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Abstract

The Optical Communications Demonstrator (OCD) is a laboratory-based lasercom demonstra-
tion terminal designed to validate several key technologies, including beacon acquisition, high band-
width tracking, precision beam pointing, and point-ahead compensation functions. It has been un-
der active development over the past few years. The instrument uses a CCD array detector for both
spatial acquisition and high-bandwidth tracking, and a fiber coupled laser transmitter. The array
detector tracking concept provides wide field-of-view acquisition and permits effective platform jit-
ter compensation and point-ahead control using only one steering mirror. This paper describes
the detailed design and characterization of the digital control loop system which includes the Fast
Steering Mirror (FSM), the CCD image tracker, and the associated electronics. The objective is to
iniprove the overall system performance using laboratory measured data.

The design of the digital control loop is based on a linear time invariant open loop model. The
closed loop performance is predicted using the theoretical model. With the digital filter programmed
into the OCD control software, data is collected to verify the predictions. This paper presents the
results of the system modeling and perfornance analysis. It has been shown that measurement data
closely matches theoretical predictions.

An important part of the laser communication experiment is the ability of FSM to track the
laser beacon within the required tolerances. The pointing must be maintained to an accuracy that
is much smaller than the transinit signal beamwidth. For an earth orbit distance, the system must
bo able to track the receiving station to within a few microradians. The failure to do so will result
in a severely degraded svstem performance.
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1 Introduction

The goals of this effort are to characterize the end-to-end system performance of the digital controller
for the Optical Communcation Demonstrator and to prepare for the upgrade of the Fast Steering
Mirror that could substantially improve the pointing accuracy. To improve the pointing accuracy, the
existing system software was modified to collect data which could characterize the FSM, the FSM
electronics, and the camera imaging subsystemn. The system is measured in both open loop and closed
loop operating modes. A linear time invariant open loop model is developed and is used in the design
of a compensating digital filter. The closed loop performance is predicted using MATLAB. With the
digital filter programmed into the OCD control software, data is collected to verify the predictions.
This paper presents the results of the system modeling and performance analysis.

2 Laboratory Measurements

2.1 Hardware

The OCD design is described in detail in [4]. For the purposes of analyzing the mirror control system
to inprove the laser beacon tracking. the systen is grouped conceptually into subsystems.



The OCD forward loop consists of the DSP which runs the control and imaging software, the
"DAC which converts the digital filter signal to an analog input signal for the FSM servo, and the
two axis FSM servo and mirror. The FSM position sensor is a CCD which reports a centroid value
derived fromn the CCD image. The DAC, FSM servo, and mirror are treated as the system plant. The
CCD is treated as clements which only contributes to the system delay within the target control loop
baudwidth of 100 Hz and are modeled as such. This does not mean however that it is the only element
in the loop which contribute to the system delay. The DSP and the DSP software are considered to
make up the digital filter.

2.2 Data Collection

The OCD FSM control law is implemented on a Texas Instruments TMS320C44 Digital Signal Pro-
cessor (DSP). All system code changes, i.e., software written and compiled to run on the DSP, and
all data capture are accomplished by way of the Signalogic(tm) digital signal processing development
environment. The data collected for these experiments were obtained at a real-time system rate of
2KHz. This system can buffer data sequences of up to 4000 points long.

(Data gathered for the mirror operating in open loop mode was accomplished by inputing a known
signal, such as a sine wave, into the OCD Fast Steering Mirror(FSM) control driver circuitry. The
open loop data was collected for two input cases, a sine wave and a white noise signal. These input
digital signals were generated in the DSP softwarc. Each digital input point represents the desired or
commanded centroid pixel location which is essentially how mirror position is measured. The FSM
positions were then determined by reading the CCD camera calculated centroid values for both the
Mirror X- and Y- axes. The values collected for these experiments consisted of the generated input
centroid signal and the calculated centroid results from the CCD camera.

In closed loop operation. the loop is closed around a compensating digital filter. The mirror
position. i.c. the centroid caleulation, is fed back and subtracted from the desired position. This error
is then input to the filter in order to produce the mirror control signal which is applied to the FSM
driver control circuit. In the closed loop mode, a sine wave signal was applied in a way similar to the
open loop method. However, the compensator drives the mirror in an attempt to track the sinusoid
imput. The input signal and the feedback centroid information are simultaneously recorded at the
sample rate of 2 KHz.

In either open or closed loop mode, the data was obtained for selected discrete input sine wave
frequencies. For open loop mode, the white noise input was generated by creating a DC signal where
the level is fixed for a given nummber of sample intervals and is determined by a random number
generator. The update rate for the latter signal was 1 KHz, i.e the level is fixed for two samples, with
a sequence length of 2000 points.

3 Open Loop Characterization

A model for the open loop mirror was developed for each axis of the mirror position controller. A
white noise signal was injected into the open loop mirror control system at the input to the loop, see
Figure 1. The digital ontput and input data was saved to a file and then analyzed in the frequency
domain using MATLAB. The procedure used to estimate the frequency response function is described
in Section 9. In addition. digital sine waves at sclected discrete frequencies were input to the open
loop system and the data recorded. The magnitude and phase data tor both the white noise and sine
wave inpits were plotted for each axis. As expected the two sets of data agree as shown in Figure 2
and Figure 3.

A second order linear time invariant model was derived empirically using MATLAB by fitting the
open loop data in both amplitude and phase. The dotted lines which coincide with the measured



responses in Figure 2 and Figure 3 are the bode plots of the resulting MATLAB models.

© The X-Axis Mirror Plant Model, M;(s) in Equation 1, has a double pole estimated. to be at 18.5
Hertz with a damping ratio of 0.5. The Y-Axis Mirror Plant Model, M, (s) in Equation 2, has a double
pole estimated to be at 19 Hz with a damping ratio of 0.45.
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The additional phase delay attributed to any time delays in the loop, e.g. calculating the new
centroid, is linearly modeled by H,.(s) in Equation 3 and H,(s) in Equation 4.
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Ho(s) = ——1t= (3)

Where T,,,=0.00166.

2
H,,(S) = zl‘y (4)
dy

s+ 57—
Where T, =0.00125.

The resulting modeled open loop system phase delay can be seen in Figure 4 and Figure 5 along
with the measured open loop system phase delay data. The fitting parameters such as gain, phase
delay, poles, and damping ratio of the linear model are varied such that the norm of magnitude and
phase of the estimated transfer function minus the fitted transfer is minimized.

4 Closed Loop Prediction

Using the MATLAB open loop plant model, the loop was closed around a continuous time equivalent
of the digital filter designed by B. Luric and S. Sirlin [3]. The digital filters are included below in
Equation 5 and Equation 6 and are documented in their memo dated Jannary 29, 1997. The design
is based on pole-zero cancellation or pole shifting where the stable poles of the plant are cancelled by
zeros of the digital filter and replaced with poles in more desircable locations [2]. The conversion of
the linear systems from continuous time to discrete time domain and vice versa assumes a sampling
interval of 2 KHz. The closed loop system for each axis is diagramed in Figure 6 and Figure 7. The
frequency domain plots for phase and amplitude of this closed loop system predicted by the MATLAB
models arc shown in Figure 8, Figure 9, Figure 10, and Figure 11. The X-Axis digital filter, C(z) ,
was modified slightly to account for the different X-Axis plant poles.
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The digital filter equations were converted to their equivalent continous time representation in the

Laplace domain, sce Equation 7 and Equation 8
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X-Axis Y-Axis
Measurad Predicted Measured Predicted
-3dB BW 128.6 Hz 146 Hy. 112.6 Hz 177 Hx
(Magnitude)
Phase at -126 degrees | -138 degrees | -126 degrees | -110 degrees
f= 100Hz

Table 1: OCD Mirror Closed Position Loop Measured and Predicted Results

8052 + 88105 + 979180 g
52 4+2799.85 — 1.24337¢ - 9 (8)
The open loop transfer function which includes the compensating filters is used to determine the
gain and phase margins for each axis. The open loop bode plots for for the x-axis transfer function,
Cr(8)G(s)H,(s), and the y-axis transfer function, Cy,(s)G,(s)H,(s), are shown in figure 14. The
resulting x-axis gain and phase margin are 2.895 and 53.73 degrees. Similarly, the y-axis gain and
phase margin are 2.9404 and 53.41 degrees. These margins provide for a measure of the system
stability.
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5 Closed Loop Verification

Experimental data was taken to characterize the closed loop performance with the digital filters
in place. The OCD mirror control system was closed around the digital filters in Equation 5 and
Equation 6 which were implemented in the OCD software. The filter gains were adjusted separately
for cach axis in the math models to achieve approximately 100 Hz of control bandwidth. The closed
loop system was then tested to verify the math model predictions. Sine waves at discrete frequencies
and steps were input as position commands into the closed loop mirror position control system. Each
axis was tested independently. The empirical results are shown in the bode and time domain plots
along side the predictions in Figures 8-13. For the Y-axis closed loop control, the predicted magnitude
response -3 dB bandwidth was near 177 Hz, but the actual turned out to be slightly over 110 Hz,
Figure 9. For the X-axis closed loop control, the predicted -3 dB bandwidth was slightly over 146
Hz and the measured was well over 100 Hz, Figure 8. The Y-Axis predicted phase delay at 100 Hz
was about -110 degrees, Figure 11. The Y-Axis measured phase delay at 100 Hz was -126 degrees, a
14.5 % difference between predicted and measured. The X-Axis predicted phase delay is -138 degrees
and the measured phase delay was -126 degrees which is about 9 % better than predicted, Figure 10.
These results are listed in Table 1.

The discrepancy between the predicted and the measured curves at the higher frequencies, above
50 Hz by inspection. indicates that there are some non-negligible nonlinear effects in the real system.

The ratios of input over error for sine wave inputs at discrete frequencies were plotted along with
the predicted input over error ratio based on the MATLAB model. see Figure 15 and Figure 16.
The transfer functions used to derive the predicted %:—; frequency domain responses are shown in

Equation 9 and Equation 10.

B w — LT O IM () Hals) (9)
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6 MATLAB Model Based Predictions

We want to predict system performance for a different mirror and different mirror drives. Assuming
the new mirror can be characterized well by a sccond order linear systemn, a MATLAB model was
created for a mirror plant where the first resonant frequency is w, =50 Hertz with damping, £ = 0.5.

Three separate cases are analyzed, the new mirror with no delay added, a second with a one sample
interval delay added, and the third with approximately a three sample interval delay. Here, the sample
interval is assumed to be 0.0005 second. The latter case is the delay which is present in the current
system. The two cascs with delay are modeled with the delay in the feedback path. Since this is
a theoretical excrcise, it is assumed that both axes of the new mirror are identical and not coupled.
Hence, we will not be specific in terms of x- and y- axes. The proposed new mirror plant model is given
in Equation 11. The digital filter, C(2z) in Equation 12 ,is designed using stable plant pole cancellation
as was done for the existing digital filter discussed in the previous sections.
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Where P. is chosen to be a real valued number less than 1.0 and the choice for A, the forward gain,
is a tradeoff between system bandwidth and overshoot.

The digital filter equation was converted to their equivalent continous time representation in the
Laplace domain, sce Equation 13. The performance was then analyzed using continuous time domain

techniques.
For P. = 0.08.
Als? + 3755.35 — 8195879.6)
5) = 13
C) = S 5051.4s — 15620 — 7 (13)
The delays are modeled by the tranfer function H; where i = the number of samples delay.
H()(h‘) =1 (14)
—s + 4000
Hi(s) = ——— 1
S T (15)
-s + 1200
N = il 16
Hs() = = 1900 (16)
The closed loop transfer function then becomes
Y(s)  A-C(s)M(s)H;(s) (a7
U(s) 1+ A-C(s)M(s)Hi(s)

Where 1 = 0,1,01 3.

For the case where there is no delay in the systemn, Hg(s), we choose A = 80 and P. = 0.08 for the
digital filter values. The closed loop system response then indicates a 21.8% maximum overshoot and
a -3dB bandwidth of approximately 900 Hertz.

If we add in a one sample delay modeled by H{(s). then choose 4 = 20 and P, = 0.08, the closed
loop response results in a maximum overshoot of 29% and a -3dB bandwidth of approximately 373
Hertz.

(54



Coutroller Values Results

A | P f-3as | Max O.S. | Phase Margin | Gain Margin
No Delay, Hy 80 | 0.08 | 903 Hz | 21.8% 48.76 deg 4051.2
| Sample Delay, Hy | 20 | 0.08 | 373 Hz | 29% 46.98 deg 2.61
3 Sample Delay,Hy | 8 | 0.08 | 178 Hz | 32.8% 47.09 deg 2.39

Table 2: OCD Mirror Closed Position Loop Predicted Results

For the three sample delay, Hj(s), the choice of A = 8 and P, = 0.08 results in a closed loop
response with a maximum overshoot of 32.8% and a -3dB bandwidth near 183 Hertz. Table 2 summa-
rizes these results. Figures 16 and 17 show the closed loop magnitude and phase response for all three
cases. Notice that to maintain a similar phase margin and maximum overshoot for all three cases that
the forward gain and bandwidth are reduced significantly as the delay increases.

In addition to the frequency domain characteristics of predicted system discussed above, the time
domain error responses due to a step input are plotted and shown in figure 18. The increasing overshoot

and settling times demonstrates the difference in tracking performance between the three cases.
&

7 Summary

This paper characterizes the end-to-end digital control system performance for the OCD. The fre-
quency domain characteristics of both the compensated and uncompensated system were measured
and modeled. Also, the time domain response of the closed loop system was simulated and compared
to the measured response. A model based analytical tool for performance prediction was developed
for the OCD. This model was then used to predict performance for a new mirror. From the model and
model-based simulations, we are able to deduce the effects of system delays on system performance.
The real system was also modified to generate digital test inputs and allow for measurements to be
easily gathered. Hence, the ability to collect real performance data is now part of the system. This
feature provides for a systematic approach to quantify any future upgrades to the QCD.
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9 Appendix A

The following data analysis procedure is taken from [6).

The time series input data, z(mt,), and output data, y(mt,), m a positive integer and t, the
sampling time, arc detrended. Next, the data is passed through a Hanning filter to prevent spectral
leakage in the Fourier domain.

The magnitude and phase response of the system are cstimated using the detrended filtered time
series data.

The frequency respouse estimate for a single-input/single-output system is calculated using the
following equations.

Ho 1) = A8 = Vi (e (18)

where N
Goy(f) = % S Xif,T) - Y7 (£,T) (19)

1=1

is the averaged estimate of the one-sided cross-spectral density and

Na
Gl ) = .5 LIS TP (20)
is the averaged estimate of the one-sided auto-sprectral density,

T = Ntg, Length of the data subrecord in seconds N= Number of data points in the data subrecord
T, = N,T, Total record length of the data in scconds

Ny= Number of distinct and disjoint subrecords of length T seconds in the total record.

ts= Sampling time

Xi(f, T)=Finite Fourier transform of the ith subrecord of the time scrics data, x(mt,) and

Y;(f,T)=Finite Fourier transform of the ith subrecord of the time series data, y(mt,)

The systemn magnitude response = {flz_,,( f)| and the system phase response is ¢( f). The estimated
transter function has values at the following discrete frequencies f = fi where fi = ﬁ, fork =0,..., %
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Figure 1: OCD Mirror Open Loop Plant Modeling Block Diagram, Continuous Time.
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10 Figures

9



OCD Mirror Open Loop Y-Axis Magniude Dma Plot
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Figure 3: OCD Mirror Open Loop Y-Axis Magnitude Data Plot
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Figure 4: OCD Mirror Open Loop X-Axis Phase Data Plot.
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Open Loop Mimor Y -Axis Phase Data Plot
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Figure 5: OCD Mirror Open Loop Y-Axis Phase Data Plot
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Figure 6: OCD X-Axis Mirror Closed Loop Control Block Diagram, Continuous Time.
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Figure 7: OCD X-Axis Mirror Closed Loop Control Block Diagram, Continuous Time.
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OCD Mirror X-Axis Closed Loop Magnitude Dets Plot
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Figure 8: OCD Mirror X-Axis Closed Loop Magnitude Data Plot

OCD Mirror ¥ -Axis Closed Loop Magnitude Dala Plot

Magnitude
3

" Sine wave nput sl discrele Irequencies - < -

~ Pradicled cloaed loop response based on Matiab mode!

Fraquency n Henz

Figure 9: OCD Mirror Y-Axis Closed Loop Magnitude Data Plot
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OCD MuTor X-Axis Cloaed Loop Phase Dala Plol
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Figure 10: OCD Mirror X-Axis Closed Loop Phase Data Plot
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Figure 11: OCD Mirror Y-Axis Closed Loop Phase Data Plot



OCD Mirror X-Axis Clossd Loop Step Response Oala Plot
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Figure 12: OCD Mirror X-Axis Closed Loop Step Response Data Plot
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Figure 13: OCD Mirror Y-Axis Closed Loop Step Response Data Plot
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Mirror Open Loop Model (with Compensaltor) Magriude Osta Plot .
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Figure 14: OCD Mirror Open Loop Model with Compensator Magnitude and Phase Data Plot
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Figure 15: OCD Mirror X-Axis Closed Loop (Input/Error) Magnitude Data Plot



OCO Mirror Y-Ans Closed Loop (InputError) Magnitude Data Plot
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Figure 16: OCD Mirror Y-Axis Closed Loop (Input/Error) Magnitude Data Plot
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Figure 17: MATLAB Model Predicitions Of A New Mirror(w/ w,, = 50 Hertz) Closed Loop Magnitude
Data Plot.
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Matiab Model Predictions of A New Mirror (w/ Wne 50 Hertz) Closnd Loop Phase Oata Plot
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Figure 18: MATLAB Model Predicitions Of A New Mirror(w/ w, = 50 Hertz) Closed Loop Phase
Data Plot.
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Figure 19: MATLAB Model Predicitions Of A New Mirror(w/ w, = 50 Hertz) Closed Loop Error

Response to Step Input.
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