with the deductive approaches to program

verification in two different ways. First, it integrates the

principles underlying the algoritlmaic (e.g. [11,28]) and

the deductive methods (e.g. [24]) in the sense that it uses

fixed point calculation as in the algorithmic approach but
also the reduction of the invariance problem to a set of

first-order formulas as in the deductive approach. Sec-

ond, it integrates the theorem prover PVS [27] with the

model checker SMV [25] through the automatic com-

putation of finite abstractions. That is, it provides the

ability to automatically compute finite abstractions of

infinite state systems which are then analyzed by SMV

or, alternatively, by the model checker of PVS. Further-

more, InVeSt supports the proof of invariance proper-

ties using the method based on induction and auxiliary

invariants (e.g. [24]) as well as a method based on ab-

straction teclmiques [2, 12-14, 21,22]. InVeSt uses PVS

as a backend tool and depends heavily on its theorem

proving capabilities for deciding the myriad verification
conditions.

3.4.1 Abstraction

InVeSt provides also a capability that computes an ab-

stract system from a given concrete system and an ab-

straction function. The method underlying this tech-

nique is presented in [4]. The main features of this

method is that it is automatic and compositional. It com-

putes an abstract system S a = S 1 II "'" II s_, for a

given system S = S 1 II " II s n and abstraction func-

tion a, such that S simulates S_ is guaranteed by the

construction. Hence, by known preservation results, if

S_ satisfies an invariant _ then S satisfies the invari-
ant a -1 (_). Since the produced abstract system is not

given by a graph but in a programming language, one

still can apply all the known methods for avoiding the

state explosion problem while analyzing S_. Moreover,



itgeneratesanabstractsystemwhichhasthesamestruc-
tureastheconcreteone. This gives the ability to apply
further abstractions and techniques to reduce the state

explosion problem and facilitates the debugging of the

concrete system. The computed abstract system is op-

tionally represented in the specification language of PVS
or in that of SMV.

The basic idea behind our method of computing ab-

stractions is simple. In order to construct an abstrac-

tion of S, we construct for each concrete transition Tc

an abstract transition Ta. To construct _-a we proceed by

elimination starting from the universal relation, which

relates every abstract state to every abstract state, and

eliminate pairs of abstract states in a conservative way,

that is, it is guaranteed that after elimination of a pair the

obtained transition is still an abstraction of Tc. To check

whether a pair (a, a') of abstract states can be eliminated

we have to check that the concrete transition Tc does not

lead from any state c with a(c) = a to any state c' with

a(c') = a'. Tiffs amounts to proving a Hoare triple. The

elimination method is in general too complex. There-

fore, we combine it with three techniques that allow

many fewer Hoare triples to be checked. These tech-

niques are based on partitioning the set of abstract vari-

ables, using substitutions, and a new preservation result

which allows to use the invariant to be proved during the
construction process of the abstract system.

We implemented our method using the theorem
prover PVS [27] to check the Hoare triples generated by
the elimination method. The first-order formulas corre-

sponding to these Hoare triples are constructed automat-

ically and a strategy that is given by the user is applied.

In [1] we developed also a general analysis methodol-

ogy for heterogeneous infinite-state models, extended

automata operating on variables which may range over

several different domains, based on combining abstrac-

tion and symbolic teachability analysis.

3.4.2 Generation of Invariants

There are two different way to generate invariants in

InVeSt. First, we use calculation of pre-fixed points

by applying the body of the backward procedure a fi-

nite number of times and use techniques for the auto-

matic generation of invariants (cf. [3]) to support the

search for auxiliary invariants. The tool provides strate-

gies which allow derivation of local im, ariants, that is,

predicates attached to control locations and which are

satisfied whenever the computation reaches the corre-

sponding control point. InVeSt includes strategies for

deriving local invariants for sequential systems as well

as a composition principle that allows combination of

invariants generated for sequential systems to obtain in-

variants of a composed system. Consider a composed

system S1 II$2 and control locations ll and 12 of S1

and $2, respectively. Suppose that we generated the lo-

cal invariants P1 and P2 at ll and 12, respectively. Let us

call Pi interference independent, if Pi does not contain a

free variable that is written by Sj with j _ i. Then, de-
pending on whether Pi is interference independent we

compose the local invariants P1 and P2 to obtain a lo-

cal invariant at (ll, 12) as follows: if Pi is interference

independent, then we can affirm that Pi is an invariant

at (ll, 12) and if both P1 and P2 are interference depen-

dent, then P1 VP2 is an invariant at (ll, 12). This compo-

sition principle proved to be useful in the examples we

considered. However, examples showed that predicates

obtained by this composition principle can become very

large. Therefore, we also consider the alternative option

where local invariants are not composed until they are

needed in a verification condition. Thus, we assign to

each component of the system two lists of local invari-

ants. The first corresponds to interference independent

local invariants and the second to interference dependent
ones. Then, when a verification condition is considered,
we use heuristics to determine which local invariants are

useful when discharging the verification condition. A
useful heuristic concerns the case when the verification

condition is offlae form (pc(l) = ll Ape(2) = 12) _ q_,

where pc(l) = ll A pc(2) = 12 asserts that computation

is at the local control locations ll and 12. In this case, we

combine the local invariants associated to ll and 12 and

add the result to the left hand side of the implication.

Second, we use abstraction generating invariants at

the concrete level: Let S_1 the result of the abstrac-

tion of a concrete system S, the set of reachable states

denoted by Reaeh(Sc_) is an invariant of S_ (the

strongest one including the initial configurations in fact).

We developed a method that extract the formula which

characterizes the reachable states from the BDD. Hence,

all (Reach (Sc_)) is an invariant of the concrete model

$. Tiffs invariant can be used to strengthen g_and show
that it is an invariant of $.

3.4.3 Analysis of Counterexamples

The generation of the abstract system is completely au-

tomatic and compositional as we consider transition by

transition. Thus, for each concrete transition we obtain

an abstract transition (which might be nondeterministic).

This is a very important property of our method, since it

enables the debugging of the concrete system or alter-

natively enhancing the abstraction function. Indeed, the

constructed abstract system may not satisfy the desired

property, for three possible reasons:

1. The concrete system does not satisfy the invariant,



2. The abstraction function is not suitable for proving

the invariant, or

3. The proof strategies provided are too weak.

Now, a model checker such as SMV provides a trace as

a counterexample, if the abstract system does not satisfy

the abstract invariant. Since we have a clear correspon-

dence between abstract and concrete transitions, we can

examine the trace and find out which of the fllree rea-

sons listed above is the case. In particular if the concrete

system does not satisfy the invariant then we can trans-

form the trace given by SMV to a concrete trace, rims

generating a concrete counterexample.

3.5 Predicate/Boolean Abstraction

In addition to the InVeSt abstraction mechanisms, we

implemented boolean abstraction of SAL specifications.

We use the boolean abstraction scheme defined in [19]

that uses predicates over concrete variables as abstract

variables to abstract infinite or large state systems into

finite state systems analyzable by model checking. The

advantage of using boolean abstractions can be summa-

rized as follows:

• Any abstraction to a finite state system can be ex-

pressed as a boolean abstraction.

The abstract transition relation can be repre-

sented symbolically using Binary Decision Dia-

gram (BDDs). Thus, efficient symbolic model

checking [25[ can be effectively applied.

• We have defined in [30] an efficient algorithm for

the construction of boolean abstractions. We also

designed an efficient refinement technique that al-

lows us to refine automatically an already con-

structed abstraction until the property of interest is

proved or a counter-example is generated.

Abstraction followed by model checking and suc-

cessive refinement is an efficient and more pow-

erful alternative to invariant generation techniques

such as the ones presented in [6, 7].

3.5.1 Automatic Construction of Boolean Abstrac-

tions

The automatic abstraction module takes as input a SAL

basemodule and a set of predicates defining the boolean

abstraction. Using the algoriflma in [30] we automati-

cally construct the corresponding abstract transition sys-

tem. Tiffs process relies heavily on the PVS decision

procedures.

INPUT x: integer

OUTPUT y, z: integer

INITIALIZATION

TRUE --> INIT(x) = 0;

INIT(y) = 0;

INIT(z) = y;

TRANSITION

NOT(x > 0) --> y' = y + 1

[] z > 0 --> z' = y I, yt = 0

Figure 3. Concrete Module.

Figure 3 and 4 display a simple SAL module and its

abstraction where the boolean variables BI, B2 and B3

correspond to the predicates :e > 0, y > 0, and z > 0.

Notice that the assignment to B3 is nondeterministically

chosen from the set {TRUE, FALSE}.

INPUT BI: boolean

OUTPUT B2,B3: boolean

INITIALIZATION

TRUE --> INIT(BI) = FALSE;

INIT(B2) = FALSE;

INIT(B3) = FALSE;

TRANSITION

NOT(B1) --> B2'=F

[] B3 --> B2'=T, B3'= { TRUE, FALSE }

Figure 4. Abstract Module.

3.5.2 Explicit Model Checking

Finite-state SAL modules can be translated to SMV for

model checking as explained above. However, model

checkers usually do not allow to access their internal

data structures where intermediate computation steps of

the model-cfiecking process can be exploited. For this

reason, we implemented an efficient explicit-state model

checker for SAL systems obtained by boolean abstrac-

tion. The abstract SAL description is translated into

an executable Lisp code that performs the explicit state

model checking procedure allowing us to explore about



twentythousandstatesasecond.Thisprocedurebuilds
anabstractstategraphthatcanbeexploitedforfurther
analysis.Furthermore,additionalabstractionscanbe
appliedon the fly while the abstract state graph is be-

ing built.

3.5.3 Automatic Refinement of Abstractions

When model checking fails to establish the property of

interest, we use the results developed in [29, 30] to de-

cide whether the constructed abstraction is too coarse

and needs to be refined, or that the property is violated

in the concrete system and that the generated counter-

example corresponds indeed to an execution of the con-

crete system violating the property. This is done by ex-

amining the generated abstract state graph. The refine-

ment teclmique computes the precondition to a transition

where nondeterministic assignments occur. The precon-

ditions corresponding to the cases where the variables

get either TRUE or FALSE define two predicates that are

used as new abstract variables. The following transition

from the example

B3 --> B2':TRUE, B3': {TRUE, FALSE}

can be automatically refined to

B3 --> B2'=TRUE, B3'=B4 ,

B4'=FALSE, B5' = FALSE

where B4 and B5 correspond to the predicates y= I and

y > 1, respectively.

4 Conclusions

SAL is a tool that combines teclmiques from static

analysis, model checking, and theorem proving in a truly

integrated environment. Currently, its core is realized as

an extension of the PVS system and has a well-defined

interface for coupling specialized analysis tools. So

far, we have been focusing on developing and connect-

ing back-end tools for validating SAL specifications by

means of animation, theorem proving, and model check-

ing, and also for computing abstractions, slices, and in-

variants of SAL modules. There are as yet no automated

translators into the SAL language. Primary candidates

are translators for source languages such as Java, Ver-

ilog, Esterel, Statecharts, or SDL. Since SAL is an open

system with well-defined interfaces, however, we hope

others will write those if the rest of the system proves

effective.

We are currently completing the implementation of

the SAL prototype which includes a parser, typechecker,

a slicer, an invariant generator, the connection to InVeSt,

and translators to SMV and PVS. We expect to release

the prototype SAL system in mid-2000.

Although our experience with the combined power of

several forms of mechanized formal analysis in the SAL

system is still rather limited, we predict that proofs and

refutations of concurrent systems that currently require

significant human effort will soon become routine cal-

culations.
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