NASA/CP-1999-209691/VOL1/PT1

1997 NASA High-Speed Research Program Aerodynamic Performance Workshop

Volume I-Configuration Aerodynamics

Edited by

Daniel G. Baize
Langley Research Center, Hampton, Virginia

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- Email your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI

Help Desk at (301) 621-0134

- Telephone the NASA STI Help Desk at (301) 621-0390
- Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information 7121 Standard Drive
Hanover, MD 21076-1320

1997 NASA High-Speed Research Program Aerodynamic Performance Workshop

Volume I-Configuration Aerodynamics

Edited by

Daniel G. Baize
Langley Research Center, Hampton, Virginia

Proceedings of a workshop held at Langley Research Center, Hampton, Virginia February 25-28, 1997

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-2199

Available from:

NASA Center for AeroSpace Information (CASI) 7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service (NTIS) 5285 Port Royal Road
Springfield, VA 22161-2171
(703) 605-6000

PREFACE

The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations and HSCT high-lift system performance predictions were presented along with executive summarizes for all the Aerodynamic Performance technology areas.

The workshop was organized in three sessions as follows:
Session I Plenary Session
Session II Independent Session
Session III Executive Summaries
The proceedings are published in two volumes:
Volume I, Parts 1 and $2 \quad$ Configuration Aerodynamics
Volume II High Lift
Conference Chairmen: Daniel G. Baize and Robert L. Calloway
NASA Langley Research Center

CONTENTS

Preface iii
Attendees ix
Volume I, Part 1—Configuration Aerodynamics
Overview of McDonnell Douglas Corporation Activities 1
Shreekant Agrawal, McDonnell Douglas Corporation
Enhancement of CFL3Dhp Parallel Code and Its HSR Applications 5
Pichuraman Sundaram, Michael G. B. Novean, and Samson Cheung,McDonnell Douglas Corporation
Full Configuration Force and Moment Calculations Using Multiblock CFL3D on HSCT Configurations 44
Grant L. Martin and Robert P. Narducci, McDonnell Douglas Corporation
Supersonic Cruise Point Design Optimization of TCA 114
Eric R. Unger, Robert P. Narducci, James O. Hager, Geojoe Kuruvila,
Peter M. Hartwich, and Shreekant Agrawal, McDonnell Douglas Corporation
Improvements to the MDC Nonlinear Aerodynamic Design Tools 189
James O. Hager, Peter M. Hartwich, Eric R. Unger, Geojoe Kuruvila,
Robert P. Narducci, and Shreekant Agrawal, McDonnell Douglas Corporation
TCA Nacelle Installation Assessment and Design Studies. 255
Alan E. Arslan, Pichuraman Sundaram, and Chin-Fang Shieh,McDonnell Douglas Corporation
Isolated and Installed Nozzle Boattail Drag Studies 305
Hoyt Wallace, Pichuraman Sundaram, Alan E. Arslan, and Chih-Fang Shieh, McDonnell Douglas Corporation
Uncertainties in HSCT Cruise Drag Prediction 376
Shreekant Agrawal, Michael G. B. Novean, Geojoe Kuruvila, and Robert P. Narducci, McDonnell Douglas Corporation
Reference H Cycle 3 Stability, Control, and Flying Qualities Batch Assessments 441
Dennis Henderson, McDonnell Douglas Corporation
Forced Transition Techniques on HSCT Configurations 477
Steven X. S. Bauer, Richard A. Wahls, and Lewis B. Owens, Jr., NASA Langley Research Center
Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel 509
Gary E. Erickson, A. W. Burner, and Richard DeLoach, NASA Langley Research Center
Analysis and Multipoint Design of the TCA Concept 544
Steven E. Krist, Steven X. S. Bauer, and Pieter G. Buning, NASA Langley Research Center
TLNS3D/CDISC Multipoint Design of the TCA Concept 561Richard L. Campbell and Michael J. Mann, NASA Langley Research Center
Prediction and Assessment of Reynolds Number Sensitivities Associated With Wing Leading-Edge Radius Variations 588
Richard A. Wahls, Melissa B. Rivers, and Lewis R. Owens, Jr., NASA Langley Research Center
Preliminary Results of the 1.5% TCA (Modular) Controls Model in the NASA Langley UPWT 612
Paul Kubiatko, McDonnell Douglas Corporation; S. Naomi McMillin, NASA Langley Research Center; and Douglas Cameron, McDonnell Douglas Corporation
Effect of Boattail and Sidewall Curvature on Nozzle Drag Characteristics 669
Francis J. Capone, Karen A. Deere, Linda S. Bangert, and Paul S. Pao, NASA Langley Research Center
Development of TCA Flight Drag Polars for Airplane Performance 707
Chester P. Nelson and Eric E. Adamson, The Boeing Company
Comparison of Linearized Potential Flow Design Analysis Codes 729
John Morgenstern, McDonnell Douglas Corporation
Volume I, Part 2-Configuration Aerodynamics
Overview of CA Activities at Boeing 777
Robert M. Kulfan, The Boeing Company
TCA Configuration Cruise Point Design Optimization 786
K. R. Wittenberg, The Boeing Company
Observations on the Process and Results of Optimization 871
R. S. Conner, The Boeing Company
Transonic Flap Optimization at Flight Reynolds Number 969
Max Kandula, Dynacs Engineering Co., Inc.
Nacelle and Diverter Integration Studies 1072
Bryan W. Westra, Michael B. Malone, and Charles C. Peavey, Northrop Grumman
Nacelle/Diverter Design and Airframe Integration. 1092
Steve Chaney, Gordon Blom, Steve McMahon, and Steve Ogg,The Boeing Company
Computation of Aeroelastic S\&C Characteristics Using AEOLAS 1191Douglas L. Wilson, Michael Elzey, Brian Nishida, Christine Titzer,The Boeing Company; Ross Sheckler, Dynacs Engineering Co., Inc.
Improvements to the Single-Block Adjoint-Based Aerodynamic Shape Design Method, SYN87-SB 1199
James Reuther, RIACS; David Saunders, Sterling Software; and
Raymond Hicks, MCAT
Ames Optimized TCA Configuration 1257
Susan E. Cliff, NASA Ames Research Center; James Reuther, RIACS; and Raymond Hicks, MCAT
Development and Validation of the Multi-Block Adjoint Based Design Method 1348
James Reuther, RIACS; Mark Rimlinger, Sterling Software, Inc.
Future Advances in Aerodynamic Shape Optimization 1415
James Reuther, RIACS; Mark Rimlinger, Sterling Software, Inc.
An Analysis of CFD and Flat Plate Predictions on Friction Drag for the TCA Wing/Body at Supersonic Cruise 1452
Scott L. Lawrence, NASA Ames Research Center
Preliminary Comparisons of Skin Friction Measurements With CFD Predictions 1478
Robert L. Kennelly, Jr., Scott L. Lawrence, NASA Ames Research Center;
Jeffrey D. Flamm, NASA Langley Research Center
Comparisons of CFD Predictions of the TCA Baseline 1500
Gelsomina Cappuccio, NASA Ames Research Center
Propulsion Induced Effects Test Program Plans. 1550
Gelsomina Cappuccio, Mark Won, and Dan Bencze, NASA Ames Research Center
Inlet Spillage Drag Predictions Using the AIRPLANE Code 1605
Scott D. Thomas, Sterling Software, Inc.; Mark Won, and Susan Cliff, NASA Ames Research Center
Use of CFD Results in the Excrescence Drag Estimation 1649Sasan Yaghmaee, The Boeing Company
Trip Drag Corrections to Performance Polars Using Excrescence Methods 1668
Kevin M. Mejia, The Boeing Company
Volume II—High Lift
HSR High Lift Program Overview and PCD2 Update 1693
Guy Kemmerly, NASA Langley Research Center
Prediction of TCA Full-Scale High-Lift Characteristics 1707Paul Meredith, The Boeing Company
Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions 1751
Marvine Hamner and David Yeh, McDonnell Douglas Corporation; Lewis Owens and Richard Wahls, NASA Langley Research Center
Assessment of Computational Methods Applied to HSCT High-Lift Configurations With Multiple Flap Surfaces 1773
David Yeh and Roger Clark, McDonnell Douglas CorporationApplication of CFL3D to Aerodynamic Analysis of HSCT High-LiftWing/Body/Nacelle Configurations1849Xuetong Fan and Paul Hickey, ASE Technologies, Inc.
CFL3D/MAGGIE CFD Analysis of a 4 Percent Scale HSCT Aircraft Model Inside a 12-Foot Wind Tunnel. 1883
Chung-Jun Woan, Boeing North American, Inc.; David Yeh and Roger Clark, McDonnell Douglas Corporation
Results of a WINGDES2/AERO2S Flap Optimization for the TCA 1933
Steve Yaros, NASA Langley Research Center
Flow Simulation About High-Lift Speed Civil Transports Using TetrUSS 1947
Victor Lessard, ViGYAN, Inc.
A CFD Assessment of Several High-Lift Reference H Configurations Using Structured Grids 1975
Wendy Lessard, NASA Langley Research Center
Assessment and Applications of CFD Methods for HSCT High-Lift Aerodynamics 2003
Allen Chen, The Boeing Company
Recent High Lift System and Alternate Control Test Results 2077
Greg Wyatt, The Boeing Company
An Approach to Modeling HSR Configurations With Control Surface Deflections 2105
Tom Kinard, Lockheed-Martin Aeronautical Systems
Automated Flap Deflection Procedures for HSCT High-Lift Aerodynamics 2155
David Yeh and Roger Clark, McDonnell Douglas Corporation
A New Approach to Constrained Induced and Trimmed Drag Optimization 2231
Winfried Feifel, The Boeing Company
High-Lift Engine Aeroacoustics Technology (HEAT) Test Program Overview 2257
Fanny Zuniga and Brian Smith, NASA Ames Research Center
Numerical Study of Reynolds Number Effect and Boundary Layer Transition Location Effect 2277
Anthony Saladino, Dynacs Engineering Co., Inc.
Testing of 2.2 Percent HSR Reference H Model With Modified Wing Planform in the NTF 2355
Lewis Owens and Richard Wahls, NASA Langley Research Center; Marvine Hamner, McDonnell Douglas Corporation
Evaluation of Altemate Control Surface Concepts 2385Bryan Campbell, NASA Langley Research CenterStatus of NASA \#442 Test Results-6 Percent Ref. H Upflow and InterferenceTest in the LaRC $14^{\prime} \times 22^{\prime}$2409
Robert Griffiths, The Boeing Company
Application of a 3-D Panel Method to the Predication of Wind Tunnel Wall and Support Interference 2431Ryan Polito, Arthur Powell, and Roger Clark, McDonnell Douglas Corporation

Adams, Jr.
William M.
NASA Langley Research Center
Mail Stop 489
Hampton VA 23681-0001
Ph. 757-864-4013
fax 757-864-7795
eMail: w.m.adams@larc.nasa.gov

Allen
Jerry M.
NASA Langley Research Center Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-5592
fax 757-864-4869
eMail: j.m.allen@larc.nasa.gov

Anderson
W. Kyle

NASA Langley Research Center
Mail Stop 128
Hampton VA 23681-0001
Ph. 757-864-2164
fax 757-864-8816
eMail: w.k.anderson@larc.nasa.gov

Applin
Zac
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-5062
fax 757-864-8192
eMail: z.t.applin@larc.nasa.gov

Bailey
F. Alan

The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-2699
fax 206-234-4543
eMail: frazier.a.bailey@boeing.com

Agrawal
Shreekant
McDonnell Douglas Aerospace Co. Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3436
fax 562-593-7593
eMail: agrawal@mdta.mdc.com

Anders
Scott G.
NASA Langley Research Center
Mail Stop 170
Hampton VA 23681-0001
Ph. 757-864-8044
fax 757-864-8801
eMail: s.g.anders@larc.nasa.gov

Antani
Tony
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3920
fax 562-593-7593
eMail: C362247@mdcpo05.Ib.mdc.com
Arslan
Alan
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-8535
fax 562-593-7593
eMail: aea@indigo1.mdc.com
Bailey
Mel
Lockheed Engineering \& Sciences Co
NASA Langley Research Center
Mail Stop 389
Hampton VA 23681-0001
Ph. 757-864-4030
fax 757-864-7795
email: m.l.bailey@larc.nasa.gov
Bailey
Randall
Calspan Advanced Tech Center
P.O. Box 400
4455 Genesee Street
Buffalo NY $14225-0400$
Ph. $716-631-6939$
fax $716-631-6990$
eMail: bailey@calspan.com

Ball
Doug
The Boeing Company
Mail Stop $6 H-$ FK
P.O. Box 3707
Seattle WA $98124-2207$
Ph. 206-965-2151
fax 206-234-4543
eMail: baldnb00@ccmail.ca.boeing.com

Belcastro
 Christine
 NASA Langley Research Center
 Mail Stop 161
 Hampton VA 23681-0001
 Ph. 757-864-4035
 fax 757-864-7795
 eMail:christine.m.belcastro@larc.nasa.go

Bengston

Robert
Pratt \& Whitney
Mail Stop 165-21
400 Main St.
East Eartford CT 06108
Ph. 860-565-2080
fax 860-565-0123
eMail: bengtsrj@pweh.com

Borland
Chris
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-0336
fax 206-234-4543
eMail: christopher.j.borland@boeing.com

Baize
Dan
NASA Langley Research Center
Mail stop 119
Hampton VA 23681-0001
Ph. 757-864-1071
fax 757-864-8852
eMail: d.g.baize@larc.nasa.gov

Barrett
Mike
Honeywell Inc.
MS: MN65-2810
3660 Technology Drive
Minneapolis MN 55418
Ph. 612-951-7286
fax 612-951-7438
eMail: mike_barrett@htc.honeywell.com

Bencze

Dan
NASA Ames Research Center
Mail Stop 227-6
Moffett Field CA 94035-1000
Ph. 415-604-6618
fax 415-604-0737
eMail: dbencze@mail.arc.nasa.gov

Bharadvaj

Bala

McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3514
fax 562-982-7787
eMail: c336381@mail.mdc.com

Bunin
Bruce
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-0629
fax 562-982-7383
eMail: bunin@mdta.mdc.com

Buning
Pieter G.
NASA Langley Research Center Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-3093
fax 757-864-8195
eMail: p.g.buning@larc.nasa.gov

Buttrill
Carey
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-4016
fax 757-864-7795
eMail: c.s.buttrill@larc.nasa.gov

Camache
Peter
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-7012
fax 562-982-7787
eMail: camacho@mdta.mdc.com

Campbell
James F.
NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-2866
fax 757-864-8469
eMail: j.f.campbell@larc.nasa.gov

Capone

Fran J.
NASA Langley Research Center
Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-3004
fax 757-864-8195
eMail: f.j.capone@larc.nasa.gov

Burner
Alpheus W.
NASA Langley Research Center
Mail Stop 236
Hampton VA 23681-0001
Ph. 757-864-4635
fax 757-864-7607
eMail: a.w.burner@larc.nasa.gov

Calloway
Robert
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-2960
fax 757-864-8852
eMail: r.l.calloway@larc.nasa.gov

Campbell
Brian A.
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-5069
fax 757-864-8192
eMail: b.a.campbell@larc.nasa.gov

Campbell
Richard L.
NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-2872
fax 757-864-8469
eMail: r.l.campbell@larc.nasa.gov

Cappuccio
Mina
NASA Ames Research Center
Mail Stop 227-6
Moffett Field CA 94035-1000
Ph. 415-604-1313
fax 415-604-0737
eMail: mcappuccio@mail.arc.nasa.gov

Chaney

Steve R.

The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-237-2878
fax 206-234-4543
eMail:

Chen
Allen W.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3490
tax 206-234-4543
eMail: awc@hsctaero.ca.boeing.com
Christhilf
David M.
Lockheed Engineering \& Sciences Co.
NASA Langley Research Center
Mail Stop 389
Hampton VA 23681-00
Ph. 757-864-4029
fax 757-864-8838
eMail: d.m.christhilf@larc.nasa.gov
Clark
Roger
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-5334
fax 562-593-7593
eMail: c08375@mdcpo17.lb.mdc.com

Coen
Peter
NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 757-864-5991
fax 757-864-3553
eMail: p.g.coen@larc.nasa.gov

Chang
Bor-Chin
Drexel University
Dept. Mechanical Engineering
Philadelphia PA 19104
Ph. 215-895-1790
fax 215-895-1478
eMail: bchang@coe.drexel.edu

Cheung
Samson
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-9025
fax 562-593-7593
eMail: shc@indigo1.mdc.com

Chu
Julio
NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 757-864-5136
fax 757-864-3553
eMail: j.chu@larc.nasa.gov

Cliff
Susan
NASA Ames Research Center
Mail Stop 227-6
Moffett Field A 94035-1000
Ph. 415-604-3907
fax 415-604-0737
eMail: cliff © ra-iris.arc.nasa.gov

Conner
Roy S .
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3774
fax 206-234-4543
eMail: rsc7463@hsctaero.ca.boeing.com

Cuthbertson
A. D.

The Boeing Company
Mail Stop 6H-FR
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-237-7594
fax 206-234-4543
eMail: robert.d.cuthbertson@boeing.com

Deere
Karen A.
NASA Langley Research Center
Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-8986
fax 757-864-8195
eMail: k.a.deere@larc.nasa.gov

Derry
Steve
NASA Langley Research Center
Mail Stop 125B
Hampton VA 23681-0001
Ph. 757-864-7412
fax 757-864-8837
eMail: s.d.derry@larc.nasa.gov

Duffy
Keith S.
The Boeing Company
Mail Stop 6H-FA
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-0116
fax 206-234-4543
eMail: keith@brazil.ca.boeing.com

Elgersma

Mike

Honeywell Inc.
MS: MN 65-2810
3660 Technology Drive
Minneapolis MN 55418
Ph. 612-951-7208
fax 612-951-7438
eMail: mike_elgersma@htc.honeywell.corr

Darden
Christine
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-5258
fax 757-864-8852
eMail: c.m.darden@larc.nasa.gov

DeLoach
Richard
NASA Langley Research Center
Mail Stop 236
Hampton VA 23681-0001
Ph. 757-864-4657
fax 757-864-7607
eMail: r.deloach@larc.nasa.gov

Domack
Christopher S.
Lockheed Engineering \& Sciences Co.
NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 757-864-6504
fax 757-864-3553
eMail: domack@avd00.larc.nasa.gov
Ebner
N. Keith

The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-0198
fax 206-234-4543
eMail: keith.ebner@boeing.com

Erickson
Gary E.
NASA Langley Research Center
Mail Stop 413
Hampton VA 23681-0001
Ph. 757-864-2886
fax 757-864-8095
eMail: g.e.erickson@larc.nasa.gov

Fan
Xuetong
ASE Technologies Inc.
Suite 203
4015 Exeuctive Park Drive
Cincinnati OH 45241
Ph. 513-563-8855
fax 513-563-8865
eMail: $\operatorname{tan@mars.asetach.com~}$

Fenbert
James W.
NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 864-5973
fax
eMail: j.w.fenbert@larc.nasa.gov

Garg
Sanjay
NASA Lewis Research Center Mail Stop 77-1
21000 Brookpark Road
Cleveland OH 44135
Ph. 216-433-2685
fax 216-433-8643
eMail: sanjay.garg@lerc.nasa.gov
Giesy

Dan

Lockheed Engineering \& Sciences Co.
NASA Langley Research Center
Mail Stop 389
Hampton VA 23681-0001
Ph. 757-864-4006
fax 757-864-8838
eMail: d.p.giesy@larc.nasa.gov
Glaab
Louis
Lockheed Engineering \& Sciences Co.
NASA Langley Research Center
Mail Stop 343
Hampton VA 23681-0001
Ph. 757-864-1159
fax 757-864-7722
eMail: I.j.glaab@larc.nasa.gov

Feifel
Winfried M.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-0561
fax 206-234-4543
eMail:

Funk
Joan G.
NASA Langley Research Center Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-3092
fax 757-864-8852
eMail: j.g.funk@larc.nasa.gov

Ghaffari
F.

NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-2856
fax 757-864-8469
eMail: f.ghaffari@larc.nasa.gov

Gilbert
Bill
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-6392
fax 757-864-8852
eMail: w.p.gilbert@larc.nasa.gov

Goldberg

Perry
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-2126
fax 562-593-7593
eMail: goldbet@citm.mdc.com

Gracey
Chris
NASA Langley Research Center Mail Stop 161
Hampton VA 23681-0001
Ph. 757-864-4019
fax 757-864-7795
eMail: c.gracey@larc.nasa.gov

Gregory

Irene
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-4075
fax 757-864-7795
eMail: i.m.gregory@larc.nasa.gov

Griffiths
Robert C.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3465
fax 206-234-4543
eMail: robert.c.griffiths@boeing.com
Hager
James
McDonnell Dougias Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-9217
fax 562-593-7593
eMail: joh@indigo1.mdc.com
Halberg
Eric N.
Naval Postgraduate School
Mail Code 31
Halligan Hall
Monterey CA 93940
Ph. 408-656-5040
fax 408-656-2313
eMail: hallberg@aa.nps.navy.mil

Green
Lawrence L.
NASA Langley Research Center
Mail Stop 159
Hampton VA 23681-0002
Ph. 757-864-2228
fax 757-864-9713
eMail: I.I.green@larc.nasa.gov

Greiner
Glenn P.
George Washington University
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-4086
fax 757-864-7795
eMail: g.p.greiner@larc.nasa.gov

Gumbert
Clyde R.
NASA Langley Research Center
Mail Stop 159
Hampton VA 23681-0001
Ph. 757-864-2221
fax 757-864-9713
eMail: c.r.gumbert@larc.nasa.gov

Hahne
Dave
NASA Langley Research Center
Mail Stop 153
Hampton VA 23681-0001
Ph. 757-864-1162
fax 757-864-7722
eMail: d.e.hahne@larc.nasa.gov

Hamner
Marvine P.
McDonnell Douglas Aerospace Co.
Mail Code S 1022272
P.O. Box 516

St Louis MO 63166-0516
Ph. 314-233-1600
fax 314-777-2984
eMail: mph@indigo1.mdc.com

Hartwich Peter M. McDonnell Douglas Aerospace Co. Mail Code 71-35 2401 E. Wardlow Road Long Beach CA 90807-4418 Ph. 562-593-2965 fax 562-593-7593 eMail: pmh@indigo1.mdc.com	Henderson Dennis K. McDonnell Douglas Aerospace Co. Mail Code 71-35 2401 E Wardlow Road Long Beach CA 90807-5309 Ph. 562-982-9269 fax 562-593-7593 eMail: dhenderson@c17m.mdc.com
Hickey Paul K. ASE Technologies, Inc. Suite 203 4015 Executive Park Drive Cincinnati OH 45241 Ph. 513-563-8855 fax 513-563-8865 eMail: phickey@asetech.com	Hines Dick Pratt \& Whitney Mail Stop 165-22 400 Main St. East Hartiord CT 06108 Ph. 860-565-7239 fax 860-565-0168 eMail: hinesrw@pwfl.com
Jackson Bruce NASA Langley Research Center Mail Stop 132 Hampton VA 23681-0001 Ph. 757-864-4060 fax 757-864-7795 eMail: e.b.jackson@larc.nasa.gov	Jackson Mike Honeywell Inc. MS: MN 65-2810 3660 Technology Drive Minneapolis MN 55418 Ph. 612-951-7748 fax 612-951-7438 eMail: mike_jackson@htc.honeywell.com
Jager Merle L. McDonnell Douglas Aerospace Co. Mail Code 71-30 2401 E. Wardlow Road Long Beach CA 90807-5309 Ph. 562-593-4003 fax 562-982-7787 eMail: C391818@mdcpo10.lb.mdc.com	Joshi Suresh NASA Langley Research Center Mail Stop 132 Hampton VA 23681-0001 Ph. 757-964-6608 fax 757-864-7795 eMail: s.m.joshi@larc.nasa.gov
Joslin Ron NASA Langley Research Center Mail Stop 170 Hampton V.A 23681-0001 Ph. 757-864-2234 fax 757-864-8801 eMail: r.d.joslin@larc.nasa.gov	Kaminer Issac I. Naval Postgraduate School Mail Code AA/KA Monterey CA 93943 Ph. 408-656-5040 fax 408-656-2313 eMail: kaminer@aa.nps.navy.mil

Peter M.
McDonnell Douglas Aerospace Co Code 71-35

Long Beach CA 90807-4418
Ph. 562-593-2965
fax 562-593-7593
eMail: pmh@indigo1.mdc.com

Hickey
Paul K.
ASE
4015 Executive Park Drive
Cincinnati OH 45241
Ph. 513-563-8855
fax 513-563-8865
eMail: phickey@asetech.com

Jackson
Bruce
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
ค. 757-864-4060
eMail: e.b.jackson@larc.nasa.gov

```
Jager
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-4003
fax 562-982-7787
eMail: C391818@mdcpo10.lb.mdc.com
```

Henderson
Dennis K.
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-9269
fax 562-593-7593
eMail: dhenderson@c17m.mdc.com

Hines
Dick
Prall \& Whitney
(
East Hartford CT 06108
Ph. 860-565-7239
fax 860-565-0168
eMail: hinesrw@pwfl.com

Jackson
Mike
Honeywell Inc.
MS: MN 65-2810
3660 Technology Drive
Minneapolis MN 55418
ค. 612-951-7748
eMail: mike_jackson@htc.honeywell.com

Joshi
Suresh
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
fax 757-864-7795
eMail: s.m.joshi@larc.nasa.gov

Kaminer
Issac I.
Naval Postgraduate School
Mail Code AA/KA
Monterey CA 93943
Ph. 408-656-5040
fax 408-656-2313
eMail: kaminer@aa.nps.navy.mil

Kandula
Max
Dynacs Engineering Co., Inc.
Building 3, Suite B
258 S.W. 43rd
Renton WA 98055
Ph. 206-251-8692
fax 206-251-9564
eMail: kandula@vm.nas.gov

Kennelly
Robert A.
NASA Ames Research Center
Mail Stop 227-6
Moffett Field CA 94035-1000
Ph. 415-604-5860
fax 415-604-0737
eMail: rakennelly@mail.arc.nasa.gov

Klopter

Goetz H.
MCAT, Inc.
NASA Ames Research Center
Mail Stop 258-1
Moffett Field CA 94035-1000
Ph. 415-604-3993
fax 415-604-2238
eMail: klopter@nas.nasa.gov
Krause
Fred
General Electric
Mail Drop T34
1 Neumann Way
Cincinnati $\mathrm{OH} 45215-1988$
Ph. 513-552-4279
fax 513-552-4350
eMail: fred.h.krause@ae.ge.com
Kubiatko
Paul
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-7850
fax 562-593-7593
eMail: kubiatko@mdta.mdc.com

Kemmerly
Guy T.
NASA Langley Research Centr
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-5070
fax 757-864-8192
eMail: g.t.kemmerly@larc.nasa.gov

Kinard
Tom A.
Lockheed Martin
86 South Cobb Drive
Mail Code 0685
Marietta GA 30063-0685
Ph. 770-494-8588
fax 770-494-3055
eMail: kinard@mar.imco.com
Kobayashi
Takahisa
NASA Lewis Research Center
Mail Stop 77-1
21000 Brookpark Road
Cleveland OH 44135-3191
Ph. 216-433-3739
fax 216-433-8643
eMail: tak@lerc.nasa.gov

Krist
Steven E.
NASA Langley Research Center
Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-3046
fax
eMail: s.e.krist@larc.nasa.gov

Kulfan
Bob
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3779
fax 206-234-4543
eMail: robert.m.kulfan@ boeing.com

Kwatny

Harry
Drexel University
Dept Mechanical Engineering
Philadelphia PA 19104
Ph. 215-895-2356
fax 215-895-1478
eMail: hkawtny@coe.drexel.edu

Leavitt
Larry
NASA Langley Research Center
Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-3017
fax 757-864-8195
eMail: I.d.leavitt©larc.nasa.gov

Lessard
Wendy
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-1165
fax 757-864-8192
eMail: w.b.lessard@larc.nasa.gov

Lin

Kyong
NASA Langley Research Center
Mail Stop 161
Hampton VA 23681-0001
Ph. 757-864-4342
fax 757-864-7797
eMail: k.b.lim@larc.nasa.gov

Ludas
Kevin
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-2889
fax 562-982-7383
eMail: ludas@mdta.mdc.com

Lawrence
Scott
NASA Ames Research Center
Mail Stop T27-B-2
Moffett Field CA 94035-1000
Ph. 415-604-4050
fax 415-604-1095
eMail: lawrence@nas.nasa.gov

Lessard
Victor R.
VIGYAN
30 Research Drive
Hampton VA 23666-1325
Ph. 757-864-5072
eMail: v.r.lessard@larc.nasa.gov.

Light
Bruce A.
The Boeing Company
Mail Stop 6H-FP
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-1934
fax 206-234-4543
eMail:

Liu
Tianshu
High Technology Corporation
28 Research Drive
Hampton VA 23666
Ph. 757-865-6766
eMail: tianshu@htc.tech.com

Lund
David W.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-2151
fax 206-234-4543
eMail: david.w.lund ©boeing.com
MacKinnon
Malcolm I.K.
The Boeing Company
Mail Stop $6 \mathrm{H}-\mathrm{FM}$
P.O. Box 3707
Seattle WA $98124-2207$
Ph. 206-237-0339
fax 206-234-4543
eMail: malcolm.i.mackinnon@boeing.com

Maddalon
Dal V.
NASA Langley Research Center
Mail Stop 170
Hampton VA 23681-0001
Ph. 757-864-1909
fax 757-864-8801
eMail: d.v.maddalon@larc.nasa.gov

McMillin
S. Naomi

NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-5581
fax 757-864-8469
eMail: s.n.mcmillin@larc.nasa.gov

Mejia
Kevin K.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3773
fax 206-234-4543
eMail: devin.m.mejia@boeing.com
Morgenstern
John
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-982-9276
fax 562-982-7787
eMail: morgenstem@mdta.mdc.com

MacWilkinson
Derek G.
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-496-8723
fax 562-982-7383
eMail: dmacw@mdta.mdc.com

Martin
Grant L.
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-0040
fax 562-593-7593
eMail: glm@indigo1.mdc.com

McMinn
Dana
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-4069
fax 757-864-7795
eMail: j.d.mcminn@larc.nasa.gov

Meredith
Paul T.
The Boeing Company
Mail Stop $6 \mathrm{H}-\mathrm{FK}$
P.O. Box 3707

Seattle WA 98124
Ph. 206-965-3468
fax 206-234-4543
eMail: paul.t.meredith@ca.boeing.com
Morris
Martin J.
McDonnell Douglas Aerospace Co.
Mail Code 106-7126
P.O. Box 516

St. Louis MO 63166-0516
Ph. 314-232-6939
fax 314-777-1328
eMail: mmorris@mdc.com

Mortlock
Alan
McDonnell Douglas Aerospace Co.
Mail Code 71-30
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3937
fax 562-982-7787
eMail: mortlock@mdta.mdc.com

Nelms, Jr.
Pres
NASA Ames Research Center
Mail Stop 237-2
Moffett Field CA 94035-1000
Ph. 415-604-6093
fax 415-604-6990
eMail: p_nelms@qmgate.arc.nasa.gov

Newman
Brett
Old Dominion University
Ph. 757-683-3720
fax 757-683-3200

Ozoroski
L. P.

NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 757-864-5992
fax 757-864-3553
eMail: I.p.ozoroski@larc.nasa.gov

Patton
Robert E.
The Boeing Company
Mail Stop $6 \mathrm{H}-\mathrm{FK}$
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-1425
fax 206-234-4543
eMail: robert.e.patton@boeing.com

Narducci
Robert
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-0171
fax 562-593-7593
eMail: rpn@indigot.mdc.com

Nelson
Chester P.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-5514
fax 206-234-4543
eMail: chester.p.nelson@boeing.com

Owens
Lewis
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-5127
fax 757-864-8192
eMail: I.r.owens@larc.nasa.gov

Pao
S. Paul

NASA Langley Research Center
Mail Stop 280
Hampton VA 23681-0001
Ph. 757-864-3044
fax 757-864-8195
eMail: s.p.pao@larc.nasa.gov

Peavey
Charles C.
Northrop Grumman Corp.
Mail Code 9B52/GK
8900 E. Washington Blvd.
Pico Rivera CA 90660
Ph. 562-948-8937
fax 562-948-8068
eMail: cpeavey@world.northgrum.com

```
Pittman
James L.
NASA Langley Research Center
Mail Stop 395
Hampton VA 23681-0001
Ph. 757-864-1361
fax 757-864-8193
eMail:
```

Popernack, Jr.
Thomas G.
NASA Langley Research Center
Mail Stop 267
Hampton VA 23681-0001
Ph. 757-864-5163
fax
eMail: t.g.popemack.jr@larc.nasa.gov

Powell
Art
McDonnell Douglas Aerospace Co.
Mail Code $71-35$
2401 E. Wardlow Road
Long Beach CA $90807-5309$
Ph. $562-593-3225$
fax $562-593-7593$
eMail: C306624@mdcpo11.lb.md.com

Radeztsky
Ronald
High Technology Corporation
28 Research Drive
Hampton VA 23666
Ph. 757-865-0818
fax 757-865-6766
eMail: ron@htc.tech.com

Ray
James K.
The Boeing Company
Mail Stop 6H-FA
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-1997
tax 206-234-4543
eMail: james.k.ray@.boeing.com

Polito
Ryan C.
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-0048
fax 562-593-7593
eMail: p @indigo1.mdc.com

Pototzky
Anthony S.
NASA Langley Research Center
Mail Stop 389
Hampton VA 23681-0001
Ph. 757-864-2827
fax 757-864-8838
eMail: a.s.pototzky@larc.nasa.gov

Proffitt

Melissa
Lockheed Engineering and Sciences Co.
NASA Langley Research Center
Mail Stop 389
Hampton VA 23681-0001
Ph. 757-864-4024
fax 757-864-7795
eMail: m.s.proffitt@larc.nasa.gov

Raney
David
NASA Langley Research Center
Mail Stop 489
Hampton VA 23681-0001
Ph. 757-864-4033
fax 757-864-7795
eMail: d.l.raney@larc.nasa.gov

Reuther
James
RIACS
NASA Ames Research Center
Mail Stop 227-6
Moffett Field CA 94035-1000
Ph. 415-604-1516
fax 415-604-0737
eMail: reuther@ra.iris-arc.nasa.gov

Ricketts
Rodney H.
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-1209
fax 757-864-8852
eMail: r.h.ricketts@larc.nasa.gov

Rivers
Melissa B.
NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-5161
fax 757-864-7892
eMail: m.b.rivers (a)larc.nasa.gov

Roberts
Thomas W.
NASA Langley Research Center
Mail Stop 128
Hampton VA 23681-0001
Ph. 757-864-6804
fax 757-864-8166
eMail: t.w.roberts@larc.nasa.gov

Saladino
Anthony J.
Dynacs Engineering Co., Inc.
Building 3, Suite B
258 S.W. 43rd Street
Renton WA 98055
Ph. 206-251-8692
fax 206-251-9564
eMail: saladino@indyl.dynacsgen.com

Scott
Michael
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-6618
fax 757-864-7795
eMail: michael.allen.scott@larc.nasa.gov

Rimlinger
Mark J.
Sterling Software, Inc.
NASA Ames Research Center
Mail Stop 227-6
Moffett Field CA 94035-1000
Ph. 757-864=5944
fax 757-864-0737
eMail: rimlinge@ra-iris.arc.nasa.gov

Rivers
Rob
NASA Langley Research Center
Mail Stop 132
Hampton VA 23681-0001
Ph. 757-864-3917
fax 757-864-8549
eMail: r.a.rivers@larc.nasa.gov

Rossitto
Ken
McDonnell Douglas Aerospace Co.
Mail Code 36-41
2401 E Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3870
fax 562-593-7593
eMail: rossitto@mdta.mdc.com

Sawyer
Wallace C.
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph 757-864-2267
fax 757-864-8852
Email: w.c.sawyer@larc.nasa.gov

Shaw
Joe
NASA Lewis Research Center
Mail Stop 60-2
21000 Brookpark Road
Cleveland OH 44135-3191
Ph. 216-977-7135
fax 216-977-7133
eMail: robert.j.shaw@lerc.nasa.gov

Shields
Bill
Lockheed Engineering \& Sciences Co.
NASA Langley Research Center
Mail Stop 248
Hampton VA 23681-0001
Ph. 757-864-5958
fax 757-864-5958
eMail: c.w.shields@larc.nasa.gov

Smith
Brian
NASA Ames Research Center
Mail Stop 247-2
Moffett Field CA 94035-3191
Ph. 415-604-6669
fax 415-604-3489
eMail: bsmith@mail.arc.nasa.gov

Sundaram
Pichuraman
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-496-9787
fax 562-593-7593
ps@indigo1.mdc.com

Thomas
James L.
NASA Langley Research Center
Mail Stop 128
Hampton VA 23681-0001
Ph. 757-864-2163
fax 757-864-8816
eMail: j.l.thomas@larc.nasa.gov

Troha
William A.
NASA Lewis Research Center
Mail Stop 86-1
21000 Brookpark Road
Cleveland OH 44135-3191
Ph. 216-433-3195
fax 216-433-6624
eMail: william.a.troha@lerc.nasa.gov

Siclari
Michael J.
Northrop Grumman Corp.
Mail Stop KO8-14
South Oyster Bay Road
Bethpage NY 11714
Ph. 516-575-8067
fax 516-346-2937
eMail: siclari@gateway.grumman.com

Snyder
Phil
NASA Ames Research Center
Mail Stop 237-2
Moffett Field CA 94035-1000
Ph. 415-604-4592
fax 415-604-6990
eMail: p.t.snyder@mail.arc.gov

Tamrat
Befecadu
Boeing North American Inc.
Mail Code Sk12
2600 Westminster Blvd.
Seal Beach CA 90740
Ph. 310-797-4948
fax 310-797-4854
eMail: bftamrat@naa.boeing.com
Thomas
Scott D.
Sterling Software, Inc.
NASA Ames Research Center
Mail Stop 237-2
Moffett Field CA 94035-1000
Ph. 415-604-6387
fax 415-604-6990
eMail: thomas@nas.nasa.gov.
Unger
Eric R.
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-593-3037.
fax 562-593-7593
eMail: c386821@hc1038.mdc.com

Vasquez
Moises
George Washington University
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph.
Fax
eMail: vasquez@ab80.larc.nasa.gov
Viars
Philip
General Electric
Mail Drop T34
1 Neumann Way
Cincinnati OH 45215-1988
Ph. 513-552-4132
fax 513-552-4350
eMail: Philip.Viars@ae.ge.com
Wallace
Hoyt
McDonnell Douglas Aerospace Co.
Mail Code S270-2370
P.O. Box 516

St Louis MO 53166-0516
Ph. 314-233-7712
fax 314-234-7210
eMail: hwallace@mdc.com

Wechsler
Jim
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-496-7627
fax 562-982-7787
eMail: jwex@mdta.mdc.com

Whitehead
Allen H. Jr.
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-7800
fax 757-864-8852
eMail: allen.h.whitehead@larc.nasa.gov

Vatsa
Veer N.
NASA Langley Research Center
Mail Stop 128
Hampton VA 23681-0001
Ph. 757-864-2236
fax 757-864-8816
eMail: v.n.valsa@larc.nasa.gov

Wahls
Richard A.
NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-5108
fax 757-864-8469
eMail: r.awahls@larc.nasa.gov

Walsh
Michael J.
NASA Langley Research Center
Mail Stop 170
Hampton VA 23681-0001
Ph. 757-864-5542
fax 757-864-7897
eMail: m.j.walsh@larc.nasa.gov

Westra
Bryan W.
Northrop Grumman Corp.
Mail Code 9B52/GK
8900 E. Washington Blvd.
Pico Rivera CA 90660
Ph. 562-948-7560
fax 562-948-8068
eMail: bwestra@world.northgrum.com

Wilhite
Alan W.
NASA Langley Research Center
Mail Stop 119
Hampton VA 23681-0001
Ph. 757-864-2982
fax 757-864-8852
eMail: a.w.wilhite ©larc.nasa.gov

Williams
Todd
McDonnell Douglas Aerospace Co.
Mail Code $71-12$
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-496-8795
fax 562-496-9244
eMail: twilliams@ mdta.mdc.com
Wittenberg
K. Robyn

The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-1091
fax 206-234-4543
eMail:

Wood
Rick
NASA Langley Research Center
Mail Stop 499
Hampton VA 23681-0001
Ph. 757-864-6174
fax 757-864-8469
eMail:

Yaghmaee
Sasan S.
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3777
fax 206-234-4543
eMail: sasan.yagmaee ©boeing.com
Yeh
David T.
McDonnell Douglas Aerospace Co.
Mail Code 71-35
2401 E. Wardlow Road
Long Beach CA 90807-5309
Ph. 562-496-9113
fax 562-593-7593
eMail: dty@indigo1.mdc.com

Wilson
Doug
The Boeing Company
Mail Stop 6 H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3458
fax 206-234-4543
eMail: douglas.I.wilson@boeing.com
Woan
Chung-Jin
Boeing North American, Inc.
Mail Code SK07
P.O. Box 3644

Seal Beach CA 90740-7644
Ph.
fax
eMail

Wyatt
Greg
The Boeing Company
Mail Stop 6H-FK
P.O. Box 3707

Seattle WA 98124-2207
Ph. 206-965-3466
fax 206-234-4543
eMail: douglas.l.wilson@boeing.com

Yaros
Steven
NASA Langley Research Center
Mail Stop 286
Hampton VA 23681-0001
Ph. 757-864-3050
fax 757-864-8192
eMail: s.f.yaros@larc.nasa.gov

Zuniga
Fanny
NASA Ames Research Center
Mail Stop 247-2
Moffett Field CA 94035-1000
Ph. 415-604-2017
fax 415-604-3489
eMail: fzuniga@mail.arc.nasa.gov

Shreekant Agrawal

NASA/Industry HSR Aerodynamics Performance Workshop
February 25-28, 1997
NASA Langley Research Center, Hampton, VA
Funded Subtasks to MDC Under PCD II (FY96)

4.3.1.2
4.3.1.2.1
PCD II (Cont'd)

4.3.1.3.3

Team Principal Investigator, CFD/Optimization Methods Aerodynamics Project Manager/Advisory Role Aeroelastics/CFD Analyses for PAI CFD Analysis/Optimization Methods CFD Analysis/Optimization Methods Grid Perturbation/Geometry Representation Stability and Control Studies Stability and Control Studies M2.4-7A Opt5 W.T. Data Analysis/CFD Analysis M2.4-7A Opt5 W.T. Data Analysis/CFD Analysis
CFD.T. Test Support CFD/Optimization Methods/W.T Data Analysis W.T. Test Support/Data Analysis W.T. Test Support/Data Analysis PAI/Nozzle Boattail Drag Studies PAI/Nozzle Boattail Drag Studies/Parallelization
CFD Analysis/Optimization Methods
PIE/Nozzle Boattail Drag Studies PIE/Nozzle Boattail Drag Studies CFD Analysis/Optimization Methods MDC HSR Shreekant Agrawal
Tony Antani Samson H. Cheung
James O. Hager
Peter M. Hartwich Dennis Henderson
Paul Kubiatko Geojoe Kuruvila Grant Martin Todd E. Magee Robert P. Narducci Michael G. Novean Patrick E. Rodi Chin Fang Shieh P. Sundaram Eric R. Unger Hoyt Wallace Subcontractors:

Enhancements of CFL3Dhp Parallel code and its HSR
HSR Aerodynamic Performance Workshop
NASA Langley, February 25-28, 1997
Abstract

Outline

Outline

Objectives

$$
\begin{aligned}
& \text { The primary objective of the present study is to reduce the cycle time of large aerodynamic } \\
& \text { analysis and design problems making use of the progress in the computer hardware and software } \\
& \text { technologies. In this context, several questions pertaining to why the parallel computing is } \\
& \text { beneficial are answered. Also, these objectives are directed towards the technology goals } \\
& \text { needed for the HSCT detailed design phase. }
\end{aligned}
$$

Objectives

$$
\begin{aligned}
& \text { - Solve large CFD problems } \\
& \text { - full configuration grids have }>7 \text { million grid points } \\
& \text { - Rapid turn-around times } \\
& \text { - W/B/N/D Navier-Stokes / full configuration Euler polar in one day } \\
& \text { - Perform nonlinear design with hundreds of design variables } \\
& \text { - Efficient use of the available computer resources } \\
& \text { - Develop software for emerging large parallel systems for HSR } \\
& \text { applications }
\end{aligned}
$$

Parallel Platforms and Environments Prior to describing the present day parallel environment, it is instructive to have an overall
understanding of the evolution of the various parallel hardware architectures and their
programming environment in the last few years. Some of these systems consisted of the SIMD
architectures wherein tens of thousands of simple and inexpensive processors with small local
memory were connected together in a hypercube, mesh, or toroidal interconnection networks.
The distributed memory MIMD architecture systems had less number of processors and
communicated with each other using message passing. Some of these systems are still in existence and a
Some of these systems are still in existence and are being used for many applications
including CFD. Several others, although very promising with raw CPU power, could not deliver the equivalent of the large shared memory vector processors of the Cray class on real numerical schemes and hence disappeared. In addition, the need for parallel programming ease,
scalability, and portability of the parallel codes were the primary reasons for the demise of these wonderful systems.

[^0]Parallel Platforms and Environments

NAS Cray C-90 (vonneumann)	NAS IBM SP-2 (babbage and poseidon)	NASJ-90 Cluster (Newton)	Workstation Cluster
16 CPUs, 8 GBytes Memory 15 GFlops	Up to 200 nodes, 24 GBytes Memory 30 GFlops	24 nodes, 4 GBytes Memory 6 GFlops	unknown
Mulitasking	Message Passing	Mulitasking and Message Passing	Message Passing
Poor turn around	Good turn around	Good turn around	unknown

Multitasking on Shared Memory Vector Supercomputers
The Cray vector supercomputers have provided several systems as a contribution to the
parallel architectures. The parallel programming in these systems are primarily through
multitasking. However, the parallelization is at loop level and so the parallel efficiency is limited by
the conditional "if" blocks inside the loops. Software utilities for parallelization of serial codes can
be readily accomplished through autotasking; although only a limited spped-up can be realized.
For the CFLSD serial code, the autotasking speed-up is very poor. Additional hand coding of
some of the loops brought the best speed-up to nearly 3.8 for the utilization of 16 processors. It is
possible to improve it slightly by additional macrotasking.
Multitasking is the only way that processor memory > 300 Mw can be utilized on the C-90.
This approach is taken for the nozzle boattail computations that require a memory of 360 Mw on
C-90.
Multitasking on C-90

- Loop level task distribution amongst the processors
- autotasking helps to extract simple loop level multitasking
- more loop level task distribution needed to improve speedup
- Parallel efficiency dependent on the system load
- runs more efficiently with higher priority for multitasking
- Limited speed-ups on multitasked serial codes
- NAS charging policy helps to alleviate this problem slightly
- Multitasked CFL3D runs poorly (~ 3.8 / 16 CPUs) on C-90
- Nearly 20\% penalty in CPU time charges

Distributed Computing for CFD

Distributed Computing for CFD

- Distributed computing environment is most suitable for CFD
- Workstation clusters have a lot of CPU power
- Coarse grain parallel programs are easy to write
- PVM and MPI are platform independent
- Grids are mapped to different nodes for task distribution
- Static load balancing is adequate and easy to achieve
CFL3Dhp Code Description NASA LaRC initiated the development of a parallel version of the Euler/Navier-Stokes code,
CFL3D. CSC developed the early version of the CFL3Dhp code during the middle of 1996. We,
at MDC obtained the code and worked on it to render it as a powerful analysis and design tool.
The code had several desirable features listed below, but needed testing for realistic grid sizes.
The details of the various efforts to use it as a routine analysis tool is described in the following.
CFL3Dhp Code Description
- Coarse grain parallelism with minimal code modifications
- Host controls the node processors for task distribution
- MPI used for message passing
- Grid blocks mapped to the available number of nodes
- Supports heterogeneous architectures
CFL3Dhp Enhancements In the process of testing the early version of the code, several changes were made. The most
important one is the incorporation of a full multigrid restart capability. Also, minimum distance
calculations are included in the main program instead of doing it in the pre-processor. Our
experience suggests that the minimum distance calcullation by a single node is quite tedious,
particularly for the Baldwin-Barth turbulence model.
CFL3Dhp Enhancements

Grid Splitting Strategy

[^1]Grid Splitting Strategy for CFL3Dhp
TCA wing/body Navier-Stokes grid, 1.5 Million Grid points

+x direction view of split sample grid

- Original grid was $97 \times 241 \times 65$
single zone grid
- Split using a splitting code
can cycle over $\mathrm{i}, \mathrm{j}, \mathrm{k}$ as needed
output as plot3d file
Generate twelve (12) $17 \times 121 \times 65$
blocks for best load balancing
- split 6 times out the span (i-direction)
- split twice around the chord (j-direction)
Load Balancing

6u!ouejeg peo7

$$
\begin{aligned}
& \text { - Split single-block grids for load balancing } \\
& \text { - Split multiblock grids according to processor memory } \\
& \text { limitations } \\
& \text { - Map multiple blocks to a node based on the task load } \\
& \text { - For the given number of nodes for execution, the block- } \\
& \text { to-node mapping is optimal }
\end{aligned}
$$

Load Balancing of a Multiblock TCA W/B/N/D Grid

[^2]
CFL3Dhp Input File Preparation

[^3]CFL3Dhp Input File Preparation

- As in CFL3D, the CFL3Dhp inputs include a grid, flow
conditions and boundary conditions input, and grid patch
interpolation coefficients
- precflinp prepares the basic input file for both CFL3D and
ronnie patch interpolation programs
- precflinp-hp reads the above input file and prepares the
CFL3Dhp input files for the split-block grid automatically
CFL3Dhp Applications on the IBM SP-2
 SP-2. but also to test the various aspects of thecode's capabilities. Initially, the TCA W/B configuration This is followed by the grid sensitivity study for the TCA W/B configuration which indicated the scalability of the problem size whci shows that the program is scalable (within the per processor memory limitations) with respect to per processor load. This study also indicated that for pointmatched grid split grids, nearly 200,000 grid points can be mapped to a single SP-2 processor without any degradation of processor performance.
Additional runs to demonstrate the capability to perform routine computations with fast turn-
around times such as the W/B Navier-Stokes drag polar for $M=1.8$ and is given. All these
computations have one-to-one patch surfaces between adjacent blocks. The next case is the
CFL3Dhp code used for non-point-matched grids for the TCA W/B/E configuration. Additional
computations for more complex geometries including TCA W/B/N/D and full configuration analysis
using CFL3Dhp are underway.

CFL3Dhp Applications on the IBM SP-2

- TCA W/B Navier-Stokes supersonic cruise analysis
- accuracy and scalability study for 12 and 16 nodes
- Grid sensitivity study for TCA W/B grids
- problem size scalability for 12 nodes
- TCA W/B Navier-Stokes analysis for $\mathrm{M}_{\infty}=1.8$
- 21-block patched grid TCA W/B/E Euler solutions
- TCA W/B/E Navier-Stokes solutions
Residual History (Cray C-90 vs. IBM SP-2) This chart shows the residual convergence history for the 12-block TCA baseline W/B grid.
The 12-block grid was obtained by splitting the original single-block grid using the splitting
program and automatically modifying the single-block CFL3D input program suitable for multiblock
grid. Note that the convergence histories are not identical between the two systems, Cray C-90
and IBM SP-2. This is due to the difference in the numerical precision of the two systems (C-90
uses 64-bit arithmetic while the IBM SP-2 uses 32-bit arithmetic and operates in double precision).
This implies that the IBM SP-2 solutions should run for more iterations for the same level of
convergence compared to C-90. The significant random disturbance coming from the block
boundaries in the C-90 solutions are less noticeable for the solution obtained on IBM SP-2.
Another important result shown in the chart below are the CPU times for C-90 and 12 and 16
node IBM SP-2. The results show that the speed-up is approximately linear and that nearly 10.5
SP-2 nodes have the same sustained power as the single processor Cray C-90.

Drag Convergence History (Cray C-90 vs. IBM SP-2)
This chart compares the drag convergence history obtained from the $\mathrm{C}-90$ with that of the
IBM SP-2 parallel system. It can be seen that the drag values obtained from the two solutions are
different only by 0.1 counts for the same number of iterations. Converging the IBM SP-2 solutions
further to the same level of residual values as the $\mathrm{C}-90$ would yield identical drag values.

Pressure Drag Polar for the TCA W/B/E Configuration
Next step in the analysis complexity is the inclusion of the non-point-matched patched grid
surfaces. The chosen geometry for this analysis is the TCA W/B/E configuration. The original 12-
block grid with 3.1 million grid points has been split to 21-blocks for CFL3Dhp Euler analysis on
the IBM SP-2. The pressure drag polar obtained from this analysis is given below. The force
comparison with the Cray C-90 results show once again excellent agreement.
Pressure Drag Coefficients $\left(C_{D p}\right)$ for the TCA W/B/E Configuration

Pressure Drag Coefficient, $C_{D p}$
CFL3D Navier-Stokes Grid Refinement Study

CFL3D Navier-Stokes Grid Refinement Study
TCA W/B Configuration, $M_{\infty}=2.4$, Re $=6.36 \times 10^{6}, \alpha=3.518^{\circ}$
Solution Performed on IBM SP-2

Predicted Drag Polar for the TCA

Predicted Drag Polar for the TCA Wing/Body Configuration CFL3Dhp Navier-Stokes solution, $\mathrm{M}_{\infty}=2.1, \mathrm{Re}=4 \times 10^{6} / \mathrm{ft}$
 4

0.1
$+$
,

one day

1

Conclusions and Future Work

Conclusions and Future Work

Future Work

- Combine CFL3Dhp with the MDA nonlinear optimization code,
MDO3Dhp for W/B optimization
- Incorporate the aeroelastic analysis capability in CFL3Dhp

Full Configuration Force and Moment Calculations using Multiblock CFL3D on HSCT Configurations

Grant L. Martin and Robert P. Narducci
McDonnell Douglas Corporation
Long Beach, California 90807-5309

During the past year, the McDonnell Douglas Corporation (MDC) has made large strides in Computational Fluid Dynamics (CFD) analysis of increasingly complex HSCT configurations using both serial and parallel computational platforms. While tools for grid generation and analysis on serial computers have remained relatively unchanged, a new gridding strategy has been employed to obtain Navier-Stokes analyses of HSCT configurations which include the wing, body, nacelles, diverters, and empennage. Additionally, with the promising efficiency of parallel machines, MDC has contributed to the development of CFL3Dhp, a parallel version of CFL3D for the IBM SP-2.

Presented herein are full configuration Euler and Navier-Stokes solutions obtained using CFL3D on the NAS C-90 and IBM SP-2. With the objectives of validating CFL3D for supersonic cruise calculations on several platforms, CFD results for the Reference H and Technology Concept Airplane (TCA) configurations are presented in a build-up fashion. The build-up fashion entails analyzing the simplest of configuration first, the wing/body (W/B) followed by the additional complexity of the empennage ($\mathrm{W} / \mathrm{B} / \mathrm{E}$), then nacelles and diverters (W/B/N/D), and finally the entire configuration (W/B/N/D/E). A thorough build-up has been performed on the Reference H configuration, while the TCA build-up work is still in progress. To assist in the validation, a number of comparisons are made to available experimental data from the NASA Langley Unitary Plan Wind Tunnel (UPWT).

Grant L. Martin \& Robert P. Narducci McDonnell Douglas Corportation
Long Beach, California NASA/Industry HSR
Configuration Aerodynamics Workshop
February 25-28, 1997
NASA Langley Research Center, Hampton, VA
Outline In this report, we investigate flow over full configuration (W/B/N/D/E) HSCT configurations using
CFL3D, the work-horse code for analysis and design of HSCT configurations at the MDC. After the
motivation and objectives have been established, descriptions of the flow analysis tools and platforms used
to run the codes are given. In a build up fashion, force and moment predictions are presented for the
Reference H and TCA configurations. Both Euler and Navier-Stokes solutions are presented, however due
to limited availability of resources, Navier-Stokes solutions are computed for selected cases. In each
presentation of results for the Reference H and TCA configurations, a description of the geometry is
given, followed by a description of the grids. The results include W/B, W/B/E, W/B/N/D, and W/B/D/D/E
for the Reference H configuration and W/B, W/B/E, and W/B/N/D for the current Technology Concept
Aircraft (TCA). The report closes with important conclusions on the capability of supersonic cruise
analysis of full configuration force and moment predictions.

$$
\begin{aligned}
& \text { - Objectives } \\
& \text { - Description of flow analysis and platforms } \\
& \text { - Reference H build-up calculations } \\
& \text { - Geometry description } \\
& \text { - Grids } \\
& \text { - Presentation of solutions } \\
& \text { - TCA build-up calculations } \\
& \text { - Geometry description } \\
& \text { - Grids } \\
& \text { - Presentation of solutions } \\
& \text { - Summary and conclusions }
\end{aligned}
$$

Objectives
As the HSR program advances, greater detail and more complexity are incorporated into the HSCT
configurations. For the program to continue to be successful, good engineering judgment based on
accurate analysis of these configurations must be made. Thus, it becomes important to validate the analysis
tools used for the increasingly complex configurations. There are three main objectives of this work. The
first is to demonstrate the feasibility of the computation; the second is to assess the quality of the
performance predictions; and the third is to gain an understanding of the aerodynamic performance impact
due to the addition of components such as the nacelles and empennage.
Objectives

Flow Analysis and Platforms The flow solver used in this study is CFL3D. Version 4.1 was used on the Cray C-90 and J-90
computers and a parallel version of CFL3D was used on the IBM SP-2. Though the Cray J-90 is a parallel
machine, it was exercised in the serial mode only. CFL3D uses a structured, multiblock, upwind scheme
to solve either the Euler or Navier-Stokes equations. Convective terms were differenced using Roe flux
difference splitting. A variety of turbulence models are available including Baldwin-Lomax (with and
without Degani-Schiff), Baldwin-Barth, Spalart-Almaras, and k- ω. In this work, the Baldwin-Lomax and
Baldwin-Barth turbulence models are used. A number of convergence accelerators are programmed in
CFL3D to reduce CPU time. Here, grid sequencing and multigrid are actively used.
The Euler drag predictions are supplemented with skin-friction estimates from flat-plate theory.
Here, Clutter charts are used to compute a skin-friction coefficient for each component of the HSCT
configuration. Skin-friction drag is then calculated from $C_{D v}=\frac{\sum_{i} C_{f, i} S_{\text {wet }, i}}{S_{r e f}}$
where form, interference, and excrescence factors are assumed to be 1 .
Flow Analysis and Platforms

Reference H Build-up
Reference H Build-up

1.675\%-Scale HSR Reference H Modular Controls Model
Extended Aft Body with Tails
NASA Langley Unitary Plan Wind Tunnel, Section \#1
A view of the 1.675%-scale Reference H modular controls model in the NASA Langley UPWT is
shown in the figure below. The Reference H modular controls model was tested in the NASA Langley 4-ft
Unitary Plan Wind Tunnel (UPWT), test section \#1, from February 6 to March 30, 1996. During the
wind-tunnel entry, designated as test 1812 , the model was tested at $\mathrm{M}_{\infty}=1.65,1.8$, and 2.1. Additional data
for higher supersonic Mach numbers and transonic Mach numbers were obtained in other tests at Langley
UPWT section \#2 and 16 -ft Transonic facility. A total of 82 configurations were tested during entry 1812
including combinations of outboard leading-edge flaps, trailing-edge flaps, spoiler slot deflectors,
horizontal stabilizer, vertical tail, flow-through nacelles and blocked nacelles.

 The Reference H W/B supersonic Euler grid has a C-O topology with 93 spanwise points, 241 axial
points and 41 normal points. This grid served as the foundation to make all other grids. The W/B/E grids
are created by breaking the W/B grid at the trailing edge of the wing. The C-O topology covering the
wing and body is unmodified. Using an H-O topology, the aft end was re-gridded in two zones; one zone
covers the lower empennage and another covers the upper empennage. The total number of points in the
W/B/E Euler grid is 1.5 million.
The W/B and W/B/E Navier-Stokes grids are built from the corresponding Euler grids with
additional planes clustered near the surface to obtain a y + of approximately 1.5 . The dimensions of the
W/B Navier-Stokes grid is $93 \times 241 \times 57$. The total number of points in the W/B/E Navier-stokes grid is 2.3
million. The W/B/E Navier-Stokes grid is shown below.

W/B/N/D and W/BN/DE Supersonic Euler Grids
1.675% Reference \mathbf{H} Modular Controls Model It was discovered some time after the W/B/E Navier-Stokes solutions were obtained that similar
zonal breaks at the trailing edge of the wing for $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ and W/B/N/D/E calculations can cause
convergence difficulties, particularly if the grids are to be clustered for Navier-Stokes computations. Also
in the upper zone, skewing was introduced to cluster the leading edges of the vertical and horizontal tails
with the same axial grid lines. The grid strategy thus employed for the Euler W/B/N/D and W/B/N/D/E
configurations was designed to eliminate the skewing and potential convergence problems at the wing
trailing edge. The W/B/N/D and W/B/N/D/E grids are identical except for the zones which make up the
empennage. The W/B/N/D grid is made up of 23 zones and 2.4 million points. The two zones covering
the aft end of the geometry was replaced with three zones for the W/B/N/D/E calculations. Thus, there are
24 zones and 2.7 million grid points in the W/B/N/D/E grid. A view of the aft end of the W/B/N/D/E grid
is shown below. The different colored surfaces represent different zones.

W/B/N/D and W/B/N/DE Supersonic Euler Grids - Near Nacelles
The figure above shows the surface grid in the nacelle region of the $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ and $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D} / \mathrm{E}$ $\stackrel{\rightharpoonup}{\epsilon}$ $\stackrel{\square}{c}$ diverter $0 .{ }_{3}^{3}$
0
0
0
0
0
0
0
0
Comparison of Predicted and Experimental Lift Curves
1.675\% Reference \mathbf{H} Modular Controls Model
CFL3D \& Langley UPWT 1812, $\mathrm{M}_{\infty}=2.1, \mathrm{Re}=3 \times 10^{6} / \mathrm{ft}$
 data are shown with square symbols and splined together for clarity. The CFD results are presented as solid lines with a color corresponding to the appropriate experimental run. Generally, the comparisons are good, however there is a slight over-prediction in the lift curve slope, which is most apparent in the $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D} / \mathrm{E}$ calculations. The addition of nacelles translates the curves so that the configuration experiences more lift at a given angle-of-attack. The addition of the empennage rotates the curves with additional lift coming from the horizontal tail at larger angles-of-attack.

 complemented by flat plate viscous drag under-predicted the experimental data by approximately 16 counts for each configuration analyzed. Historically, CFL3D Euler analyses complemented with flat plate skin friction have agreed very well with experimental data for HSCT W/B and W/B/N/D configurations. Thus, it was surprising to see the large discrepancy in this case. The fact that all configurations are consistently 16 counts off suggests that the CFD geometry and wind-tunnel geometry differ in some component
 possibility is that the wind-tunnel data has been improperly reduced.
The nacelle internal duct is not intended to have any contribution to the forces and moments. Thus, W/B/N/D and W/B/N/D/E force calculations do not include integration of pressure or viscous terms from inside the nacelles. A flat plate estimate of the skin friction of the duct has been removed from the windtunnel data. Thus, a slight inconsistency is introduced as the pressure forces acting inside the nacelles of the wind-tunnel model are not accounted for in the CFD solutions. It is thought that this cannot account for more than 1 count of discrepancy.
 be on the order of 3 to 4 counts. The modular control model is inherently "dirty" with many cracks resulting from the fit of model parts (flaps, etc.). Nevertheless, it is doubtful that this could account for much of the difference between the CFD and experiment.
Comparison of Predicted and Experimental Lift-to-Drag Ratio
1.675\% Reference \mathbf{H} Modular Controls Model
CFL3D \& Langley UPWT 1812, $\mathrm{M}_{\infty}=2.1, \mathrm{Re}=3 \times 106 / \mathrm{ft}$ The lift-to-drag ratio curves are presented here for all configurations. Euler results, complemented
with flat-plate viscous drag estimates, are in poor agreement with the experimental data since the drag is
under-predicted.

Historically it has been difficult for CFD to accurately predict pitching moment. Presented here are Euler predictions for $\mathrm{W} / \mathrm{B}, \mathrm{W} / \mathrm{B} / \mathrm{E}, \mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ and $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D} / \mathrm{E}$ compared to experimental data. No correction for viscosity has been attempted. Despite a poor prediction in drag, the pitching moment is in good agreement. Drag plays a minor role in the pitching moment calculations compared to the lift. As the magnitude in lift increases, the difference between experiment and CFD gets larger.

Pitching Moment Coefficient, C_{M}

Presented below are Navier-Stokes solutions for the W/B and W/B/E configurations only. Limited

 chosen for the W/B calculation since it has predicted force well for other HSCT configuration. For the
 the horizontal stabilizer. For this reason, a number of turbulence models will be experimented with. To date, only the Baldwin-Lomax and Baldwin-Barth models have been used.
Agreement between the Navier-Stokes simulations and experiment, like the Euler comparisons shown earlier, is poor. The W / B configuration, analyzed using the Baldwin-Lomax turbulence model under-predicts the drag by nearly 16 counts throughout the polar. This, at least, is consistent with Euler and flat plate predictions. Previous W/B Navier-Stokes predictions have been very reliable, enforcing the theory that the CFD geometry and the wind-tunnel model may differ significantly or that the wind-tunnel data has been improperly reduced. Likewise, the Navier-Stokes solutions of the W/B/E configuration under-predicted the experimental drag levels. Here, Baldwin-Lomax and Baldwin-Barth turbulence models were used in the simulations. The two turbulence models predict similar pressure drag contributions but show a three count difference in skin-friction drag. Overall, the Baldwin-Barth is closest to the data showing an 8 count under-prediction. Unfortunately, with the uncertainty in predicting even the W/B drag, it is difficult to draw any conclusions concerning the effectiveness of the turbulence models.

As seen in the previous chart, the CFL3D Navier-Stokes under-predicted the experimental data for
the 1.675% Reference H modular controls model by approximately 16 counts for the W/B configuration.
The chart below shows earlier calculations done on the 2.7% Reference H W/B configuration. These
results were presented in Task No. 37 (Reference: CRAD-9103-TR-0235). Here we see Navier-Stokes
solution accurately predicts drag throughout the polar at Mach 2.4 .

This chart shows the drag build-up near the cruise C_{L} at $\mathrm{M}_{\infty}=2.1$ for the full configuration
 first group of colored bars represents the drag increment due to the addition of horizontal and vertical tail surfaces; the next group represents the increment due to nacelles and diverters; the final group is the

 component are in good agreement between the experiment and the Euler solutions. CFD Euler and
 nacelles and diverters. At this condition, the drag increments appear additive, as the increment for nacelle, diverter, and tail surfaces is approximately 19 counts. Disappointedly, the Navier-Stokes predicted
 modeling especially in the wake region.

Empennage Effect on Pitching Moment
1.675\% Reference H Modular Controls Mod
CFL3D \& Langley UPWT $1812, \mathrm{M}_{\infty}=2.1$, at $\mathrm{C}_{\mathrm{L}}=0.12, \mathrm{Re}=3 \times 1$ The figure below shows the effect of the empennage on the pitching moment for the predicted and experimental results. The measured, Euler, and Navier-Stokes predictions of the empennage effect on pitching moment for the W/B configuration is approximately -0.0050 at a $C_{L}=0.12$. This numith the W/B/E; the second is to compare the pitching moments of the W/B/N/D with the W/B/N/D/E.
Component Pitching Moment Increments

HSR Technology Concept Airplane (TCA)
The TCA build-up will be presented with the W/B and W/B/N/D solutions first, followed by the TCA W/B/E.

TCA W/B/E Grid Structure, $\mathbf{i H}=\mathbf{o l}^{\circ}$
12 Zones, 3.1 Million Grid Points
The grid structure for the TCA W/B/E with closed fuselage aft body is shown below. The W/B/E
grid was created from the W/B/N/D Euler grid. This strategy was taken in part to decrease the overall
gridding effort leading up to the full configuration, W/B/N/D/E. The nacelle blocks were taken out from
the W/B/N/D grid and replaced by a singular rectangular block, hence giving a W/B/E grid. The nacelle
blocks can easily replace this rectangular "plug", giving a full configuration grid within minutes. The
open aft body of the W/B/N/D grid was closed to create a real configuration.
The empennage is enclosed by 3 blocks. Both the horizontal and vertical tails have 45 chordwise
grid lines and 25 spanwise out to the tip. Since the horizontal and vertical tails start at different
streamwise locations, and clustering is needed at the leading edge of both, the decision was made to create
two blocks that use a Ronnie patch instead of having one block with skewness in the grid lines. This can
be seen in the lower left window in the following chart.

HSR Technology Concept Airplane (TCA) W/B/E, $\mathbf{i}_{\mathrm{H}}=\mathbf{0}^{\circ}$ 12 Zones, 3.1 Million Grid Points

Comparison of Predicted and Experimental Lift Curves
1.675\%
CFL3D \& Langley UPWT, $1671, \mathrm{M}_{\infty}=2.4, \operatorname{Re}=4 \times 106 / \mathrm{ft}$ The following chart shows a comparison between the CFL3D Euler and Navier-Stokes predictions to experimental measurements for the W/B configuration. Both Euler and Navier-Stokes results slightly over-estim 0.2° and the Navier-Stokes solution underEuler solution under-estimated the required and
estimates the required angle-of-attack by 0.05°.
Comparison of Predicted and Experimental Drag Polars
1.675\%
CFL3D \& Langley UPWT $1671, \mathrm{M}_{\infty}=2.4, \mathrm{Re}=4 \times 10^{6} / \mathrm{ft}$
 drag estimate of 61.06 counts has been added to the Euler calculations. The Euler results over-predict the
 Navier-Stokes over-estimate the drag value at $\mathrm{C}_{\mathrm{L}}=0.1$ by approximately 4.5 and 3.0 counts, respectively. A trip drag estimate varying with C_{L} and ranging from 2 to 4.5 counts has been removed from the windtunnel data. The uncertainty in the trip drag estimate is approximately 2 counts.
Comparison of Predicted and Experimental L/D Ratios
1.675\% TCA Model, W/B Configuration
CFL3D \& Langley UPWT $1671, \mathrm{M}_{\infty}=2.4, \operatorname{Re}=4 \times 10^{6} / \mathrm{ft}$
The following presents lift-to-drag ratio comparisons between the CFL3D Euler and Navier-Stokes
predictions to experimental measurements. Due to the over-estimation in drag by the computational
results, the predicted lift-to-drag ratios are slightly lower than the test data. The measured L/D max is
approximately 7.85 while the Euler and Navier-Stokes results are approximately 7.6 and 7.7 , respectively.
As described previously, trip drag has been removed from the test data.

The W/B pitching moment curve shows a stable configuration up to the cruise condition. The
CFL3D Euler and Navier-Stokes predictions give lower $\left(\partial \mathrm{C}_{\mathrm{m}} / \partial \mathrm{C}_{\mathrm{L}}\right)$ values compared to the experimental
data.
Comparison of Predicted and Experimental Pitching Moments
TCA Wing/Body Configuration
Langley Test 1671, UPWT- $2, M_{\alpha}=2.4, \operatorname{Re}=4 \times 10^{6} / f t$

The Euler and Navier-Stokes solutions computed using CFL3D predict a slightly higher lift-curve Euler and Navier-Stokes results under-estimate the required angle-of-attack by approximately 0.1°.
Comparison of Predicted and Experimental Drag Polars
$\mathbf{1 . 6 7 5 \%}$ TCA Model, W/B/N/D Configuration
CFLSD \& Langley UPWT $1671, \mathrm{M}_{\infty}=2.4$, Re=4x106/ft

 and Navier-Stokes predicted higher drag values at minimum drag, CDmin. At $\mathrm{C}_{\mathrm{L}}=0.1$, the Euler and Navier-Stokes solutions over-estimate the drag by approximately 3 and 2 counts, respectively. A trip drag estimate varying with C_{L} and ranging from 3 to nearly 7 counts has been removed from the wind-tunnel data. The uncertainty in the trip drag estimate is approximately 3 counts.

 putational
$L / D_{\text {max }}$ is Navier-Stokes results are approximately 7.25 and 7.36, respectively. As described previously, trip drag has been removed from the test data.

The W/B/N/D moment curve shows a stable configuration up to the cruise condition. As seen in the give lower ($\partial \mathrm{C}_{\mathrm{m}} / \partial \mathrm{C}_{\mathrm{L}}$) values compared
$\begin{aligned} & \text { Comparison of Predicted and Experimental Pitching Moments } \\ & \text { TCA Wing/Body/Nacelle/Diverter Configuration } \\ & \text { Langley Test 1671, UPWT-2, } M_{\infty}=2.4, ~ R e=4 \times 10^{6} / \mathrm{ft}\end{aligned}$
$\underset{\mathrm{M}_{\infty}}{\text { Predicted }} 2.4, \mathrm{C}_{\mathrm{L}}=0.1, \mathrm{Re}=4 \times 10^{6} / \mathrm{ft}$.
The predicted nacelle drag increment is compared to the measured drag below. The drag values seen below are in units of drag counts. Though the absolute drag levels of the Euler and Navier-Stokes predictions were high, the increment is predicted well.
Predicted Nacelle Installation Drag

$$
M_{\infty}=2.4, C_{L}=0.1, R_{e}=4 \times 10^{6} / f t .
$$

Experiment CFL3D (Euler) CFL3D (N-S)

Lift Coefficients for the TCA W/B/E Configuration
CFL3D Euler, $\mathrm{M}_{\infty}=2.4$ The figure below shows the TCA W/B/E lift coefficients with horizontal tail settings of $-5^{\circ}, 0^{\circ}$, and

$\circ 0^{0}$
+1
+1
Lift Coefficients for the TCA Wing/Body/Empennage Configuration

Pressure Drag Coefficients $\left(\mathbf{C D p}^{\text {C }}\right.$) for the TCA $\mathbf{W} / \mathbf{B} / \mathrm{E}$ Configuration
CFL3D Euler, $\mathbf{M}_{\infty}=2.4$
The figure shows the TCA W/B/E pressure-drag coefficients with horizontal tail settings of $-5^{\circ}, 0^{\circ}$,
and $+2^{\circ}$. The W/B/E with the $+2^{\circ}$ horizontal tail setting has approximately 2 counts less C_{Dp} than the 0°
horizontal tail case at a C_{L} of 0.1 . These calculations were performed with a closed fuselage aft body.
Pressure Drag Coefficients (C_{Dp}) for the TCA W/B/E Configuration

Pitching Moments for the TCA W/B/E Configuration
CFL3D Euler, $\mathrm{M}_{\infty}=2.4$ 5° produces a more positive (nose-up) pitching moment. Results from these solutions will be used in a trim drag optimization study.

Pressure Contours on the TCA Empennage
CFL3D Euler, $M_{\infty}=2.4$
The pressure contours on the TCA empennage for all three horizontal tail settings at alpha $=3.5^{\circ}$
are shown below. The -5° horizontal tail setting shows a much stronger leading-edge shock compare to the
0° and $+2^{\circ}$ cases. The horizontal tail leading-edge shock interaction with the aft end of the fuselage is also
B
0
0
0
Pressure Contours on HSR Technology Concept Airplane (TCA) W/B/E
CFL3D Euler, 12 Zones, 3.1 Million Grid Points
$\mathrm{M}_{\infty}=2.4, \alpha=3.5^{\circ}$
$-1 \stackrel{\circ}{\stackrel{\circ}{1}}$ Pressure Contours on HSR Technology Concept Airplane (TCA) W/B/E
CFL3D Euler, 12 Zones, 3.1 Million Grid Points
$\mathrm{M}_{\infty}=2.4, \alpha=3.5^{\circ}$ Pressure Contours on HSR Technology Concept Airplane (TCA) W/B/E
CFL3D Euler, 12 Zones, 3.1 Million Grid Points
$\mathrm{M}_{\infty}=2.4, \alpha=3.5^{\circ}$

$C_{L}=0.076$
$C_{D P}=0.00725$
Pressure Contours on the TCA Empennage
CFL3D Euler, $M_{\infty}=2.4$ The pressure contours on the TCA empennage for all three horizontal tail settings at alpha $=3.5^{\circ}$
are shown below with the corresponding pressure drag value $\left(C_{D p}\right)$. The $W / B / E$ with the $+2^{\circ}$ horizontal
tail setting has approximately 2 counts less $C_{D p}$ than the 0° horizontal tail case at a C_{L} of 0.1 .

Computer Resources Used for Calculations on Various Configurations
at Supersonic Conditions One of the objectives of this task was to assess the feasibility of full-configuration force and moment calculations. The above table is a summary of the required memory and CPU time to run a single solution for all configurations presented herein. A number of platforms were used to make the computations. In each case the CPU requirement is based on convergence of lift and drag to five significant digits. The Cray C-90 is a well established computer and CPU requirements are not expected to diminish in the future. The IBM SP-2 and J-90 are newer machines and software modifications to take advantage of the hardware

[^4]Computer Resources Used for Calculations on Various Configurations
at Supersonic Conditions

Config.	Solution Type	Turb. Model	Grid Size (Millions)	Platform	CPU Time (hrs)	Memory Req. (Mw)
W/B	Euler	N/A	0.9	C-90	1.5	40
W/B	N-S	B-L	1.5	J-90	10	68
W/B/E	Euler	N/A	1.5	C-90	2	58
W/B/E	Euler	N/A	3.1	SP-2	1.5	85
W/B/E	N-S	B-L	2.2	C-90	4	91
W/B/E	N-S	B-B	2.2	C-90	8	104
W/B/N/D	Euler	N/A	2.4	C-90	3.5	85
W/B/N/D	N-S	B-L	6.0	C-90	16	212
W/B/N/D/E	Euler	N/A	2.6	C-90	3.5	90

Summary and Conclusions
The flow over two full configuration (W/B/N/D/E) HSCT configurations were analyzed using
CFL3D. Although the drag levels predicted by CFL3D were significantly under-predicted for the
Reference H configuration, the drag increment for each component are in good agreement between the
experiment and the Euler solutions. The Navier-Stokes component increment predictions were further
from the experimental data than the Euler results. Further investigations will be done to find a turbulence
model which captures the wake region flow characteristics. Thus far, the TCA W/B and W/B/N/D CFL3D
results are very encouraging. The Navier-Stokes W/B/N/D predictions over-estimated the experimental
data by 2 counts. This agreement is extremely important in order to validate the analysis tools used for
the complex configurations.

Supersonic Cruise Point Design Optimization of TCA

Eric R. Unger
Robert P. Narducci
James O. Hager
Geojoe Kuruvila
Peter M. Hartwich
Shreekant Agrawal
McDonnell Douglas Corporation
Long Beach, California 90807-5309

Since July of 1996, McDonnell Douglas (along with other teams from NASA Ames and Boeing Commercial Aircraft Group), has been working on a second series of optimizations for the TCA configuration. The approach used at MDC was conservative in terms of acceptable geometric qualities that were allowed to appear in the final Cycle 2 design. The hope was that any final outcome would be more robust and raise the least amount of uncertainties from other technology disciplines. The downside of this approach was the inability to fully maximize the possible L/D gains within the given time and within these strict geometric guidelines.

This paper presents an overview of MDC's final Cycle 2 configuration. First, a brief introduction and highlights of the new design are given along with some geometric details. Second, a look at the configuration's overall performance and pressure field details will be given. Next, some details of the design constraints that were used during optimization will be described. And finally, the paper will close with a summary of the Cycle 2 configuration and a look ahead to the immediate future.

Contents
Listed below are the contents of the paper to be discussed.
Contents

TCA Nonlinear Point Design Optimization Cycle 2

TCA Nonlinear Point Design
Optimization Cycle 2
Initial (cycle 1) PDR was held in July 1996

immature
Participants included NASA Ames, Boeing, and McDonnell Douglas - Each used different analysis and optimization
codes along with different overall philosophies
toward optimization and design

- Each satisfied a common set of design constraints
- Three very different final outcomes
Design Tools
Listed below are the design tools that were used in the creation of the TCA Cycle 2 design.
For the most part, the MDO3D code was used to perform the optimization on this configuration.
This is a finite-difference based, fully constrained design code utilizing CFL3D for analysis and
DOT for the shape optimization of the wing and fuselage. For a small portion of the effort, the
NASA Ames SYN87 adjoint-based design code was utilized for some wing twist and camber
optimization. It should be noted that the optimization was frequently halted for various
smoothing and clean-up procedures.
Design Tools

TCA Cycle 2 Highlights
The philosophy used to create the MDC TCA Cycle 2 design was very different from those
of the other participants. The goal was to minimize the supersonic cruise drag as much as
possible while maintaining the smoothness and relatively flat features of the TCA Baseline
design. Along with these goals was a similar desire to generate a configuration that would
achieve its benefits with very smooth pressure distributions and good leading-edge suction that
would be beneficial at off-design conditions as well.
With these goals in mind, the MDC TCA Cycle 2 design was created. This configuration is
very smooth with well-behaved pressure distributions and good leading-edge suction. The
configuration also maintains a good portion of its improvement over a very large portion of the
drag polar. A beneficial outcome of this philosophy also resulted in significant volume
increases in the fuselage (2.7%), the wing (4.3%), and the fuel volume (7.4%. Even with all of
these volume increases and smoothness requirements, the configuration still achieved a 3.9
count reduction in the supersonic cruise drag at a C_{L} of 0.10 .

TCA Cycle 2 Highlights

The TCA Cycle 2 Shaded Images The next two slides show shaded images of the MDC Cycle 2 Configuration. On this first
isometric view, note the marked smoothness of the lower surface of the wing and the substantial
thickness of the inboard wing. Also noticeable in this view is the gentle curving upward of the
trailing edge of the wing near the wing/body intersection. This curving region only extends
forward to approximately the $3 / 4$ chord although it does encompass the rear spar. Additional
geometric features can also be spotted on the fuselage where the cross-sectional area near the
leading edge of the wing/body intersection has been increased.

The TCA Cycle 2 Shaded Images (cont.)
This shaded image shows the front view of the TCA Cycle 2 Configuration. Noteworthy on
this view is the overall flatness of the TCA Cycle 2 design.

Waterline Contours for the Baseline TCA Configuration
The next two slides show waterline contours for the TCA Baseline and Cycle 2 designs. In
these plots, the Z-component (waterline) of the upper and lower wing surfaces is used to contour
the planform. Such plots are useful in evaluating the smoothness of a configuration where
erratic or rapid color changes could indicate a non-smooth design.
Shown first is the TCA Baseline configuration. Note that there are no abrupt changes
(except at the leading-edge break) in the contours and that the lines are smooth.

Waterline Contours for the TCA Cycle 2 Configuration
Shown next is the waterline plot for the TCA Cycle 2 Configuration. Note again that there
are no erratic contour changes and that the lines are fairly smooth indicating a smooth design.

Wing Twist Distribution Illustrated below is a comparison of the Baseline and Cycle 2 twist distributions. The Cycle
2 design shows a marked increase in twist near the body over the baseline configuration (good
for shifting wing loading inboard) and a general twist reduction elsewhere. Note that while the
figure shows a slight twist increase of the wing tip, the Cycle 2 design has about 0.1 deg less α
at cruise which eliminates this undesirable trait.

TCA Baseline and Cycle 2 Camber Distributions
Shown below are the camber distributions for the TCA Baseline and Cycle 2 configurations
at six different span stations. Note that except for the inner most station, and immediately after
the break, the camber distribution of the Cycle 2 design is not radically different from the
baseline. In general, the Cycle 2 configuration seems to exhibit a slight increase in overall camber.
Camber Distribution
Baseline and Cycle 2 TCA Configurations

54.8\%
Baseline $\quad 54.8 \%$

$\circ 0$
$\stackrel{0}{\circ}$
$\stackrel{0}{\circ}$

\circ
8
∞

 (
TCA Baseline and Cycle 2 Fuselage Camber Lines
Illustrated below is a comparison of the Baseline and Cycle 2 fuselage camber lines. Other large lar
TCA Fuselage Camber Lines

Fuselage Station (in.)
Baseline and Cycle 2 Maximum
Thickness-to-Chord Ratio Distributions
Illustrated below is a comparison of the Baseline and Cycle 2 maximum thickness-to-chord
ratio distributions. The Cycle 2 design shows a marked increase in t / c over most all of the
inboard wing panel and a slight increase on the outboard panel. This inboard thickness increase
is what is responsible for the 7.4% fuel volume increase. It is also possible that a great deal of
this volume increase could likely be traded for further drag reductions.

TCA Baseline and Cycle 2 Fuselage
Cross-Sectional Area Distributions
Illustrated below is a comparison of the Baseline and Cycle 2 fuselage cross-sectional area
distributions. Here, we see an increase in the Cycle 2 area in the middle portion of the fuselage
with the largest increases at about 1200 ". This location corresponds to the leading edge of the
wing/body intersection.
TCA Fuselage Cross-Sectional Area Distributions

Fuselage Station (in.)
TCA Baseline and Cycle 2 Wing/Body
Cross-Sectional Area Distributions Illustrated below is a comparison of the Baseline and Cycle 2 normal ($\mathrm{M}=1.0$) wing/body
cross-sectional area distributions. This plot shows the area build-up for the wing/body
configuration which is critical for wave drag considerations. Abrupt changes in area tend to
increase drag and should be avoided. As shown in this figure, we can see that the Cycle 2
configuration has smoothed out the area where the wing and the body first meet, leading to some
explanation for the fuselage volume increases in this region. Due to the frozen planform
restrictions, virtually nothing could be done for the wing trailing-edge region (note that the
presence of the nacelles will help in this region).
TCA Cross-Sectional Area Distributions
(Wing/Body transition is based on the grid)

TCA Baseline and Cycle 2 W/B/N/D Lift Comparisons
Lift curves from CFL3D Navier-Stokes analysis of the TCA Baseline and Cycle 2 wing/body/nacelle/diverter configurations are shown. As with all the previous optimization tudies, the slope of the lift curve is larger for the optimized configuration. It is believed the increase of leading-edge suction for the optimized configuration is responsible for this
phenomenon.

TCA Baseline and Cycle 2 W/B/N/D Drag Polar Comparisons Drag polars from CFL3D Navier-Stokes analysis of the TCA Baseline and Cycle 2
wing/body/nacelle/diverter configurations are shown. The cycle 2 design shows a 3.9 count
reduction in drag at the evaluation C_{L} of 0.10 . The pressure drag reduction at this condition was
about 3.7 counts and the friction drag reduction was about 0.2 counts. Although not illustrated,
it is important to note that Euler analysis of these same two configurations yielded only a 3.5
count drag reduction at the same conditions. This result is not too surprising due to the well
behaved nature of the pressure distributions.

TCA Baseline and Cycle $2 \mathrm{~W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$
Pitching Moment Coefficient Comparisons
Pitching moment coefficients from CFL3D Navier-Stokes analysis of the TCA Baseline
and Cycle 2 wing/body/nacelle/diverter configurations are shown. Here, we see only a slight
nose-up change in the pitching moment coefficient in the cycle 2 configuration (note the
expanded scale).

TCA Baseline W/B/N/D Pressure Distributions
The next two slides show surface pressure distributions (CFL3D N-S) for the TCA Baseline
and Cycle 2 configurations at the evaluation condition. The slide below shows in general how
the baseline configuration has a fairly smooth pressure variation with only a very slight
compression wave on the upper surface. Note that the diverters generate relatively strong
shocks.

Upper
Surface
TCA Cycle 2 W/B/N/D Pressure Distributions
This slide shows the pressure distributions for the Cycle 2 design. Note that on this
configuration, the upper surface leading-edge pressure is reduced (leading-edge suction) and that
the shock strength of the the inboard diverter is slightly reduced. Also note that the pressure
variations are still smooth and that the upper surface compression wave is somewhat reduced.

TCA Cycle 2 W/B/N/D Pressure Distributions
CFL3D, $N-S(B-L), M_{\infty}=2.4, C_{L}=0.10\left(\alpha=3.45^{\circ}\right), R_{c}=6$.

Component Drag for the TCA Baseline and Cycle 2
Wing/Body/Nacelle/Diverter Configurations
A total drag breakdown for the TCA Baseline and Cycle 2 configurations is shown. Such a
breakdown is useful to understand where the optimization process made improvements and design trade-offs. As indicated in the slide, the optimizer removed 4.7 counts of drag from the drag. This is clearly a trade-off where fuselage performance was sacrificed to further improve the wing. This is an illustration of how important it is to optimize the wing and fuselage simultaneously. Also shown in this slide is the fact that the drag on both diverters and nacel is virtually unchanged.

TCA Baseline and Cycle 2 Pressure Coefficient
and Airfoil Cut Comparisons
The next four slides show comparisons of the TCA Baseline and Cycle 2 chordwise pressure coefficients and airfoil variations. Note that throughout these plots the pressures are all quite smooth and well-behaved. The first of these cuts (below), is at a wing semi-span of 19.9%. At this station, we can see that optimization has significantly increased leading-edge suction and has slightly increased aft loading. The shock strength and position from the inboard diverter and nacelle appears only slightly changed. Looking at the airfoil cut, it's clear that the thickness of this section has been increased along with the camber.

TCA Baseline and Cycle 2 Pressure Coefficient
This slide shows the pressure and airfoil variations at a wing semi-span of 32.6%. Once
again, there is an increase of leading-edge suction although the aft-loading remains unchanged
here. At this cut, the shock strength of the inboard diverter has been reduced and the position is
same. Again, significant wing area has been added but some slight thinning at the wing triiling
edge occurs.

TCA Baseline and Cycle 2 Pressure Coefficient
and Airfoil Cut Comparisons (cont.)
This slide shows the pressure and airfoil variations at a wing semi-span of 41.3%. Once
again, there is an increase of leading-edge suction but in this case the aft loading appears to be
reduced. At this cut, the shock strength of the outboard diverter has been unchanged but has
been moved slightly aft. This cut also demonstrates a prominent double shock pattern. Again,
significant wing area has been added, especially in the middle of the airfoil.

TCA Baseline and Cycle 2 Pressure Coefficient and Airfoil Cut Comparisons (cont.)

[^5]
Wing Constraints Listed below is a complete table of the wing constraints used during this optimization. Not
specifically listed is a mid-spar constraint (the front spar of the wing structural box that MDC
added to further enhance the smoothness of the final design. This new constraint also prevented
a digging-out' of wing volume just outboard of the landing-gear bay. Where it is apppicabbe,
the table lists the design constraint values and the values achieved by the Cycle 2 design. Note
that in cases were there are slight constraint violations, analyses were done to measure what the
drag impact would be to satisfy the constraint in question. To fully satisfy all the violated
constraints, the penalty was calculated to be 0.1 count (see the following chart as an illustration
of this process).
Wing Constraints

Number	Description	Design Value	Constraint Value	Satisfled?	Drag Impact	Comment
W1	Front Spar Thickness	*	*	N	0.04 cts	Max violation near break
W2	Rear Spar Thickness	*	*	N	<0.05 cts	Max violation © span station 167
W3	In-spar Thickness			Y		
W4	Landing Gear Bay Clearance	*		Y		
W5	Leading-edge Bluntness	*	,	N	0.01 cts	Evaluated thickness 6" aft of LE; Violation © break
W6	Trailing-edge Closure Angle	$3.8{ }^{\circ}$	25°	N	0.00 cts	Max violation © break
W7	Wing Fuel Volume	10,390	29674 cu ft	Y		7.4\% increase in fuel volume
w8	Floor Location Above Wing Upper Surface	9.6"	$29.4{ }^{\prime \prime}$	Y		F.S. 2459-2669 (systems)
w9	Floor Location Above Wing Box	6.9 "	$27{ }^{\prime \prime}$	Y		F.S. 2066-2166 (systems)
W10	Wing Upper Surface Above Floor	-9.2"	S7.0"	Y		F.S. 1804 (door)
W11	Wing Corner Points			Y		
W12	Wing Leading-edge Intersection	Not a constraint				
W13	Wing Trailing-edge Intersection	Not a constraint				

Front Spar (W1) Sensitivity Study
This chart shows the process that was used to determine the penalty for fully satisfying a
given constraint, in this case the leading-edge spar thickness. As one can see in the lower left-
hand figure, the front spar thickness on the Cycle 2 design violates the given constraint thickness
in the immediate vicinity of the wing break. This violation was due mostly to an improperly
applied smoothing technique that did not maintain the sharp thickness transition at the break.
The figure at the upper left-hand side shows an example of the required airfoil modifications that
were locally applied to the cycle 2 configuration. The upper right-hand plot shows the drag
impact (about 0.04 counts) of modifying all the airfoils necessary to fully satisfy the front spar
constraint.
Front Spar Thickness (W1) Sensitivity Study

- Objective was to find sensitivity of drag performance

ween LE
ss constra
O日 with small modifications to leading-edge spar thickness
- Upper and lower surface was modified between LE
and 50% chord to activate LE spar thickness constraint
over entire span

(un) ssouxjulieds
TCA Cycle 2 Landing-Gear Bay Layout This figure shows a graphical representation of the landing-gear bay placement on the
Cycle 2 design. This constraint was particularly difficult to deal with and as is shown there is no
extra room for the bay. To fit the bay, it was pitched up approximately 1 deg and rolled about 7
deg with respect to the baseline configuration.

TCA Cycle 2 Fuel Volume Layout
This figure shows a graphical representation of the fuel volume layout on the Cycle 2
design. The planform dimensions of the volume are exactly the same as the baseline
configuration. Recall that the significant increase in the inboard wing thickness has led to a
7.4% increase in fuel volume.

Fuselage Constraints
This slide (and the subsequent 2 slides) shows a table of the fuselage constraints. The
complete list includes about 60 important constraints for optimization with the fuselage. A
graphical presentation that helps to interpret some of the above table follows. As before, the
constraint design value is shown where appropriate, along with the realized values of the Cycle 2
configuration.
Body Constraints

Number	Description	Design Value	Constraint Value	Satisfied ?	Drag impact	Comment
B1	Body Length	3912"	=3912"	Y		
B2	Area © Pilot's Eye	51.2 sq ft	$\geq 49 \mathrm{sq} \mathrm{ft}$	Y		Imposed at F.S. $=400$
B3	First Class Enclosure					Imposed at F.S. 780-1040
	Aisle Height	99.4"	$292.0{ }^{1}$	Y		
	Head Clearance	$90.1{ }^{\prime \prime}$	280.9"	Y		
	Seat Clearance	$73.6{ }^{\prime \prime}$	$\geq 67.6^{\prime \prime}$	Y		
	Foot Clearance	$64.5{ }^{\prime \prime}$	$\geq 60.9{ }^{\text {a }}$	Y.		
B4	Nose Landing Gear Bay Enclosure	$55.6{ }^{\prime \prime}$	$\geq 55.7{ }^{\prime \prime}$	Y		Imposed at F.S. 820-900
B5	Business Class Enclosure					Imposed at F.S. 1190-1730
	Aisle Height	107."	$\geq 92.0{ }^{\prime \prime}$	Y		
	Head Clearance	$90.5^{\prime \prime}$	$\geq 90.5^{\prime \prime}$	Y		
	Seat Clearance	$83.8{ }^{\prime \prime}$	$\geq 80.3^{\prime \prime}$	Y		
	Foot Clearance	80.6"	$\geq 72.1{ }^{1}$	Y		
	Cargo Upper	75.1"	$\geq 71.8{ }^{\prime \prime}$	Y		
	Cargo Lower	71.2"	271.1'	Y		
B6	Economy Class Enclosure					
	Aisle Height	$92.0{ }^{\prime \prime}$	292.01	Y		Imposed at F.S. 500-3600
	Head Clearance	$79.7{ }^{\text {" }}$	$\geq 79.7{ }^{\text {" }}$	Y		
	Seat Clearance	$68.6^{\prime \prime}$	$267.2^{\prime \prime}$	Y		
	Foot Clearance	$58.5{ }^{\prime \prime}$	257.9"	Y		

$$
\text { Fuselage Constraints (cont.) }
$$

Fuselage constraint table (cont.)
Body Constraints

Number	Description	Design Value	$\begin{gathered} \text { Constraint } \\ \text { Value } \end{gathered}$	Satisfied ?	Drag Impact	Comment
B7	Radius of Curvature	47"<<<300"	$30^{\prime \prime}<r<500^{\prime \prime}$	Y		Imposed at F.S. 500-3600
B8	Keel © Rear Spar	$12.4{ }^{\prime \prime}$	$\geq 6.0^{\circ}$	Y		Imposed at F.S. 2669
B9	Floor Segment F.S. Positions					
	Control Point \#1	676	$=676$	Y		Not changed
	Control Point \#2	1065	1065<x<1107	Y		Not changed
	Control Point \#3	1788	$1788<x<1820$	Y		Not changed
	Control Point \#4	2688	$2524<x<2688$	Y		Not changed
	Control Point \#5	3200	$=3200$	Y		Not changed
B10	Cabin Floor Attitude					Evaluated at AOA $=3.035^{\circ}(\mathrm{CL}=0.088)$
	Segment \#1	$2.4{ }^{\circ}$	$-3.5{ }^{\circ} \leq a \leq 3.5^{\circ}$	Y		
	Segment \#2	$3.5{ }^{\circ}$	$-3.5 \leq$ ¢ $\leq 3.5^{\circ}$	Y		
	Segment \#3	$3.1{ }^{-}$	$-3.5{ }^{\circ}$ ¢ $<3.5^{\circ}$	Y		
	Segment \#4	$1.2{ }^{\circ}$	$-3.5{ }^{\circ} \mathrm{sa} \leq 3.5^{\circ}$	γ		
B11	Change in Floor Angle					
	Segment \#1 to segment \#2	-1.2	$-2.0{ }^{\circ} \leq a \leq 2.0^{\circ}$	Y		
	Segment \#2 to segment \#3	$0.5{ }^{\circ}$	$-2.0^{\circ} \leq \mathrm{a} \leq 2.0^{\circ}$	Y		
	Segment \#3 to segment \#4	1.9 ${ }^{\circ}$	$-2.0^{\circ} \leq \mathrm{a} \leq 2.0^{\circ}$	Y		

Fuselage Constraints (cont.)
Fuselage constraint table (cont.)
Body Constraints

Number	Description	Design Value	Constraint Value	Satisfled ?	Drag Impact	Comment
B12	Empennage Carry Through					
	Theta $=-90^{\circ}$	43.9"	$\geq 43.6{ }^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=-59^{\circ}$	44.0"	$\geq 43.7^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=-40^{\circ}$	40.5"	$\geq 40.5^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=-0^{\circ}$	32.9"	$\geq 32.6{ }^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=40^{\circ}$	40.5"	$240.5^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=59^{\circ}$	$44.0^{\prime \prime}$	$\geq 43.7{ }^{\text {" }}$	Y		Imposed at F.S. 3540
	Theta $=90^{\circ}$	43.9"	$\geq 43.6^{\prime \prime}$	Y		Imposed at F.S. 3540
	Theta $=-90^{\circ}$	42.3"	$\geq 42.1{ }^{\prime \prime}$	Y		Imposed at F.S. 3570
	Theta $=-59^{*}$	42.2"	$\geq 42.1{ }^{\prime \prime}$	Y		Imposed at F.S. 3570
	Theta $=-40^{\circ}$	37.6"	$\geq 37.4{ }^{\prime \prime}$	Y		Imposed at F.S. 3570
	Theta $=-0^{*}$	30.3 "	$\geq 30.0{ }^{\text {u }}$	Y		Imposed at F.S. 3570
	Theta $=40^{\circ}$	37.6"	$\geq 37.4{ }^{\prime \prime}$	Y		Imposed at F.S. 3570
	Theta $=59^{\circ}$	42.3 "	$\geq 42.1^{\prime \prime}$	Y		Imposed at F.S. 3570
	Theta $=90^{\circ}$	42.3"	≥ 42.1 "	Y		Imposed at F.S. 3570

TCA Cycle 2 Fuselage Side View with Constraints
This fuselage side view gives a graphical representation of some of the previously listed
fuselage constraints. It is most useful for visualizing deck placement and structural box carry-
through.
TCA Cycle 2 Fuselage Side View With Constraints

Fuselage Station (in.)
 This slide gives a graphical representation of the fuselage cross-sectional area constraints at
various fuselage cuts. It also illustrates optimization modifications to the fuselage at the
different stations. The changes are most notable at the fuselage station of 1202", where the
fuselage has been flattened to some extent. This station also roughly corresponds to the location
where the wing first intersects. Note that at the last fuselage station (FS 3076") the area
constraints are critical.
TCA Fuselage Cross-Sections With Constraints
Cycle 2

Cycle 2 Summary
These next two slides give a summary of the information presented in this paper. The
MDC Cycle 2 configuration reduced drag (W/B/N/D N-S) by 3.9 counts at the evaluation
condition $\left(\mathrm{C}_{\mathrm{L}}=0.10\right)$ while increasing volume by 2.7% for the fuselage and 4.3% for the wing
(and 7.4% for the fuel volume). There were only minor constraint violations on the wing which
when fully satisfied, only cost a 0.10 count drag penalty. To ensure a smoother final design, an
additional spar constraint was added to the constraint list.

- W/B/N/D Drag reduced 3.9 cts . (CFL3D Navier-
Stokes with Baldwin-Lomax turbulence model)
- Fuselage volume increased $\sim 2.7 \%\left(10,500 \mathrm{ft}^{3}\right)$
- Wing volume increased $\sim 4.3 \%\left(4900 \mathrm{ft}^{3}\right)$
- Minor wing constraint violations; less than 0.1 ct
Here, at MDC, we still feel that with further optimization of this low-risk design we can still achieve further improvements. In closing, the MDC Cycle 2 design is a well-behaved configuration which should hold no surprises in its performance under various conditions. In addition, it has drag reductions and some significant usable volume increases.
Cycle 2 Summary (con'd)

Drag can still be reduced with further optimization
very smooth design with aerodynamically
features:
features:

-

- Straight streamlines
Future Directions
We have many near-term activities to further enhance our optimization studies. However,
we still believe it is important to not allow many radical geometry changes in the configuration.
Again, we feel that the configuration presented here can be further improved upon without
harming many of its redeeming features. Some of these areas of activity include an
implementation of ADIFOR derivatives to increase optimization accuracy, and the use of full
configuration optimization to allow for the improved tailoring of shocks from the nacelles and
diverters.
Future Directions - MDC design philosophy is to proceed slowly through
the design space with tight move limits. With current
tools Cycle 2 design can still be improved
- Addition of ADIFOR derivatives shows promise to
increase the accuracy of the gradients
- Addition of multiblock W/B/N/D design capability to
allow tailoring of shocks from the nacelles and
diverters

Improvements to the MDC Nonlinear Aerodynamic Design Tools

James O. Hager, Peter M. Hartwich, Eric R. Unger, Geojoe Kuruvila, Robert P. Narducci, and Shreekant Agrawal McDonnell Douglas Corporation Long Beach, California 90807-5309

Nonlinear aerodynamic optimization is considered a key technology required to develop a High Speed Civil Transport (HSCT). Within the High Speed Research (HSR) program, McDonnell Douglas is developing nonlinear optimization tools to be able to support the launch of an HSCT program at the end of HSR II. This paper presents recent improvements to the tools.

The first set of improvements were made to be able to optimize the Technology Concept Aircraft (TCA). The TCA presented some gridgeneration issues because it is a true low-wing configuration. In addition, several constraints were required to maintain a realistic design.
Second, the geometry modeling capability was improved to move toward full-configuration modeling. Empennage effects have been modeled, and wing/body/flaps configurations can be modeled. Efforts were also made to produce and improve tools required for integrated wing/body/nacelle/ diverter modeling.
Third, alternate gradient evaluation techniques are being examined to replace the finite-difference calculations currently being used. ADIFOR was applied to CFL3D and demonstrated for a $100+$ design-variable problem. Also, an adjoint module is being created for TLNS3D.

Finally, a transition is being made to a modular design environment to facilitate improvements and the addition of new codes.

James O. Hager, Peter M. Hartwich,
Eric R. Unger, Geojoe Kuruvila, Robert P. Narducci,
and Shreekant Agrawal
HSR AP Workshop
NASA Langley, 25-28 February 1997
MDC HSR Nonlinear Design Optimization Capability
The philosophy used to develop the McDonnell Douglas HSR nonlinear design
optimization capability is shown by the five general thrusts shown in the figure.
It was developed to support three design challenges: 1) cruise-point design, 2)
transonic-flap optimization, and 3) multi-point design.
The optimization capability must be affordable. First, the results must be accurate:
the results predicted by the optimization must be realized through analysis and testing.
Also, the process must be efficient and robust to reduce the turnaround time and
guarantee a good result every time. In addition, a modular structure facilitates
improvements and can reduce computer resources.
Geometry modeling influences the accuracy and
Geometry modeling influences the accuracy and efficiency of a design. Wing /
body (W/B) analysis is the least expensive but cannot capture the important effects of the nacelles and diverters (N/D). W / B a model the N/D effects with minimal expense. W/B/N/D acele-effects can be used to more expensive but is more representative of the complete aircraft. Naturally, a full configuration, including tails and flaps, is desired to have the highest accuracy.
The physics modeled by the flow solver also influences the accuracy and efficiency of a design. Currently, the physics modeled by the Euler equations are considered the lowest level of fidelity that are desirable for HSCT design. The physics modeled by the Navier-Stokes equations are probably required for an optimum N/D installation.
In addition, the tool must be able to enhance the design process of a realistic
configuration. This requires a large design space with practical constraints. A general patched-grid capability will allow flexibility for complex geometries.

Items Addressed (Since Start of FY96)
Items Addressed
(Since Start of FY96)

- General design capability
- M2.4-7A optimization \rightarrow TCA optimization
- Geometry modeling capability
- W/B with nacelle effects \rightarrow Empennage, flaps, W/B/N/D
- Gradient evaluation capability
- Finite-difference \rightarrow Alternate methods
- Modular design environment
Tasks Performed (Outline)
This figure lists the major tasks performed to support the four items in the
previous chart, and also serves as the outline for the presentation.
Tasks Performed
(Outline) Design capability
- Handle TCA-type W/B junction
- Design variables and constraints
0
0
0
0
0
Geometry capability
- Empennage effects
W/B/F modeling
W/B/N/D modeling
ernate gradient
ADIFOR for CFL3D

-

Improved Design Capability:
Handle TCA-type W/B Junction
Before TCA optimization could begin, a basic grid-generation problem had to be solved. The QGRID grid generation routines were developed for a mid-wing to be configuration where there is a distinct part of the fuselage between the wing and the symmetry plane. The TCA, however, is a low-wing configuration where there are regions where there is no fuselage below the wing. QGRID was improved to automatically split the wing to create a "fuselage."
Improved Design Capability:
Handle TCA-Type W/B Junction

Improved Design Capability: Design Variables
Two types of design variables were modified. The wing sinusoidal shape functions
can now be applied over a limited chordwise range. Also, the fuselage cross-sectional area design variables can be applied over a limited fuselage range. These two improvements increase the design space by allowing local perturbations to be created with a single variable instead of a combination of global variables.
A new design variables were added. First, wing can now twist about an arbitrary
line. This capability was added so that twist could be applied about the rear spar to
prevent spanwwise perturbations in the spar due to wing twist. Also, angle-of-attack
was added to allow the incidence of the entire configuration to change to maintain lift.
Improved Design Capability:
Constraints

[^6]Improved Geometry Capability:
Empennage Effects

Improved Geometry Capability:
Empennage Effects

Improved Geometry Capability:
Wing/Body/Flap Modeling

Work was recently completed to model a wing/body/flap configuration. The flapdeflection and grid-generation capability was obtained from the MDC HSR High-Lift
group and a sample erid is shown. These modules, and CFL3D, were tied together
with a modular optimization tool to perform transonic flap optimization.
Flap Optimization Grid
Single Block, C-O Topology, 145x33x91

लंल Inboard T.E. Flap:
Middle T.E. Flap:
Outboard T.E. Flap:
This chart outlines the procedure that will be used to perform integrated W/B/N/D
modeling. The next several charts will fill in some of the details.

In prior design studies, the nacelles and diverters were by hand reinstalled into wings
whose shape and position had changed during an aerodynamic shape optimization process. This was a time consuming and a costly labor intensive process. This motivated
this activity which aimed to speed up the nacelle/diverter (N/D) reintegration proces by automating the process. This automated N/D
This automated N/D reintegration process is designed to maintain a pre-defined
shape of the nacelle. Input from MDC's Technical Integration (TI) group was solicited to
ensure consistency of the proposed N/D reintegration procedure with their practices.
Improved Geometry Capability:
Nacelle/Diverter Reintegration
Reduce design cycle time

- replace labor intensive manual process Constraints:
- maintain baseline nacelle shape
- consistency with MDC TI practice
Baseline Nacelle/Diverter Reintegrated to a New Wing Geometry

Baseline Nacelle/Diverter Reintegrated to a New Wing Geometry

Improved Geometry Capability:
Automatic W/B/N/D Surface Grid Generation
Originally, it was planned to use an existing grid perturbation tool, NASA Langley's
CSCMDO, for perturbing W/B/N/D surface grids and to integrate this capability into a
script-driven grid generation module. This approach was dropped in favor of using
mostly hard-wired surface grid generation modules and coupling them with MDC's
FlexMesh volume grid perturbation method. This approach, while less flexible than the
script-driven process, is much less complicated to develop.
This would also remove two problems encountered in using CSCMDO. First,
CSCMDO requires a rather detailed input stream which takes time and expertise to set up.
Second, MDC has only access to the executable of CSCMDO. This paces MDC's needs for
future adjustments or expansions of W/B/N/D surface grid generation capabilities with
the schedule of the CSCMDO developers.

- Reduce complexity of integration within
MDO3D
- Avoid dependency on CSCMDO
- input driven software
- executable only available
Automatic W/B/N/D Surface Grid Generation
A existing body surface patch is mapped into a (u, v) parameter space. The updated
definition of the body geometry (as a result of the shape optimization process) is then
mapped using bilinear splines into that parameter space.
The work on this automated process is about 70 percent complete at this time. The
surface grid patches in this figure illustrates which portions of the surface grid can
presently be generated by the integrated surface grid generation module.
Automatic Wing/Body/Nacelle/Diverter Surface Grid Generation

Improved Geometry Capability:
W/B/N/D Volume Grid Perturbation (FlexMesh)

Improved Geometry Capability:

Key in the development of an automated grid perturbation method for use on multiblock
patched grids is to make the grid block boundaries transparent to the computer tool. This is
achieved by 1) basing the relationship between a master (or surface) node and its slave nodes
on minimum distance, and by 2) storing the grid information in one-dimensional arrays. The
one-dimensional data structure permits a grid point to be identified by a single (address)
number. Thus, a slave is associated with its master by storing the slave's address into the
master's address.
The slave points are associated with vertices of subgrids in the grid block faces. The
subgrid structure 1) aides the preservation of smoothness in perturbed grid planes; 2)
improve the computational efficiency of the grid perturbation process; and 3) still helps to
maintain point-matched grid block interfaces.
There are two different classes of master nodes: those along the perimeter of a surface
patch and those lying inside such a patch. Master/slave couplings for the latter require that
master and slave coincide. All other slave nodes are coupled to master points along the
perimeter of a surface patch. This two-tier system avoids spikes in perturbed grid block
interfaces due to slaves that pop out of plane because they connect to master nodes inside a
solid-body patch.

$$
\begin{aligned}
& \text { Slaves follow movements of their masters } \\
& \text { - scaling using a Gaussian distribution function preserves } \\
& \text { integrity of grids with multiple solid surfaces } \\
& \text { Transfinite interpolation propagates } \\
& \text { displacements of vertices } \\
& \text { - first to nodes along the edges of subgrids } \\
& \text { - then to nodes in the interior of the subgrids } \\
& \text { - finally to the nodes in the interior of each grid block }
\end{aligned}
$$

Multiblock Grid Perturbation Demonstration
 Maintenance of Point-Matched Block Interfaces

> This figure illustrates one aspect of an application of the grid perturbation scheme to a 28-block patched grid over the 1404 IMT wing/body/nacelle/diverter configuration. This grid, suitable for computing Euler solutions, consists of more than 2.6 million grid points and more than 100,000 surface nodes. The two details at the bottom of this figure show the surface grids of three grid blocks that come to lie abut to the physical plane indicated in the top part of this composite figure. There are one grid block to the upstream side of this physical plane and two grid blocks to its downstream side. Compared to the baseline configuration, the wing is mounted higher and at an increased incidence to the fuselage for the optimized configuration. This figure demonstrates how the subgrid structure used by the grid perturbation scheme ensures that this point-matched quality of the baseline grid is retained during the perturbation process. Maintenance of the point-matched quality is reflected by the perfect overplotting of the grid lines and by the continuity of grid lines transversing the block edges.
Multiblock Grid Perturbation Demonstration
Maintenance of Point-Matched Block Interfaces
1404 IMT Wing/Body/Nacelle/Diverter

(
Multiblock Grid Perturbation Demonstration
Integrity of Grid in the Presence of Multiple Body Surfa This figure illustrates another aspect of an application of the grid perturbation scheme to
a 28-block patched grid over the 1404 IMT wing/body/nacelle/diverter configuration. This
grid, suitable for computing Euler solutions, consists of more than 2.6 million grid points and
more than 100,000 surface nodes.
The two bottom details in this figure show cross-sectional grids in a physical plane outlined
in the top portion of this figure. This physical plane lies under the wing and inboard of the
inboard nacelle/diverter combination. The cross-sectional grids belong to two grid blocks
which share a point-matched interface. Going from the baseline to the optimized geometry,
the shape of the lower wing surface has changed and the nacelle has been lowered, leading to
a taller diverter. This figure illustrates how scaling the movement of the "slave" nodes with a
decay function preserves the integrity of the grid in the presence of multiple solid surfaces.
Multiblock Grid Perturbation Demonstration
Integrity of Grid in the Presence of Multiple Body Surfaces

Automated Surface-Grid Regeneration Another feature in the grid perturbation method pertains to a surface-grid
regeneration capability. A new surface grid is often generated with some external
utility. Such utilities were found to occasionally generate surface grids with grid
stretchings quite different from that of the baseline grid. As sketched below, the
consequence of this incompatibility is the introduction of considerable grid skewness.
This is to be explained as follows. The vertices of subgrids follow the displacement of
the "masters." The coordinates of nodes between non-"master" subgrid vertices are
computed from interpolation using subgrid vertex information only. Thus, there is no
information about possible changes in the grid spacing along the solid-body contour.
This disconnect between surface and field points is remedied by redistributing the
surface grid such that it restores the relative spacing of the original surface grid. This is
accomplished by "moving" the surface nodes along grid lines whose shape is computed
from piecewise defined polynomials conforming to a perturbed surface shape.
Automated Surface Grid Projection
This figure demonstrates the need for a surface-grid perturbation capability. The center
part of this figure shows the TCA Opt3 W/B configuration, an intermediate nonlinear TCA
design, along with part of the grid in the plane of symmetry. The upper and lower details in
this figure show how one of the families of grid lines connects to the surface grid of the
fuselage. For illustration purposes, only every other grid line in the radial direction in the
plane of symmetry is plotted. Ideally, the grid lines in the plane of symmetry that emanate
form the fuselage are orthogonal to the body surface. One quite drastically deviates from this
ideal if the fuselage surface grid is used as provided. Redistributing the surface grid restores
the degree of orthogonality to levels found in the baseline grid over this W/B configuration.

Efficiency of FlexMesh

Alternate Gradient Capability An alternate gradient capability is being developed to overcome the limitations of
finite-difference-based gradient calculations. In particular, the accuracy of finite-
difference calculations is dependent on the step size, and the CPU-time grows linearly
with the number of design variables.
The first alternate method is ADIFOR for CFL3D. This method was chosen for the
improved accuracy.
The second alternate method is an adjoint module for TLNS3D. This method was chosen for the improved efficiency and the potential for improved accuracy.

ADIFOR for CFL3D

 ADIFOR (Automatic DIfferentiation of FORTRAN) is attractive because it willproduce very accurate gradients by differentiating an analysis tool. In addition, it can
be applied to any code, including both Euler and Navier-Stokes codes. ADIFOR can be
applied in a black-box mode to an analysis code, but the resulting sensitivity code will
be very inefficient and too memory-inetnsive for any practical design application.
In order to obtain a more effficient sensitivity code, ADIFOR was applied in an
ADII (Automatic Differentiation in Incremental Iterative) form. In this approach,
ADIFOR is applied only to sections of the code relevant to the sensitivity analysis.
Further gains in efficiency are achieved by processing only the inviscidid or Euler variant
of CLL3D, version 4.1, and by restoring parts of the code after applying the ADIFOR
process to allow Fortran compilers to optimize the executable comparably to CFL3D
baseline code. While improved, the code still requires large computer memory and
CPU time to evaluate sensitivities for a large number of design variables
simultaneously. An easy way to reduce this requirement is to run the code in parallel
with each processor evaluating the sensitivity of a small number of design variables.
CFL3D.ADII - Efficiency A benchmark test involving 5 design variables was formulated for the M2.4-7A wing/
body configuration was formulated. Analyses as well as sensitivity information was
computed with the baseline CFL3D and with the CFL3D.ADII. In case of running the
baseline CFL3D code, the sensitivities were calculated by applying finite differences to
repeated flowfield solutions.
It appears that CFL3D.ADII produces analysis and sensitivities in about twice the
computing time required for using the baseline CFL3D code and evaluate the sensitivities
from finite-differences. To put matters in perspective, previous ADIFOR-ed versions of
CFL3D were an order of magnitude slower than using finite-differences for the sensitivities
and repeated flowfield solution from the baseline CFL3D code.
CFL3D.ADII's memory requirements still scale with the number of design variables. On
the one hand, this is much better than what has been experienced in previous applications
of automatic differentiation to CFL3D, but still is too high for using CFL3D.ADII in practical
design applications on Cray-type machines.
Alternate Gradient Capability:
CFL3D.ADII - Efficiency

- CFL3D, version 4.1 (Euler)
- CFL3D.ADII
- 5 design variables
- Cray Y-MP, single processor

	Baseline CFL3D	CFL3D.ADII
T (= CPU time/cycle/node)	$18.3 \mu \mathrm{secs}$	$188.5 \mu \mathrm{secs}$
T/ design variable	$18.3 \mu \mathrm{secs}$	$37.7 \mu \mathrm{secs}$
Memory	10 MWs	59 Mws

Emphasis was put on demonstrating that CFL3D.ADII with a realistic number of
design variables can be used in nonlinear aerodynamic design at acceptable cost. Thus it
sufficed to put a rather basic design methodology together and port it to the IBM SP-2
parallel computer at NAS.
The M2.4-7A HSCT wing/body configuration was chosen for these design exercises
because a robust grid regeneration tool, MDC's QGRID, could be provided to Eagle
Aeronautics. At the time these activities commenced, QGRID could not yet handle the
wing/fuselage intersection of the TCA configuration (see above).
It was stipulated that more than 100 design variables were to be used in this
demonstration project. Much leeway was given concerning the constraints. This explains
the choice of constraints by Eagle Aeronautics.
Alternate Gradient Capability:
CFL3D.ADII - Design Demonstration The first design was successful in achieving the computational performance goal, but
the resulting design was somewhat impractical due to a lack of thickness constraints; the
wing just became unrealistically thin. The second design was used as a sanity check to
make sure that CFL3D.ADII can produce an aerodynamically acceptable design
The computational expenditure for these designs on an IBM SP-2 parallel processing
computer is also provided. Each processor of this computer was use to simultaneously
provide a flow analysis and sensitivity information for one design variable.
Alternate Gradient Calculation:
MDO3D/CFL3D.ADII Coupling
A first step has been made to incorporate an alternate gradient calculation
capability into MDO3D by loosely coupling CFL3D.ADII. In this procedure, MDO3D
performs the standard finite-difference calculations, but produces grid sensitivity data
instead of the aerodynamic-coefficient sensitivity data. Then, CFL3D.ADII calculates
the aerodynamic-coefficient sensitivity data. Then, MDO3D reads the aerodynamic-
coefficient sensitivity data and performs the 1-D search.
Alternate Gradient Calculation:
MDO3D/CFL3D.ADII Coupling

TCA Wing Twist Sensitivity
A single wing twist design variable was used to compare the aerodynamic
sensitivities predicted by finite-difference calculations in MDO3D and automatically
differentiated calculations in CFL3D.ADII. The twist was applied about the rear spar
with the maximum displacement at the wing LE break, with the perturbation lofted
from the gear bay to the tip. The finite-difference-based and CFL3D.ADII-based
sensitivities are comparable. A 0.05° perturbation was used for the calculations, and a
2° perturbation is shown in the figure.
TCA Wing Twist Sensitivity

Adjoint TLNS3D
The emphasis in assessing an adjoint approach for evaluating gradients is put on
efficiency since the CPU time is (relatively) independent of the number of design
variables. While being capable of producing accurate gradients, adjoint methods
depend on the suitability of the computational grid for both flow and gradient
evaluation. Thus, adjoint methods are not by default as accurate as, for instance, an
ADIFOR-based approach.
The adjoint method requires solving the standard flow equations (analysis
module), solving the corresponding adjoint equations for the adjoint variables (adjoint
module), and obtaining the gradients (gradient module).
The adjoint method is formulated for the flow solver TLSN3D because it employs
differencing techniques for which corresponding adjoint modules are easier to generate
than for so-called upwind codes such CFL3D.
Summary

Summary

Future Work
The implementation of the geometric modeling capability for use with an
integrated optimization of $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ HSCT configurations needs to be completed,
tested, and updated as needed.
The work on the alternate gradient capabilities has to be driven to a point where
decisions can be made which way to proceed.
The transonic flap optimization capability is crucial in meeting an upcoming
milestone in the HSR Phase II program. It will also form a cornerstone in future
multipoint design exercises.
MDC's design capabilities grow faster than the available computer resources. To
scale back the computing requirements while still increasing the design capabilities,
MDO3D will be converted to a modular (script-driven) environment.
TCA Nacelle Installation Assessment and
Design Studies

HSR Aerodynamic Performance Workshop
NASA Langley, February 25-28, 1997
Abstract

$$
\begin{aligned}
& \text { This paper presents the computational investigation of the PAI related study in which the } \\
& \text { primary objective is to assess and then reduce the installation drag of the nacelles for the TCA } \\
& \text { configuration at the supersonic cruise condition of } M_{\infty}=2.4, \mathrm{C}_{\mathrm{L}}=0.1 \\
& \text { As a first step in reducing the nacelle installation drag, it is necessary to assess the } \\
& \text { baseline installation. This assessment refers to interference and installation drag } \\
& \text { assessments, as well as flowfield assessment, at both flight (} R e_{\mathrm{c}}=212 \text { million) and wind-tunnel } \\
& \text { (Re }=6.36 \text { million) conditions. An analysis of the inlet flowfield quality is necessary to assess } \\
& \text { alignment. } \\
& \text { After satisfying inlet constraints by aligning the inlets with the local flowfield, the drag is } \\
& \text { reassessed. An assessment of the boundary layer height at the diverter leading edge } \\
& \text { suggests a height reduction for the inboard diverter. Finally, diverter and nacelle shape } \\
& \text { modifications were attempted with limited success. }
\end{aligned}
$$

Outline

Outline

Drag Polars for the TCA W/B Configuration CFL3D Euler and $\mathrm{N}-\mathrm{S}$ ($\left(\mathrm{Re}_{\mathrm{c}}=6.36\right.$ million) solutions for the TCA W/B and $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$
configurations were shown in another paper. In this paper, to avoid redundancy the emphasis
is more on the full-scale Reynolds number solutions.
A standard C - O topology Euler W / B grid ($93 \times 241 \times 41$) was clustered so as to maintain y^{+}of
1.5 at the wing trailing-edge for a Reynolds number of 212 million to obtain the Navier-Stokes
grid. The Euler cells in the body normal direction that were contained within twice the
boundary layer height at the trailing edge were packed with an extra 24 cells.
A $\mathrm{C}_{\mathrm{L}}=0.1$, the CFLSD W/B N - solution at the flight Reynolds number of $\mathrm{Re}_{\mathrm{c}}=212$ million
shows about one count less drag than the Euler pressure drag combined with the flat-plate
skin-friction estimate. However, at the $\mathrm{C}_{\mathrm{Dmin}}$ point, the drag difference is around 2 to 3 counts.

Wing/Body/Nacelle/Diverter Navier-Stokes Grid Topology for
the TCA Baseline Configuration (Wing/Body Blocks)
Here, the same approach as the wing/body was difficult to adopt for the Navier-Stokes
clustering since 8 Euler cells were dictated by the diverter height. On the other hand, and for
consistency with the W/B and isolated nacelle clustering, three constantly spaced cells at solid
surfaces with a y^{+}of 1.5 at the wing trailing-edge were chosen for N-S clustering.
Earlier W/B/N/D grid blockings showed convergence problems for three basic reasons.
Block mismatch of the nacelle outer blocks with the W/B blocks in the normal direction, block
mismatch of the nacelle outer blocks with the core blocks in the viscous direction, and block
mismatches in high gradient areas such as wakes. Point-matching in areas of large gradients
proved to be the solution to most problems. Moving block boundaries away from regions of
large gradients was an even better precautionary measure. The resulting W/B/N/D patched
grid comprised of 19 blocks with about 6 million points.
Only the grids relevant to the W/B portion of the configuration are shown here. The wing/
body surface, shown in blue, is patched with the diverter top surface in green. This green
surface contains the wing trailing edge and is point-matched with all blocks relevant to the
nacelles/diverters and point-mismatched with the fuselage/wake (red) surface coming from the
original W/B grid.
Wing/Body/Nacelle/Diverter Navier-Stokes Topology
for the Baseline TCA Configuration
(19 Blocks, 6.01 Million Grid Points, Wing/Body Blocks)

Wing/Body/Nacelle/Diverter Navier-Stokes Topology for the
Baseline TCA Configuration (Nacelle_Back Blocks)
Axial cuts of the volume grid at the wing trailing-edge location are shown. The point-
matching of the nacelle outer blocks with the core, and the preservation of spacing continuity
required custering about the nacelles' upper corner, where the diverters are located which
results in the clustering in the field observed in the chart.

Drag Polars for the TCA Baseline W/B/N/D Configuration
As in the W/B case, the drag polars for Euler and $N-S$ agree fairly well. Here, unlike the
W/B solution, the $N-S$ polar shows about 0.5 counts of increased drag at a C_{L} of 0.1 . However,
around the minimum drag point, the trends agree with those of the W/B.

Drag Polars for the Baseline TCA W/B and W/B/N/D
The installation drag (at $\mathrm{C}_{\mathrm{L}}=0.1$) is nearly 8 counts for the $\mathrm{N}-\mathrm{S}$ analysis at full-scale
Reynolds number. This increment is about one count higher than the one estimated by Euler
with flat plate skin-friction estimates shown in a different paper.

Pressure Distributions for the TCA Baseline W/B/N/D
Configuration Small differences are observed on the wing upper surface as well as regions away from
strong interactions. Euler predicted nacelle/diverter shocks and expansions are stronger and
further aft than those of the Navier-Stokes solutions.
It is worthy to note that the triple shock pattern observed from Euler would typically give
more pressure drag than the double shock pattern observed from N-S. In other words, one
would expect the N-S solution to yield a smaller installation pressure drag than the Euler
solution.

Lower Surface Pressure Contours for the Baseline W/B/N/D
TCA Configuration
The N-S shocks are much blunter than those shown by the Euler solution. Consequently,
the interactions inside the channel region would change.
In addition to a significant smearing of shocks observed from the N-S solution, the shocks
are further weakened by the strong diverter or nacelle shoulder expansions.
Lower Surface Pressure Contours for the Baseline
Wing/Body/Nacelle/Diverter TCA Configuration
CFL3D $, M_{\infty}=2.4, \alpha=3.518^{\circ}, \operatorname{Re}_{c}=212 \times 10^{6}$

N-S (Baldwin-Lomax)
Mach Contours for the TCA Isolated Inboard Nacelle
The inboard nacelle was selected for all isolated simulations. In order to obtain accurate
pressure drag values for the interference/installation drag assessment, the nacelle had to be
aligned with the flowfield No major gradients are observed around the inlet portion of the
nacelles. The contours for the N -S solution at Re $=212$ show the same overall behavior as the
Euler solutions, except for the presence of a boundary layer around solid surfaces. However,
the side view does show the presence of a strong expansion associated with the presence of a
base.

Mach Contours for the TCA Isolated Inboard Nacelle, Side and Top Views with Inlet Aligned with Freestream, CFL3D N-S Solution, $M_{\infty}=2.4, R_{c}=212 \times 10^{6}$
 (3 Block H-O Grid, Baldwin-Lomax)

Side View

Top View

 solated nacelles, of the TCA configuration. The bar chart includes side-by-side results obtained from CFL3D Euler, N-S at wind-tunnel Reynolds number, and N-S at full-scale Reynolds number. However, for the W/B configuration, the N-S analysis at the wind-tunnel Reynolds number shows about 246 counts more pressure drag than the Euler analysis while the full-scale Reynolds number N -S simulation shows only a 1.34 count increase over the Euler case. Similarly, for the W/B/N/D configuration the wind-tunnel Reynolds number N-S analysis shows a 1.19 count increment over Euler while the full-scale Reynolds number N-S simulation shows about 0.44 counts. It can be seen from this chart that the Reynolds number effect on pressure drag varies with the TCA component that is considered.
Pressure Drag Breakdown for the TCA Configuration

Skin-Friction Drag Breakdown for the TCA Configuration
 Skin-Friction Drag Breakdown for the TCA Configuration
 Skin-Friction Drag Breakdown for the TCA Configuration

 to the wind-tunnel Reynolds number results while the bottom chart corresponds to those for the full-scale Reynolds number. For the W/B configuration, the N -S viscous drag component is about 3.1 counts lower than
the flat-plate estimates for $\mathrm{Re}_{\mathrm{c}}=6.36$ million and 1.82 counts lower for $\mathrm{Re}_{\mathrm{c}}=212$ million. For the the flat-plate estimates for $R e_{c}=6.36$ million and 1.82 counts lower for $R e_{c}=212$ million. For the
W/B/N/D configuration, that difference is reduced to 1.76 counts for the wind-tunnel Reynolds number and 0.1 counts for the full-scale Reynolds number. For the four isolated nacelles, the

 the W/B configurations.
Skin-Friction Drag Breakdown for the TCA Configuration

Nacelle Installation Drag for the TCA Configuration This bar chart compares the installation pressure and total drag for the TCA W/B/N/D
configuration at both the wind-tunnel as well as the flight Reynolds numbers.
The installation total drag of the N -S analyses agreeswithin one count for the full-scale
Reynolds number and within 0.1 count for the wind-tunnel Reynolds number with Euler+flat plate
estimates. The latter agreement is no longer valid when looking at the pressure installation drag
which yields to the fact that viscous effects have a significant contribution on pressure installation
drag.
Nacelle Installation Drag for the TCA Configuration

$$
C_{L}=0.1, M_{\infty}=2.4
$$

Euler N -S
Euler N-S
(słunos u!) beda uo!̣eן|ełsuן
Nacelle Interference Drag for the TCA Configuration The favorable interference due to the nacelles installed on the TCA W/B configuration is
shown in this chart for both the wind-tunnel and flight Reynolds number cases.

Comparisons of Nacelle Inlet Mach Number Distributions
TCA W/B/N/D Configuration
This chart shows the Mach number distributions at the inlet face of the TCA baseline W/B/N/
D configuration. Once again, both the CFL3D Euler and Navier-Stokes results are used to obtain
these contours. It can be seen that the inboard nacelle Euler contours show more non-uniformity
which is improved for the Navier-Stokes results. Slight differences in the Mach number variations
are also seen in the Euler and Navier-Stokes results for the outboard nacelle inlet face. This
implies that the TCA baseline nacelles need alignment.

Comparisons of Nacelle Inlet Mach Number Distributions

Inlet Flow Angle Variations (w.r.t. the angle at the inlet center)
TCA W/B/N/D Configurations
The flow angle variations at the nacelle inlet face of the TCA baseline configuration are
shown in the form of deviations from the inlet face centerline. The contours are obtained from the
$\stackrel{9}{5}$

Nacelles and Diverters Alignment Assessment for the Baseline Wing/Body/Nacelle/Diverter TCA Configuration
CFL3D Euler $M=2.4, \alpha=3.5^{\circ}$
The nacelle inlet flow angle and Mach number distributions qualitatively show that the TCA
baseline nacelles need alignment in both pitch and yaw. To exactly quantify this and then correct
it, the alignment assessment is undertaken.
To calculate the inlet flow angle variations at the inlet face, the geometric angularities as
well as the flow angularities for the TCA baseline W/B/N/D configuration have been obtained from
the CFLLD analyses. The inlef flow variations are eclalculated at the nacelle inlet face. Only
misalignments of more than $0.3{ }^{\circ}$ were considered.
This chart shows the outcome of the TCA alignment assessment investigation. Since the
difference between the alignment calculated using the CFL3D Euler and Navier-Stokes results are
not significant, as observed in earlier studies, inly the Euler analysis is used. Since the Mach
number and flow angularity distributions were done at the nacelles inlet faces, it was more
convenient to perform all the analyses on the W/B/N/N configuration. The Table in this chart gives
both the geometric as well as the flow angles computed for the inlet face as well as the diverter.
The difference calculated from the local geometric and the local flow angle is the deviation from
the alignment.
Nacelles and Diverters Alignment Assessment for the Baseline Wing/Body/Nacelle/Diverter TCA
CFL3D Euler, $M_{\infty}=2.4, \alpha=3.5^{\circ}$

	Inb. Nac.		Outb. Nac.		Inb. Div.		Outb. Div.	
	Pitch Down	Toe In	Pitch Down	Toe In	Pitch Down	Toe In	Pitch Down	Toe In
Geom Ang.	2.19°	0.44°	0.8°	1.44°	-	0.46°	-	1.47°
Flow Ang.	0.91°	0.53°	0.88°	2.82°	-	0.14°	-	3.45°
Rotation for Alignment	-1.28°	-	-	1.38°	-	-	-	1.98°

Alignment of Nacelles/Diverters
The chart below shows the approach and procedure for the alignment of nacelles/diverters.
Note that geometry shaping is necessary for alignment in order to maintain a smooth merging
of nacelles and diverters at the wing trailing edge.
Alignment of Nacelles/Diverters

Lower Surface Pressure Contours for the TCA W/B/N/D
Configuration Before and After Nacelle/Diverter Alignment
Lower Surface Pressure Contours for the Wing/Body/Nacelle/Diverter
TCA Configuration Before and After Nacelle/Diverter Alignment
CFL3D Euler $, \mathbf{M}_{\infty}=2.4, \alpha=3.5^{\circ}$

Aligned

Baseline
Comparison of Boundary Layer Profiles from W/B and W/B/N/D
(Inboard Nacelle)

$$
\begin{aligned}
& \text { In one of our attempts to align the inlet center with the flowfield for the inboard nacelle, a } \\
& \text { pitch-up rotation with respect to a station } 150 \text { inches dowstream of the inlet location resulted in } \\
& \text { a diverter leading-edge height reduction and an associated } 0.5 \text { count drag benefit. } \\
& \text { Consequently, it was decided to take a closer look at the boundary layer profiles and their } \\
& \text { corresponding heights. } \\
& \text { The profile obtained from the W/B N-S solution at the inboard leading-edge location is very } \\
& \text { similar to that of the W/B/N/D solution in spite of differences in grid clustering strategies. Even } \\
& \text { though different portions of the boundary layer see different relative grid clustering, the overall } \\
& \text { observed boundary- layer height is the same. }
\end{aligned}
$$

Comparison of Boundary Layer Profiles from W/B and W/B/N/D CFL3D N-S solutions, Baldwin-Lomax Turbulence Model $\alpha=3.518^{\circ}, M_{\infty}=2.4, \operatorname{Re}_{c}=212 \times 10^{6}$

Estimated Boundary Layer Heights
The boundary layer heights estimated from both W/B and W/B/N/D solutions agree with
each other and with heights obtained from BL3D, a 3-D boundary layer code. The W/B N-S
solutions using the Baldwin-Barth turbulence model also gives the same boundary layer
heights.
The table below shows a comparison of boundary layer heights at the diverter leading-edge
locations. The baseline TCA geometric diverter leading-edge heights agree quite well with the
height criterion. However, N-S calculations show a smaller boundary layer height and the
difference between the baseline diverter height and the N-S boundary layer height is almost
three inches for the inboard diverter.
Euler analyses of the aligned configuration with reduced inboard diverter height indicate a
drag benefit of 0.3 counts at a given lift.
Nacelle/Diverter Modification Study
Next, we consider the nacelle/diverter modifications for both alignment and aerodynamic
performance improvement of the installation. The charts below show the various results of the
nacelle alignment and other shape modification study that were performed. All the
modifications were done manually, although the principles and procedures applied can be
extended to nonlinear optimization. Given that the nacelles and diverters merge at the wing
trailing edge, and since cambering the nacelle centerlines will make the intersection of the
merged nacelles/diverters difficult, the procedure to change camber had to use modifications
to the external surface of the relevant geometries.
Diverters were modified by rotation of a portion of the geometry with respect to its leading-
edge and cubic fairing of the remaining portion. On the other hand, nacelles were modified by
applying design shape functions, similar to the ones used in wing optimization, to the nacelle
surface grids.
Kpnis uo!ןеэ!!!pow ләцәл!а/әןәэеN - Diverter LE shape and camber modifications
Div1 Case1: 1 deg. toe-out of inboard diverter with smooth blending
at 30" from LE.
Div1 Case2: Same as above with blending at $150^{\prime \prime}$ from LE.

- Nacelle camber modification (both planform and side view
cambers) to lower the installation drag
Nac1 Case1: Inboard bump applied on the inboard nacelle at wing
TE location.
Nac1 Case2: Same as above with the resulting maximum thickness
moved forward.
Diverter Cambering Procedure for the TCA
Div1 Case1
This figure shows a planform view of the diverter/wing intersection. The inboard diverter
(called Div1) was chosen to be modified. The square drawn on the upper portion of the figure
indicates the section where the diverter modification is to be done.
The first zoom box indicates a one degree rigid body rotation of the selected section. The
last box indicates that a cubic fairing, from the diverter leading edge to the 30 location, is
done after the toe-out rotation of the diverter.
Diverter Cambering Procedure for the TCA
Div1 Case1:-1 deg. Toe-In Case, Modification
30 " Downstream from the Diverter Leading-Edg

Inboard Nacelle Cambering Results for the Aligned TCA
W/B/N/D Configuration
All the results were obtained using CFL3D Euler at cruise conditions. The four cases shown on the table below are:
Div1 Case1: 1 deg. toe-out of inboard diverter with smooth blending at $30^{\prime \prime}$ from LE. Div1 Case2: Same as above with blending at $150^{\prime \prime}$ from LE.
Nac1 Case1: Inboard bump applied on the inboard nacelle at wing TE location.
Nac1 Case2: Same as above with the resulting maximum thickness moved forward.
Compared to the baseline, all camber cases have shown drag levels that are
approximately $1 / 2$ a count lower. However, when compared with the aligned case, none of the cambered geometries have shown any drag improvement.
When examining the diverter cambering results, it seems like toeing-in the inboard diverter can only increase the drag.
No significant difference was found for both nacelle cambering cases, larger modifications are perhaps needed. With such a low installation drag penalty, a one count improvement is quite optimistic, given the constraints.
Inboard Nacelle Cambering Results for the Aligned TCA
W/B/N/D Configuration
CFL3D Euler, $M_{\infty}=2.4, C_{L}=0.1$

Conclusion and Work in Progress

$$
\begin{aligned}
& \text { The highlights of the TCA baseline assessment study are given in the chart below. In } \\
& \text { summary, the TCA baseline assessment and nacelle installation studies have been completed } \\
& \text { for both the flight and wind-tunnel Reynolds numbers. After anlyses of the inlet flowfield } \\
& \text { quality, nacelle alignment was evaluated. Consequently, inlet alignment was undertaken and a } \\
& \text { Boundary-Layer height investigation was intiated. More work is underway in the area of } \\
& \text { nacelle and diverter cambering. }
\end{aligned}
$$

Conclusions and Work in Progress

[^7]Isolated and Installed
Nozzle Boattail Drag Studies

HSR Aerodynamic Performance Workshop
NASA Langley, February 25-28, 1997 Grumman (NGC) studied the 2-D nozzle geometry. The 2-D nozzle was a simulation of the baseline nozzle as of March 1995, while the axisymmetric nozzle was the equivalent body of revolution. Boattail settings representing transonic operation (i.e., small exit area) and the wideopen, supersonic reference nozzle were analyzed.
During the course of the investigation, significant difficulties were experienced and hence the results of the axisymmetric supersonic nozzle geometry could not be obtained. As a result, э! nozzle geometry.
A new grid was generated with a modified topology, first for the installed axisymmetric
supersonic nozzle configuration and later for the axisymmetric transonic nozzle (solution repeated
for consistency) configuration. After successfully obtaining the CFL3D Navier-Stokes results for
the axisymmetric installed nozzle geometry at $M_{\infty}=0.9$, the study was continued for the 2-D
installed transonic nozzle configuration as well, to ensure consistency in the comparison of the
axisymmetric and 2-D nozzle results. Solutions for the four isolated nacelles have been obtained
at both Mach 0.9 and 1.10 . The solutions for the installed axisymmetric supersonic nozzle
configuration at Mach 1.10 and for the 2-D installed transonic nozzle configuration at either Mach
0.9 or Mach 1.10 have not been obtained as of this writing. However, the results to date indicated
the following: (1) the drag of the isolated axisymmetric transonic nozzle was slightly less that that
of the 2-D nozzle at both Mach 0.9 and $1.10 ;(2)$ the interference drag for both the axisymmetric
and 2-D nacelles are nearly identical at Mach 0.90 .
Outline

Objective The objective of this study was to evaluate several recently completed or on-going efforts
to predict or measure the installed drag of nozzles at transonic speeds on a representative
HSCT configuration. Particular emphasis was also placed on evaluation of the difference in
installed drag for axisymmetric and 2-D nozzles. At least three methods are being used in the
HSR program for for obtaining nozzle drag: (1) empirical techniques based on linear theory,
such as the Integral Mean Slope (IMS) method; (2) wind tunnel testing of isolated nacelles and
full configurations; and (3) computational fluid dynamics (CFD) with Navier-Stokes flow solvers.
Objective

- To assess the isoalted and installed boattail drag of
axisymmetric and 2-D nozzle geometries at transonic
speeds
Approach

[^8]Approach
\[

$$
\begin{aligned}
& \text { Obtain CFL3D Navier-Stokes solutions for the } \\
& \text { Reference H isolated and installed nozzles with } \\
& \text { simulated power effects } \\
& -\mathrm{Re}_{\mathrm{c}}=40 \times 10^{6} \\
& -\mathrm{M}_{\infty}=0.9 \text { and } 1.1 \\
& \text { - Baldwin-Barth turbulence model }
\end{aligned}
$$
\]

Background
The NASA-industry team has sponsored several studies in the last two years to address the installed boattail drag issues. In the fall of 1994 some of the methods being used to estimate propulsion drag increments showed that the boattail drag of candidate nozzles could be as much as 25 to 40% of the subsonic cruise drag. The empirical IMS method, originally developed for fighter aircraft, was updated (under McDonnell Douglas IRAD) to be applicable to the HSCT. The updated IMS method (known as " 95 IMS") is now being used to predict throttle-dependent boattail drag for all installed engine performance decks. The CA ITD Team sponsored an ambitious CFD study to evaluate the interference and installed drag of 2-D and axisymmetric nozzles. The CA team also authorized wind tunnel testing at NASA-Langley to evaluate the installation drag of axisymmetric and 2-D nacelles (at flow-through pressures) and the drag of isolated, powered nozzles at transonic speeds.
Background

- CFD study initiated in early 1995 to evaluate installed,
transonic drag of axisymmetric and 2-D nozzles
- Wind-tunnel tests to obtain nacelle installation drag for 2-D
and axisymmetric reference (flow-through) nacelles
conducted by NASA-LaRC in 1996 at transonic and
supersonic speeds
- Wind-tunnel tests by NASA-LaRC in 1996 to obtain isolated
nozzle drag for 2-D transonic nozzles $16-\mathrm{T}$
- Empirical techniques (e.g., the Integral Mean Slope
method) were refined in 1995 for application to HSCT
Nozzle Boattail CFD Study The CFD study was initiated in early 1995 to evaluate the installation of the "Best DSM" 2-D nozzle on the Ref. H configuration. Also the axisymmetric equivalent of the nacelle of the 2-D nozzle was also to be evaluated. The axi equivalent nozzle was selected instead of an actual axi design to allow the team to evaluate the axi vs. 2-D drag issue without the confounding effects of different area distributions between the axi and 2-D nacelles. The initial results of the study were reported at the CA Workshop in February 1996. These results indicated an unexpectedly large, favorable interference drag benefit for the axisymmetric nozzle at both 0.90 and 1.10 Mach numbers. It was decided to re-grid and rerun the axi cases at Mach 0.90 and to have McDonnell Douglas run the transonic 2-D nozzle configurations as a cross-code check case. This present report will present the status of this subsequent effort.
Nozzle Boattail CFD Study
and 5)
99
of February 1
O
©
O
(
Evaluated the "Best DSM"
its axi Equivalent Nacelle on the Ref. H
o
1995 work split
- 2-D Configurations: Boeing
- Axi Configurations: McDo
- NASA LaRC to verify the two rest
- 2-D Configurations: \quad Boeing \& Northrop-Grumman.
- Axi Configurations: \quad McDonnell Douglas
- NASA LaRC to verify the two results
- Initial results indicated favorable interference drag
benefits for the axi nozzle
- Discrepancies in computed drag values by the
different participants
Recent Wind Tunnel Tests

Recent Wind-Tunnel Tests to Evaluate Nozzle Drag
- Installed - 1.7\% Ref. H Modular Model
- Supersonic - Mach 2.4
• Two entries in the LaRC UPWT in 1996
• Four nacelles evaluated
• best DSM and FCN
• ATC and axi equivalent of best DSM
- Transonic -Mach 0.80 to 1.20
• LaRC 16-foot tunnel in June 1996
• Best DSM and axi equivalent of best DSM
- Isolated - Mach 0.60 to 1.20
- Several (14+) 2-D nozzles representative of transonic flight
for HSCT tested in April 1996
Comparison of Predicted and Measured Drag Polars The experimental drag polar of the NASA LaRC transonic test of the Reference H W/B
configuration is compared here with the CFL3D Navier-Stokes computed results. The CFD
solution has been computed at $R e_{\mathrm{c}}=40 \times 10^{6}$. This has been corrected to the wind-tunnel
Reynolds number using a flat plate correction. The results show that the predicted results are in
close agreement with the experimental data at $\mathrm{M}=0.9$.

Convergence Histories for the Ref. H Installed Axisymmetric
Supersonic Nozzle Configuration

Convergence Histories for the Ref. H Installed Supersonic Nozzle Configuration
CFL3D N-S, $M_{\infty}=0.90, \alpha=4.0^{\circ}$, Baldwin-Barth Turbulence Model, $\operatorname{Re}_{c}=40 \times 10^{6}$

Iterations

Iterations
Convergence Histories for the Ref. H Installed Axisymmetric Although the CFL3D Navier-Stokes results of this geometry were already obtained during
FY95, they were recomputed here due to the fact that the grid topology for the reference configuration computations were quite different from what was originally used in the transonic configuration. The grid for this configuration was obtained by perturbing the supersonic
configuration grid using the CSCMDO software.
The W/B/N/D Navier-Stokes grid consisted of nearly 7.18 million grid points. The memory the special queue setup by NAS due to the increased myor. Tuise runs The also made onle solution was started from the converged fine grid solutions of the supersonic nozzle setting. The runs took nearly 60 CPU hours on the C-90. As can be seen, the residual as well as lift and drag convergence is very good.
Convergence Histories for the Ref. H Installed Transonic Nozzle Configuration
CFL3D Navier-Stokes, $M_{\rho}=0.90, \alpha=4.0^{\circ}$, Baldwin-Barth Turbulence Model, $\operatorname{Re}_{c}=40 \times 10^{6}$

Iterations

Upper Surface Pressure Contours for the Installed
 Axisymmetric Nozzles

 The upper surface pressure contour comparison for the installed configuration at thetransonic and supersonic nozzle settings at a free stream Mach number of 0.9 is shown. The
wing upper surface pressures show very little difference between the two cases. However, the
pressure contours in the nozzle region are significantly different. The pressure oscillation found
on the transonic nozzle configuration is completely missing for the supersonic setting. The high
pressure region in the aft end of the nozzle boattail region is responsible for a thrust component
that is absent in the supersonic setting. This aspect could nullify some of the shock losses that
are prevalent in the boattail region of the transonic nozzle setting.
Model
Upper Surface Pressure Distributions
Reference H Installed Axisymmetric Nozzle Configurations
$\mathrm{M}_{\infty}=0.9, \alpha=4.0^{\circ}, \mathrm{Re}_{\mathrm{c}}=40 \times 10^{6}, \mathrm{CFL} 3 \mathrm{D} \mathrm{N}-\mathrm{S}$, Baldwin-Barth Turbulence

Lower Surface Pressure Contours for the Installed
Both supersonic and transonic installed nozzle configurations display the same behavior diverter channel region. High pressures are observed near the leading edges of both before yoous (between the two nacelles) that is slightly upstream compared to the installed transonic nozzle configuration.
Reference H Lower Surface Pressure Contours for the Installed
Settings

Supersonic Nozzle Configuration

Transonic Nozzle Configuration
Mach Contours (Horizontal Cuts) with surface \mathbf{C}_{p} Distribution
for the Reference H with both Transonic and Supersonic Nozzle
Configurations
Here, the same comments as in the previous charts are still applicable. In addition, for the
installed transonic nozzle configuration, Mach cuts indicate the presence of a shock at the
beginning of the boattail closure of both nozzles.
H
Reference

Supersonic Nozzle Configuration

C_{p} Distributions for Reference H Installed Axisymmetric Nozzle
Configurations
Cp Distributions for Reference H Installed Axisymmetric Nozzle Configurations
$\mathrm{M}_{\infty}=0.9, \alpha=4.0^{\circ}, \mathrm{Re}_{\mathrm{c}}=40 \times 10^{6}, \mathrm{CFL} 3 \mathrm{D} N-\mathrm{S}$, Baldwin-Barth Turbulence Model

Transonic Nozzle Configuration
Isolated 2-D/Transonic Nozzle Boattail
The computed surface flow patterns are shown for free stream Mach number of 0.9 and
Reynolds number (based on the Ref. H mean aerodynamic chord) of 40 million.
The figure shows that the flow is separated over the entire upper flap surface. However,
the flow at the lower flap surface is separated at the flap hinge line and reattached a short
distance downstream of the hinge line, and then separated again near the nozzle exit. The
asymmetric flow pattern is due to the fact there is some nacelle camber. The symbols C_{Dp},
C_{Dv}, and $\mathrm{C}_{D T}$ denote the pressure, the surface skin friction, and the total drag, respectively.
Isolated Ref. H 2D/Transonic Nozzle Boattail Configuration
Computed Surface Oil-Flow Pattern
(CFL3D Baldwin-Barth, $M_{\infty}=0.9, \mathrm{Re}_{c}=40 \times 10^{6} ; 12-\mathrm{zones}, 1.5$ million grid points)
$\alpha=0^{\circ}$, NPR $=5.0$, NTR $=3.262$

Isolated 2-D/Transonic Nozzle Boattail

Isolated 2-D/Transonic Nozzle Boattail Cp Distributions
The C_{p} distributions at the top, side, and bottom centerlines are shown for $M_{\infty}=0.9$. Shock
waves near the hinge line ($x / L=0.0$) of the deflected flap surfaces are evident; L denotes the
flap length. Due to the nacelle cambering, the upper flap and the lower flap angles are 14 and
12 degrees, respectively. Flow separation on the entire upper flap surface has been observed
from the surface flow patterns, which will be shown later.
Isolated Ref. H 2D/Transonic Nozzle Boattail Configuration
Computed Cp Distributions
(CFL3D Baldwin-Barth, $\mathrm{Re}_{c}=40 \times 10^{6} ; 12-z o n e s, 1.5$ million grid points)
$\alpha=0^{\circ}, N P R=5.0, M_{\infty}=0.9, N T R=3.262$

Upper Flap
Flap Angle $=14^{\circ}$
Isolated 2-D/Supersonic Nozzle Boattail

$$
\begin{aligned}
& \text { The computed surface flow patterns are shown for free stream Mach numbers of } 0.9 \text { and } \\
& \text { 1.1, and Reynolds number (based on the Ref. } \mathrm{H} \text { mean aerodynamic chord) of } 40 \text { million. } \\
& \text { The figure shows that the flow stays attached on the entire flap surfaces except at the } \\
& \text { corners of the flap hinge line. Similar to the 2-D/transonic } M_{\infty}=1.1 \text { case, the flow patterns on } \\
& \text { the upper and lower flaps are nearly symmetric and, therefore, only the upper surface patterns } \\
& \text { are shown. The symbols } \mathrm{C}_{\mathrm{D}^{\prime}} \mathrm{C}_{\mathrm{D}_{\mathrm{V}} \text {, and }} \mathrm{C}_{D T} \text { denote the pressure, the surface skin friction, and } \\
& \text { the total drag, respectivel. }
\end{aligned}
$$

Isolated Ref. H 2D/Supersonic Nozzle Boattail Configuration
Computed Surface Oil-Flow Pattern
(CFL3D Baldwin-Barth, Rec=40x10; 12-zones, 1.5 million grid points)
$\alpha=0^{\circ}, N P R=5.0, N T R=3.262\left(M_{\infty}=0.9\right) ;$ NTR $=3.055\left(M_{\infty}=1.1\right)$

Grid Structure for the Reference H Installed 2-D Nozzle This chart shows the grid structure for the installed $2-\mathrm{D}$ nozzle configuration. Considerable
point-matching and removal of block boundaries has resulted in a 8.33 million grid point
patched grid.

Cp Distribution for the Installed Reference H 2-D Transonic The installed 2-D nozzle boattail grid generated has been used to obtain the CFL3D Navier-
Stokes solution using Baldwin-Barth turbulence model. The large memory requirements of 360
Mw mandated the use of the multitask version of the code. At the time of reporting, the
solutions are not converged. However, because of the fact that fine grid solutions have
advanced sufficiently, it is proper to look at the flow features and understand the details.
The pressure distribution on the wing upper surface together with the nozzle upper flap
region are shown in this chart. It can be seen that the flow field is similar to the axisymmetric
nozzle configuration shown in an earlier chart. Also, the upper flap pressures are similar to the
isolated 2-D nozzle pressures in the flap region.
Cp Distribution for the Installed Reference H 2D Transonic Nozzle Configuration
$\mathrm{M}_{\infty}=0.9, \alpha=4.0^{\circ}, \mathrm{Re}_{\mathrm{c}}=40 \times 10^{6}, \mathrm{CFL} 3 \mathrm{D} N-\mathrm{S}$, Baldwin-Barth Turbulence Model

Zoom View

Top View
Surface Cp Distribution
This chart shows the surface pressure distribution on the wing lower surface as well as the
nozzle lower flap regions for the installed 2-D transonic nozzle. Also shown are the surface
streamlines on the lower flap surface of the inboard and outboard nozzles. The inboard nozzle
flap region surface streamlines have some regions of separation and reattachment which are
similar to the isolated nacelle lower flap surface streamlines shown earlier. However, the
outboard nozzle flap region has significant extent of large flow separation.
Surface Cp Distribution
Installed Reference H 2-D Transonic Nozzle Configuration
$M_{\infty}=0.9, \alpha=4.0^{\circ}, R_{c}=40 \times 10^{6}$, CFL3D N-S, Baldwin-Barth Turbulence Model

Axi and 2-D Isolated Drag Comparisons at Mach 0.9
At Mach 0.90, both IMS and the CFD codes predicted that the pressure drag of the
isolated 2-D nozzle would be about 5 drag counts than that of its equivalent axi shape. In
general the drag measured in the wind tunnel test was slightly lower than that predicted by
These comparisons will be shown later in this report.
Axi and 2-D Isolated Nozzle Drag Comparisons

Configuration Aerodynamics Workshop, 25 February 1997
Axi and 2-D Isolated Drag at Mach 1.10
The drag of the 2-D nozzle was also higher than that of the axi nozzle at Mach 1.10.

Axi lsolated Drag at Mach 0.90 and 1.10-Supersonic The drag of the axi reference nozzle was very low, as expected, since the boattail angle
and aft projected area are small compared to the transonic nozzles. The drag of the 2-D
reference nozzles is similar.
CFD and IMS Nozzle Drag Comparisons
Boattail and Sidewall Pressure Drag

Comparison of CFD Codes for the Isolated 2-D Nozzle Drag The cross-check for the CFD codes was obtained for the 2-D transonic, isolated nacelles.
The drag predicted by CFL3D is about 4 drag counts lower than that of GCNSfv at both Mach
numbers.
Nozzle Drag Comparisons between the CFD Codes

Nacelle Installation Increments, Mach 0.90 Solutions for the full configurations were generally obtained at angles of attack of 2,4 , and
6°. All comparisons at Mach 0.90 are at a constant lift coefficient of 0.190 ; all comparisons at
Mach 1.10 are at a lift coefficient of 0.206 . The results were curve-fit with C_{D} versus $\mathrm{C}_{L}{ }^{2}$ and
then interpolated to obtain the values that are shown in the following charts. The results for
Mach 0.90 are shown above.
Nacelle Installation Increments, 2-D, Mach 0.90

Axi and 2-D Nacelle Interference Drag Comparisons The interference drag for both the axi and 2-D nozzles was favorable and nearly identical
at Mach 0.90 . The initial results shown earlier in 1996 indicated that the interference drag for the
axi nozzle was about 10 drag counts more favorable than that of the 2-D nozzle. However, the
results recently obtained with the refined grid for the axi nozzles indicates that the interference
drag is the same for each nozzle type. The results from the wind tunnel test also indicate little
difference between the two nozzles. The cause for the smaller amount of interference drag seen
on the wind tunnel model is not yet understood. It could be associated with the jet simulation
and the truncated fuselage of the wind tunnel model
Axi and 2-D Nacelle Interference Drag Comparisons

0.0005		
0.0000	$\frac{C_{D, \text { int }}=\left(C_{D, W / B / N}-C_{D, W / B}\right)-C D_{, N, \text { isolated }}}{C_{D}=D(\text { for } 4 \text { nozzles }) /(q \text { Sref })}$	
$\mathrm{CD}_{\text {,int }}$		```Utilizes Wind Tunne Installation Drag and CFD Isolated Nacelle Drag```
-0.0005		Flow-through NPR WT Aftbody
	CFD, CFD, Transonic Reference Nacelles Nacelles	$16-\mathrm{ft},$ Reference Nacelles

Nacelle Interference Drag Comparisons The interference drag for both the axi and 2-D nozzles at Mach 1.10 was favorable and of greater magnitude than the interference drag seen at Mach 0.90 . These results are essentially the same as the initial results presented earlier in 1996. These results, using the 1995 solution for the installed axisymmetric nozzle, indicate that the interference drag for the axi nozzle may be about 8 drag counts more favorable than that of the 2-D nozzle. It is planned to obtain solutions for the transonic and supersonic axi nozzles at Mach 1.10 with the refined grid. We anticipate that the interference drag for the axisymmeric nacelle may be about the same as that of the 2-D nacelles. The results from the wind tunnel test indicate little difference between the two nozzles. The cause for the smaller amount of interference drag seen on the wind tunnel model is not yet understood. It could be associated with the jet simulation and the truncated fuselage of the wind tunnel model.
Axi and 2D Nacelle Interference Drag Comparisons

Nacelle Interference Increments, 2-D - Axi aircraft performance studies should be based on similar values at Mach 0.90 . At Mach 1.10, the
favorable interference increment for the axi is at most 8 drag counts; it may be zero.

CFD and IMS Jet Effects Drag Comparisons, $\mathrm{M}_{\infty}=0.9$ The jet effects drag increments at Mach 0.90 also indicate similar levels of interference, as
there is little difference between the increment obtained from the full configuration, the isolated
nacelles, or even the simple IMS prediction.
CFD and IMS Jet Effects Drag Comparisons
$\Delta C_{D}=C_{D}$, transonic nozzle $-C_{D}$, reference nozzle

CFD and IMS Jet Effects Drag Comparisons, $\mathrm{M}_{\infty}=1.1$
CFD and IMS Jet Effects Drag Comparisons

Cruise
Cruise

$$
\begin{aligned}
& \text { All of the comparisons between axisymmetric and 2-D nozzles shown in the preceding } \\
& \text { charts are for the "Best DSM" 2-D nozzle and its axisymmetric equivalent body. Thus, area } \\
& \text { distributions and projected areas for the axi nozzle would be identical to those of the 2-D } \\
& \text { nozzle. The intent of the investigation was to evaluate the effect of shape on installed drag. } \\
& \text { There would, of course, be differences in the geometry of actual nozzle designs. An evaluation } \\
& \text { of the installed performance of representative 2-D and axisymmetric nozzles is currently being } \\
& \text { conducted as part of the CPC propulsion system integration studies. The features of these } \\
& \text { nozzies are illustrated below. The axisymmetric nozzle is longer than the 2-D nozzle to } \\
& \text { accommodate the acoustic liners. However, none of this additional length can be used to reduce } \\
& \text { the boattail angle (and IMS) at subsonic or transonic operating conditions. The results of this } \\
& \text { evaluation are scheduled to be presented at the CPC triannual meeting on } 12 \text { March 1997, at } \\
& \text { Cleveland. }
\end{aligned}
$$

2-D Fixed Chute Nozzle and Axi Tilt Chute Nozzle at Subsonic Cruise 2-D FCN (SAR = 2.9)

ATC and FCN Comparison (3770.69 cycle) A comparison of the nozzle design parameters for the current generation axi and 2-D
nozzles for the HSR program are summarized. Note that the longer boattail flaps of the 2-D FCN
provide a lower value of IMS (and thus a lower average boattail pressure coefficient) than that of
the axisymmetric ATC nozzle at transonic conditions. However, the smaller maximum area of
the ATC may offset the effect of the longer boattail flap of the 2-D. nozzle.
$\underset{\text { Parameter }}{\text { ATC }}$ and FCN Comparison（ $\underset{\text { ATC }}{(3770.69} \underset{\text { FoN }}{\text { cycle }})$
3.1
254
87.2
87.2
5,972
43.6
$1,924.4$
76.76
13.6
0.88
0.793
4,048
0.322
$4,448.5$
0.290
1,523
0.745
252.3
467
 2.9
226
81.48
71.17
6,823
46.60

$1,907.3$
113.99
13.71
1.22
0.665
4,916
0.280
Benefit to？

へへ へ
高变
Nozzle Drag Comparison between 2-D FCN and ATC Nozzles
At subsonic cruise, the IMS method predicts slightly higher drag for the ATC than for the
FCN. However, at all other conditions, the axi nozzle is predicted to have a pressure drag
advantage. There should be little difference in skin friction drag between the two nozzles.
Comparison of Current FCN and ATC Nozzle Drag
Nozzle Pressure Drag Predicted by IMS

Installed Transonic Nozzle Drag
Status and Current Observations as of 25 February 1997

- Interference drag due to the nacelle/nozzle/diverter installation:

Uncertainties in HSCT Cruise Drag Prediction

Shreekant Agrawal, Michael G.B. Novean, Geojoe Kuruvila, and Robert P. Narducci
McDonnell Douglas Corporation
Long Beach, California 90807-5309

Within the High Speed Research (HSR) program, NASA and Industry are jointly developing various technologies so that the U.S. Industry has the capability to launch the High Speed Civil Transport (HSCT) aircraft development in early 2000 . One of the primary objectives of the HSR program is to be able to predict the cruise aerodynamic performance of the HSCT configurations with a sufficiently high confidence level that will aide Industry in the decision to proceed with the development of the aircraft and guarantee its performance to its airline customers.

This paper addresses the current status in the prediction of drag at primarily the supersonic cruise Mach number ($\mathrm{M}=2.4$), however, drag at the transonic cruise Mach number ($\mathrm{M}=0.9$) is also presented, wherever appropriate. The thrust of this paper is the uncertainty (or the confidence level) in drag prediction. Use is made of the available experimental, linear and nonlinear computational, and empirical database to the McDonnell Douglas Corporation (MDC). In some cases, there is sufficient database; in some other cases, there is very little database; and yet in some other cases, there is none available. However, an attempt is made to see where we stand today in the cruise drag prediction, although it is difficult to determine uncertainty levels in all the elements contributing to drag. Please note that the uncertainty levels discussed here are the views of the researchers at MDC only, and they may not represent those at other organizations.
Prediction
Drag
Uncertainties in HSCT Cruise

The definition of uncertainty is defined as the lack of certainty or confidence level.
What is Uncertainty?

Contributing Factors in HSCT Cruise Performance Prediction
There are many factors that need to be considered in the aerodynamic performance prediction. Lift,
 is not available for the entire vehicle, hence a build-up from available data is performed. In such buildups, one needs to consider the various components of the vehicle geometry as well as effects of Reynolds number, aeroelastics, and various excrescences. Additionally, predictive computational tools need to be validated for accuracy. Not to mention, the wind-tunnel test data and corrections in the test data need to be accurate.
The items with an asterisk $\left({ }^{*}\right)$ indicate those to be addressed in this paper.

Contributing Factors in HSCT
Cruise Performance Prediction

- Inlet bleed, bypass, spillage effects
- Advanced computational methods
- ...
Outline
An outline of the presentation is shown. Uncertainties in only the drag prediction will be discussed
first. Then, overall uncertainties in drag prediction will be followed by the drag build-up for the HSR
Technology Concept Airplane (TCA) configuration. Finally, the conclusions will be summarized.
Outline Uncertainty in prediction (primarily at $M=2.4$) of
- Drag (total, pressure, viscous)
- Trip drag
- Pressure distributions
- Nacelle installation drag
- Isolated nozzle boattail drag
- Aeroelastic effects
- Reynolds number effects - Overall uncertainties in drag prediction
- TCA full configuration drag build-up
- Summary and conclusions
Comparison of Predicted and Experimental Drag Polars
TCA Wing/Body and Wing/Body/Nacelle/Diverter Configurations
The predicted drag polars for both configurations at $\mathrm{M}_{\infty}=2.4$ are compared to the experimental data in this figure. A trip drag correction that varies with angle-of-attack (this will be explained later in the paper) has been applied to the experimental data. For the Euler calculations, viscous skin-friction drag penalties of 61.06 counts and 70.2 counts have been applied to the wing/body and wing/body/nacelle/diverter configurations, respectively. For both configurations, the Navier-Stokes

 three counts too high for both configurations while the Euler predictions are approximately 5.0 counts too high for the wing/body configuration and 4.0 counts too high for the wing/body/nacelle/diverter configuration.

Trip Drag Assessment
 aminar and part turbulent. In order to more accurately simulate the large regions of turbulent flow present at flight conditions, thin circular disks are used to trip the boundary layer. These disks are placed along the upper and lower wing surfaces, around the inner and outer surfaces of the nacelles, and around the fuselage forebody. The trips, while effective in tripping the boundary layer, change the configuration of the model and hence affect the drag polar. Here, we attempt to estimate the impact on drag incurred due to the presence of transition disks. The objective of this assessment is to estimate a correction to be
 (beyond a set transition line determined by the placement of the disks). The assessment is made using W/B data. The estimate for the $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ configuration is made by multiplying 1.5 to the W / B correction. This represents the number of additional disks required on the $W / B / N / D$ configuration for tripping the boundary layer on the nacelles.
Procedures to determine the drag associated with transition disks continue to be an area of interest to the HSR community. Efforts are continuing in this field but data repeatability and inability to conduct tests
 a formidable task. The procedure described below represents the current understanding to assess trip drag Obtain lift and drag data for several disk heights, insuring that each disk height transitions the boundary layer at the appropriate location. Average the drag polars over all repeated runs for each trip height. Each individual run is carefully fitted and then averaged to obtain one representative polar for each trip height. The fit must be of extremely high fidelity; errors on the order of tenths of a count in the fit can lead to a several count error in the trip drag.
Plot drag versus trip height at constant lift for the entire range of lift. An extrapolation of this data to a trip height of zero will yield the drag of the TCA model with a fully turbulent boundary layer (beyond a set transition line) without the effects of the trip dots. The trip drag correction to the data is the difference between the drag at the given height and the extrapolated value at a trip height of zero. behavior:
3.)
Trip Drag Assessment

Trip Drag Assessment Procedure
In step 3 of the procedure outline previously, the method of extrapolation to a zero trip height has been a topic of much debate within the HSR community. Arguments have been made supporting a quadratic fit of the form made supporting a linear fit of the form $C_{D}=C_{0}+C_{1} k^{2}$,
(1) where k is the trip height and C_{0} and C_{1} are the curve fit coefficients. Likewise, arguments have been (2) It has been suggested that the function ought to behave as (1) below some critical trip height, $k_{c r}$, and above which the dependence is as (2). Regardless, one must remember that extrapolation is very dangerous

"... the dangers of extrapolation cannot be over emphasized: An interpolating function, which is perforce an extrapolating function, will typically go berserk when the argument x is outside the range of tabulated values by more than the typical spacing of tabulated points." 1

 are produced from the extrapolation.Any source of error will be magnified in the extrapolation. Sources of error come from the variance
of the trip heights and the uncertainty of the drag data. During HSR tunnel tests, the variance of the trip heights is typically $\pm 0.00025^{\prime \prime}$. The uncertainty in the drag data is with ± 0.25 cts.
With the current set of data available, it seems reasonable to assume that the trip drag correction will
be banded between the estimates obtained using the extrapolation polynomials (1) and (2). For this reason
With the current set of data available, it seems reasonable to assume that the trip drag correction will
be banded between the estimates obtained using the extrapolation polynomials (1) and (2). For this reason and for lack of additional data, the trip drag estimate is obtained using an average of the extrapolating polynomials. Only with large numbers of repeat runs and trip heights can the errors of extrapolation be significantly reduced.
Here the typical spacing of our data is $0.002^{\prime \prime}$ and the distance of our extrapolation is 6 times this! The argument of which extrapolation polynomial to use may be secondary if one considers the large errors that
polynomials. Only with large numbers of repeat runs and trip heights can the errors of extrapolation Recipes Numerical Computing, Cambridge University Press, New York, 1992. Teukolsky, significantly reduced.
1.) Press, W.H.,
in S.A., Vetterling, W.T. and Flannery,B.P., pue $L /$
\qquad
Trip Drag Assessment
Procedure

Uncertainty in Trip Drag Measurement
By way of the Method of Equal Effects, whereby we assume the source of error from uncertainties in the
trip height and drag measurement are equal, the total error can be estimated by

$$
\Delta C_{D \text { trip }}=\sum_{i}\left|\frac{\partial f}{\partial c_{i}} \Delta c_{i}\right|+\left|\frac{\partial f}{\partial k} \Delta k\right|,
$$

where f is the polynomial extrapolation function, and c_{1} are its coefficients obtained from a least-squares
fit to the drag data. The uncertainties in the evaluation of these coefficients can be estimated, again by
using the Method of Equal Effects, with

$$
\Delta c_{i}=\left|\frac{\partial g}{\partial k_{1}} \Delta k_{1}\right|+\left|\frac{\partial g}{\partial k_{2}} \Delta k_{2}\right|+\left|\frac{\partial g}{\partial k_{3}} \Delta k_{3}\right|+\left|\frac{\partial g}{\partial C_{D_{1}}} \Delta C_{D_{1}}\right|+\left|\frac{\partial g}{\partial C_{D_{2}}} \Delta C_{D_{2}}\right|+\left|\frac{\partial g}{\partial C_{D_{3}}} \Delta C_{D_{3}}\right|,
$$

where g is the mathematical process to determine the coefficients, which in principle can be expressed as
Here, we see the dependence on the uncertainties in the trip height and drag measurements.

Measurement
Uncertainty in Trip Drag

Assume $C_{D \text { trip }}=f\left(c_{i}, k_{1}\right)$. The uncertainty
in $C_{D \text { trip }}$ can be estimated as

$$
\Delta C_{D \text { trip }}=\sum_{i}\left|\frac{\partial f}{\partial c_{i}} \Delta c_{i}\right|+\left|\frac{\partial f}{\partial k} \Delta k\right|
$$

c_{i} are coefficients, obtained in a least-
squares fit,

$$
c_{i}=g\left(k_{1}, k_{2}, k_{3}, C_{D_{1}}, C_{D_{2}}, C_{D_{3}}\right)
$$

Its uncertainty can be estimated as
$\Delta c_{i}=\left|\frac{\partial g}{\partial k_{1}} \Delta k_{1}\right|+\left|\frac{\partial g}{\partial k_{2}} \Delta k_{2}\right|+\left|\frac{\partial g}{\partial k_{3}} \Delta k_{3}\right|+\left\lvert\, \frac{\partial g}{\partial C_{D_{1}}}\right.$
Trip Drag Study, Drag Polars
$\mathbf{1 . 6 7 5 \%}$ TCA Baseline Model, W/B Configuration
The drag polars shown below represent all the data used in the determination of the trip drag for the
TCA W/B configuration at the $\mathrm{M}_{\infty}=2.4$ condition during UPWT section 2 , test 1671 . The various colors
used in the plot represent different trip heights tested, including the transition free runs. The curve fit
applied to the runs is shown in black. The polars are essentially quadratic, however higher order
polynomials are needed to fit the data accurately. Between a C_{L} of -0.1 and 0.12 , a fifth-order polynomial
was used to fit the data. A second interpolating polynomial of order three was used for C_{L} values greater
than 0.12 . Each experimental run was fitted independently. The black line through the data points
represents an average to all the data of a particular trip height. As can be seen in the expanded views of
the polar near minimum drag and just above cruise, the fits lie within the scatter of the data.

Trip Drag Study, Extrapolation to k=0"
1.675\% TCA Baseline Model, W/B Configuration
The figure below shows the fitted drag data obtained from the previous plot as a function of trip
height at four representative values of C_{L}. Included on the plot is the transition free data. The
extrapolation to a trip height of zero is performed using both the linear and quadrataic polynomials. The
linear fit at the higher C_{L} drops below the transition free data points at $k=0$ " suggesting that the
extrapolation is inaccurate. Physically this would mean a turbulent boundary layer produces less drag on
the TCA than a partially y urbulentpartially laminar one. Yet one can expect this when the extrapolation is
highly sensitive to errors.

Trip Drag for $\mathrm{k}=0.012$ "
1.675% TCA Baseline Mo
Shown below is the trip drag associated with $k=0.012$ " computed using the linear and quadratic
extrapolating polynomials, and an average of the two. In the legend, those marked with a " k 2 " represent
the quadratic extrapolation; those marked with a " k " represent a linear extrapolation. For lack of
additional data, we assume that the nominal trip drag associated with a given trip height lies somewhere
between the lines marked with like color. Without doing a costly trip study on the nacelles, we assume that
the trip drag associated with the W/B/N/D configuration is merely 1.5 times that of the W/B, knowing that
there are 50% more trip disks on the W/B/N/D configuration.

1.675\% TCA Baseline Model, W/B Configu
Using the Method of Equal Effects outlined earlier, a sample calculation of the uncertainty in the

 find for the W/B:
and for $\mathrm{W} / \mathrm{B} / \mathrm{N} / \mathrm{D}$ uncertainty is near 50%.
Estimation Given: $\Delta C_{D}= \pm 0.25$ cts,
Drag Uncertainty in Trip $\begin{aligned} M_{\infty} & =2.4 \\ C_{L} & =0.1 \\ R e & =4 \times 10^{6} / \mathrm{ft}\end{aligned}$
Flight Conditions: $\Delta k= \pm 0.00025^{\prime \prime}$
$k=0.012^{\prime \prime}$

- Increasing the number of trip heights tested
- Increasing the number of repeat runs at a specific k (i.e., reduce ΔC_{D})
Pressure Distributions for the TCA Wing/Body Configuration
Again, the predicted and measured pressure distributions at six streamwise wing stations are
compared in the following figure at the cruise angle-of-attack at $\mathrm{M}_{\infty}=2.4$. Both numerical schemes (Euler
and Navier-Stokes) predict the pressure distributions quite well. The Navier-Stokes solution is slightly
superior to the Euler solution in certain regions such as on the upper surface of the wing, inboard close to
the fuselage. The experimental data also appears to contain some points which are likely incorrect,
probably due to blockage of the pressure tap or connecting pressure tubing.

Pressure Distributions for the Ref. H Wing/Body Configuration
Pressure distributions from Navier-Stokes solutions using Baldwin-Lomax turbulence model are
compared with experimental data from the NASA Ames 9 ' $\times 77^{\prime}$ wind tunnel for $\mathrm{M}_{\infty}=2.4, \alpha=4.4^{\circ}$ and
$\mathrm{Re}_{\mathrm{c}}=7$ million. Two CFD solution were obtained, one using CFL3D and the other using TLNS3D. Both
these solutions agree very well with the experimental data. From these comparison, it is reasonable to say
that we can predict the pressure distribution and, consequently, the pressure drag very well using CFD.
Comparison of Pressure Distributions for the Baseline Ref. H

TCA Wing/Body/Nacelle/Diverter
 Euler, and Navier-Stokes

 numerical schemes (Euler and Navier-Stokes) predict the pressure distributions quite well. The NavierStokes solution is slightly superior to the Euler solution particularly in the prediction of shock wave strength and location on the wing lower surface between the nacelles. At the 32.6% spanwise location, there are a pair of stray data points near the shock which appear to be incorrect. These unusual readings at these tap locations were seen at other angles-of-attack as well. Overall, it can be concluded that the Navier-Stokes solution do a very good job of capturing the flow physics. The diverter shocks are very crisp and agree well with the experimentally predicted shock strengths. Likewise, subsequent expansions and reflected shocks are nicely predicted as well.
Pressure Distributions for the TCA Wing/Body/Nacelle/Diverter Configuration

Pressure Distributions for the Ref. H Wing/Body/Nacelle/Diverter
Configuration: Experimental Data and Navier-Stokes
Again, the comparison is excellent as seen for the TCA wing/body/nacelle/diverter case. These
comparisons give a very warm feeling that Navier-Stokes based CFD codes can predict pressures, hence
pressure drag quite well.
Comparison of Pressure Distributions for the Baseline Ref. H

Wing/Body/Nacelle/Diverter Configuration

$\mathrm{M}_{\infty}=2.4, \mathrm{o}$

- - CFL3D N-S
O Ames 9'x7'

io
ले
ले

Pressure Drag at Supersonic Condition
The pressure drag values predicted by CFL3D and TLNS3D Navier-Stokes solutions using Baldwin-
Lomax, for 2.7% Ref. H wing/body configuration, are presented. At $\mathrm{M}_{\infty}=2.4, \mathrm{Re}_{\mathrm{c}}=7 \times 10^{6}$ and $\mathrm{C}_{\mathrm{L}}=0.1$, the
pressure drag values are nearly identical.
TLNS3D and CFL3D uses different types of discretization to solve the Navier-Stokes equations. But
the close agreement of the pressure drag values gives us the confidence to say that either code is good to
predict the pressure drag.

Skin-friction Drag for TCA W/B, Isolated Nacelle and W/B/N/D
 wing/body/nacelle/diverter configurations at $\mathrm{M}_{\infty}=2.4$ and $\mathrm{C}_{\mathrm{L}}=0.1$ are compared. Note that the nacelles were analyzed at $\alpha=0^{\circ}$. The blue bar represents the best estimate of the skin-friction drag component of the experimental data. This was obtained by subtracting the skin-friction drag obtained from CFD analysis from the corrected experimental drag. Since we have high confidence in the pressure drag predicted by CFD, this approach is considered to be reasonable. Skin-friction drag obtained from CFL3D NavierStokes calculations using Baldwin-Lomax turbulence model is shown in red. The remaining two bars indicate the skin-friction drag obtained using two equivalent flat-plate methods, namely, the Van Driest II
 widely at MDC while BCAG prefers the Sommer-Short formulation.
For the TCA wing/body configuration, at $\mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}$, there is significant uncertainty in the data. There is about a 6 count difference between the highest and the lowest values. For the wing/body/nacelle/diverter configuration, this difference is less, about 3.5 counts, but still significant. For the isolated nacelle, however, there is very good agreement between CFD and flat-plate estimates (there is no experimental data). This may be due to the flow being relatively benign in this case.
At the flight condition $\left(\mathrm{Re}_{\mathrm{c}}=212 \times 10^{6}\right)$, the maximum difference between the CFD and flat-plate skin-
friction drag estimates is 1.8 counts for the wing/body configuration and 1.4 counts for the wing/body/nacelle/diverter configuration.
Skin-friction Drag for TCA W/B, Isolated Nacelle and W/B/N/D

Skin-friction Drag for $\mathbf{2 . 2 \%}$ Ref. H Wing/Body Configuration
Skin-friction drag, obtained using several methods, for the 2.2% Ref. H wing/body configuration at
$\mathrm{M}_{\infty}=0.9$ and $\mathrm{C}_{\mathrm{L}}=0.18$, for Reynolds numbers ranging from 10 to 80 million, are compared. The blue bar
represents the best estimate of the skin-friction drag component of the experimental data. This was
obtained by subtracting the skin-friction drag obtained from CFD analysis from the corrected
experimental drag. Since we have high confidence in the pressure drag predicted by CFD, this approach is
considered reasonable. Skin-friction drag obtained from TLNS3D Navier-Stokes calculations using
Baldwin-Lomax turbulence model is shown in red. The remaining two bars indicate the skin-friction drag
obtained using two equivalent flat-plate methods, namely, the Van Driest II formulation (in green) and the
Sommer-Short formulation (in purple). Van Driest II formula is widely used by MDC while BCAG
prefers the Sommer-Short formula.

[^9]Prediction of Nacelle Installation Drag Experimental and computed nacelle installation drag are presented for ref. H and TCA
configurations. Near the minimum drag condition, only the computed results are shown. As can be
observed, near minimum drag condition, the variability is 1.4 counts. Near the cruise condition, however,
the variability is two counts.
Prediction of Isolated Nozzle Boattail Drag
Boattail drag values for the isolated Ref. H axisymmetric and 2-D nozzles are compared. Results
from three different methods are shown. The MDC Barth turbulence model), while the Northrop-Grumman (NGC) results were obtained using (Baldwin-Navier-Stokes solver (2-equation Menter's turbulence model). The IMS (Integrained using another is based on empirical database. As shown in the figure, the uncertainty in predicting isan Slope) method boattail drag is about 2 counts.

(stunoう) ! !eneog a

Geometries of the Rigid and Flexible Opt 5 Model
Corresponding to the Measured Structural Deflections at $\alpha=4^{\circ}$
During the testing of the Opt5 model in the NASA Langley UPWT, model deformation data (wing
twist and bending) at the 84.5% and 96.1% semi-span stations were acquired. These data indicated that the loads. The CFD grids were then perturbed to agree with the model deformation data that was acquired in UPW by imposing the twist and bending data upon the grid and linearly fairing these deformation other grid points. Since no deformation data was acquired on the inboard wing panel,
 grid and the "rigid model" grid.

Merroelastic Study Drag Polars
M2.4-7A Opt 5 1.675\% Model, Wing/Body Configuration
The following figure presents the numerically predicted and experimentally obtained drag polars for
the Opt 5 model. A good agreement can be seen between all three data sets. It can be seen in the
aeroelastic solution that the aeroelasticity of the outboard wing causes a reduction in the lift coefficient for
a given angle-of-attack (since both data points near $C_{L}=0.115$ are at the same angle-of-attack), but also a
corresponding reduction in drag coefficient for a given angle-of-attack. The net effect is a negligible
effect on the predicted drag polars (<0.1 count) where aeroelasticity appears to cause a shift along the
rigid polar rather than a shift to the left or right of the rigid polar.

Effect of Reynolds Number on Pressure Drag
The pressure drag values obtained from CFL3D Navier-Stokes solutions (Baldwin-Lomax
turbulence model) for the TCA at $\mathrm{M}_{\infty}=2.4$ for the wind-tunnel Reynolds number $\left(\mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}\right)$ and the
flight Reynolds number $\left(\mathrm{Re}_{\mathrm{c}}=212 \times 10^{6}\right)$ are presented. For the wing/body configuration, the pressure drag
difference between the two conditions is 1.2 counts whereas for the wing/body/nacelle/diverter
configuration the difference is 0.8 counts.

Effect of Reynolds Number on Pressure Drag at $\mathbf{C}_{\mathbf{D}}$ min The minimum pressure drag values obtained from CFL3D Navier-Stokes solution (Baldwin-Lomax
turbulence model) for the TCA at $\mathrm{M}_{\mathrm{o}}=2.4$ for the wind-tunnel Reynolds number $\left(\mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{\circ}\right)$ and the
flight Reynolds number $\left(\mathrm{Re}_{\mathrm{c}}=212 \times 10^{6}\right)$ are presented. For the wing/body configuration, the pressure drag
values at the two conditions are very close and for the wing/body/nacelle/diverter configuration they are
nearly identical.

Effect of Reynolds Number on Pressure Drag
The pressure drag values obtained from TLNS3D Navier-Stokes solution (Baldwin-Lomax
turbulence model) for the 2.2% Ref. H wing/body configuration at $\mathrm{M}_{\infty}=0.9$ are shown for Reynolds
numbers of 10,30 and 80 million. At this condition, the pressure drag values are nearly identical.

Reynolds Number Effects on Pressure Distributions
TCA Wing/Body/Nacelle/Diverter Configuration Streamwise pressure cuts of the CFL3D Navier-Stokes predicted pressure distributions on the TCA
wing/body/nacelle/diverter configuration are presented in the following figure. This figure shows that
although the pressure drag values appear to be relatively unchanged between the $\operatorname{Re}_{\mathrm{c}}=6.36 \times 10^{6}$ and
$\mathrm{Re}_{\mathrm{c}}=212 \times 10^{6}$ solutions, the flow undergoes quite a transformation. Reynolds number is defined as the
ratio of inertial to viscous forces and that definition is very evident in the figure. The stronger viscous
effects of the $\mathrm{Re}_{\mathrm{c}}=6.36 \times 10^{6}$ solution create a very different shock pattern in the vicinity of the nacelles.
The flight Reynolds number sees a pair of reflected shocks and expansions in addition to the shock off of
the diverter while at the wind-tunnel Reynolds number these secondary shocks and expansions are much
more "smeared out". Likewise, at the 41.3% semi-span station, the flight Reynolds number solution shows
a much stronger pair of shocks as well as a stronger expansion. This figure certainly shows that Reynolds
number does have an effect on the flow even if it isn't obvious from examination of the drag coefficient.
Reynolds Number Effects on Pressure Distributions
TCA Wing/Body/Nacelle/Diverter Configuration C_{p}

53.9\%

0°
 $M_{\infty}=2.4, \alpha=3.5^{\circ}$ -
\qquad

Overall Uncertainties in $\mathbf{M}_{\infty}=\mathbf{2 . 4}$ Drag Prediction
This is a summary of the various uncertainties discussed during this presentation. As can be
recalled, the largest uncertainties are in the skin-friction and boundary layer trip drag predictions. Other
contributing factors such as aeroelastic effects, Reynolds number effects, excrescence drag, etc., are
difficult to quantify very well as the database is insufficient.
The drag of the full TCA configuration is also shown in this chart. The build-up of this drag will be
shown after the next slide.

Overall Uncertainties in $\mathbf{M}_{\infty}=\mathbf{0 . 9 0}$ Drag Prediction
This is a summary of the various uncertainties discussed during this presentation. As can be
recalled, the largest uncertainty is again in the skin-friction predictions. Other contributing factors such as
aeroelastic effects, Reynolds number effects, excrescence drag, inlet bleed, inlet bypass, inlet spillage, etc.,
are again difficult to quantify as the database is insufficient.
Drag Build-up from CFD to Flight Condition
The following figure presents the components of a drag build-up from the CFL3D Navier-Stokes
solution for the full fuselage TCA wing/body/nacelle/diverter configuration to the flight TCA aircraft with
the technology projections applied. The difference in the build-up values is surprisingly small at 0.9
counts. It is cautioned that this result may be more a result of cancellation of the various uncertainty
components than a solution capability with an excellent confidence level.
Drag Build-up from CFD to Flight Condition

Drag Build-up from Wind-Tunnel to Flight Condition The following figure presents the components of a drag build-up from a wind-tunnel test of the
TCA performance model all the way to the flight TCA aircraft with the technology projections applied.
The wind-tunnel data is modified to account for a laminar run in front of the trip disks, the change in
viscous drag at flight Reynolds number, and the truncated aft-body of the wind-tunnel model. The
remaining steps add the remaining components that would yield the full-flight vehicle. The difference in
the TI database and TCA buildup values is somewhat surprisingly small at only 1.3 counts. Again, it is
cautioned that this result can be considered somewhat serendipitous as apparently the various uncertainties
in the build-up components tended to cancel each other out.

Drag Build-up from Wind-Tunnel to Flight Condition
TCA Drag Build up Components ($\mathrm{M}=2.4, \mathrm{C}_{\mathrm{L}}=\mathbf{0 . 1}$)

$$
\begin{gathered}
\mathbf{C}_{\mathrm{D}} \frac{\text { (counts) }}{138.96} \\
+1.71 \\
-68.51 \\
+43.93 \\
+0.6 \\
+2.2 \\
+3.12 \\
-1.03 \\
120.98 \\
-11.9
\end{gathered}
$$

109.1 counts
107.8 counts

- CFD and wind-tunnel testing help to check the TI data base and provide data for
refinement of assumed drag components and the technology projection
Summary and Conclusions
Conclusions are summarized in the next two slides.
Summary and Conclusions
Uncertainties in the prediction of
- pressure drag very small
- viscous drag very large
- boundary layer trip drag very large
- nacelle installation drag large enoug
- isolated nozzle boattail drag small
- aeroelastic effects small at w.t. Re
- Re effect on pressure drag relatively
database), flow physics somewhat a
- Re effect on pressure drag relatively small (still insufficient
database), flow physics somewhat altered
Insufficient database to quantify uncertainties in
- Aftbody closure drag
- Excrescence drag
- Inlet bleed, bypass, spillage effects
- Aeroelastic effects at flight Re
Summary and Conclusions (cont'd)

STABILITY, CONTROL AND FLYING QUALITIES TECHNOLOGY

OVERVIEW
The chart shows a top level view of how airplane design is approached in the Stability, Control and Flying Qualities
group. The overall design procedure surrounds a dynamic aircraft simulation. The simulation comes from writing
equations of motion based on analytical predictions as well as wind tunnel tests. The simulation is used for designing
control laws, evaluating the control laws with piloted simulations, and iterating the design process until flying qualities
criteria are satisfied. There are three reasons why it is important to perform unaugmented assessments. 1). It is
important to understand the characteristics of unaugmented airplane to provide guidance in the control system design, 2).
Because of the remote possibility of failure of the flight control system, and 3). It is often found that the open loop
criteria impose the greatest constraints on stability and control requirements.
Outline
- Un-augmented batch assessments
- Summary
- Recommendations
INTRODUCTION
This work is an update of the assessment completed in February of 1996, when a preliminary assessment report was
issued for the Cycle 2B simulation model. The primary purpose of the final assessment was to re-evaluate each
assessment against the flight control system (FCS) requirements document using the updated model. Only a limited
number of final assessments were completed due to the close proximity of the release of the Langley model and the
assessment deliverable date. The assessment used the nonlinear Cycle 3 simulation model because it combines nonlinear
aeroelastic (quasi-static) aerodynamic with hinge moment and rate limited control surface deflections.
Both Configuration Aerodynamics (Task 32) and Flight Controls (Task 36) were funded in 1996 to conduct the final
stability and control assessments of the unaugmented Reference H configuration in FY96. Because the two tasks had
similar output requirements, the work was divided such that Flight Controls would be responsible for the implementation
and checkout of the simulation model and Configuration Aerodynamics for writing Matlab "script" files, conducting the
batch assessments and writing the assessment report.
Additionally, Flight Controls was to investigate control surface allocations schemes different from the baseline Reference
H in an effort to fulfill flying qualities criteria.
Introduction Reference H Cycle 3 analytic model: - Boeing aero, mass, engine, actuator models
$\quad-\quad 96$ wind tunnel data: rigid aero, aeroelastic increments
$\quad-$ control surface hinge moments
- TCA engine model

INTRODUCTION - Continued
The assessment was conducted using the Reference H Cycle 3 Matlab and Simulink model provided by NASA Langley.
The model build-up includes aero, engine, mass, and actuator models developed by the Boeing Company. The
simulation uses a simple landing gear model which was not suitable for on-ground assessments.
Updates and Revisions
The Reference H Cycle 3 simulation model used for the assessment is an updated version of the Cycle $2 B$ simulation
model. The following items represent the significant updates to the Cycle 2 B model:
The aero model was improved over the entire Mach range with the inclusion of experimental data from the Langley unitary tests (UPWT 1812/1647) FLaRC-437), the Langley 16' transonic test (LaRC-469), and the Langley supersonic tests.
The Cycle 3 engine model incorporates engine dynamics provided by Pratt \& Whitney for the Technical Concept Airplane altitude and low speed, which is sufficient for (Reference 2) states "the engine data available were limited to low envelope, so caution should be used when analyzing results at otherer, the same engine data were used for the entire assessment, it is assumed that the engine model delivers the actual points in the envelope." For the purposes of the final A numbers the actual available thrust throughout the envelope.
included automatic flap scheduling, including $\mathrm{V}_{\text {min }}$ protection, , moment limiting through the actuator model.

Assessments Completed:

- Roll performance
S\&C ASSESSMENTS
Assessments were completed for four gross weight cases, each at their nominal center of gravity location. The operating emply wight (OEW) case was not considered. Primary emphasis was placed on those assessments that are of particular ights. cruise wei and the three gimes
ced on

Trim in Level Flight
The plot shows the flight envelope for the start-of-cruise weight case, $614,864 \mathrm{lbs}$. Altitude is represented on the y axis,
and Mach number on the x axis. The contour labels represent PLA as a percentage, where 100% is equal to full thrust.
The high speed end of the flight envelope is defined by the cruise velocity $\left(\mathrm{V}_{\mathrm{C}}\right)$ and dive velocity (V_{D}) limits. $\mathrm{V}_{\text {climb }}$
represents the Reference H climb schedule. The low speed end is defined by $\mathrm{V}_{\text {min }}$, which is artificially set to fix the
approach speed at maximum landing weight to 155 knots. As altitude increases, however, $\mathrm{V}_{\text {min }}^{\text {represents the speed at }}$
which lg level flight was attainable at full thrust. This is apparent in the trim plots which show the Power Lever Angle
(PLA) positions when the flight path angle is constrained to zero. Also of interest are the trimmed angle-of-attack and
stabilizer position at each point in the flight envelope. For this weight case, the trim alphas are between about 2 and 11
degrees throughout the envelope and the stab deflections range from about -1 to +2 degrees.
Because the plots show that PLA is the limiting trim variable, the second plot shows flight path angles possible with
PLA $=100 \%$. Zero flight path angle is seen at the low speed end of the plots, indicating thrust-limited flight. The thrust
limit also defines the operational ceiling for each gross weight case. For the start-of-cruise weight plotted here, the ceiling
is about $54,000 \mathrm{ft}$. As weight decreases, the ceiling increases to $65,000 \mathrm{ft}$ at the end-of-cruise weight.
Flight Path Stability

change in $\mathrm{d} \gamma / \mathrm{dV}<0.05 \mathrm{deg} / \mathrm{kt}$
$\mathrm{d} \gamma / \mathrm{dV}<0.24 \mathrm{deg} / \mathrm{kt}$

Bare Airframe Flight Path Stability
The FCS Requirements document states that "The curve of flight path angle versus true airspeed for the unaugmented aircraft shall have a local slope ($\mathrm{d} \gamma / \mathrm{dV}$) at $\mathrm{V}_{\text {tim }}=1.23 \mathrm{~V}+5 \mathrm{kts}$. which is either negative or no on 0.24 degrees/kt. The slope of the flight path angle versus true airspeed curve at 5 knots slower than V , shall not be more than 0.05 degrees per knot more positive than the slope at $\mathrm{V}_{\text {trim }}$ ".
Flight Path Stability plots for the approach condition were generated for altitudes from 20 ft . to 500 ft . The slope of the flight path angle, $\mathrm{d} \gamma / \mathrm{dV}$, was plotted on the vertical axis with altitude on the horizontal axis. The figure shows that $\mathrm{d} \gamma / \mathrm{dV}$ is approximately equal to 0.055 degrees $/ \mathrm{kt}$. at altitudes above 50 feet. Some discontinuities are apparent at lower altitudes preamably due to problems encountered with the dynamic ground effect. Work was done at Boeing to resolve that problem, but at the time of the assessments it was not complete.

[^10]The final result is that Reference H meets the flight path stability requirement.

Descent Capability
Analyze with 200 drag count speed brake
-

Transonic - Supersonic descent

- Satisfied for all weights.
-

Descent Capability
The HSCT must have the ability to descend rapidly from cruise altitude to minimize injury to passengers in the event of a
depressurization or emergency. The requirement is stated as "A speed brake function shall have sufficient authority to
achieve a descent rate of 10,000 fpm at maximum operating speed, $\mathrm{V}_{\text {MO }}$ and flight idle thrust".
The Cycle 2B assessment showed that emergency descent capability was satisfied at transonic and supersonic解 deflect regime. The baseline configuration studied previously in the Cycle 2 B assessment used only the spoiler-slotcontribute to peed brakes. Because subsonic drag data is not available in the simulation for those devices, they do not previous work, and as a resul Anse lacking data, the spoiler-slot-deflectors were not used in this analysis.
An alternate speed brake configuration was investigated, which used a combination of trailinged Experimental data from the LaRC-480 wind-tunnel test conducted in a combination of trailing-edge surface deflections. taking the difference between an alternating trailing-edge flap deflection gave the incremental increase in drag by configuration had alternating spanwise trailing-edge flap deflections of + and -20 dion from the baseline. This incremental drag increases with Mach number and is also a function of angle-of-attack average of 200 incremental drag counts was chosen as the speed brake capability.

[^11]Descent Capability

Emergency Descent 614K
Go Around

Requirement Satisfied

+ 6 deg/sec 2 pitch acceleration satisfied.
+3 degree pitch change in 1 sec. not satisfied
Go Around

[^12]

Requirement of $-4.0 \mathrm{deg} / \mathrm{sec}^{2}$ NOT satisfied
High Angle-of-Attack Recovery
The High Alpha Recovery requirement was assessed at the end of cruise weight as a two step process. First, the airplane was trimmed at the maximum angle-of-attack, $\alpha_{\max }$, in the landing configuration as defined by the $\mathrm{V}_{\min }$ speed with PLA set at 0%. Secondly, the angle-of-attack was increased by ten percent (referred to as alpha exceedance, $\alpha_{\text {dem }}$) and with full forward column and full throttle, the dynamic simulation was started. The requirement was evaluated at the instant when the stabilizer reached full deflection, and pitch acceleracion (qbdot) was de obtained. The Reference H does not meet the requirement states that a pitch acceleration of at least High Angle-of-Attack Recovery requiremen. he pilots still rate the aircraft as Level 1. There are multiple efforts currently underway to investigate improvements to the pitch criteria.
Diving Pullout

Diving Pullout

[^13]Roll Performance
Start-of-cruise weight, alt. range from 5,000 to $50,000 \mathrm{ft}$.
2 Configurations Studied

- Baseline, TE $1 / 8,3 / 6$, and SSDs
- Alternate, TE $1 / 8,2 / 7$, and $3 / 6$
. $.0^{\circ}$

$$
\text { weight, alt. range from } 5,000 \text { to } 50,000 \mathrm{ft} \text {. }
$$

2 Configurations Studied

- Baseline, TE $1 / 8,3 / 6$,
- Alternate, TE $1 / 8,2 / 7$,

Roll Performance
Roll control power was examined by simulating a roll from a 15 degree left banked turn to a 15 degree right banked turn using full lateral control input. To evaluate the effectiveness of different control allocation schemes, the wheel was used to drive varying configurations of lateral control surfaces including trailing-edge flaps $1 / 8,2 / 3,3 / s$, Roll performance deflectors $1 / 3$. Trailing-edge flaps 1 and 8 are only used for lateral control at speeds below 250 kts . Rens and the spoilerwas first evaluated using the Reference H baselne lan slot-deflectors. Then, roli performance was evaluatif the most effective link between the wheel and roll control surfaces.
Time to roll 30 degrees is presented for changing altitude and speed for the heavy initial cruise weight. The figure shows the time-to-roll results for the baseline combination of lateral control surfaces $1 / 8,3 / 6$, and spoiler-slot-deflectors $1 / 3$. For the second analysis, three sets of trailing-edge flaps were used for lateral control, $1 / 8,2 / 7$, and $3 / 6$. This
configuration satisfied Level 1 flying qualities throughout the envelope. Thus, this configuration should be considered
desirable as a lateral control allocation scheme.

Inlet Unstart
- Start-of-cruise weight, Mach >1.6, two engines out.
- "Desired" Lateral control configuration used $1 / 8,2 / 7,3 / 6$
Inlet Unstart The requirement is that the aircraft must be able to attain a $5 \mathrm{deg} / \mathrm{sec}$ roll rate during unstart.
Dual Inlet Unstart of engines 3 and 4 was examined for Mach numbers greater than 1.6 , the regime where an unstart
condition can occur. The assessment was performed for the start of craise weight case, 614.9 klbs. and the control
allocation was that from the previous roll performance assessment. That is, the wheel was connected to trailing-edge
flaps $1 / 8,2 / 7$ and $3 / 6$. With 100% PLA on the two remaining "started" engines, a zero flight path angle was not
achievable as shown in the flight path angle contour plot. Plots of the stabilizer, rudder, and wheel deflection required to
maintain wings-level flight showed that the surfaces were able to balance the aircraft easily with small deflections.
A representative transonic condition was chosen (Mach 1.9 at $47,000 \mathrm{ft}$.) to perform a dynamic simulation to determine if the requirement could be met with the lateral controls remaining after accounting for wings-level trim following a dual inlet unstart. The figure shows that for a full left or full right wheel input, a roll rate of 5 degrees $/ \mathrm{sec}$. is eative case, it is satisfying the requirement. Because of the ease with which the requirement was sate
reasonable to assume that the requirement would be satisfied at the remaining flight conditions.

Inlet Unstart

Roll rate of $5 \mathrm{deg} / \mathrm{sec}$ easily attainable - reqt. satisfied
Summary
- Trims at straight and level flight throughout a realistic flight envelope
due to updated engine models and modifications to Matlab optimization
analysis tools.
Requirements Satisfied:
- Flight Path Stability
- Go-Around
- Diving Pullout for a heavy cruise weight case and with full hydraulic power
- Roll Performance requirement with Level 1 flying qualities throughout the
flight envelope for a heavy cruise weight case using flaps $1 / 8,2 / 7$ and $3 / 6$
- Inlet Unstart roll performance requirement
- Emergency Descent rate requirement for all weight cases in the transonic
and supersonic regimes. In the subsonic regime, the requirement is met at
end of cruise weight, but is NOT met at mid-cruise weight and heavier.
SUMMARY
An assessment of the Reference H configuration using the Cycle 3 simulation model has been conducted and the results have been compared to the FCS requirements. Primary consideration was given to evaluating those requirements that pertain to the HSR Configuration Aerodynamics task. Assessments currently indicate that the Reference H aircraft:
Trims at straight and level flight throughout a realistic flight envelope due to updated engine models and modifications to Matlab optimization analysis tools.

Requirements Satisfied:

Flight Path Stability

Diving Pullout for a heavy cruise weight case and with full hydraulic power
Roll Performance requirement with Level 1 flying qualities throughout the flight envelope for a heavy cruise weight case using trailing-edge surfaces $1 / 8,2 / 7$ and $3 / 6$
Inlet Unstart roll performance requirement
Emergency Descent rate requirement for all cruise weight cases in the transonic and supersonic regimes. In the subsonic regime, the requirement is met for altitudes of $10,000 \mathrm{ft}$. and higher for all cruise weight cases.

[^14]Requirements not analyzed:
Minimum Control Speed
Gust Recovery
Maneuvering Performance
Crosswind Landing

Tameness

Summary - cont.
 - Minimum Control Speed

- Gust Recovery
- Maneuvering Performance
- Crosswind Landing
- Tameness
Recommendations
Drag devices on the HSCT must be carefully sized and configured:
200 incremental drag counts over baseline did not satisfy emergency
descent req't. at heavier weights.
Pitch control must be increased to satisfy the High α Recovery requirement.

Plot time histories of surface deflections during roll maneuvers for
several Mach numbers at a fixed altitude to study relationships
between hinge moments, surface rates and surface deflections.
\square
RECOMMENDATIONS
Drag devices on the HSCT must be carefully sized and configured, as it was shown that 200 incremental drag counts over the baseline configuration were required for emergency descent capabilities.

The simulation model should be modified to allow partial failure capabilities needed for certain assessments such as diving pullout.
It would be interesting in future work to plot roll performance time histories of surface deflections for several Mach numbers at a fixed altitude to determine the relationship between hinge moments, surface rates and surface deflections and how those relationships change with speed.
The Matlab optimization tools used for trimming the aircraft are particularly sensitive to the choice of an "initial guess". Alternative tools, or modifications to current tools should be investigated.
Henderson, D. and Cameron, D., "Reference H Assessment Summary Report," NASA Contract NAS1-20220, Task 32,
November 18, 1996.

Forced Transition Techniques on HSCT Configurations

Richard A. Wahls
Steven X. S. Bauer
Lewis R. Owens, Jr.
NASA Langley Research Center
February 25, 1997

1997 HSR Aerodynamic Performance Workshop

Outline

- Objectives
- Background
- description of transition, location of trips, and trip drag
- supersonic vs subsonic issues
- Approach
- multiple tests, multiple trip types, patterns, heights
- low and high Rn, transition detection
- Low Rn Supersonic Testing (UPWT)
- High Rn Supersonic Testing (PSWT)
- High Rn Subsonic \& Transonic Testing (NTF)
- Concluding Remarks

As outlined above, this presentation describes the general objectives of the project, followed by background information which led to the initiation of the study, and the approach taken to meet the objectives. Next, experimental studies in the LaRC Unitary Plan Wind Tunnel, the MDA Polysonic Wind Tunnel, and the National Transonic Facility will be discussed. Concluding remarks will close the presentation.

1997 HSR Aerodynamic Performance Workshop
 Objectives

- Determine the best method (grit vs dot) of tripping the boundary layer
- Determine the best method for assessing trip effectiveness
- Determine the best method for quantifying trip drag
- Determine any advantage of testing at slightly higher Rnodft available in industry blowdown facilities
- Determine the Reynolds number for fully turbulent flow

The objectives of this effort were to determine (if possible) the best method: 1) for forcing the boundary layer to transition, 2) for assessing trip effectiveness, 3) for quantifying trip drag, 4) for testing at Reynolds numbers per foot from 5 million to maximum available rather than 1 to 5 million, and 5) for boundary layer state determination.

1997 HSR Aerodynamic Performance Workshop

Subsonic vs Supersonic Issues

- Subsonic
- Rnk=600
- possible to size for no/minimal trip drag .-.trip usually inside b.l.
- works in small alpha range --- sized and located based on a given attachment line location
- Supersonic
- Rnk $=1000$
- possible to size for minimal trip drag ---trip usually outside b.l.
- works in small alpha range --- sized and located based on a given attachment line location
- Trip Verification Methods
- flow visualization --- time-consurning
- Reynolds number sweeps --- less of impact on schedule, in general

It has been shown (Braslow, Hicks, et. al.) that for subsonic through low supersonic conditions, the trip drag can be considered negligible and doubling the effective trip height (as long as the trip does not stick into the freestream) will add an indiscernible amount of drag. However, at supersonic conditions, this is not the case. In order to transition the boundary layer, the trips must be sized larger than the boundary layer thickness. Now, the portion of the trips that stick out into the freestream do produce measurable amounts of drag.
Subsonically, Braslow et al. have shown that trip drag (in the plateau region, which is the region where the boundary layer has transitioned and the trips are not sticking out into the freestream) can be calculated by testing several trip heights and plotting the associated drag versus the trip height. A linear curve can be drawn through the data in the plateau region and extrapolated to $\mathrm{k}=0$ (no height). The trip drag then is equal to the slope of the curve multiplied by the specific trip height in question. Braslow et al. also have shown that supersonically, the best method is to use drag versus k^{2}. A slope is then found in a similar fashion, however, due to the fact that drag on an object in a freestream is not linear with height (it is closer to quadratic) a much lower drag is estimated.

Finally, sublimation and other flow visualization techniques take a lot of time, whereas running Rn sweeps takes a relatively short time. By accurately reducing the data, a very good understanding of the boundary layer state can be made.

The ideal method of insuring that turbulent boundary layer conditions are met is shown above (open circles). The technique would require that the test be run at Rn conditions that would insure that one would have fully laminar b.l. conditions at the low end of the Rn capability to fully turbulent b.l. conditions at the high end. This technique can be done in some facilities (NTF, 20-Inch Mach 6, PSWT, etc.). However, for most tunnels, the operating Rn range lies completely in the transition region (shown above as the location that the data does not lie on the fully laminar nor the fully turbulent curves). Therefore, one must trip the boundary layer.
The figure above also illustrates the effect of a transition trip on the values of $C_{D, \text { min }}$. In the same operating range, fully turbulent boundary-layer conditions can be achieved and the value of trip drag is equal to the difference in the forced-transitioned and the free-transitioned, fullyturbulent b.l. $C_{D, \min .}$. However, if one can not ever reach free-transitioned, fully-turbulent b.l. conditions in the tunnel, how can one determine the trip drag? Note, it is always a good practice to run through a Rn sweep in the facility at $\mathrm{C}_{\mathrm{D}, \min }$ conditions, just to determine that the transition trips are working (and this usually can be done with minimal impact on the test schedule). Why is this important and what useful data can you get? First, as shown by the solid circles above, $C_{D, \text { min }}$ increases until fully turbulent conditions are reached as Rn is increased. As $R n$ is increased further, the $C_{D, \min }$ values will decrease (and the data will fall on a curve that is parallel with the fully turbulent b.l. curve). Thus, while $C_{D, \text { min }}$ is still increasing or has reached a plateau, transitioning b.l. conditions are occurring. If the $\mathrm{C}_{\mathrm{D}, \text { min }}$ values decrease at a fairly "constant" rate with Rn (same local slope as that for fully turbulent flow found for free transition), then fully turbulent b.l. conditions have been reached.

1997 HSR Aerodynamic Performance Workshop

Determination of Trip Drag

- Trip Drag may be determined by calculating the slope of the curve for drag (at a specific lift condition) versus k or k 2 .

There are several methods of determining trip drag. When a large Rn capability is achievable in the facility, the technique described previously is preferred. However, the reduced capability test facility is usually the norm. In such a facility, one can test the model with different sized trips. Whether the trips are smaller or larger than the boundary layer determine how the trip drag is calculated.

In subsonic to low supersonic flow conditions, the grit particles when sized and located properly on the wing for the freestream conditions, can allow a doubling of the size of the trip to have very little effect on the drag.
Note, once the boundary layer is fully turbulent and as long as the trip height, k , is not greater than the boundary-layer thickness, δ, then the values of CD,min are not overly affected by the trip. Therefore, a trip drag can be calculated by extrapolating a linear curve fit (of the $C D, m i n$ data for the $k<\delta$ conditions) back to $\mathrm{k}=0$. This will define a CD, \min that should be equivalent to fully turbulent flow with no trip drag. Then the trip drag for any k value can be calculated by subtracting the $C D$, min value for $k=0$ from the value of $C D, \min$ for a given k. Also, note that when $k>\delta$, the $C D, \min$ values for those k values increase rapidly. Thus, for conditions that require the size of the trip, k , to be greater than the boundary layer, a similar method can be employed, however, one must use k^{2} instead of k to get an accurate extrapolated curve to k or $\mathrm{k}^{2}=0$ and thus, CD ,min conditions for fully turbulent b.l. with no trip drag.

The figure above shows how the actual distance, $\mathrm{x}_{\text {streamline }}$, that the flow covers from the leading edge to the trip dot (by following the streamline rather than the axial or "streamwise" direction behind the leading edge) can change the height, k, required to transition the boundary layer. For highly swept wings, $\mathrm{X}_{\text {streamline }}$ can be much less than x and thus, the $\mathrm{Rn}_{\mathrm{k}, \mathrm{cr}}$ is never reached and the trip dot does not have any effect on the boundary layer state.

The figure above shows the effective height, $\mathrm{k}_{\text {eff }}$, after the sublimating chemical is applied to the surface. Since $\mathrm{k}_{\text {eff }}$ is smaller than k , the value of $\mathrm{Rn}_{\mathrm{k}, \mathrm{cr}}$ is never reached and the trip dot does not have any (or very little) effect on the boundary-layer state. Thus, a method of applying sublimating chemicals that does not cover the leading edge up to the trips may be required.

Shown to the right (above) is a sketch of the same trip dot glued onto a surface with TSP (Temperature Sensitive Paint). Note, here the effective height of the trip dot is the same as that specified. In addition, the paint surface is hard, thin, smooth, and consistent throughout a series of runs. Note that paint does not have to be reapplied for each angle-of-attack.

Approach

- The M2.4-7A Arrow Wing was tested in UPWT and generated a data base at $M_{\infty}=2.4$ and $R n_{\infty}=1$ to 5 million/foot with free (natural) and fixed (grit \& dot of various size) transition
- Test the M2.4-7A Arrow Wing in the MDA-E Polysonic Wind Tunnel (PSWT) at Rn_{∞} greater than 5 millionfoot foot with free (natural) and fixed (grit \& dot of various size) transition
- Obtain force and image data for free (natural) and fixed transition

The M2.4-7A Arrow wing configuration was chosen because it was a clean model, had no "planned" entries in the near term, and needed a trip drag analysis at the cruise condition.
The model is slightly larger than ideal for testing in the PSWT due to its large projected area relative to start-up and ending conditions. The model is of typical size for supersonic testing in the HSR program, and results in the PSWT were very promising.

Shown above is a plot of the predicted laminar, flat-plate, boundary-layer height at $\mathrm{x}=0.42$ " and 0.61 " from the leading edge in the streamwise direction (outboard panel trip location and inboard panel trip location, respectively). Since the free stream Mach number is 2.4, the required trip height would have to be greater than the boundary layer thickness to be effective. Thus, the plot also includes the sand grit sizes and trip dot heights that were tested on the M2.4-7A configuration in the NASA LaRC UPWT.

The plot above shows the $C_{D, \text { min }}$ values plotted versus Reynolds number for the three sand grit sizes tested as well as the free transition values. Also plotted are the flat plate fully turbulent skin friction drag estimates corrected to the Reynolds number 4 million/foot condition.
The results show that for Reynolds numbers less than 2 million/foot, a transitional stage of the boundary layer is occurring.

The plot above shows the $C_{D, \text { min }}$ values plotted versus Reynolds number for the five trip dot heights tested as well as the free transition values. Also plotted are the flat plate fully turbulent skin friction drag estimates corrected to the Reynolds number 4 million/foot condition.
The results show that for Reynolds numbers less than 2 million/foot, a transitional stage of the boundary layer is occurring as was seen with the sand grit runs.

The data above shows the curve fit values of the Axial Force Coefficient $\left(\mathrm{C}_{\mathrm{A}}\right)$ versus angle of attack, α, for the baseline M2.4-7A configuration at a Mach number of 2.40 and Reynolds numbers varying from 1 to 5 million per foot for the free transition condition. The C_{A} data is very valuable in determining if a "laminar bubble" occurs at any conditions in the polar as can be clearly seen for the lowest Reynolds numbers tested. As seen above for all Reynolds number conditions, the curves are not continuous. By examining the local slope of the curves $\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{d} \alpha\right)$, this effect can more readily be observed.

The above plot illustrates how the derivative of $\mathrm{C}_{\mathrm{A}}\left(\mathrm{dC} \mathrm{C}_{\mathrm{A}} / \mathrm{d} \alpha\right)$ varies with angle of attack for the free transitioning boundary layer over the Reynolds numbers tested. The data clearly shows changes in the derivative for the lowest Reynolds number conditions and fairly large variations for the higher Reynolds numbers as well.

The data above shows the curve fit values of the Axial Force Coefficient (C_{A}) versus angle of attack, α, for the baseline M2.4-7A configuration at a Mach number of 2.40 and Reynolds numbers varying from 1 to 5 million per foot for forced b.l. transition using sand grit of nominal size 0.0181 ". The C_{A} data above show that at a Reynolds number of 1 million/foot the curve does not look smooth (implying that the boundary layer has not fully transitioned).

The above plot illustrates that the derivative of $\mathrm{C}_{\mathrm{A}}\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{d} \alpha\right)$ for the Reynolds number of 1 million/foot appears wavy implying transitioning is occurring.

The data above shows the curve fit values of the Axial Force Coefficient $\left(\mathrm{C}_{\mathrm{A}}\right)$ versus angle of attack, α, for the baseline M2.4-7A configuration at a Mach number of 2.40 and Reynolds numbers varying from 1 to 5 million per foot for forced b.l. transition using trip dots of nominal height $0.0147^{\prime \prime}$. The C_{A} data above show that at a Reynolds number of 1 million/foot the curve does not look smooth (implying that the boundary layer has not fully transitioned).

The above plot illustrates that the derivative of $\mathrm{C}_{\mathrm{A}}\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{d} \alpha\right)$ for the Reynolds number of 1 million/foot appears wavy implying transitioning is occurring.

The data above shows the curve fit values of the Axial Force Coefficient $\left(\mathrm{C}_{\mathrm{A}}\right)$ versus angle of attack, α, for the baseline M2.4-7A configuration at a Mach number of 2.40 and Reynolds numbers varying from 1 to 5 million per foot for forced b.l. transition using sand grit of nominal size $0.0107^{\prime \prime}$. The C_{A} data above show that at a Reynolds number of 1 million/foot the curve does not look smooth (implying that the boundary layer has not fully transitioned).

The above plot illustrates that the derivative of $\mathrm{C}_{\mathrm{A}}\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{d} \alpha\right)$ for the Reynolds numbers of 1 and 1.5 million/foot appear wavy implying transitioning is occurring.

The data above shows the curve fit values of the Axial Force Coefficient $\left(\mathrm{C}_{\mathrm{A}}\right)$ versus angle of attack, α, for the baseline M2.4-7A configuration at a Mach number of 2.40 and Reynolds numbers varying from 1 to 5 million per foot for forced b.l. transition using trip dots of nominal height 0.0101 ". The C_{A} data above show that at Reynolds numbers of 1 and 1.5 million/foot the curves do not look smooth (implying that the boundary layer has not fully transitioned).

The above plot illustrates that the derivative of $\mathrm{C}_{\mathrm{A}}\left(\mathrm{dC}_{\mathrm{A}} / \mathrm{d} \alpha\right)$ for the Reynolds numbers of 1 and 1.5 million/foot appear wavy implying transitioning of the boundary layer is occurring.

The above plot utilizes the two methods of calculating trip drag described earlier (either calculating a slope for C_{D} at a given C_{L} versus k or k^{2}). The estimated drag using the " k^{2} " method tends to provide values of $\mathrm{C}_{\mathrm{D}, \text { trip }}$ that are about half those found using the " k " method. Both methods predict rather large variations with differing lifting conditions.

In order to further understand forced transition issues, it is valuable to acquire test data with naturally occurring, fully turbulent flow. The importance lies in the ability to anchor data on fully turbulent skin friction drag predictions which can then be extrapolated to flight conditions without the uncertainty of trip drag. On the other side, fully turbulent trip free data provides a target for low Rn data with trip drag corrections.
To date, the existing HSR supersonic experimental database has an Rn,mac maximum in the range of 7 to 8 million; thecruise flight $\mathrm{Rn}, \mathrm{mac}$ is approximately 150 to 200 million. The high Rn supersonic testing effort set out to extend the HSR supersonic data base to high Rn , and address low Rn forced transition methods and trip drag calculation methods.

1997 HSR Aerodynamic Performance Workshop

High Rn Supersonic Testing II

- Approach
- Test free \& fixed transition configurations from low to high Rn in highest Rn supersonic facility available
- free transition from low Rn to highest Rn attainable
- fixed transition at low Rn (variable trip heights, types, patterns)
- apply transition detection methods to assess boundary layer state
- MDA-E Polysonic Wind Tunnel has highest Rn capability in the US
- calibrated at $M=2.48$ (close to design cruise Mach for HSCT)
- 4 FT test section (same as LaRC UPWT)
- blowdown facility (starting/ending loads are an issue)

The approach taken was to test a representative HSCT configuration with both free and fixed transition from low Rn to the highest Rn available in the US. It was planned to evaluate several trip types, patterns, and locations, and several transition detection approaches.
The facility in the US with the highest supersonic Rn capability is the MDA-E Polysonic Wind Tunnel (PSWT) located in St. Louis, MO. The PSWT has a 4 ft test section allowing existing models sized for the LaRC UPWT to be tested. Start-up \& ending loads are however larger than experienced at the UPWT due to the fact that the PSWT is a blowdown facility. At present, the PSWT is not calibrated for Mach = 2.4 (HSCT nominal cruise), but is calibrated at Mach = 2.48. For the purposes of this investigation, this difference is not significant.

1997 HSR Aerodynamic Performance Workshop

High Rn Supersonic Testing III

- Status
- Test 1 (PSWT 689) completed November 251996
- Model Tested: 1.675\% scale M2.4-7A baseline wing/body
- Rn,mac from 8.3 to $\mathbf{2 0 . 7}$ million, at Mach $=2.48$
- Good shakedown test
- experience gained in the facility, largest model tested in facility
- HSR cruise data quality issues addressed
- questions remain about flow dew point
- good balance/sting combination; currently in post-test inspection
- temperature sensitive paint used for transition detection
- Plans
- Complete data reduction \& analysis from test 1
- 2nd test currently scheduled for 3QFY97

The model chosen for testing in the PSWT was the M2.4-7A baseline configuration (same model as used in UPWT 1667). The initial test in the PSWT was conducted in November, 1996, and was designated PSWT689. Data were obtained from Rn , mac $=8.3$ to 20.7 million (5.3 to 13.2 million per foot) at Mach $=2.48$ over a nominal angle of attack range from -3 to +3 deg.

PSWT689 was a good shakedown test. Experience was gained relative to testing in the facility with an HSR model, and data quality requirements. The 1.675% scale model tested was the largest ever tested in the facility, and accordingly, significant time and attention was given to monitoring start-up and ending loads. In fact, half way through the test the balance/sting combination was changed to a stronger system. The second system consisted of LaRC balance 756 and a 2000 lb . normal force sting. This combination worked well, and is currently in post test inspection.

TSP was used for transition detection. At this point, the results are inconclusive. Analysis of the images continues, as does development of the system for application in a blowdown facility.
Force data from the test is to be reduced again to correct several errors discovered in post test analysis. It should be noted that cavity pressures lagged during the 1st run of most "blows", and that the dew point was not known.

1997 HSR Aerodynamic Performance Workshop

High Rn Supersonic Testing IV

- Drag plot vs Rn using available data \& accounting for the cavity pressure lag
- Forced Transition runs appear to follow flat plate predicted trend.

The above chart shows minimum drag data with and without forced transition as compared to an equivalent flat plate prediction. Experimental data is that available prior to a final data reduction (as discussed previously), but has been adjusted manually to account for the cavity pressure lag.
Forced transition data appear to follow the predicted trend, as do the free transition data above $\mathrm{Rn} / \mathrm{ft} \sim 8.5$ million. Note also that the trip increment above $\mathrm{Rn} / \mathrm{ft} \sim 8.5$ million is on the order of 2-3 drag counts which is similar to that determined in the UPWT tests using the k^{2} trip drag assessment method.
This analysis will be updated upon final data reduction, and it is expected to be repeated and exterided in a follow on test. Balance and sting limitations should allow extension of data to approximately 15 to 16 million per foot. The limiting factor at this point is sting divergence.

1997 HSR Aerodynamic Performance Workshop

High Rn Subsonic/Transonic Testing I

- Objectives
- develop the Temperature Sensitive Paint (TSP) test technique
- detection of free \& fixed transition on the 2.2% HSR Ref. H wing
- grit drag assessment at subsonic \& transonic conditions with \& without flaps
- Background
- TSP technique identified as most promising approach for "global" transition detection in a cryogenic environment
- joint NASA/Industry/University team formed to develop system
- risk reduction experiments executed in the 0.3 m TCT prior to NTF test to evaluate issues such as paint chemistry \& camera requirements

Considerable testing of the HSR Ref. H model has been conducted in the NTF. The primary purpose of these tests, and of all tests in the NTF, is the assessment of Rn effects. Key to understanding Rn effects is the understanding of the boundary layer state at all conditions, both with free and forced transition. Several methods for transition detection in the cryogenic environment of the NTF have been identified; TSP has been identified as the most likely candidate to be successful in providing a productive, high-quality, global assessment of boundary layer state.
A joint NASA/Industry/University team was formed to develop all aspects of such a system. Risk reduction experiments were conducted, including one in the 0.3 m TCT at LaRC, prior to application in the NTF.

1997 HSR Aerodynamic Performance Workshop

High Rn Subsonic/Transonic Testing II

- Approach
- Apply the TSP system in a test of the 2.2\% Ref. H model in the NTF
- Evaluate free transition boundary layer state
- Confirm boundary-layer fixing with grit trip
- Assess trip drag
- Realize that the TSP test was high risk with potentially high pay-off

Once confidence in the technique was gained through the risk reduction activities, the system was ready for the NTF. The initial test was still considered to be high risk in the sense that successful integration of a complex system with a complex tunnel would be difficult on the first try. However, success would bring high pay-offs in terms of flow field understanding.

The first part focussed on applying the TSP system to acquire images showing the free transition boundary layer state. In addition, grit was then applied and images acquired to assess the trip effectiveness. Gaps were intentionally placed in the trip to aid in the assessment. Several results are shown on the following charts. Additional analysis is presented in a paper entitled: "Use of Boundary Layer Transition Detection to Validate full-scale Flight Performance Predictions," by Hamner, Owens, Wahls, and Yeh (presented in High Lift session of this workshop).
The second phase of the test addressed subsonic and low transonic trip drag. Details are not presented here, but as expected, conventional trip location and sizing forced transition in the usual manner without significant trip drag.

The chart above shows several typical images for Mach $=0.9$ and undeflected flaps near the minimum drag condition. Images were acquired across a wide temperature range.
As noted on the chart, the amount of laminar flow decreased with increasing Rn . Although, not shown here, laminar flow did exist on the transonic cruise configuration at Mach $=0.9$ and the cruise angle of attack.

The chart above demonstrates the effectiveness of the conventional grit trip at forcing transition. Laminar flow is clearly shown progressing through the intentional gaps in the trip.
The TSP transition detection technique was considered very successful. Many lessons relative to its application were learned and work on the technique will continue.

1997 HSR Aerodynamic Performance Workshop

Concluding Remarks

- Trip dots and grit performed equally well. (Existing sand grit at UPWT was mislabeled and not well "screened" to ensure consistent size.)
- Reynolds number sweeps backed up with flow visualization techniques worked well.
- Trip drag appears to be best calculated by C_{D} (at a given C_{L}) versus k^{2} (However, the HSR community has not come to consensus on this!)
- Testing in high(er) Reynolds number facilities should be limited due to the restrictions caused by higher loads, shortness of run times, cost, etc.
- Free-transitioning, fully turbulent flow appears to have been reached in the Polysonic facility.
- Temperature Sensitive Paint for transition detection is viable and worth further development.

The tests showed that the boundary layer could be forced to transition equally well using either grit or trip dots. The trip dots still appear to send small vortices downstream through the boundary layer whereas the vortices generated on the grit seem to combine and not travel all the way to the trailing edge without mixing with the neighboring disturbances).
Very large differences in the value of trip drag estimates are obtained whether using C_{D} vs k or k^{2}. Follow on tests in the Polysonic facility should help understand which method is more acceptable. The "k-method" does appear to predict levels of trip drag that can cause fully turbulent drag levels that would fall below free transition values (found experimentally) implying that free transition has higher drag than fully turbulent flow which is clearly incorrect.
Future testing in the Polysonic facility should produce results that will benefit all supersonic testing done in the HSR program.
Finally, initial application of temperature sensitive paint for transition detection has shown it to be a viable test technique, and worth the support for further system development to improve its routine use.

Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

G. E. Erickson
A.W.Burner
R. DeLoach

25 February 1997
NASA Langley Research Center
Hampton, Virginia

Pressure-Sensitive Paint and Video Model Deformation Systems at the NASA Langley Unitary Plan Wind Tunnel

G. E. Erickson

A. W. Burner
R. Deloach

NASA Langley Research Center
Hampton, Virginia 23681-0001
Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.

Presentation Overview

- Review of UPWT PSP system and selected results obtained on HSR models
- Review of UPWT VMD system and selected results from recently-concluded HSR testing
- Discussion of a Modern Experimental Design method for improved wind tunnel productivity -- recently applied at UPWT in conjunction with the VMD system to predict HSR model deformation

A comprehensive facility enhancement program is underway at the NASA Langley Research Center Unitary Plan Wind Tunnel to provide state-of-the-art test techniques to support the supersonic testing requirements of the High-Speed Research program. This paper provides a review of the UPWT pressure-sensitive paint system for global surface static pressure measurements and the UPWT video model deformation system to measure wing local twist and deflections. In an effort to improve wind tunnel productivity, a Modern Experimental Design technique was used in parallel with the model deformation system to determine its effectiveness in predicting wing twist at supersonic speeds. Representative results obtained with the PSP, VMD, and Modern Experimental Design techniques in recent HSR wind tunnel model testing at UPWT are presented.

PSP and VMD Systems at UPWT

- PSP and VMD systems established at UPWT in 1996 to support

 HSR experimental programs- Strong cooperative efforts involving Aero-Gas Dynamics Division and Experimental Testing Technology Division (ETTD)
- PSP system evolved from previous installation in the NASA Langley 8-Foot Transonic Pressure Tunnel in 1994 in cooperation with NASA Ames and ETTD
- VMD systems established at the National Transonic Facility and Transonic Dynamics Tunnel in 1994 provided foundation for UPWT installation
- PSP and VMD systems are now operated by UPWT personnel after extensive training with ETTD (setup, operation, image acquisition and processing, and data analysis and plotting)

Cooperative efforts involving personnel from the NASA Langley Aero-Gas Dynamics Division and the Experimental Testing Technology Division have led to the establishment of PSP and VMD deformation systems at UPWT. A PSP system previously installed in the NASA Langley 8-Foot Transonic Pressure Tunnel was upgraded and installed in UPWT in early 1996. This system was modeled after a similar setup currently in use at the NASA Ames Research Center. The VMD systems established by ETTD at the National Transonic Facility and the Transonic Dynamics Facility served as models for the UPWT installation, which was initiated in 1996. Experience gained from several HSR-sponsored tests has provided resident expertise at UPWT in all aspects of the PSP and VMD systems.

UPWT Description

- Closed-circuit, continuous-flow, variable-density tunnel
- Two 4-ft by 4-ft test sections
- "Low Mach" test section has a design Mach number range from 1.5 to 2.9
- "High Mach" test section has a design Mach number range from 2.3 to 4.6
- Both test sections use asymmetric sliding-block nozzles that allow continous variation in Mach number
- Maximum Reynolds number/foot varies from 6x10 ${ }^{6}$ to 11×10^{6}, depending on Mach number

[^15]
UPWT PSP System

- Method is based on oxygen sensitivity of photoluminescent material in the form of a "paint" (University of Washington formulation)
- PSP sprayed onto model surface after application of white undercoat
- Purge air is applied through model surface pressure orifices during painting process via electronic pressure scanner modules installed in the wind tunnel model
- Registration marks applied to model using overlay template
- PSP excitation source is $\mathbf{2 5 0} \mathbf{- W}$ lamps that emit ultraviolet light in a broadband centered around 360 nm and a cutoff filter to block emission in the visible wavelengths
- All other illumination sources are eliminated by installing "lighttight" enclosures on both sides of the wind tunnel test section

The UPWT PSP technique is based on a system developed by the NASA Ames Research Center and the University of Washington. The photoluminescent paint chemistries developed by the University of Washington have been used in all of the NASA Langley UPWT PSP tests and have proved to be very robust for the supersonic experiments. Approximately one shift is required to the application and curing of the white base and PSP coatings. Specially modified ESP scanners, when operated in a purge mode, route air through the wing surface pressure lines to prevent the paint from clogging the orifices. Registration marks are applied to the painted surfaces using an overlay template and a black marking pen. The marks are tyically 0.125 to 0.188 inches in diameter and are positioned along the edges of the model and at selected other locations on the wing. UV lamps are mounted to the webbing of the the test section side wall to provide a continuous illumination source. Manual shutters are used to block the UV light between runs. The large image areas that are typically mapped on HSR models requires at least two UV lamps. Photodegradation of the PSP is a concern because of the proximity of the UV light source to the model (approximately 2 feet), so double and triple filters are applied to the lamps to reduce the UV intensity at the model. A hand-held digital radiometer is used to measure the effectiveness of the UV lamp positioning and filtering arrangements. Wooden enclosures have been built that are bolted/clamped to the test section side walls to eliminate all extraneous light sources.

UPWT PSP System (continued)

- PSP imaging is conducted using 2 scientific-grade, cooled CCD digital cameras (12-bit and 14-bit intensity resolution, 512×512 and 1024×1024 spatial resolution) installed in the "webbing" of the test section side wall
- Optical filters are installed on the camera lenses to permit the passage of the luminescence emission wavelengths while blocking other wavelengths
- Model is rolled 90° for best optical access and the model pitch angle is varied using the support system yaw mechanism
- Camera integration time and image acquisition are controlled by host computers located in the UPWT Data Room, about 125 feet from the camera positions

The high CCD performance, low noise, linear response, and good signal-to-noise ratio of scientific-grade digital cameras provide high-precision, quantitative light measurements. Two digital cameras are available at UPWT for PSP image acquisition. In a typical installation, both cameras are mounted inside the webbing of the test section side wall with lenses that are selected to provide a detailed view of an area of particular interest on the model and a global view of the wing surface. Special optical filters are mounted to the front of each lens so that the camera detects only the luminescence emission spectra. Optical access to the test section is available through the schlieren windows in the side walls, so the model is rolled 90° to be roughly orthogonal to the cameras. Variation in the model pitch angle is obtained using a mechanized yaw mechanism. The camera exposure, or integration, time and image acquisition are remotely controlled via a Windows 95 -based PC and a UNIX-based workstation that are located in the UPWT Data Room. The integration times are selected to provide high image intensity while avoiding local saturation. Typical integration times are 1 to 1.5 seconds. PSP imaging has not been compromised by the relatively minor model dynamics that are encountered at the supersonic speeds.

This photograph shows a 1.675%-scale HSR arrow wing model installed in UPWT test section 1. The model is rolled -90° for this photograph, although the model was rolled in the opposite direction for the testing. The right (upper) wing surface is coated with pressure-sensitive paint, while the left (lower) wing features an application of temperature-sensitive paint.

The photograph shows a close-up view of a PSP hardware installation in the webbing of UPWT test section 2. Two scientific-grade CCD digital cameras, one standard video CCD camera, and three 250 W UV lamps are installed using articulated mounting arms or C-clamps. The webbing provides a stable, virtually vibration-free mounting surface for the PSP imagers and light sources.

The PSP digital camera electronic control units and chiller units are shown in this figure. Excess length of a $\mathbf{2 0 0}$-foot fiber optic cable is shown at the bottom of the mobile cart, which is positioned adjacent to the test section.

UPWT PSP System (concluded)

- Personal computer controls the 14 -bit camera via a proprietary interface card and electronics cable, while a UNIX-based workstation controls the 12 -bit camera using a separate interface and a fiber optic-based SCSI link
- Video camera with optical filter provides real-time PSP response
- Wind-off and wind-on images are processed on the UNIX machine using the NASA Ames-developed "paintep" software package, which performs the image ratio, registration, and paint calibration operations
- PSP is calibrated via an "in-situ" method using surface static pressures obtained from discrete orifices on the model surface connected to internally-mounted ESP scanners
- Image processing, analysis, and plotting are performed on-site and results posted on WWW site established for each UPWT test

The 14-bit digital camera with 512×512 pixel array is controlled by a personal computer and camera interface card. A camera electronics cable extends from the interface card to an electronics control unit and camera chiller unit assembly located adjacent to the test section. The 12-bit digital camera with 1024×1024 pixel array is controlled by a high-end workstation that features a fiber opticbased SCSI bus extender from the workstation to the camera control unit/chiller unit assembly, also positioned in proximity to the test section. Electronics cables and fiber optics cables are permanently routed from the Data Room to both test sections. A separate video CCD camera with optical filter is mounted to the test section webbing to provide real-time display and recording of the paint response, which can include the footprints, or signatures, of shock waves and vortices. An extensive disk array has been assembled to accommodate the image storage requirements of PSP testing. All images are transferred to the workstation, where the image ratioing, image registration, and PSP calibrations are performed using a software package developed by NASA Ames Research Center. An "in-situ" calibration is performed whereby the paint is calibrated using the static pressures measured at discrete locations with internally-mounted pressure scanners. All image processing operations and data analysis and plotting are done on-site. World Wide Web sites are typically established for each UPWT test to allow posting of the processed PSP images.

The host computers that control the two PSP digital cameras are shown in the photograph above. The PC (Windows 95 OS) and UNIX workstation are situated side-by-side along with high-capacity disk drives and color postscript printer. Additional magneto-optical hard drives and recordable CD drives have recently been acquired to augment the UPWT PSP system.

UPWT PSP Applications to Date

- 1.675%-scale HSR arrow wing model
- 1.675%-scale HSR TCA 2a model
- Test sections 1 and 2
- $\mathbf{M}=1.6$ to $2.7, \mathrm{Re} / \mathrm{ft}=\mathbf{3}, 4$ million
- $\alpha=-2^{\circ}$ to 8°
- Attached flow, separated (vortex) flow, shock waves

The UPWT PSP system has been applied to several HSR models, including a 1.675%-scale HSR arrow wing model in test sections 1 and 2 and a 1.675% scale model of the HSR TCA2a model in test section 2. PSP results have been obtained for a wide range of Mach number and angle of attack that encompass flow regimes dominated by attached flow, vortices, and shock waves. Time required to set up the PSP system and acquire all wind-on and wind-off images is approximately 2 shifts. Additional time is required at the outset of the wind tunnel entry to acquire flow angle corrections (upflow and sideflow) to provide accurate determination of the model angle of attack. Runs are also made of the unpainted model at the same test conditions to quantify any obtrusive effects of the paint thickness on the wing surfaces.

Arrow Wing PSP Image at $\mathbf{M}=1.65, \alpha=8^{\circ}$
UPWT Test 1836 Re/ft = 3(106) June 1996

The photograph shown above is a false-colored, ratioed and registered image of the wing upper surface pressure field on a 1.675%-scale model of an HSR arrow wing configuration. The test conditions correspond to a free-stream Mach number of 1.65 , Reynolds number per foot of $3\left(10^{6}\right)$, and angle of attack of 8°. Free-stream stagnation temperature is $125{ }^{\circ}$ F. The PSP image clearly shows the signatures of leading-edge vortices that develop from the inboard and outboard wing regions. The inboard wing vortex passes over the outboard nacelles, and the effect of the vortex passage can be correlated with the nacelle base pressure measurements. The paint was calibrated using pressure measurements obtained at discrete ports with two ESP modules. This test was conducted in June 1996 and was the first application of the UPWT PSP system in UPWT test section 1.

A processed PSP image of the wing lower surface on a 1.675%-scale model of the HSR TCA 2 a in UPWT test section 2 is shown above. The test conditions correspond to a Mach number of $2.4, \mathrm{Re} / \mathrm{ft}=4\left(10^{6}\right), \mathrm{T}_{\text {stag }}=125^{0}$, and $\alpha=3.5^{0}$. The inboard and outboard nacelles were installed for this run, but were painted flat black to eliminate the effect of reflected light from the sides of the nacelles on to the wing surface. Of particular interest in this application was the character of the interacting shock waves developed by the nacelle diverters. Reflected shocks from the diverters are also discernible in the original image and in the PSP-derived static pressure distributions. Several streamwise rows of wing lower surface static pressure orifices were plumbed to an ESP module without the purge air capability. As a result, thin strips of masking tape were applied to these rows during the painting process. These unpainted strips are visible in the image above. The in-situ paint calibration required the selection of pixel locations outside of these regions.

This composite plot compares the streamwise distributions of the wing lower surface static pressure coefficient obtained with the PSP technique and the electronically-scanned pressure modules at Mach=2.4, $\operatorname{Re} / \mathrm{ft}=4\left(10^{6}\right)$, and $\alpha=$ 3.5^{0} (same case as on previous page). The ratioed and registered PSP image and a model installation image are also included. The PSP and ESP pressure data compare very well, and the maximum difference in the coefficients obtained with the two methods is within approximately 5% of full-scale range of the ESP transducers. The abrupt pressure rise across the shocks is apparent in the first four pressure distribution plots. Note that the PSP data plots are restricted to values obtained at a single pixel in proximity to each pressure orifice. The advantage of the PSP method is that all image pixels are "pressure tap" locations, and the corresponding hundreds of thousands of pixels (depending on the camera resolution) can provide much higher resolution of the C_{p} distribution, particularly across the shock waves.

UPWT VMD System

- VMD technique is based on a single video camera photogrammetric determination of two-dimensional coordinates of wing targets with a known fixed third dimensional coordinate (spanwise location)
- Primary application of UPWT VMD system is to determine local wing twist, while secondary applications include wing deflection (bending) and model angle of attack measurements
- Retroreflective dots with adhesive backing are applied in several chordwise rows from the wing root to the wing tip to provide highcontrast targets
- Images are acquired using a standard RS-170 CCD video camera with 752 horizontal by 240 vertical pixel resolution
- Illumination source is a fiber optic-based ring light mounted to the front of the camera's 10 to 100 mm focal length remote zoom lens

A unique aspect of the video model deformation system developed by NASA Langley ETTD is the photogrammetric determination of two-dimensional wing targets using a single video camera. A requirement is that the third dimensional coordinate be known and fixed, namely, the spanwise location of the targets. The primary application of the VMD system is to measure the wing local twist angle, although the wing deflection (bending) and model angle of attack measurements may be equally significant depending on the experimental objectives. Targets in the form of retroreflective dots with an adhesive backing are applied at precisely known locations in chordwise rows at several wing span stations. The inboard row of targets is placed in a region of the wing that may be considered rigid. This row serves as a reference to all other target rows and provides an "onboard" angle of attack measurement. The dots provide extremely high-contrast targets for image acquisition, and any glints or other undesired sources of high contrast on the model surface are eliminated by applying a thin coat of flat black paint to these regions (Note: This is not a standard practice at all facilities.) The thickness of the targets is somewhat instrusive and may cause drag coefficient increments of a few counts at the supersonic speeds; as a result, the VMD measurements are generally made in a separate run series in a manner similar to the PSP technique. A standard CCD video camera with characteristics that have been well-documented by ETTD is used to acquire images of the targeted region. Uniform illumination of the model is provided by a fiber optic-based ring light that easily attaches to the front of the camera's remote zoom lens.

The $\mathbf{1 . 5 \%}$-scale HSR TCA 20 model installed in UPWT test section 1 is shown in the above photograph, taken at the conclusion of a recent video model deformation experiment. The 5 chordwise rows of retroreflective targets are visible on the right wing upper surface.

The figure above shows a close-up view of the right-hand wing upper surface on the 1.5%-scale HSR TCA model 20 installed in UPWT test section 1. Five rows of retroreflective targets are visible; the first four chordwise rows (starting from the wing root region) feature four 0.188 -inch diameter targets while the fifth row (at the wing tip) has three 0.125 -inch diameter targets. The wing twist and deflection measurements that are presented in following figures correspond to the row near the wing tip. Note that several smaller screw holes in the wing surface are filled with dental plaster, and these holes can be miscontrued in the photograph as VMD targets. These holes are not visible during the image acquisition process.

A close-up view of the VMD system camera installed in the webbing of the test section is shown in this photograph. The standard video CCD camera is mounted to the remote zoom lens which, in turn is bolted to an angle plate that is \mathbf{C}-clamped to the webbing. The fiber optic link to the lens-mounted ring light is also discernible in the figure. Considerable care is required to ensure that that the focal length and camera position are not changed once the camera calibration is completed. The video signal from the camera is routed to the Data Room via an RG-59 cable to a video distribution amp and to the video framegrabber board in the PC image acquisition system. Set-up of the VMD camera equipment is very straightforward and requires less time than the PSP hardware installation.

UPWT VMD System (concluded)

- The video signal is routed to a frame grabber controlled by a 120 MHz Pentium PC in the UPWT Data Room
- Detailed in-tunnel static calibrations are performed using a target plate to determine the camera position and pointing angles
- Wind-off pitch sweeps of the model (in the upright position) and retroreflective targets installed are then conducted
- Automated system analyzes several digitized video images at each angle of attack during the wind-off and wind-on pitch sweeps and displays "raw" values of the wing local angle of attack and vertical ("z") coordinates
- Commercially-available numeric computation and visualization software package is used to compute and plot final wing twist and wing bending results

Images are acquired from the video CCD camera using a frame grabber board installed in a Windows 95 -based PC. Acquisition of digitized video images is triggered by a "pickle switch" or a keyboard command, and the automated system identifies the model targets and analyzes several video images at each angle of attack. Tunnel test condition information is also acquired at this time from the wind tunnel data acquisition system via an RS232 interface. The tunnel test conditions, test point information, and the values of the uncorrected local angle of attack and vertical displacement at all target rows are then displayed on-screen, at which point the system is ready for the next data point. Target plate calibrations and wind-off and wind-on data are acquired in the same manner. The calibration of the camera is a detailed procedure which uses a target plate rig constructed for the UPWT system and yields the camera location, pointing angles, and effective focal length. Wind-off pitch sweeps of the model in the upright position are conducted to verify the camera calibration and to provide static "tares" that are subtracted from the wind-on data. Post-run processing of the VMD data is done using a commercially-available software package that computes and plots the corrected wing twist and deflection results.

This is a close-up view of the 1.5%-scale HSR TCA 20 model with a VMD system calibration target plate placed on the right wing upper surface. The target plate consists of 49 targets with precisely known x - and y-coordinates measured on a NASA Quality Assurance validator. In practice, the target plate is mounted to a platform that has precise control of the y - and z-position of the plate relative to the model centerline. The target plate is a critical element in the determination of the VMD system camera position and pointing angles.

The calibration rig that is used to determine the camera constants (location, pointing angles, effective focal length) is shown in this photograph. The target plate is situated atop the rig and slides over the top of the wing surface. The x position of the calibration assembly is set to provide a satisfactory image from the video CCD camera, and the y - and x-positions of the plate are varied using optical rail and lab jack arrangements. The y - and z-displacements of the target plate are measured using dial gauges (only one gauge is shown installed in the present photograph). As the calibration progresses, the calibration rig displacements measured with the dial gauges are compared to similar measurements obtained with the VMD system.

The host computer for the VMD system is illustrated in the above photograph. The mini-tower case contains the video frame grabber board that acquires, stores, and analyzes the digitized images. All image acquisition, processing, analysis, and plotting of the VMD results can be performed from this site.

VMD Applications to Date

- 1.675\%-scale HSR Reference H model
- 1.675%-scale HSR TCA 2 a model
- $\mathbf{1 . 6 7 5} \%$-scale HSR TCA 20 model
- Test sections 1 and 2
- $\mathbf{M}=1.6$ to $2.7, \mathrm{Re} / \mathrm{ft}=\mathbf{1 - 5}$ million
- $\alpha=-\mathbf{4}^{0}$ to $\mathbf{1 2}^{\circ}$

An early proof-of-concept test of the VMD system applied to a 1.675% scale HSR Reference H model focused on the measurement of the wing twist at supersonic speeds. Each subsequent test led to enhancements of the UPWT VMD system. Primary improvements include additional target rows across the wing span to provide wing twist, deflection, and secondary model pitch angle measurements; improved method of "spatially mapping" the wind-off and wind-on results; and development of an effective target rig that significantly streamlined the camera calibration process. UPWT provides an excellent environment for this test technique, which has been successfully applied in both test sections over wide ranges of Mach number, Reynolds number, and angle of attack.

Mach Number Effect on Wing Twist HSR TCA 20, Re/ft=3(106), UPWT Test 1844

The effect of the free-stream Mach number on the wing twist at the $\mathbf{y} /(\mathrm{b} / 2)=0.989$ span station is presented above. The Mach number varies from 1.60 to 2.70 at a constant Reynolds number per foot of $3\left(10^{6}\right)$. Increasing the Mach number decreases the wing twist (washout) at a given angle of attack. This effect is caused by the reduced wing lift as the Mach number is increased. A maximum twist angle of approximatly -2.9° was obtained at Mach=1.60 and $\alpha=12^{0}$; at the same angle of attack, the twist angle was about -1.2^{0} at Mach=2.70.

Mach Number Effect on Wing Deflection HSR TCA 20, Re/ft=3(106), UPWT Test 1844

©

The Mach number effect on the wing deflection (bending) at the $y /(b / 2)=0.989$ span station is shown in this figure. Increasing the Mach number decreases the deflection in the z (vertical) axis at a given angle of attack (less upward bending at the wing tip). The maximum deflection of approximately 0.31 inches was obtained at Mach $=1.60$ and $\alpha=12^{0}$; the z displacement was 0.15 inches at Mach=2.7 and the same angle of attack.

Reynolds Number Effect on Wing Twist HSR TCA 20, Mach=2.10, UPWT Test 1844

The Reynolds number effect on wing twist at the $\mathbf{y} /(\mathrm{b} / 2)=0.989$ span station and a constant Mach number of 2.10 is shown in the data plot above. The Reynolds number per foot varies from $1.0\left(10^{6}\right)$ to $5.0\left(10^{6}\right)$ in increments of $1\left(10^{6}\right)$. The trend in the data plot is more of a free-stream dynamic pressure (" q ") effect than Reynolds number, since q varied from approximately 221 psf at $\operatorname{Re} / \mathrm{ft}=1\left(10^{6}\right)$ to 1100 psf at $\operatorname{Re} / \mathrm{ft}=5\left(10^{6}\right)$. The twist angle is approximately a linear function of the Reynolds number ("q"); for example, a five-fold increase in the Reynolds causes a corresponding increase in the twist angle near the wing tip. For the range of angle of attack tested, a maximum twist of -2.75^{0} occurs at a Reynolds number of $5\left(10^{6}\right) / \mathrm{ft}$ and $\alpha=$ 12^{0}, while the corresponding twist at $\mathrm{Re} / \mathrm{ft}=1\left(10^{6}\right)$ is $\mathbf{- 0 . 5 5 ^ { 0 }}$.

Reynolds Number Effect on Wing Deflection HSR TCA 20, Mach=2.10, UPWT Test 1844

Wing deflection measurements obtained during a Reynolds number "sweep" at constant Mach number (Mach=2.10) are shown in this data plot. The Reynolds number per foot varies from $1.0\left(10^{6}\right)$ to $5.0\left(10^{6}\right)$ in increments of $1\left(10^{\circ}\right)$. The z -displacement is approximately a linear function of the Reynolds number. Similar to the results shown in the previous figure, the primary factor affecting the wing displacement is the free-stream dynamic pressure. For the α-range in the present test, a maximum deflection of $\mathbf{0 . 3 6}$ inches occurs at a Reynolds number of $5\left(10^{6}\right) / \mathrm{ft}$ and $\alpha=12^{\circ}$, while the corresponding displacement at $\mathrm{Re} / \mathrm{ft}=1\left(10^{6}\right)$ is 0.10 inches.

Two Experiment Design Types

"Classical" designs

- Change one variable at a time
. Control errors by "holding all else constant"
- Goal: Maximum data points for fixed resources "Modern" designs
- Change all variables each data point
- Errors controlled by balance and randomization
- Goal: Specific objective with min. resources

The term "Classical Design" is used to describe an approach to experimentation in which one variable is changed at a time while all other variables are held constant. Classical designs have been used in wind tunnel research at Langley since the earliest days of flight, and are widely used in wind tunnel testing elsewhere as well.

Today, important aircraft design decisions can turn on fractional drag count results, and practitioners of an alternative experiment design philosophy called "Modern Design" recognize the futility of "holding everything constant" which might affect results at this level. Instead, they exploit their knowledge of the stochastic nature of experimental variables to control error through balance and randomization. Modern and classical design philosophies also differ in their approach to productivity enhancement. Classical designers attempt to maximize the data volume for a given resource budget while modern designers attempt to achieve a specific technical result at a prescribed level of confidence with the smallest expenditure of resources possible.

Classical designs divide a given inference space into a "grid" or "matrix" of test conditions at which response variables of interest are measured (forces, moments, etc.) The extent of this grid and the size of the cells which comprise it are influenced by the amount of resources available for a given test.

Modern design practitioners use the concept of a "response surface" to guide their design efforts. A response surface is a logical extension of the simple onevariable line graph in which the dependence of the response variable on all relevant independent variables is simultaneously considered in a small region of interest in the inference space. The extent of this region is purposely limited to that in which the response variable can be approximated adequately by a loworder Taylor series. Methods such as regression and contrast analysis are used to elucidate the response surface. Various curvature tests and optimization procedures are then used to quickly identify regions in the inference space which are the most interesting (peaks, ridge systems, etc.), which reduces resources that would otherwise be spent in less profitable regions.

Confidence Interval Comparisons

Design Goal: 0.05 Degrees

The aerodynamically-induced increase in wing twist for an HSR stability and control model has been measured for a range of angles of attack, Mach numbers, and Reynolds numbers as described elsewhere in this paper. A classical design requiring 330 data points was initially conducted, followed by a modern design to likewise quantify the wing twist change for the same model. The modern design required only 20 data points to define wing twist as a second-order response function in 3 variables with a design-goal precision of 0.05° at a prescribed 95% confidence level, given the 0.04° standard deviation in measured wing twist that was anticipated. The figure above compares 95% confidence intervals for the classical and modern designs. Both methods generated results with a precision that met the 0.05° design goal.

Modern Design Confirmation Mach 1.8, Re/Ft=3x106, Eta $=0.541$

The two solid curves in the above figure mark the upper and lower limits of the 95% prediction interval for the modern design results at a given Mach number, Reynolds number, and normalized semi-span location. This modern design prediction was confirmed by plotting the 33 data points acquired on a different day at the same conditions, using the classical pitch-sweep method. Similar results were obtained at other combinations of Mach and Reynolds number.

Note that the above combination of Mach number and Reynolds number was never actually run in the modern design. This figure simply represents a slice through the modern design response surface in a direction parallel with the "angle of attack axis" at the specified values of Mach number and Reynolds number. This illustrates the fact that modern design response surface methods, once the response surface is adequately defined the response can be quantified for other combinations of the independent variables besides those measured directly.

Resource Comparison Classical and Modern Designs

The modern design method only requires enough data to fit a low-order (typically first or second order) function of the independent variables in regions of interest, plus sufficient additional data points to insure that design precision goals are met with a prescribed level of confidence. A Central Composite Rotatable Design (CCRD) was employed in this test which could accomplish these objectives with only 20 data points. This resulted in considerably fewer wind-on minutes than the classical design (approximately one third in this test.)

Additional comparison tests involving other response variables, other independent variables and different ranges of variables, and other facilities, must be conducted before a body of practical tunnel-testing experience will have been accumulated which is sufficient to warrant a general implementation recommendation. However, modern design methods have been shown in this test to have some promising potential for wind tunnel research in an era in which external pressures continue to dictate that more be accomplished with less.

Summary

- PSP and VMD systems are installed and operational at UPWT
- Test techniques provide global surface pressure mapping, qualitative surface flow visualization, and model deformation measurements (twist and bending) at supersonic speeds
- Expertise has been developed at UPWT that allows autonomous operation of both systems
- PSP and VMD systems are "works in progress" that will be subject to continued enhancements
- Modern experimental design technique was effective in capturing wing twist characteristics and may provide a means of streamlining the wind tunnel test process

Pressure-sensitive paint and video model deformation systems are installed in the NASA Langley Unitary Plan Wind Tunnel and have been operational since early 1996. The PSP and VMD systems has been effectively used in support of HSR supersonic wind tunnel testing to provide global surface pressure mapping, qualitative surface pressure field response to shock waves and vortex flows, and measurements of the wing local twist angle and deflections (bending). Time to set up and calibrate the PSP and VMD systems is one shift (each), while one shift for each technique is necessary to acquire a typical set of wind-on runs. Simultaneous installation of the PSP and VMD systems has been done, although the images from each system were acquired in a concurrent, rather than simultaneous, manner because of system conflicts. Future enhancements to these systems that may lead to a "turn-key" operation include the ability to remotely control all illumination sources, including mechanized shutters for the UV lamps to reduce the effects of photodegradation, and full automation of the image acquisition process. The experience gained from PSP and VMD testing in cooperation with ETTD has resulted in resident expertise at UPWT regarding virtually all aspects of the system operations (application of the PSP coating continues to be performed by ETTD). A Modern Experimental Design technique was used during a recent VMD test where all critical test parameters were varied at each of 20 data points. The resultant response surface proved effective in predicting the wing twist over ranges of Mach number, Reynolds number, and angle of attack.

Analysis and Multipoint Design of the TCA Concept

Steven E. Krist Steven X. S. Bauer Pieter G. Buning

.

Analysis and Multipoint Design of the TCA Concept

The goal in this effort is to analyze the baseline TCA concept at transonic and supersonic cruise, then apply the natural flow wing design concept to obtain multipoint performance improvemnts. Analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between the overset grids.

Grid Generation and Codes

The initial 20 block overset grid for the TCA baseline configruation, Mach 2.4 cruise condition, was developed by Boeing

Slight topology changes were made to the nacelles to permit the use of PEGSUS41_45 (7 times faster than PEGSUS41_36)

Grids for transonic cruise at Mach 0.95

- 1/3 smaller wall-normal spacing

- 10% more grid points

OVERFLOW version 1.7 t

Grid Generation and Codes

The initial overset grids utilized in this effort were developed by Steve Chaney and Steve Ogg at Boeing. The grids were sized for Mach 2.4 supersonic cruise conditions, maintaining a $y+$ value on the order of one. The grids were modified for the Mach 0.95 transonic cruise condition by decreasing the wall-normal spacing to a third of its original value, thereby maintaining a y+ value of one. A slight change to the topology was also made to the nacelles, using two grids for the external and internal surfaces rather than three. This change permits the user of PEGSUS version 41_45, which is roughly seven times faster than version 41_36, which was required for the successful interpolation of the initial set of overset grids.

The version of OVERFLOW utilized is over1.7t. This version contains upgraded treatments of the multigrid and mesh sequencing boundary conditions.

Wing/Body Pressure Coefficient at Mach 0.95

Results using the Spalart-Almaris and Baldwin-Barth turbulence models for the baseline wingbody configuration at Mach $0.95, \alpha=3.5$, are compared against the experimental results. While the pressure distributions are virtually identical inboard, by 53.9% span the Spalart-Almaris solution shows a slower recovery from the acceleration over the wing leading edge. This result is consistent with OVERFLOW results for transonic transport configurations, where the transonic shock is typically further aft of the data for the Spallart-Almaris model than for Baldwin-Barth. Forces from the two solutions are compared against data in the following table:

	Cl	Cd	Cm
experiment	.12712	.01184	.00370
Splart-Almaris	.13106	.01256	.01007
Baldwin-Barth	.13161	.01202	.00071

In order to investigate reports suggesting that a $y+$ of roughly 0.5 is required for the Spalart-Almaris turbulence model in some cases, the wall-normal spacing was halved and the grid refined by 10%. No significant difference was seen in either solution.

Since discrepancies with the data are larger for Spalart-Almaris than for Baldwin-Barth, all subsequent transonic solutions utilize the Baldwin-Barth turbulence model.

$$
\begin{aligned}
M & =2.40 \\
\operatorname{Re} & =4.0 \times 10^{6} \\
\alpha & =3.0^{\circ}
\end{aligned}
$$

Fuselage/Wing

- exp. upper surf

- exp. lower surf

Spalart-Almaris
Baldwin-Barth

Wing/Body Pressure Coefficient at Mach 2.40

Results using the Spalart-Almaris and Baldwin-Barth turbulence models for the baseline wing/body configuration at Mach 2.40, $\alpha=3.0$, are compared against the experimental results. In this case the pressure distributions are virtually identical accept at the leading edge. Once again, Spalart-Almaris recovers somewhat more slowly than Baldwin-Barth, but in this case the Spalart-Almaris solution shows better agreement with the data. Forces from the two solutions are compared against data in the following table:

	Cl	Cd	Cm
experiment	.07452	.01080	.00457
Splart-Almaris	.07414	.01047	.00421
Baldwin-Barth	.07394	.01037	.00420

Since discrepancies with the data are larger for Baldwin-Barth than Spalart-Almaris, all subsequent supersonic solutions utilize the Spalart-Almaris turbulence model.

While the solutions generally agree with experiment quite well, a noticable discrepency occurs on the lower wing surface at 32.6% and 41.3% span.

Wing/Body Forces and Moments at Mach 0.95

Solutions with the Baldwin-Barth turbulence model were generated for the baseline wing/body configuration at Mach $0.95, \alpha=2.96,3.5$, and 3.92. The results are compared against experiment in the figures. The lift vs. angle of attack curve shows the slight difference in slope which is typical of aeroelastic deformation effects. The lift vs. drag polars also have sligtly different trends, with the discrepency in drag being around 4 counts at the lower Cl's and from 1 to 2 counts at higher Cl's.

Wing/Body Forces and Moments at Mach 2.40

Solutions with the Spalart-Almaris turbulence model were generated for the baseline wing/body configuration at Mach $2.40, \alpha=3.0,3.26$, and 3.47. The results are compared against experiment in the figures. Once again the lift vs. angle of attack curve shows the slight difference in slope which is typical of aeroelastic deformation effects. The lift vs. drag polars show the same trend, but the discrepency in drag is around 4 counts.

The Effect of Trailing Edge Spacing

The initial grid has a trailing edge spacing on the order of 0.5% of chord. The sufficiency of this was checked by decreasing the spacing to 0.05% of chord and refining the streamwise resolution by 10%. Results for transonic and supersonic flow are tablulated below.

Mach	T.E. Spacing	α	Cl	Cd
0.95	0.5%	3.5	.13205	.01204
0.95	0.05%	3.5	.13106	.01256
2.40	0.5%	3.0	.07414	.01047
2.40	0.05%	3.0	.07415	.01051

Effect of Trailing Edge Spacing

In transonic transport problems, solutions from OVERFLOW have been found to be sensititve to trailing edge spacing, particularly in terms of shock location. To determine the sensitivity for HSR configurations, the streamwise spacing at the trailing edge was decreased from 0.5% of chord to 0.05% of chord and the grid was refined with 10% more grid points. The results at both supersonic and transonic conditions indicate that drag increases by about half a count with the grid refinement. However, no significant differences in pressure distributions are seen.

Wing/Body/Nacelle/Diverter Pressure Coefficient at Mach 0.95

Results using the Baldwin-Barth turbulence model for the baseline wing/body/nacelle/diverter configuration, including the fairing where the nacelle protrudes through the upper surface of the wing, at Mach $0.95, \alpha=3.5$, are compared against the experimental results. While the computed and experimental distributions are comparable inboard and immediately outboard of the diverters, a large discrepency is seen in the location of the compression between the diverters, at both 32.6% and 41.3% span. Further outboard,at 68% span, the effects of aerolastic deformation are seen with the unloading of the leading edge.

Wing/Body/Nacelle/Diverter Pressure Coefficient at Mach 2.40

Results using the Spalart-Almaris turbulence model for the baseline wing/body/nacelle/diverter configuration, including the fairing where the nacelle protrudes through the upper surface of the wing, at Mach $2.40, \alpha=3.0$, are compared against the experimental results. Once again, the computed and experimental distributions are comparable inboard and outboard of the diverters, but a large discrepency is seen in the shock location at 32.6% span.

$$
M=0.95 \mathrm{Re}=4.0 \times 10^{6}
$$

Wing/Body/Nacelle/Diverter Forces and Moments at Mach 0.95

Solutions with the Baldwin-Barth turbulence model were generated for the baseline wing/body/nacelle/diverter configuration at Mach $0.95, \alpha=3.2,3.5$, and 4.2. The results exhibit the same trend the wing/body solutions, with the discrepancy in drag varying from 2 to 4 counts.

Wing/Body/Nacelle/Diverter Forces and Moments at Mach 2.40

Solutions with the Spalart-Almaris turbulence model were generated for the baseline wing/body configuration at Mach 2.40, $\alpha=3.0,3.26$, and 3.5. The results exhibit the same trend as for the wing/body, with the drag descrepancy being on the order of 8 counts.

Natural Flow Wing Design

Based on Wing/Body Euler Analyses

- Maintain leading edge thickness constraint
- Blunt leading edge outboard of leading edge break
- Design upper surface for strong conical flow
- Use lower surface to satisfy spar constraints

Regridding for NFW Designs

- Given fuselage and wing definitions
- Wing/Body Script
- Automatic installation script to place nacelle/diverter grids from baseline configuration on redesigned wing.

Natural Flow Wing Design

Designs are based on the Natural Flow Wing Design philosophy developed by Rick Woods and Steve Bauer, as reported in the 1996 HSR workshop proceedings under the title "Application of the Natural Flow Wing Design Philosophy to the HSR Arrow Wing Configuration". An additional aspect of the current design is to maintain a blunt leading edge outboard of the leading edge break for transonic performance.

Wing body grids for the redesigned configruation are generated using a modified form of the wing/body script developed in the AST program. Nacelle/diverter grids for the installed configuration are generated through use of a script file to translate, rotate and project the diverter/nacelle component grids from the baseline configuration onto the new fuselage/wing surface definition. Constraints imposed on the installation are to keep the same inboard diverter/wing trailing edge intersection point, intersect the same point on the outboard diverter with the wing trailing edge, and maintain a constant distance between the nacelle lip and wing surface.

Upper Surface Pressure Coefficient on the Baseline and Design NFW1 at Mach $\mathbf{2 . 4 0}$
The first redesign of the TCA baseline configuration using the Natural Flow Wing design philosophy is designated as NFW1. Pressure distributions on the wing upper surface for the two configurations at Mach 2.4 are illustrated in the figure. In the NFW design, a strong conical expansion is enforced over the leadiing edge. In addition the compression seen on the outboard section of the baseline is eliminated. The compressions seen at the front of the nacelle fairings are due in part to the fact that the nacelles protrude through the upper surface to a greater extent than the baseline. However, it also indicates an inadequate regridding process in the automatic installation of the nacelles.

Lower Surface Pressure Coefficient on the Baseline and Design NFW1 at Mach 2.40
Pressure distributions on the wing lower surface for the two configurations at Mach 2.4 are illustrated in the figure. The NFW design exhibits a much stronger shock interaction between the diverters, as well as a larger expansion over the outboard leading edge due to the bluntness.

Pressure Coefficient Wing Upper Surface

Upper Surface Pressure Coefficient on the Baseline and Design NFW1 at Mach 0.95
Pressure distributions on the wing upper surface for the two configurations at Mach 0.95 are illustrated in the figure. Once again, the NFW design exhibits a much stronger expansion over the leading edge, as well as a shock at the nacelle fairing.

$$
\begin{aligned}
M & =0.95 \\
\alpha & =3.50^{\circ}
\end{aligned}
$$

Lower Surface Pressure Coefficient on the Baseline and Design NFW1 at Mach 0.95
Pressure distributions on the wing lower surface for the two configurations at Mach 0.95 are illustrated in the figure. The NFW design exhibits a much stronger shock at the nacelle and diverter leading edges, as well as a stronger expansion between the diverters.

Summary

NFW1 has poor performance

- Drag is 3 counts higher than the baseline at Mach 2.4
- Drag is 23 counts higher than the baseline at Mach 0.95

The wing/body script is fast and robust

> The nacelle rerigging script is fast but incomplete -2 hour turnaround on grid generation for NFW2 $-\quad$ a sophisticated nacelle fairing treatment is required

Further investigation of the Spalart-Almaris turbulence model is required at transonic conditions

Abstract

\section*{Summary}

The first redesign of the TCA Baseline Configuration using the natural flow wing design has poor performance, with the drag 3 counts higher than the baseline at supersonic cruise and 23 counts higher at transonic cruise. A portion of the drag increment can be attributed to the poor installation of the fairing in the automatic installation of the nacelles and diverters.

The wing body and nacelle rerigging scripts are fast and robust. Turnaround time for generating grids for the second design was on the order of 2 hours (this does not include the time to get PEGSUS through the que). However, the nacelle/wing fairing treatment is incomplete, requiring a more sophisticated treatment to ensure captruing the nacelle outer boundary.

While Baldwin-Barth is the preferred method for transonic OVERFLOW solutions at this time, further investigation of the Spalart-Almaris turbulence model is warranted.

TLNS3D/CDISC MULTIPOINT DESIGN OF THE TCA CONCEPT

Richard L. Campbell and Michael J. Mann

1997 HSR Aerodynamic Performance Workshop NASA Langley Research Center
 February 25-28, 1997

This paper presents the work done to date by the authors on developing an efficient approach to multipoint design and applying it to the design of the HSR TCA configuration. While the title indicates that this exploratory study has been performed using the TLNS3DMB flow solver and the CDISC design method, the CDISC method could have been used with any flow solver, and the multipoint design approach does not require the use of CDISC. The goal of the study was to develop a multipoint design method that could achieve a design in about the same time as 10 analysis runs.

OUTLINE OF PRESENTATION

- Review of CDISC design method
- Single-point designs
- Multipoint design approaches
- weighted average of geometries (WAG)
- transonic flap
- Concluding remarks

This paper will begin with a review of the Constrained Direct Iterative Surface Curvature (CDISC) design method, then look at its application to design of the TCA configuration at a supersonic and a transonic cruise point. Two approaches to the multipoint design problem will then be considered: a new method that uses a weighted average of the geometries from the previous point designs (referred to as the WAG method), and a second approach that involves the use of a flap on the supersonic point design geometry to improve the transonic performance. The concluding remarks will summarize the lessons learned so far and present the future plans for application of the multipoint design methods.

CDISC DESIGN METHOD

- Efficient constrained design with Navier-Stokes codes (design run time \approx analysis run time)
- Target pressures automatically generated based on flow constraints
- Geometry constraints allow design to be impacted by requirements from other disciplines
- "Optimization" available through constraint specification and relaxation
- Modular coupling of CDISC and flow solvers

This chart gives a description of some of the key features of the CDISC design method. It is a knowledge-based design approach that uses rules and guidance obtained from analytical, experimental, and computation sources to allow new designs to be obtained in about the same time as a single flow analysis. The target pressure distributions required by the basic DISC method are automatically generated based on flow constraints, and a suite of geometry constraints are available that allow requirements from other disciplines such as structures and manufacturing to be included in the design process. In addition to the TLNS3DMB Navier-Stokes code already mentioned, the CDISC design module has also been coupled with the CFL3D, OVERFLOW, and USM3D flow solvers to allow a variety of options for viscous design of complex configurations.

FLOWCHART OF CDISC DESIGN SYSTEM

This flow chart shows the components of the CDISC design module and how it is coupled with a flow solver. The design process begins by obtaining a partially-converged flow solution for the initial configuration. The CDISC method then extracts the surface geometry and pressure information that it needs from the grid and restart files. Initial target pressure distributions are defined from the current analysis pressures, then modified as required to meet the flow constraints. After the basic DISC method is used to alter the surface geometry based on these target pressures, the geometry constraints are applied and a grid perturbation scheme is used to modify the volume grid to accommodate the new surface shape. This new grid is then returned to the flow solver for further analysis.

SINGLE POINT DESIGN USING CDISC

- Flow solver: TLNS3DMB (Euler)
- Grid: 117x25x25 C-H
- Objective: reduce drag
- Constraints:
- twist and camber changes on wing only
- maintain original lift and spanload distribution
- Design variable: chordwise loading parameter

Since the primary focus of this study was the development and evaluation of a multipoint design method, a simplified approach has been used for the single point designs. A coarse wing/body grid has been used with TLNS3DMB run in an Euler mode to allow rapid flow analysis and the design was limited to twist and camber changes on the wing only. The objective was to reduce the drag at the design point while maintaining the original lift and spanload distribution. For these initial designs, the only design variable was the chordwise loading parameter.

CDISC DESIGN STATIONS ON TCA6 PLANFORM

Nine wing stations are used for design in all cases, with the locations indicated by the dashed lines in the figure, along with the root and tip stations. The root station is fixed in order to maintain the fuselage geometry, but is used to interpolate changes from the second station onto grid lines located between the first two design stations. The changes at the tip are aliased to the changes at the changes at the station just inboard of it. The arrows indicate design stations at which sectional pressures and airfoils will be shown in later figures.

SUPERSONIC DESIGN USING CDISC

- Conditions:

- $\mathrm{M}=2.40$
$-C_{L}=0.0896$
- Results:
$-\Delta C_{D}=-.00002$

The supersonic point design was performed at a Mach number of 2.40 and a lift coefficient of 0.0896 (this value corresponds to lift of the baseline TCA configuration at an angle of attack of 3.5 degrees). A number of combinations of chordwise loading parameter were tried, but little drag reduction was obtained. This was consistent with previous studies that indicated that most of the potential for drag improvement involves wing root design and thickness changes.

SUPERSONIC DESIGN PRESSURES AT $\eta=0.43$

$$
M=2.40 \quad C_{L}=0.0896
$$

The resulting pressure distributions for the supersonic design are compared with the pressures for the baseline configuration at a station on the inboard portion of the wing. The leading edge expansion is similar for both configurations, but the CDISC design pressure distribution is smoother and somewhat more aft-loaded. It should be noted that the loading could be shifted slightly more forward without a significant drag increase if pitching moment is a constraint.

SUPERSONIC DESIGN AIRFOIL AT $\eta=\mathbf{0 . 4 3}$
 $\mathrm{M}=2.40 \quad \mathrm{C}_{\mathrm{L}}=\mathbf{0 . 0 8 9 6}$

A comparison of the design and baseline airfoils at the same inboard station shows that the angle of attack is nearly the same, but the design airfoil has more camber, which may be helpful at the transonic design point.

SUPERSONIC DESIGN PRESSURES AT $\eta=0.89$

$$
M=2.40 \quad C_{L}=0.0896
$$

The pressure distributions for the baseline and design airfoils at a station on the outboard portion of the wing are very similar. Both have the nearly uniform chordwise loading that appears to be optimal for airfoils on a wing with a supersonic leading edge.

SUPERSONIC DESIGN AIRFOIL AT $\eta=0.89$
 $\mathrm{M}=2.40 \quad \mathrm{C}_{\mathrm{L}}=\mathbf{0 . 0 8 9 6}$

As with the inboard station, the baseline and design airfoils are at a similar angle of attack, with the design airfoil having slightly more camber.

TRANSONIC DESIGN USING CDISC

- Conditions:

- $\mathrm{M}=0.95$
$-C_{L}=0.1438$
- Results:
$-\Delta C_{D}=-.00137$

The transonic design was performed at a Mach number of 0.95 and a lift coefficient of 0.1438 which, as with the supersonic design, was the lift of the baseline configuration at an angle of attack of 3.5 degrees. Again, several values of the chordwise loading parameter were tried, with the best case producing a drag reduction of almost 14 counts relative to the baseline.

TRANSONIC DESIGN PRESSURES AT $\eta=0.43$
 $\mathrm{M}=0.95 \quad \mathrm{C}_{\mathrm{L}}=0.1438$

The baseline pressure distribution at the inboard station has a moderate leading-edge peak and an aft re-expansion that creates a fairly steep gradient as the trailing edge is approached. The design pressures soften both of these features. At this Mach number, the sonic pressure coefficient is about -0.1 . Although the leading edge peak as well as the aft expansion reach supersonic speeds, there is probably not much wave drag associated with them because of the sweep of the isobars (not shown).

TRANSONIC DESIGN AIRFOIL AT $\eta=0.43$
 $\mathrm{M}=\mathbf{0 . 9 5} \quad \mathrm{C}_{\mathrm{L}}=\mathbf{0} .1438$

The airfoils that correspond to the pressures in the previous figure are shown in this figure. The angle of attack is nearly the same for the two configurations, but the design airfoil has quite a bit more camber, especially near the leading edge. This suggests that a leading-edge flap could be used to obtain much of the benefits of the transonic camber design at this station.

TRANSONIC DESIGN PRESSURES AT $\eta=0.89$

$$
M=0.95 \quad C_{L}=0.1438
$$

At the outboard design station near the tip, the baseline pressures indicate that a strong leadingedge shock is present. The design has eliminated this shock while recovering the lift through increased aft loading, although the aft recovery gradient is still mild. The leading-edge shock was probably the source of most of the wave drag for the baseline configuration at these conditions, and its elimination is the likely cause of the drag reduction for this case.

TRANSONIC DESIGN AIRFOIL AT $\eta=\mathbf{0 . 8 9}$
 $\mathrm{M}=\mathbf{0 . 9 5} \quad \mathrm{C}_{\mathrm{L}}=\mathbf{0 . 1 4 3 8}$

The comparison of the baseline and design airfoils at the outboard station indicates that the reduction in the leading-edge pressure peak was achieved by a combination of twist and camber, with again a noticeable increase in camber near the leading edge. This suggests that only some of the benefit of the transonic design could be achieved by simply deflecting a leading-edge flap.

MULTIPOINT DESIGN APPROACHES

- Weighted Average of Geometries (WAG)
 - single point grids used as design variables
 - drag estimation for improved convergence with combined-drag objective function
 - drag constraint option also available
 - procedure is fully automated

- Transonic flaps
- I.e. flap deflected for $M_{\text {peak }}$ constraint
- t.e. flap deflected for $\mathrm{c}_{\text {I }}$ constraint (not used)

Having completed the initial single-point designs at supersonic and transonic cruise conditions, the problem of obtaining good performance for a mission that includes flight at both design points was then addressed. Two approaches to this multipoint design problem were considered: a new method that employed a weighted average of the point design geometries (WAG method), and a second approach that used a leading-edge flap to improve the transonic performance.

The WAG method automatically determines a grid weighting factor that will be used to blend the grids from the two point designs in a manner that will minimize a combined-drag objective function (this process will be described in detail in the next figure). A drag estimation procedure is used to help improve the convergence of this process. For this study, the supersonic and transonic drag coefficients are arbitrarily assigned factors of 0.8 and 0.2 , respectively, for computing a com-bined-drag coefficient. The WAG method also has the option of minimizing the drag at one point subject to a drag constraint at the other point.

For the transonic flap approach, a leading-edge flap is simulated on the supersonic point design geometry to reduce the drag at transonic speeds. In this case, a maximum Mach number constraint is imposed, and the flap is automatically deflected in an attempt to meet the constraint.

FLOW CHART FOR WAG MULTIPOINT DESIGN METHOD

A flow chart of the WAG multipoint design method is shown in this figure. The procedure begins with a program that estimates a grid weighting factor for use in the grid blending program. For the first two passes through the procedure, weighting factors of 1.00 and 0.00 are specified in order to obtain flow analyses at the two design points for each of the initial point designs. For the third pass, the drag is assumed to vary quadratically between configurations at a given design point (e.g, at the supersonic cruise conditions, a $50 / 50$ blend of the supersonic and transonic point design grids will yield a drag that is higher than the drag of the supersonic design by 25 per cent of the drag difference between the transonic and supersonic designs). On subsequent passes, a weighting factor for the drag minimum is estimated using a curve fit of the previous drag values. Currently, convergence is assumed when the new weighting factor is within 0.05 of a previous value.

MULTIPOINT DESIGN RESULTS FOR A GENERIC FIGHTER AT MILD MANEUVER CONDITIONS

Although the WAG approach is a very simple one, it was shown in one study to produce drag reductions comparable to those achieved from multipoint numerical optimization, but at several orders of magnitude less cost. In this study done cooperatively with the Defense Research Agency (DRA), a generic fighter wing/body configuration was redesigned to minimize the combined-drag coefficient for a number of mission (i.e., relative drag) weighting factors. The two design points were transonic and supersonic mild maneuver conditions. Since different grids and flow solvers were used for the WAG design and the numerical optimization, the design results have been normalized by the drag of the baseline configuration at each design point as predicted by the flow solver used by each design method (the circle symbol on the plot). The lines represent a series of multipoint optimizations performed by each method, where the left end is a purely supersonic mission and the right end is a purely transonic mission. Both methods were effective at reducing drag relative to the baseline, with the CDISC-WAG method showing slightly greater drag reductions for the missions dominated by the supersonic drag point. Each multipoint numerical optimization required several hundred flow analyses, while the WAG method required 6-8 for the first mission and typically only two additional analyses for each new mission after that.

INITIAL MULTIPOINT DESIGN RESULTS USING WAG METHOD

This figure shows the initial results from applying the WAG design method to the TCA configuration. A grid weighting factor (GWF) of 0.0 corresponds to the initial transonic point design while $G W F=1.0$ corresponds to the initial supersonic point design. The first two cycles generated the four data points at the ends of the dashed lines, with the dashed lines generated by the quadratic drag increase assumption mentioned earlier. Using these assumed drag distributions, the variation of the combined-drag objective function is computed (solid line) and a minimum is found to occur at GWF $=0.72$. The symbols at this value of GWF indicate the computed supersonic and transonic drag values for this new blended grid. The estimated supersonic drag is nearly identical to the computed value, while the estimated transonic drag is slightly below the computed value.

FINAL MULTIPOINT DESIGN RESULTS USING WAG METHOD

Using curve fits through the computed values of drag, a new estimate of the minimum of the objective function is obtained ($G W F=0.80$). A new blended grid is generated using this value of GWF and analyzed at the two design points. The resulting drag values are nearly identical to the estimated values. Updating the drag curve fits with the new values changes the minimum of objective function by less than 0.1 count of drag. Thus the WAG method required eight analysis runs to achieved a converged multipoint design.

TRANSONIC FLAP DESIGN

\author{

- Conditions: $\mathrm{M}=0.95, \mathrm{CL}=0.1438$
 - Geometry: $\eta=0.66-1.00$, hinge line $x / c=0.15$
 - Constraints: $M_{\text {peak }}<1.3, M_{h l}<M_{\text {peak }}$
 - Results: $\Delta C_{D}=-.00077$
}

As an alternative to a single geometry that compromises the performance at the two design points, the design at the dominant design point (supersonic in this case) is maintained and a flap is used to improve the performance at the other design point. Since most of the wave drag at the transonic design point appeared to result from the leading edge shock on the outboard portion of the wing, a flap was defined from the leading-edge planform break to the tip, with a hinge line at $\mathrm{x} / \mathrm{c}=0.15$. (This hinge line location was selected based on a brief study of several locations). The CDISC flap constraint was used with a peak Mach number limit of 1.3 which, with the shock sweep considered, gives a normal Mach number of slightly over 1.0. Also included in the flap constraint is a requirement that the hinge-line Mach number not exceed the leading-edge peak Mach number. The flap deflection quickly converged to a value of 5.84 degrees, with a resulting drag reduction of about 8 counts relative to the baseline.

TRANSONIC DESIGN PRESSURES AT $\eta=\mathbf{0 . 8 9}$

$$
M=0.95 \quad C_{L}=0.1438
$$

The resulting pressure distribution is compared with the pressures from the transonic single point design (solid line) and the WAG multipoint design (dashed line) at the outboard wing station shown before. The peak Mach number limit corresponds to a pressure coefficient of about -0.56 . The flap design did not quite obtain this value because of the limitation also imposed on the hinge-line Mach number. While the flap design did not eliminate the shock as was the case with the single point design, the shock strength was greatly reduced relative to the WAG multipoint case. (It should be noted that the WAG case did, however, reduce the shock strength relative to the baseline).

TRANSONIC DESIGN AIRFOILS AT $\eta=0.89$
 $\mathrm{M}=0.95 \quad \mathrm{C}_{\mathrm{L}}=\mathbf{0 . 1 4 3 8}$

The resulting flap geometry at the outboard station is compared with the airfoils from the single point and multipoint designs in this figure. While there is an obvious twist difference between the single point design and the flap design, the camber lines in the region of the flap are very similar. The large surface curvature that can be seen at the hinge line is the source of the secondary Mach number peak shown in the previous figure.

SUMMARY OF MULTIPOINT DESIGN DRAG COEFFICIENTS

	Baseline	WAG	Flap
Supersonic	0.00624	0.00625	0.00622
Transonic	0.00672	0.00637	0.00595
Combined	0.00634	0.00627	0.00617

A summary of the drag results for the two multipoint design approaches is given in the table above. At the supersonic design point, the WAG design is only slightly worse than the baseline, while the flap design retains the small improvement of the single point supersonic design. At the transonic design point, both designs have improved performance relative to the baseline, with the flap approach providing about twice as much drag reduction as the fixed geometry WAG design. The variation in the combined drag coefficient is small, reflecting the dominance of the supersonic portion of the mission, but the WAG and flap multipoint design approaches do provide about 1 and 2 counts, respectively, of overall drag improvement. On this basis, the flap approach would be preferred, but other systems issues such as weight or safety may affect this conclusion.

CONCLUDING REMARKS

- An efficient automated multipoint design
approach (WAG) has been developed
- CDISC camber/twist design at supersonic design point produced no significant drag benefit
- CDISC camber/twist design was effective at reducing drag at the transonic design point
- Flap design was less effective than camber/twist design at reducing drag at the transonic design point, but produced a slightly lower combined drag value than the WAG approach

In conclusion, an efficient, fully-automated multipoint design approach, referred to as the WAG method, has been developed. It combines single point design geometries (developed in this study using the CDISC design method) in a systematic fashion to reduce a combined-drag objective function. For the limited camber/twist designs performed in this initial study, CDISC did not produce an appreciable drag reduction at the supersonic design point, but did significantly reduce the drag at the transonic design point. A transonic flap approach to multipoint design was also evaluated in this study. While the flap was not as effective as the CDISC point design at reducing transonic drag, it did produce a lower combined drag value than the WAG method.

FUTURE PLANS

- Include thickness and fuselage/wing-root design changes (within TCA constraints) in CDISC point designs

- Apply WAG and/or transonic flap multipoint design approaches to promising designs on finer viscous grids, including full-configuration cases

Based on the results of this initial study, it is recommended that future design work with CDISC allow for changes in wing thickness (within the TCA constraints) and also include wing root and fuselage design changes, especially for supersonic point designs. While this relaxed set of design constraints should initially be evaluated using the coarser grids from this study, the efficiency of the CDISC and WAG methods should allow the methods to be practically used for viscous design on fine grids for even full-configuration cases.

Prediction and Assessment of Reynolds

Number Sensitivities Associated with Wing Leading-Edge Radius Variations

Richard A. Wahls
Melissa B. Rivers
Lewis R. Owens, Jr.
NASA Langley Research Center
February 25, 1997

The primary objectives of this study were to expand the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions, and to assess the predictive capability of CFD for these effects. Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements to enable a viable HSCT, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds, and 3) limited data. A test of a modified Reference H model with the TCA planform and 2 LE radius distributions was performed in the NTF, in addtion to Navier-Stokes analysis for an additional 3 LE radius distributions. Results indicate that there is a tremendous potential to improve high-lift performance through the use of a blunt LE across the span given an integrated, fully optimized design, and that low Rn data alone is probably not sufficient to demonstrate the benefit.

Outline

- Objectives
- Background
- Approach
- Model Geometry
- NTF Results
- Navier-Stokes Results
- Concluding Remarks

As outlined above, this presentation will begin with a statement of the general objectives of the project, followed by background information which led to the initiation of the study, and the approach taken to meet the objectives. Next, the wind tunnel model is described including its relationship to both the Reference H and Technology Concept Airplane (TCA) geometries. Finally, preliminary analysis of results from both the experimental and computational portions of the study will be discussed. Concluding remarks will close the presentation.

1997 HSR Aerodynamic Performance Workshop

Objectives

- Expand subsonic/transonic data base of Rn sensitivities associated with LE radius variations, including the supersonic LE of an outboard wing panel
- Obtain data for CFD code validation

The general objectives of the project are shown above. The primary goal was the expansion of the data base showing the effects of LE radius distribution and corresponding sensitivity to Rn at subsonic and transonic conditions. Particular emphasis was placed on the under exploited supersonic LE of the outboard wing panel. The experimental data generated meets the goal of data for CFD validation.
Additional objectives addressed in the course of this study, but not presented herein, included preliminary assessments of the Rn effects associated with the planform change from the Reference H to the TCA and of the corresponding change to the high-lift, inboard LE flap configuration. These topics were addressed in the experimental portion of the study, and results are described in a separate paper in this workshop (High-Lift Session) entitled "Testing a 2.2% HSR Ref. H Model with Modified Wing Planform in the NTF," by Owens, Wahls, and Hamner.

1997 HSR Aerodynamic Performance Workshop

Background I

- Multipoint Design Requirements
- Take-off, Approach, Transonic Cruise, \& Supersonic Cruise
- High-lift needs quieter engines and/or more LD to be viable
- Supersonic Issues
- wave drag increase with LE bluntness for supersonic LE?
- reduced drag supersonic airfoil design w/ blunt LE reported by Wilby
- NFW success on M2.4-7A configuration
- improved multipoint design incorporating a blunt supersonic LE is possible
- Existing Data
- AST 210 configuration tested in the NTF
- Mach $=0.3$, LE radius variation inboard only: "sharp" vs "blunt"
- Generic 65 deg delta wing tested in the NTF
- Mach $=0.4 \rightarrow 0.9,4$ interchangeable LE's w/ various radius distributions

Several key elements led to the initiation of this project: 1) the necessity of meeting multipoint design requirements, 2) the demonstration that blunt supersonic leading-edges can be associated with performance gain at supersonic speeds, and 3) limited data.
In addition to supersonic cruise, the mission of an HSCT also includes transonic cruise, take-off and landing requirements. Currently, high-lift success requires quieter engines and/or more L/D. Blunt LE geometry can enhance performance at these conditions, particularly if the less swept, outboard portion of the wing is allowed to contribute.
Can improved subsonic performance be realized without adversely affecting supersonic performance? Yes. Wilby (Aeronautical Research Council, CP-921) shows a reduced drag airfoil at supersonic speeds incorporating a relatively blunt LE. The Natural Flow Wing (NFW) design philosophy as applied in the redesign of the M2.4-7A configuration (NASACP-1999-209690, Bauer and Krist) demonstrates the possibilities for an HSCT. The key to success is an integrated design; that is, the LE geometry cannot be changed independent of overall geometry.
Data addressing LE radius effects over a large Rn range are limited. Two sources are NTF tests of the AST 210 ($73 / 60$ arrow wing) with sharp and blunt inboard LE radi (outboard LE remained sharp)(NASA TP-1999-209695, Williams, et al.), and of a generic 65 deg delta wing with 4 interchangeable LE sections (NASA TM 4645, Chu and Luckring).

The HSR program is currently in a 3 year phase centered around the evaluation and redesign of the TCA configuration. It was desired to generate Rn effects data on the TCA planform, examine the high-lift LE flap configuration, and demonstrate that a blunt supersonic LE design is worth pursuing in time to provide input to the definition of the follow-on baseline configuration. Given the NTF schedule and major shutdown for upgrade, model material availability, and insufficient funds/support for a new model, the decision was made to target a test window in the NTF in the 1st quarter of FY97 prior to the NTF shutdown.

The approach to meet the objectives within the program and facility availability constraints was as follows. First, modify an existing model suitable for the NTF test environment. The obvious choice was the 2.2\% HSR Reference H model. Second, execute a test in the NTF at high-lift and transonic conditions to provide a wide range of Rn conditions to allow experimentally based assessments and provide data for CFD validation. Finally, and concurrent with the experimental testing, execute a complementary CFD study to assess predictive capability and to expand the study to geometries not tested experimentally.

The first step was the modification of the existing 2.2\% HSR Ref. H model to represent the TCA wing as closely as possible. Geometric constants are shown above; the Modified Ref. H values are identical to the TCA. Note, that the reference area for the Ref. H is the gross wing area (rather than the wimpress area used during Ref. H testing) to be consistent with the TCA definition. The Ref. H (truncated) body and inboard wing center section and TE (indicated by the dotted lines) were maintained, while the LE and outboard wing panels (indicated by the dashed lines) were not. New LE and outboard wing panels were designed and fabricated to provide the TCA planform while not restricting a return to the Ref. H geometry.

The modification process, or more specifically the blending process, is demonstrated above for a typical inboard airfoil section. First, the TCA section at a given span location is translated to match the TE of the existing Ref. H model hardware. Next, the TCA section is rotated around the TE to align with the existing model parts with emphasis on the upper surface to avoid unwanted surface inflections. Finally, blending occurs over a small region forward of the existing hardware in to the TCA LE region. This sequence was repeated for several airfoils over the span of the existing wing center section/TE hardware; outboard of this point, a small blending region existed in the spanwise direction until the TCA outboard airfoil definitions could be maintained.

The resulting geometry had the characteristics shown above. Note that wing LE radius distribution of the modified Ref. H is identical to that of the TCA, and that both the TCA and the Ref. H have a sharp LE on the outboard wing panel. Existing Ref. H model hardware inboard drives the differences in wing twist, maximum thickness, and the location of the maximum thickness. Outboard of the pre-existing hardware, the modified Ref. H and TCA geometries more closely match.
The resulting geometry was smooth and sufficient to address the objectives of the study. However, in no way should this geometry be considered optimized aerodynamically.

Once the baseline, modified Ref. H geometry was established, several altemative LE radius distributions were quickly assessed using the linear theory code, AERO2S, by Carlson, et. al. Time constraints permitted the selection of one altemative radius distribution for fabrication and testing. The chosen alternative is referred to as the "full blunt" LE, which is characterized by an inboard LE radius identical to the baseline, but a constant LE r/c outboard of the crank and matching that at the crank. Shown above is a comparison of airfoils at the 75% semispan station highlighting the increased LE bluntness of the alternative distribution. The alternative LE blends into the baseline airfoil forward of the maximum thickness location.
Three other alternative LE radius distributions evaluated computationally will be described later.

- Mach $=0.30$
- Mach $=0.90$
- Rn,mac $=9.4 \rightarrow 100 \times 10^{6}$
- $\alpha=-3^{\circ} \rightarrow 24^{\circ}$
- nacelles on
- 0/0 \& 30/10 full-span flaps
- baseline \& alt. LE radius
- Rn,mac = $11 \rightarrow 89 \times 10^{6}$
- $\alpha=-2^{\circ} \rightarrow 12^{\circ}$
- nacelles off
- 0/0 flaps
- baseline \& alt. LE radius

The range of test conditions in the NTF test (designated NTF089) pertinent to this study are shown above. All data shown herein were obtained with natural transition on the wing. A complete set of low Rn data with fixed transition was planned but not obtained due to significant facility downtime associated with a pitch system failure. Force and moment data were obtained. Limited pressure data on the existing Ref. H wing center section were also obtained; LE and outboard wing panel pressures were not obtained due to limited funding and design/fabrication time constraints.

The above chart, and the following chart, show data as a function of LE radius, Rn , and CL at Mach $=0.90$ with undeflected flaps. In each chart, the left hand plot shows data for each LE as a function of CL at low Rn. The right hand plot shows the increment due to the alternate LE radius for each Rn as a function of CL. Data has not been corrected for aeroelastic effects (wing twist and bending differences due to two significantly different dynamic pressures needed to span the Rn range).
The incremental drag data above generally show a drag reduction due to the alternate LE, particularly below $\mathrm{CL}=0.3$. The large, adverse increment in the 22 e 6 and 55 e 6 data at high CL are currently attributed to curve fitting uncertainty due to sparse data in this range. This explanation will be further investigated.

The L/D incremental data are consistent with the CD data of the previous chart, indicating generally small, favorable effects due to the altemate LE. Results are particularly favorable at CL's near L/Dmax.

The above chart, and the following chart, show data as a function of LE radius, Rn , and CL at Mach $=0.30$ with undeflected flaps. In each chart, the left hand plot shows data for each LE as a function of CL at low Rn. The right hand plot shows the increment due to the alternate LE radius for each Rn as a function of CL. Data has not been corrected for aeroelastic effects (wing twist and bending differences due to two significantly different dynamic pressures needed to span the Rn range).
The incremental drag data above generally show a significant drag reduction due to the alternate $L E$, particularly below $C L=0.5$. The large, adverse increment in the 55e6 data at high CL are currently attributed to curve fitting uncertainty due to sparse data in this range. This explanation will be further investigated.

NTF Results IIb

- Comparison of alternate \& baseline LE effect on L/D
- Mach = 0.3, 0/0 flaps
- Generally significant favorable effect due to the alternate LE, but decreasing with increasing CL above LDmax

The L/D incremental data are consistent with the CD data of the previous chart, indicating significant, favorable effects due to the alternate LE. Results are particularly favorable at CL's near L/Dmax, but decrease with increasing CL.

The above chart, and the following chart, show data as a function of LE radius, Rn , and CL at Mach $=0.30$ with leading and trailing edge flaps deflected 30 and 10 degrees, respectively. In each chart, the left hand plot shows data for each LE as a function of CL at low Rn. The right hand plot shows the increment due to the alternate LE radius for each Rn as a function of CL. Data has not been corrected for aeroelastic effects (wing twist and bending differences due to two significantly different dynamic pressures needed to span the Rn range).
The incremental drag data above generally show a significant drag reduction due to the altemate LE , particularly near $\mathrm{CL}=0.5$.

The L/D incremental data indicate favorable effects due to the alternate LE. Results are particularly favorable in the vicinity of $C L=0.5$ (~design).

The above chart shows CD and L/D incremental data due to the alternate $L E$ at Mach $=0.3$ and 0.9 and $C L=0.2$ (near L/Dmax) with undeflected flaps cross plotted against Rn. Jumps in increment values at constant Rn ($\sim 33 \mathrm{e} 6$) are due to uncorrected aeroelastic effects. Generally, the alternate LE provides a positive benefit across the Rn range as exhibited by reduced CD and increased L/D. The benefits are considerably more significant at the low Mach number, indicating tremendous potential to enhance high-lift performance with an integrated design. Nonmonotonic trends with Rn are not understood at this point, but remain under investigation. Another key element demonstrated above is the fact that low Rn data alone is not sufficient to demonstrate the potential benefit of the alternate LE geometry.

The test matrix for the computational study included 5 geometries (baseline Modified Ref. H and 4 alternate LE radius distributions), 5 angles-of-attack ($1,3,5,7$, and 10 deg), $3 \operatorname{Rn}$ ($10 \mathrm{e} 6,30 \mathrm{e}$, and 80 e 6 based on the mac), and one Mach number (0.90).Navier-Stokes predictions were made using CFL3D, version 4.1, and primarily the Baldwin-Lomax with Degani-Schiff turbulence model. The BaldwinBarth, Spalart-Allmaras, and Menter's SST turbulence models were also used on the baseline geometry at an angle-of-attack of 5 deg. The single block C-O grid has 141 points streamwise, 257 spanwise, and 65 normal to the surface for total approaching 2.4 million grid points. Normal spacing near the surface was held constant for the $\mathrm{Rn}=10 \mathrm{e} 6$ and 30 e 6 cases, and modified for the $\mathrm{Rn}=80 \mathrm{e} 6$ case; in all cases, the average y-plus value is no larger than 1. C90 times for converged solutions ranged from 2 to 11 hours, with angle-of-attack being the dominant factor, followed by the Rn, and finally the LE geometry. Timing for the code was approximately 5 microseconds/grid point/ iteration.

1997 HSR Aerodynamic Performance Workshop

CFD LE Geometry Detail

- Comparison of Modified Ref. H LE Radius Distributions
- Baseline \& "Full Blunt" LE's tested in the NTF

The LE radius detail for the baseline and 4 alternates studied are shown here. Recall that the baseline LE is identical to that of the TCA. The "full blunt" LE matches the inboard LE of the baseline, then maintains the blunt r / c ratio at crank across the entire outboard panel. The "full sharp" LE is identical to the baseline on the outboard panel, in addition to being sharp inboard ($\mathrm{r}=0$). The "blunt to sharp" LE begins with baseline radius at the side of body, then " r " linearly decreases to zero at the tip. Finally, the "sharp to blunt" LE begins as sharp $(r=0)$ at the side of body, then linearly increases to that of the "full blunt" LE at the tip. Recall that the baseline and "full blunt" geometries were tested in the NTF.

The chart above shows a comparison of drag increments due to the "full blunt" LE at $\alpha=5 \mathrm{deg}$ (CL 0.2) between experiment, CFL3D, and AERO2S (AERO2S was used for a quick parametric study to choose the primary alternate LE). Experimental data has not been corrected for aeroelastic effects; the vertical data shift at Rn,mac $\sim 33 e 6$ represents the difference between test dynamic pressures of approximately 1000 and 1800 psf . The prediction levels seem optimistic, but the trends with Rn are similar, particularly up to a Rn,mac $\sim 55 \mathrm{e}$. Although not done as yet, correction of the experimental data to that of the rigid geometry shape ($\mathrm{q}=0 \mathrm{psf}$) used in the predictions will shift the experimental results toward the predicted results.
An additional factor not accounted for in this comparison is the fact that the "sharp" LE of the experimental model is in reality a finite thickness on the order of 0.0075 inches while the predictions shown are for a perfectly sharp LE. A quick order of magnitude analysis for this difference was made using AERO2S with a "sharp" LE radius defined as half the finite thickness. The results indicate an effect on the order of $5-6$ drag counts in the direction of reducing the disagreement shown above.

The chart above compares the effects of the 4 alternate LE geometries investigated. The missing point at Rn,mac $=80 \mathrm{e} 6$ for the "full sharp" LE is due to the lack of a converged solution. This occurred at angles-ofattack of 1,5 , and 10 deg; angles-of-attack of 3 and 7 deg were not attempted.
The two LE's with the most "sharpness" show degraded performance, while the two LE's with the most "bluntness" show improved performance. The best LE is the "blunt to sharp" which, relative to the baseline, has slightly reduced bluntness just inboard of the crank, but significantly more outboard. The other characteristic of this LE is the smooth, continuous variation of " r " across the crank; this may be why it out performs the "full blunt" LE, which is blunter but still has some geometric discontinuity at the crank.

The chart above shows upper surface pressure differences due to the "full blunt" LE on the outboard wing panel. Although somewhat difficult to see, the LE region has increased suction levels due to the bluntness. The more easily seen differences emanate from the crank. The "full blunt" LE has a smoother geometric transition across the crank region than does the baseline, and in tum affects the vortex formation emanating from the crank. The comparisons also show significant differences with increasing Rn as well.

1997 HSR Aerodynamic Performance Workshop

Concluding Remarks

- The Modified Ref. H model tested is in no way aerodynamically optimized
- Smooth, continuous transition from inboard to outboard (at the crank) is important
- Computational modelling of "sharp" LE's vs. physical model geometry may be important
- Positive benefit due to blunt supersonic LE across the Rn range
- Low Rn data alone is not sufficient to demonstrate benefit
- Multipoint designs incorporating blunt supersonic LE's are definitely worth pursuing
- supersonic improvement (NFW)
- tremendous potential for high-lift conditions

In conclusion, the following points are reiterated. The modified Reference H model with the TCA planform as tested should in no way be considered an aerodynamically optimized configuration. Rather, it is a test bed for examining sensitivities to localized geometric changes. Results indicate the benefits of a continuous and smooth LE radius distribution across the entire span. Accurate modelling of LE geometries, in particular that of sharp LE's, may significantly affect computational predictions.
Most importantly, the current study demonstrated positive benefit due to the use of a blunt supersonic LE across the Rn range, and that low Rn data alone is not sufficient to demonstrate this benefit. Multipoint designs incorporating blunt supersonic LE's are definitely worth pursuing, both at fundamental and configuration levels of study. The NFW wing design philosophy incorporates this idea by design and has been successful at reducing drag even at supersonic cruise conditions. The tremendous potential for gain at high-lift conditions alone warrants further study be given to LE radius effects, and these studies should include a wide range of Rn.

$$
\begin{gathered}
\text { Preliminary Results of the } 1.5 \% \text { TCA } \\
\text { (Modular) Controls Model in the NASA } \\
\text { Langley UPWT }
\end{gathered}
$$

Outline This slide presents an outline of the major topics covered in this report. The
major topics include an overview of the test objectives, model geometry, test
highlights, data quality, long-term repeatability, longitudinal, directional, and lateral
characteristics, and a summary of the significant results presented.
Outline

Test Objectives

$$
\begin{aligned}
& \text { The primary objective of the test was to obtain an experimental database of the } \\
& \text { stability and control characteristics tor the TCA configuration in order to support the } \\
& \text { development of the firs TCA simulation cycle release (Cycle 1). Additionally, the } \\
& \text { data obtained will be sed to: } \\
& \text { - conduct a preliminary full-flight envelope batch assessment of the TCA } \\
& \text { - update the preliminary design methods database for control surface sizing } \\
& \text { - validate full-configuration force and moment CFD prediction capability }
\end{aligned}
$$

Test Objectives
Acquire TCA stability and control data to support: - TCA simulation (Cycle 1)

- Preliminary full-flight envelope stability and control
assessments
- Preliminary Design (PD) methods
- Full-configuration force and moment prediction
\quad validation
1.5\% TCA Controls Model (\#20) The slide below shows the 1.5\% TCA (modular) controls model, also known as
model \#20.
The model consists of a removable forebody, integral centerbody and main
wing, removable outboard wing-tip panels, removable nacelles and diverters,
removable horizontal and vertical tails, two interchangeable aftbodies (truncated,
extended), and removable forebody chines (built as single piece). Both aftbodies
are flared in order to provide the necessary sting-model clearances.
The model was designed to provide control surface deflection capability for the
outboard leading-edge flaps, all eight trailing-edge flaps, the horizontal tail, elevator,
and rudder.
1.5\% TCA Controls Model (\#20)

Reference H / TCA Model Comparison The figure below shows a sketch comparing the TCA and Reference H control
models. For comparison, both models are presented at the same scale and aligned
at their respective 50% MAC points. This sketch is provided to highlight the
significant planform differences between the two models because some of the
results presented in this paper draw comparisons between the two models.
At the same scale, the TCA is a longer model. The inboard wing leading-edge
sweep is increased and does not have a break. The outboard wing leading-edge
sweep is reduced, and significant trailing-edge flap geometry changes have been
made. The TCA aftbody is flared, while the Reference H aftbody is a constant
radius cylinder. Both the TCA and Reference H horizontal and vertical tails were
designed to maintain the correct exposed area for each surface. The rudder for the
TCA was built to deflect only the lower two panels compared to all three panels for
the Reference H.
TCA / Reference H Model Comparison

Model Highlights
The significant model geometry highlights for the TCA and Reference H models are tabulated below.

Nacelle base pressures for the TCA were obtained for both the inboard and

chamber pressure measurements were also obtained with two internal pressure taps.
Model Highlights
亳
Test Highlights The slide below presents a summary of the testing that was conducted at the
WT with the 1.5% TCA controls model.
A total of 221 runs (41 configurations) were tested in test section \#1, and 174 The slide below presents a summary of the testing that was conducted at the
UPWT with the 1.5% TCA controls model.
A total of 221 runs (41 configurations) were tested in test section \#1, and 174 The slide below presents a summary of the testing that was conducted at the
WT with the 1.5% TCA controls model.
A total of 221 runs (41 configurations) were tested in test section \#1, and 174 runs (28 configurations) were tested in test section \#2. Due to time constraints,
fewer configurations were tested in test section \#2.
Testing was done at a Reynolds number of 3 million per foot in both test
sections. Data was obtained at Mach numbers of 1.8 and 2.1 in test section \#1 and
at Mach numbers of 2.4 and 2.7 in test section \#2. runs (28 configurations) were tested in test section \#2. Due to time constraints,
fewer configurations were tested in test section \#2.
Testing was done at a Reynolds number of 3 million per foot in both test
sections. Data was obtained at Mach numbers of 1.8 and 2.1 in test section \#1 and
at Mach numbers of 2.4 and 2.7 in test section \#2. at Mach numbers of 2.4 and 2.7 in test section \#2.
Pitch polars were done at both 0 and +3 degrees of sideslip angle for most of Pitch polars were done at both 0 and +3 degrees of sideslip angle for most of
the configurations and at -3 degrees of sideslip angle for a few selected configurations. The angle-of-attack range was from -4 to +12 degrees in 0.5 degree increments.
Yaw polars were done at angles-of-attack of 0,4 , and 8 degrees. The sideslip
angle range was from -6 to +6 degrees in 0.5 degree increments.
Test Highlights

Runs Completed:	221 (Test Section \#1)
	174 (Test Section \#2)
Configurations:	41 (Test Section \#1)
	28 (Test Section \#2)
Mach Numbers:	$1.8,2.1$ (Test Section \#1)
	$2.4,2.7$ (Test Section \#2)
Reynolds Number : $3 \times 10^{6} / \mathrm{ft}$	
Pitch Polars:	$-4^{\circ} \leq \alpha_{F} \leq 12^{\circ}$ for $\beta=0^{\circ}, \pm 3^{\circ}$
Yaw Polars:	$-6^{\circ} \leq \beta \leq 6^{\circ}$ for $\alpha_{F}=0^{\circ}, 4^{\circ}, 8^{\circ}$

TCA Configurations Tested
The next two slides present an outline of the TCA configurations tested. Note
that the order of the configurations shown does not correlate to the actual sequence
of configurations tested.
Configuration build-ups were obtained with both the truncated aftbody and the
extended aftbody geometry. With the truncated aftbody, the nacelle/diverters were
tested both on and off. With the extended aftbody, the horizontal and vertical tails
were tested off and on individually and in combination (baseline). The chine was
also included as part of the configuration build-up mainly for its effect on the
directional characteristics.
Longitudinal control effectiveness was obtained by deflections of the stabilizer
and elevator on the baseline configuration. Horizontal tail deflections tested were \pm
6 , and ± 15 degrees with the elevator undeflected. Elevator deflections tested were
± 20 degrees with the horizontal tail undeflected.
TCA Configurations Tested - Configuration Build-up (Truncated Aftbody):

- W/B
- W/B/N/D

TCA Configurations Tested Directional control effectiveness was obtained by deflections of the rudder on
the baseline configuration. Rudder deflections tested were +10 and +20 degrees.
The effect of the chine on directional control effectiveness was also evaluated with
the rudder deflect +10 degrees.
Lateral control effectiveness was obtained by deflections of individual and
selected combinations of the right-wing trailing-edge flaps. Trailing-edge flaps \#6
and \#7 were tested individually and in combination at deflections of ± 10 degrees for
all Mach numbers and at ± 20 degrees for Mach numbers of 1.8 and 2.1 . Other
combinations of trailing-edge flaps were tested at Mach numbers of 1.8 and 2.1 and
include \#6, \#7, and \#8 deflected ± 10 degrees, \#7 and \#8 deflected ± 10 degrees,
and \#5, \#6, \#7, and \#8 deflected +10 degrees.
TCA Configurations Tested

Data Quality
Data quality was determined by the repeatability of the longitudinal coefficients
for several sets of runs with the baseline configuration, obtained at various times
during the test. The slide below shows the data repeatability variation with angle-of-
attack for the lift, drag and pitching moment coefficients at Mach 2.4 . The data
points shown represent the deviation of each individual point from the average of all
the repeat points obtained.
Variation of lift coefficient is shown to be within ± 0.001 (except for a few points),
with the majority of the points within ± 0.0005.
Variation of the drag coefficient is shown to be within ± 0.0001 (except for a few
points), with the majority of the points within ± 0.00005.
Variation of the pitching moment coefficient is shown to be within ± 0.0002.
From these data, it was concluded that the data quality was good and a high
confidence level could be placed on the data obtained for the TCA at this Mach
number.

Long-Term Repeatability Long-term repeatability was determined by comparing the longitudinal coefficients obtained for the Reference H baseline configuration at the start of this test with similar data obtained during a previous Reference H test (UPWT-1647). The slide below shows the data repeatability variation with angle-of-attack for the lift, drag and pitching moment coefficients at Mach 2.4. The data points shown represent the deviation of each individual point from the average of all the repeat points obtained during both tests. Variation of lift coefficient is shown to be within ± 0.001 (except for a few points at negative α_{F} 's), with the majority of the points within ± 0.0005. Variation of the drag coefficient is shown to be within ± 0.00005 for most of the
angle-of-attack range. At the higher α_{F} 's, the divergence between the data for the
two tests is in large part due to different sting-bending calibration methods that were used.

[^16]
Longitudinal Characteristics
Component Build-up The effect of the model components on the lift coefficient variation with α_{F} at
Mach 2.4 is presented in the slide below. The addition of the chine and vertical tail
resulted in no significant change in lift. However, the addition of the horizontal tail
increased lift at positive α_{F} 's and decreased lift at negative α_{F} 's. The horizontal tail
contributes no lift at approximately $\alpha_{F}=1.5$ degrees.
Longitudinal Characteristics
Component Build-up The effect of the model components on drag coefficient variation with lift
coefficient (drag polar) at Mach 2.4 is presented in the slide below.
The addition of each component results in increased drag relative to the W/B/N
(extended attbody) configuration near minimum drag. At higher lift coefficients, the
horizontal tail-on configurations result in less drag at a given lift. This is because the
tail is producing a positive lift increment and, therefore, less α_{F} is required to obtain
a given lift coefficient.
The addition of the chines (Ch) to the baseline configuration results in no
noticeable drag change.
Longitudinal Characteristics
Component Build-up

Longitudinal Characteristics
Component Build-up

Draq Coefficient C
Longitudinal Characteristics
Component Build-up
The effect of the model components on drag, at Mach 2.4, is summarized in the slide below. The incremental drag, in counts, relative to the W/B/N (extended
aftbody) configuration is shown at both minimum drag (non-shaded bars) and at a
C_{L} of 0.1 (shaded bars). In addition to the data presented in the previous two slides,
the incremental drag due to the truncated aftbody (BT) with nacelles and diverters
both on and off is included.
 additional 16

$\left[\begin{array}{l}\text { [DCamin } \\ \square \text { DCd@CL=0.1 }\end{array}\right]$

Longitudinal Characteristics
Component Build-up The effect of the model components on the pitching moment coefficient (about
the 50% MAC) variation with lift coefficient (longitudinal stability) at Mach 2.4 is
presented in the slide below.
The addition of the vertical tail to the W/B/N (extended aftbody) configuration
results in a slight negative pitching moment shift (Cm_{o}) with no stability change.
The addition of the horizontal tail results in a significant increase in longitudinal
stability. When the vertical tail is added along with the horizontal tail, a small
negative Cm_{o} shift occurs relative to the horizontal-tail-only configuration, with no
stability change.
The addition of the chine to the tails-on baseline configuration results in a slight
longitudinal stability decrease at higher lift coefficients.

Longitudinal Characteristics
Stability Comparison
The slide below compares the longitudinal stability of the tails-on baseline
Reference H configuration with the tails-on baseline TCA configuration at Mach 2.4 about their respective 50% MAC points.
The variation of pitching moment with lift appears very linear for the Reference H configuration. For the TCA configuration, the variation is very non-linear throughout the lift range. The slide also shows the TCA configuration to be more unstable than the Reference H configuration, particularly at higher lift.
Longitudinal Characteristics
Stability Comparison

Pitching Moment Coefficient, C

The slide below presents the incremental pitching moment coefficient (control
effectiveness) variation with α_{F}, at Mach 2.4 , resulting from various deflections of
the horizontal tail and elevator for the TCA configuration. The increment was
derived by subtracting the pitching moment coefficient of the deflected configuration
from the undeflected configuration. The horizontal tail was deflected with the
elevator undeflected, and the elevator was deflected with the horizontal tail
undeflected.
The control effectiveness of the horizontal tail appears to be slightly greater
(more effective) in the leading-edge down direction (negative deflections) than in the
leading-edge up direction. Control effectiveness also decreases at higher α_{F} 's.
The elevator is approximately $1 / 3$ as effective as the horizontal tail, with 20
degrees of elevator deflection being equivalent to 6 degrees of horizontal tail
deflection $\left(\alpha_{\delta}=0.3\right)$.
Longitudinal Characteristics
Control Effectiveness

Angle-of-Attack, α
${ }^{\text {w }}$ จ ' '
Longitudinal Characteristics This slide presents a comparison of the control effectiveness variation with α_{F}, at
Mach 2.4, for the Reference H and TCA horizontal tails.
Per degree of deflection, the Reference H horizontal tail is more effective than
the TCA horizontal tail. As shown on the previous slide for the TCA configuration,
the control effectiveness also decreases with increasing α_{F} for the Reference H
configuration.
Longitudinal Characteristics
Control Comparison

Angle-of-Attack, α
Directional Characteristics
Component Build-up The next three slides present the effect of the model components on the yawing
moment coefficient variation with sideslip angle, at Mach 2.4 , for α_{F} 's of 0,4 , and 8
degrees.
Both the W/B/N and W/B/N/H configurations, with the extended aftbody, are
directionally unstable (slope of Cn vs. β). The horizontal tail-on configuration is
slightly more unstable than the horizontal tail-off configuration.
The addition of the vertical tail results in a stable configuration. The horizontal
tail again reduces the directional stability slightly when combined with the vertical
tail. The chine has no impact on the directional characteristics at this α_{F}.

Directional Characteristics
Component Build-up
This slide presents the effect of the model components on the yawing moment
coefficient variation with sideslip angle at Mach 2.4 and $\alpha_{F}=4$ degrees.
As shown in the previous slide for $\alpha_{F}=0$, both the $W / B / N$ and $W / B / N / H$
configurations, with the extended aftbody, are directionally unstable (slope of Cn vs.
β). The horizontal tail-on configuration is slightly more unstable than the horizontal
tail-off configuration, particularly at higher β 's.
The addition of the vertical tail results in a stable configuration. The horizontal
tail reduces the directional stability noticeably when combined with the vertical tail.
The chine is shown to increase the directional stability at this α_{F}.

Directional Characteristics
Component Build-up This slide presents the effect of the model components on the yawing moment
coefficient variation with sideslip angle at Mach 2.4 and $\alpha_{F}=8$ degrees.
As shown in the previous two slides for $\alpha_{F}=0$ and 4 degrees, both the W/B/N
and W/B/N/H configurations, with the extended aftbody, are directionally unstable
(slope of Cn vs. β). The horizontal tail-on configuration is slightly more unstable
than the horizontal tail-off configuration, particularly at smaller β 's.
The addition of the vertical tail results in a stable configuration, although
between $-3 \leq \beta \leq-1$ and $+1 \leq \beta \leq+3$, the stability is affected by flow phenomenon
that causes a reduced level of stability. The horizontal tail reduces the directional
stability noticeably when combined with the vertical tail, particularly at higher β 's.
The chine is shown to greatly increase the directional stability at this α_{F} over the
entire β range.
Directional Characteristics
Stability Comparison This slide shows a comparison, at Mach 2.4, of the variation with α_{F} of yawing
moment coefficient (at $\beta=3$ degrees) between the Reference H and the TCA tail-on
configurations. Additionally, the effect of the chine is shown. The directional
stability derivative, Cn_{β}, can be determined by dividing the yawing moment
coefficient shown by 3 .
Comparing the chine-off baseline configurations, the TCA has less directional
stability than the Reference H configuration at angles-of-attack up to $\alpha_{F}=6$ degrees.
Beyond $\alpha_{F}=6$ degrees, the TCA configuration has significantly more directional
stability than the Reference H configuration. The Reference H configuration
becomes directionally unstable beyond $\alpha_{F}=11$ degrees, while the TCA remains
stable.
The addition of the forebody chines dramatically improves the directional
stability of both configurations at higher α_{F} 's.
Directional Characteristics
Component Build-up

Directional Characteristics Control Comparison
This slide presents a comparison, at Mach 2.4, of the variation with α_{F} of
incremental yawing moment coefficient due to rudder deflection between the
Reference H and the TCA configurations. Additionally, the effect of the chine on
rudder effectiveness is shown for the TCA configuration. Note that TCA rudder
deflections include only the lower two panels, compared to all three for the
Reference H.
The rudder effectiveness of the TCA configuration appears to be approximately
linear with respect to rudder deflection, with double the deflection resulting in double
the incremental yawing moment. The chines have a small effect on rudder
effectiveness, particularly at higher α_{F} 's.
The Reference H rudder effectiveness is nearly constant with α_{F}, while the TCA
rudder effectiveness decreases with increasing α_{F}. After adjustments for the
number of panels deflected and the vertical tail volume, the rudder effectiveness of
the TCA and Reference H are nearly identical at low α_{F} 's.

Lateral Characteristics
Stability Comparison
This slide shows a comparison, at Mach 2.4 , of the variation with α_{F} of rolling
moment coefficient (at $\beta=3$ degrees) between the Reference H and the TCA
baseline tails-on configurations. Te lateral stability derivative, Cl_{β}, can be
determined by dividing the rolling moment coefficient shown by 3 .
Comparing the two configurations, the TCA has less lateral stability than the
Reference H configuration at all α_{F} 's. Both configurations are laterally stable
throughout the entire α_{F} range tested.
The reduced level of lateral stability is beneficial to reducing the lateral control
required to offset roll due to sideslip, particularly at low speeds.
Lateral Characteristics
Stability Comparison

Lateral Characteristics
Control Effectiveness The slide below presents the incremental rolling moment coefficient variation
with α_{F}, at Mach 2.4 , due to trailing-edge flap deflection for the TCA configuration.
Trailing-edge flaps \#6 and \#7 were deflected ± 10 degrees both individually and in
combination. The incremental rolling moment coefficient was derived by subtracting
the rolling moment of the flap(s)-deflected configurations from the rolling moment of
the flaps-undeflected configuration.
At low α_{F} 's, trailing-edge flap \#7 is significantly more effective than trailing-edge
flap \#6 when deflected trailing-edge up. For positive deflections, trailing-edge flap
\#7 is approximately 30% more effective than trailing-edge flap \#6.
At approximately $\alpha_{F}=4.5$ degrees, lateral control effectiveness increases
suddenly for negative deflections of trailing-edge flap \#6, and decreases suddenly
for positive deflections of trailing-edge flaps \#6 and \#7.
The lateral control effectiveness of combined trailing-edge flap deflections is
approximately the same as the sum of the lateral control effectiveness of the
individual trailing-edge flap deflections. Except at low α_{F} 's, the control effectiveness
in either direction is approximately the same in magnitude.
Lateral Characteristics
Control Comparison This slide presents a comparison, at Mach 2.4, of the variation with α_{F} of
incremental rolling moment coefficient due to trailing-edge flap deflection between
the Reference H and the TCA configurations. Lateral control effectiveness is shown
for both individual trailing-edge flaps as well as combinations of trailing-edge flaps.
Significant observations include:
(1) For negative deflections of the trailing-edge flaps, the Reference H and TCA
have nearly identical control effectiveness.
(2) For positive deflections of the trailing-edge flaps, trailing-edge flap \#7 on the
Reference H is significantly (25%) more effective than trailing-edge flap \#7 on the
TCA. In fact, the combination of trailing-edge flaps \#6 and \#7 deflected on the TCA
has nearly the same control effectiveness of only trailing-edge flap \#7 deflected for
the Reference H .

Summary The following two slides present a summary of the data presented in this report.
While all of the data and comparisons to the Reference H have been made at Mach
2.4, similar observations were made during the course of testing at the other Mach
numbers tested.
To summarize the significant highlights in this report:
(1) Data quality, determined by multiple repeat runs performed on the TCA
baseline configuration, and long-term repeatability, determined by comparing
baseline Reference H data from this test to a previous test, have been shown to be
good.
(2) The longitudinal stability of the TCA is more non-linear than for the
Reference H, and while it is similar at normal lift values, the TCA has considerably
more pitch-up at higher lift.
(3) Longitudinal control effectiveness of the TCA is similar to the Reference H
and the ratio of elevator effectiveness to horizontal tail effectiveness is
approximately 0.3 .
(4) The directional stability of the TCA is improved relative to Reference H at
higher angles-of attack. The chine is effective for improving directional stability.

- Data Quality / Long-term Repeatability Good
- Longitudinal Stability
- Same as Reference H at normal α_{F} 's, more non-linear
- Increased "pitch-up" at higher α_{F} 's
- Longitudinal Control
- Similar to Reference $\mathrm{H}\left(\alpha_{\delta} \cong 0.3\right)$
- Directional Stability
- Increased at higher α_{F} 's with and without chines
Summary (Cont'd) (5) The directional control effectiveness of the TCA rudder is the same as that of
the Reference H rudder at low angles-of-attack, after taking factors, such as number
of rudder panels deflected and vertical tail volume into account. However, rudder
effectiveness was shown to be reduced at higher angles-of-attack.
(6) The lateral stability was shown to be reduced relative to the Reference H,
which may be benefitial at low speeds for alleviating lateral control saturation.
(7) Lateral control effectiveness for the TCA was shown to be similar to the
Reference H for negative trailing-edge flap deflections and was reduced by
approximately 25% for positive trailing-edge flap deflections.
Summary (Cont'd)

HSR - 1997 Aerodynamic Performance Workshop

\square

Effect of Boattail and Sidewall Curvature on Nozzle Drag Characteristics

Francis J. Capone, Karen A. Deere,
Linda S. Bangert and Paul S. Pao

NASA Langley Research Center
February 25, 1997

HSR - 1997 Aerodynamic Performance Workshop Program Objectives

- Qbjectives:
- For a representative HSR 2D nozzle, determine the effects of
- Nozzle external flap curvature and length
- Sidewall boattail angle and curvature
- Develop an experimental data base for 2D nozzies with long divergent flaps and low boattail angles
- Provide validation data for isolated transonic nozzle boattail drag program CFD prediction studies

The NASA-industry team has sponsored several studies in the last two years to address the installed nozzle boattail drag issues. Some early studies suggested that nozzle boattail drag could be as much as 25 to 40 percent of the subsonic cruise. As part of this study tests have been conducted at NASA-Langley to determine the uninstalled drag characteristics of a proposed nozzle. The overall objective was to determine the effects of nozzle external flap curvature and sidewall boattail variations. This test would also provide data for validating CFD predictions of nozzle boattail drag.

Full-scale geometry of the "Best DSM" nozzle chosen for the installed nozzle drag program is shown in the upper left of this figure. This nozzle, which comprises over 40-percent of the total nacelle is 78.90 by 74.88 inches with an aspect ratio of 1.040. In order to provide data in a timely fashion, tests were to be conducted on an existing propulsion simulation system used in the 16 -Foot Transonic Tunnel. Of the three simulators, the on with the smallest aspect ratio was chosen for tests. This simulator is 6.80 by 6.20 inches with an aspect ratio of 1.096. From this, it was decided to use the height of the model for scaling purposes. This dimension was chosen because it gives the best representation of nozzle boattail closure. The resulting scale was 8.17%. From this scale, an appropriate reference area can be obtained for subsequent use in nondimensionalizing drag in order to produce a meaningful drag coefficient in terms of airplane drag counts.

This chart summarizes the various parameters used to define the nozzle external shape. The term L_{f} represents the length of the external flap of the nozzle. The baseline nozzle has a flap length of 8.4233 inches. Two nozzles with shorter flap lengths were also tested. Note that the overall length of the nozzle was not changed when nozzle flap length was varied. The boattail curvature parameter is $r_{d} r_{c}$, max. Nozzles with curvatures from o to 100% were tested. A nozzle with no curvature would probably be the simplest to build since this flap would have a simple hinge joint. All the nozzles had the same intemal contour, throat area and exit area. Thus changes in performance should only be attributed to external flow effects over the nozzle flaps.

The geometry of the sidewalls was defined in a similar manner.

HSR - 1997 Aerodynamic Performance Workshop Configuration Matrix

Nozzle Config	Nozzie Flaps				Nozale Sidewal			
	Flap	$\mathrm{Lf}_{\mathrm{Mm}}$	$\mathrm{P}^{1} / \mathrm{l}_{\mathrm{c}, \mathrm{max}}$	Pr deg	Sidewall	$\mathrm{S}_{\text {Sw, deg }}$		Height
$\mathrm{N}+3$	F3	1.2	0\%	11.719	S-1	4	0\%	Ful
N-2	F2	1.2	10\%	12.882	S-1	4	0\%	Full
$\mathrm{N}-1$	F-1	1.2	40\%	16.379	S-1	4	0\%	Ful
$\mathrm{N}-4$	F-4	1.2	100\%	23.437	S-1	4	0\%	Full
$\mathrm{N}_{1} 14$	F6	1.0	10\%	15.974	S-1	4	0\%	Ful
${ }^{\mathrm{N}} \mathrm{N} 13$	F-5	1.0	40\%	20.298	S-1	4	0\%	Full
+ +5	F-1	1.2	40\%	16.379	S-2	6	0\%	Full
N-6	F-1	1.2	40\%	16.379	S.3	8.	0\%	Ful
+ +7	F-1	1.2	40\%	16.379	S-4	6	10\%	Ful
N-9	F. 1	1.2	40\%	16.379	S-6	6	40\%	Fuli
N-8	F. 1	1.2	40\%	16.379	S-5	8	10\%	Full
H-10	F-1	1.2	40\%	16.379	S-7	8	100\%	Full
$\mathrm{N}+12$	F. 2	1.2	10\%	12.882	S-8	4	0\%	None
$\mathrm{N}+11$	F-1	1.2	40\%	16.379	S-8	4	0\%	None
N-1	F-1	1.2	40\%	16.379	5-1	4	0\%	Ful
PSP	F-1	1.2	40\%	16.379	5-8	4	0\%	None

This table summarizes the various nozzle configurations tested. For the first four configurations, nozzle curvature was varied with the nozzle baseline length being held constant. Note that boattail angle varies for these configurations from 11.719° to 23.437°. Nozzle curvature was also varied for the nozzles with the shorter flap length as indicated by the fifth and sixth configurations.

The effect of varying nozzle sidewall boattail angle and curvature were studied with the remaining configurations. Sidewall S-1 with no curvature and 4° boattail was the baseline sidewall. The height of the sidewall denoted "full" was fixed to a distance such that the nozzle flaps would not unport with the nozzle in the supersonic cruise position. In this position the nozzle flaps have a boattail angle of 0°. Some tests were conducted with a reduced height sidewall to determine what the penalty might be for having these large sidewalls. The height of the sidewall labeled "none" followed the contour of nozzle flap N1.

The two-dimensional propulsion air-powered simulation system is shown in this figure. This model is composed of three major components: a nose-forebody section, a centerbody section, and the nozzle. The nozzle connect station is at model station 50.90. The nose-forebody was nonmetric; that is it was not connected to the force balance. This simulation system is equipped with a flow transfer system that is designed to minimize the transfer of axial momentum across the force balance.

The nozzle is shown with the baseline sidewalls. Sidewall height was fixed so that the nozzle flaps would not unport with the nozzle at the supersonic cruise position (no nozzle boattail)

The nozzle upper or lower flaps were each instrumented with two rows of pressure tapes with 25 taps per row. Thus, nozzle pressure drag was determined from integrating 100 pressures. On one of the nozzle sidewalls, there were two rows of pressure taps with 20 taps per row.

For this investigation, nozzle drag is defined over that portion of the model from model station 50.90 to 64.04 .

HSR - 1997 Aerodynamic Performance Workshop CFD - PAB3D (version 13/ASM)

- Code Architecture
- Modular multi-block structure w/grid sequencing
- Multiple-to-one and patched interfaces
- In-code calculations of integrated forces, moments, and flux quantities
- Code Performance Statistics
- Compact memory requirements: 23 words per grid point
$-38 \mathrm{~m}-\mathrm{sec}$ (Cray-YMP) per iteration per grid point
- Compatible with most workstations

PAB3D solves the three-dimensional Reynolds-averaged NavierStokes equations with a finite-volume formulation on structured multiblock grids. A grid sequencing scheme allows for automatic assessment of grid density on flow solutions. In addition to memory management, grid sequencing also allows for quick initial solutions and increased convergence rates.

One-to-one, multiple-to-one and general patching between block interfaces is accepted by the flow solver for the development of complex geometric grids. A conservative patching utility is used to determine the communication between block interfaces.

The in-code performance package supplies the user with integrated forces, moments and flux quantities in output file formats that are compatible with many standard graphics packages.

HSR - 1997 Aerodynamic Performance Workshop CFD - PAB3D (version 13/ASM)

- Flow Solver Characteristics
- Mixed Roe and van Leer schemes
- Local time stepping and upwind biased with userselected limiter options
- Two-equation k-e or ASM Turbulence Models

The code allows the user to select between multiple flow solvers, limiters and boundary conditions at code run time. Generally, the Roe and van Leer schemes offer improved accuracy and quick convergence rates.

The flow solver has a robust two-equation k-e turbulence model and several anisotropic algebraic Reynolds stress models (ASM).

HSR - 1997 Aerodynamic Performance Workshop CFD Solution Run-Times			
Nozzle	Condition NPR=5	Hours Cray-YMP	Grid Level
N1	M $=0.9$	16.4	cut 222
N1	M $=0.9$	46	$\begin{gathered} \text { base } \\ \text { (211 sequence) } \end{gathered}$
N1	$\mathrm{M}=1.11$	15.9	cut 222
N1	$\mathrm{M}=1.2$	12.2	cut 222
N3	$\mathrm{M}=0.9$	13.3	cut 222
N3	$\mathrm{M}=1.11$	7.9	cut 222
N3	$\mathrm{M}=1.2$	7.2	cut 222

This charts illustrates the time required on a Cray-YMP to develop converged solutions with the results in this presentation. This charts also exhibits the benefit of . database reduction and grid sequencing.

For example, the first two records represent the solution of nozzle N 1 at $\mathrm{M}=0.9$ and $N P R=5$. A converged solution was developed within 16.4 hours on a cut grid. However, the solution was developed to the base level to quantify the effect of grid density. Nozzle drag decrease a mere 0.2 of a count in another 30 hours of Cray-YMP time. Since the solution appears to be minimally dependent on doubling the grid density beyond the cut 222 level, the remaining solutions were developed by sequencing on the cut grid only. This allowed for quicker solution times due to the substantially smaller memory requirement.

The base grid is a quarter plane representation of the experimental model with 1.57 million grid points in 9 blocks. Using a database reduction scheme, a cut 222 grid is generated by eliminating every other grid point in the i, j, and k directions. This cuts each grid dimension by 2 , which decreases the grid count to 207,437 and substantially reduces the memory required to run the flow solver. The grid can be sequenced in each direction for improved convergence rates and for grid assessment. For example, the flow solver uses alternating points in the i direction and every point in the j and k directions in a 211 sequence. Generally, a user would begin sequencing on the cut 222 grid. A pattern of 222, 221, 211, and then 111, or no sequencing might be used to assess solution behavior as more points are utilized in a particular direction. The solution is developed until convergence requirements are met at each level. Once the solution is converged on the cut 222 grid, the solution may be extrapolated to the base grid and sequencing may again be utilized.

Typical convergence histories for Nozzle 3 are shown in the following three figures. Similar results were obtained for Nozzle 1.

This figure shows the convergence history for Nozzle N3 at M=0.9 and NPR=5. Spikes in the residual history exhibit locations of solution extrapolation to a finer grid level. Accordingly, small adjustments in drag coefficient, C_{d}, are observed at these locations, also.

The solution converges at the 222 grid level after 6500 iterations, with no further change in drag coefficient as the residual continues to drop. Drag coefficient increased a mere 1.2 percent from the 422 grid level to the 222 grid level.

Computational drag coefficient was calculated with a reference area of $1 \mathrm{in}^{2}$. Therefore, a reference area of $\mathrm{A}=6824.407 \mathrm{in}^{2}$ is used to convert to a scale comparable to experimental results.

This figure shows the convergence history for Nozzle N3 at $M=1.11$ and NPR=5. Spikes in the residual history exhibit locations of solution extrapolation to a finer grid level. Accordingly, small adjustments in C_{d} are observed at these locations, also.

The residual drops 3 orders of magnitude on the 444 grid level. The residual then flattens and C_{d} remains unchanged after 500 iterations, suggesting convergence at this grid level. The solution converges at the 222 grid level after 4500 iterations. Drag coefficient decreased 2.3 percent from the $\mathbf{4 2 2}$ grid level to the 222 grid level.

This figure shows the convergence history for Nozzle N3 at $\mathrm{M}=1.2$ and $\mathrm{NPR}=5$. Since minimal change in drag coefficient was apparent from the previous solutions, this solution was developed on the 222 grid level in an effort to minimize resources.

The residual drops 3 orders of magnitude and flattens after 1000 iterations. Drag coefficient remains constant after 1500 iterations. This suggests solution convergence at this grid level.

HSR - 1997 Aerodynamic Performance Workshop Predicted and Experimental Drag Comparison
 $\square \Longrightarrow$

Nozzle N1
Flap 1: $L_{1} / h_{m}=1.2, \beta_{f}=16.38^{\circ}, r_{c} / r_{c, \text { max }}=0.4$ Sidewall 1: $\beta_{\mathrm{sw}}=16.38^{\circ}, r_{\mathrm{c}} / \mathrm{r}_{\mathrm{c}, \max }=0$

Nozzle N1 has a 40 percent flap curvature along the boattail. The predicted drag is in excellent agreement with experimental drag at $\mathrm{M}=0.9$ and is within 0.7 of a count of experimental drag at $M=1.2$. PAB3D predicted a nozzle drag of 11.21 counts at $M=$ 1.11.

As expected from the agreement between nozzle drag, $\mathrm{C}_{\mathrm{d}(\mathrm{EFD})}=$ 9.8 counts compared to $\mathrm{C}_{\mathrm{d}(\mathrm{CFD})}=9.53$ counts, the predicted pressures are in excellent agreement with experimental data at $M=0.9$ and NPR $=5$.

Data is compared along the flap centerline ($\mathrm{z}=0$), at a flap outboard station ($\mathrm{z}=2.61 \mathrm{in}$) and at a flap 'mid' station ($\mathrm{z}=1.373 \mathrm{in}$) in this and the following pressure charts.

Predicted pressures exhibit the expansion and shock along the flap at three stations. Pressure differences between the stations suggest highly three-dimensional flow along the flap.

Predicted pressures are in good agreement with experimental data at $M=1.2$ and $N P R=5$. The largest difference in pressure occurs near $x / L=0.8$ at the outboard and mid stations.

Nozzle N3 has a sharp comer (no curvature) leading into the flap. The predicted drag is within 0.3 of a count at $\mathrm{M}=1.2$ and within 1.6 counts at $M=0.9$. PAB3D predicted a nozzle drag of 9.5 counts at $M=$ 1.11, which is an improvement compared to Nozzle N1.

The pressure recovery along the flap is underpredicted compared with experimental data at $\mathrm{M}=0.9$ and $\mathrm{NPR}=5$. The higher experimental pressure recovery results in lower drag compared with predicted data, $\mathrm{C}_{\mathrm{d}(\mathrm{EFD})}=1.97$ counts compared to $\mathrm{C}_{\mathrm{d}(\mathrm{CFD})}=3.56$ counts.

The pressure recovery along the flap corresponds to a drag of $\mathrm{C}_{\mathrm{d}(\mathrm{CFD})}=9.49$ counts.

In general, the predicted pressures are in good agreement with experimental data at $\mathrm{M}=1.2$ and $\mathrm{NPR}=5$, which is expected with the good correlation between nozzle drag also, $\mathrm{C}_{\mathrm{d}(\mathrm{EFD})}=9.8$ counts compared to $C_{d(C F D)}=9.53$ counts.

HSR - 1997 Aerodynamic Performance Workshop Comparison of Pressure Drag

This figure compares pressure drag for each nozzle at $\mathrm{M}=0.9$ and $M=1.2$, in an effort to understand the larger difference between predicted and experimental drag for Nozzle N3 at $\mathrm{M}=0.9$, compared with the other solutions. Three methods were used for determining pressure drag: integrated pressures, balanced measured and computational fluid dynamics using PAB3D. It appears as though there is a discrepancy using the integrated method compared with balance measured and PAB3D predicted pressure drag methods. Work is in progress to discern the data.

HSR-1997 Aerodynamic Performance Workshop
 Nozzle Pressure Drag Breakdown - Nozzle N1

NASA Langley 16-Ft Transonic Tunnel Test 477
Flap 1: $L_{f} / h_{m}=1.2, b_{f}=16.38^{\circ}, r_{c} / r_{c, \max }=0.4$
Sidewall 1: $b_{s w}=16.38^{\circ}, r_{c} / r_{c, \text { max }}=0$

This figure illustrates the breakdown of pressure drag between the nozzle flaps and the sidewalls. Also shown is the effect of the jet on nozzle pressure drag. Note that the jet effects shown are typical for this class of nozzles and the breakdown of the pressure drags are similar for the other nozzle tested.

The effect of varying nozzle boattail curvature on the nozzle flap pressure drag is illustrated above for the nozzle with the baseline flap length. As can be seen, the nozzle N3 with no curvature had the least flap pressure drag. This result was somewhat surprising because previous experience has shown that nozzles with a sharp shoulder generally had higher drag. However, these nozzles had shorter external flaps and higher boattail angles (usually greater than 16°). In order to try to understand this result, pressure distributions on these nozzles will be shown in some subsequent figures.

Similar results from the previous figure are also shown above. Total nozzle drag is the sum of the flap and sidewall pressure drags plus a skin friction drag (calculated as a simple flat plate friction drag).

Similar results are obtained when the total nozzle drag measured by the force balance is considered.

HSR - 1997 Aerodynamic Performance Workshop Flap Pressure Distributions

Pressure distributions along the center row of the top flap for nozzle $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{~N} 3$, and N 4 are presented at $\mathrm{M}=0.9$ and at a nozzle pressure ratio of 5 . An NPR of 5 was used in the CFD installed nozzle study. Basically what is shown is that even though nozzle N3 with no curvature had the greatest expansion of flow about the nozzle shoulder, it had better pressure recovery characteristics than the other three nozzles.

It should be pointed out that these pressure distributions do not show the presence of shocks on the nozzle flap. This result is typical for most of the nozzles tested. This apparent lack of shocks on the nozzle probably results in the low boattail angles that most of the nozzles have.

Similar results to those previously show were also obtained at $M=0.95$.

Similar results to those previously show were also obtained at $M=1.20$.

This figure shows flap pressure drag for the two nozzles tested with the smaller flap lengths. In contrast to previous results, lower flap pressure drag was obtained with nozzle N5 which had more curvature.

The effect of nozzle flap length is illustrated in this figure where flap pressure drag is compared between nozzle N2 and N6. Each of these nozzles had a curvature ratio of 0.1 . As can be seen, the nozzle with the longer nozzle flap had lower drag at all the the Mach numbers tested. This was probably due to the lower boattail angle N2 had.

Results similar to those shown in the previous figure were obtained for nozzles N1 and N5. These nozzles had a curvature ratio of 0.4.

HSR-1997 Aerodynamic Performance Workshop Nozzle Sidewall Boattail Angle Effects

This figure summarizes the effect of sidewall boattail angle and curvature on sidewall pressure drag. At $M=0.90$, nozzle $N 6$ with a 8° boattail angle had the lowest sidewall pressure drag. At $M=1.2$, just the opposite was true. At this mach number, nozzle N6 had about 2.3 times as much drag as nozzle N1 with the 4° boattail. Although the 4° boattail sidewall was considered to be the baseline, it is probable that the boattail angle will have to ber as much as 8° in order to house nozzle actuation hardware.

Putting full curvature on the sidewall with the 8° boattail resulted in a one count pressure drag reduction. Sidewalls with full curvature are feasible for the full scale aircraft since the sidewalls are fixed.

Pressure distributions along the center row of the sidewall for nozzle N1, N5, N6, and N10 are presented at M $=0.9$ and at a nozzle pressure ratio of 5 . These results are similar to thsose already shown for the nozzle flaps. Even though nozzle N6 with the 8° sidewall boattail had the greatest expansion of flow about the nozzle shoulder, it had excellent pressure recovery characteristics such that sidewall drag was lower.

Similar results to those previously show were also obtained at $\mathrm{M}=0.95$

HSR - 1997 Aerodynamic Performance Workshop Sidewall Pressure Distributions

At $M=1.2$, it appears as though pressures are lower on nozzle N6 with the 8° sidewall boattail. This lower pressure is acting over most of the sidewall and causing the higher drag.

This figure illustrates the effect of sidewall curvature for those sidewalls with 8° boattail angle. At all Mach numbers, the sidewall with a curvature ratio of 1 had the lowest sidewall pressure drag.

HSR - 1997 Aerodynamic Performance Workshop Nozzle Sidewall Height Effects

It was previously stated that the height of the sidewall was fixed to a distance such that the nozzle flaps would not unport with the nozzle in the supersonic cruise position. In this position the nozzle flaps have a boattail angle of 0°. Some tests were conducted with a reduced height sidewall just to see what the penalty might be for having these large sidewalls. The reduced height sidewall followed the contour of nozzle flap N1. As can be seen in the above figure, not only was sidewall pressure drag dramatically reduced, so was the flap pressure drag.

HSR - 1997 Aerodynamic Performance Workshop Summary

- All nozzles exhibited expected pressure distributions. At most test condition, there were no shocks or shock induced separation
- Excellent corelation between experimental and CFD results were obtained
- The nozzle with an external flap with a sharp shoulder (no curvature) had the least pressure drag
- For the nozzle with a sidewall with 8° boattail angle, pressure drag increased from 0.3 to 3.5 counts from $\mathrm{M}=0.9$ to 1.2 .

Development Of TCA Flight Drag Polars For Airplane Performance

Chester P. Nelson
Eric E. Adamson
HSCT Aerodynamics
Boeing Commercial Airplane Group
Seattle, Washington

1997 HSR Aerodynamic Performance Workshop February 25-28, 1997
NASA Langley Research Center, Hampton, VA

Development Of TCA Flight Drag Polars For Airplane Performance

Chester P. Nelson*
Eric E. Adamson**
Boeing Commercial Airplane Group
P.O. Box 3707, MS 6H-FK
Seattle, WA 98124-2207

Abstract

: In early 1996 the NASA-Industry High Speed Research Technical Integration team released the final definition of the HSCT Technology Concept Airplane (TCA). This configuration represents the integration of current inputs from all technical disciplines into a realistic High Speed Civil Transport concept. This paper reviews the development and content of the high speed aerodynamics inputs to the TCA sizing and flight performance predictions. The paper also summarizes subsequent detailed analysis work, CFD, and TCA wind tunnel test data that are now being used to assess the drag levels of the "status" airplane (i.e. without projections). A bottoms-up assessment of the high speed drag technology projection is shown to identify reasonable sources of drag improvements that would meet the target levels. Sources of uncertainty in the current HSCT high speed drag predictions are outlined, and areas for risk reduction in future performance predictions are identified.

[^17]
TCA Flight Drag Polars For Airplane Performance

- High speed performance drag polar build-up process
- Relative magnitude of HSCT drag and lift components
- Performance polar technology projection assumptions
- TCA "Status" drag and uncertainty sources
- Summary

Introduction:

In early 1996 the NASA-Industry High Speed Research Technical Integration team released the final definition of the HSCT Technology Concept Airplane (TCA). This configuration represents the integration of current inputs from all technical disciplines into a realistic High Speed Civil Transport concept. The TCA replaces the Boeing "Reference- H " and McDonnell-Douglas "M2.4-7A" designs used previously as parallel HSR baselines (primary and alternate, respectively). The certainty with which the TCA's external lines and aerodynamic parameters correctly reflect the characteristics of a production HSCT is critical for assessing the continued viability of the program, and for correctly down-selecting long lead-time items such as propulsion components.
This paper reviews the development and content of the high speed aerodynamics inputs to the TCA sizing and flight performance predictions. This discussion includes a review of the "technology projection" assumptions and a bottoms-up assessment of potential drag improvements required to meet the target levels. Subsequent detailed analysis work, CFD, and TCA wind tunnei test data that are now being used to assess the drag levels of the "status" airplane (i.e. without projections) are summarized. Sources of uncertainty in the current HSCT high speed drag predictions are outlined, and areas for risk reduction in future performance predictions are identified.

The process followed in building up the high speed aerodynamics inputs for the TCA was essentially identical to that used for airplane level TI trades. This process anchors the drag polars to available wind tunnel test data while accounting for increments between the wind tunnel model and a full scale airplane in flight. These increments include all configuration differences, skin friction changes due to Reynolds number, trim and excrescence drags, and a projection of future drag reduction. It can be seen by rearranging the terms in the first equation above that the geometry related increment is equal to the computed drag of the full TCA plus the difference between the measured and computed results for the reference test model. The wind tunnel data for the TCA polar build-up was from the "Reference-H" model. The skin friction at flight Reynolds number was computed using a strip-wise summation of the KarmanSchoenherr flat plate skin friction with the Sommer-Short compressibility correction, assuming an adiabatic wall. An allowance was made for excrescence ("protuberance drag") approximating that of current subsonic transports at incompressible speeds (7% of skin friction). This incompressible value was scaled versus Mach to account for compressibility. The high speed polars used a normalized trim drag allowance vs. Mach which was based on previous detailed analyses of the Ref.-H and B-2707. Technology projections were added based on a tops-down L/D assessment. CFD was employed as a "numerical wind tunnel" on the final geometry to confirm that additional drag had not inadvertently been incurred in "real flow" during lofting of the linear design. (This generally results in CFD-based adjustment of less than $+/-1.5$ counts at Mach 2.4.)

The chart above illustrates the relative magnitudes of the various components of the resulting TCA drag polars used in the configuration sizing and mission performance analysis for the Mach 2.4 cruise condition.
Several facts are immediately noted. One is that the majority of the cruise drag is in the areas of skin friction and drag due to lift. Roughly one third (16 counts) of the drag due to lift is due to ideal incompressible induced drag. The remainder is vortex drag (span load efficiency), and wave drag due to lift. While non-linear optimization can significantly reduce the drag due to lift term, the substantial skin friction level is a result of configuration wetted area and cannot be significantly reduced without the application of laminar flow technologies which are not included in the TCA definition. The large size of the skin friction term relative to the total high speed aerodynamics technology projection means that accurately predicting the skin friction in flight at combined high Reynolds number /Mach number conditions is of enough importance to warrant more attention. That is to say for example that the potential drag error incurred by a 4% uncertainty in the skin friction component alone is equal to a 30% shortfall in the gain projected for direct wing-body non-linear optimization. Differences between the various flat plate skin friction handbook calculation methods, various Navier-Stokes CFD solutions, and wind tunnel measured Cdmin levels easily cover a range of $+/-4$ to 5% of the friction drag.
Another fact to take note of is that the successful nacelle installation design of the TCA results in favorable nacelle pressure field wave and lift interference nearly canceling the nacelle's isolated wave drag.

The above charts illustrates the equivalent drag component break-out for the typical transonic acceleration condition at Mach 1.1, CL=0.16. The large rise in the zero-lift wave drag component near Mach one is evident. There is a corresponding increase in the excrescence drag level and the nacelle wave drag. The favorable nacelle interference is only slightly greater than the supersonic cruise value so it no longer calcels out the isolated wave drag of the nacelles.
The technology projection near Mach 1 is scaled up to remain the same percentage improvements in wave drag and drag due to lift as in the supersonic cruise tops-down analysis. While the resulting projection level is very large (about 18 counts) it is believed that a strong favorable spillage/bypass interference term will be able to make up nearly half of this amount. This assumption is based on test data from sting-mounted nacelles under a Ref.H model wing in the ARC 11Ft tunnel. Additional thrust-drag accounting details, CFD validation, and spillage/bypass test data with captive nacelles (I.e. with wing-mount and diverters present) will be required before the potential large favorable effects are understood well enough for them to be bookkept as part of the "status" flight polar. Another potentially favorable Propulsion Induced Effect ("PIE") that is not well enough quantified to justify inclusion in the TI polar buildup is the nozzle boattail and exhaust plume interference pressures on the closing aft fuselage. For the time being all of these PIE effects are lumped in with the transonic drag technology projection.

The equivalent drag components for the TCA's subsonic "over-land cruise" condition at Mach 0.9 are shown above. The reference CL of 0.18 was chosen to approximate the average of heavy and light airplane subsonic cruise legs, climbs, and descents. The zero lift wave drag terms, nacelle wave and lift interference terms and PIE terms are all assumed equal to zero at Mach 0.9. Nacelle on/off wind tunnel comparison data on previous configurations has shown that a favorable increment in lift at alpha would probably be present on the TCA but that it may be accompanied by a corresponding increase in pressure drag so there is no net favorable nacelle interference credited to the drag polar.
Theoretically, AERO2S or similar panel method code could be used to obtain preliminary design ("PD") estimates of the drag due to lift at these conditions, but the leading edge suction levels predicted by such codes tend to be less accurate at locally compressible Mach numbers, especially with the significant bluntness of the TCA inboard airfoils. In lieu of a robust calibrated PD drag code for the 0.9 to 1.0 Mach range, drag polars for the TCA were created using Ref.-H's NTF wind tunnel data adjusted for aspect ratio and wetted area differences. The Ref.H dragrise shape was also assumed up to Mach 1.1, beginning at around Mach 0.95-0.98. The TCA polars were not penalized for the more triangular span load of the TCA relative to the Ref.-H, nor were any possible adverse off-design aeroelastic deflections taken into account. Leading and trailing edge flap effectiveness equal to that of the Ref.-H was also assumed.

The relative proportion of drag due to each major physical component is shown above at all three Mach numbers. The drop in skin friction and increase in wave drag with increasing Mach is obvious when plotted in this manner as percents of the total drag.

During the preparations for performing non-linear CFD optimizations on the TCA baseline geometry, the choice of a reference CL as the "cruise point" for the optimization was the topic of considerable discussion. Numerous questions were raised about the expected differences between total configuration lift, the wing-body-nacelle lift, and the lift contribution of the TCA wing-body alone. The chart above illustrates the large amounts of lift that may be accounted for by sources other than the wing-body. The performance and size optimization program used to select the final wing area and engine thrust of the TCA was not at the time coded to account for the effects of geopotential altitude, orbital velocity, and the downward component of the nozzle gross thrust vector. The effective "lift" contributions of these terms, while small, are not negligible and have been included in the chart above.

HSCT High Speed Aero Technology Projection

- Objective, Tops-Down Method, Doesn't Depend On "Status"
- "Optimum" Is Linear Theory Physics Based
- Conflguration Dependent L/D, Showing CDo and CDL Terms
- "Target" is \% of Theory Judged Achievable With...
- Fixed General Arrangement
- MDO Geom. Constraints

The "aerodynamic technology projection" is a key part of the polars. At supersonic speeds the projection is split between zero lift drag (CDo) and drag due to lift (CDL) improvements. A fixed projection of roughly $6 \% \mathrm{~L} / \mathrm{D}$ is applied subsonically, and an excrescence improvement of 20% is assumed at all Mach numbers. The supersonic cruise projection was formulated based on a topsdown method (by R. M. Kulfan) that uses the overall geometric parameters of a given configuration to determine a theoretical "best possible L/D" assuming complete freedom to optimize the aerodynamic shape within the bounds of the wing-body general arrangement. This theoretical optimum is then adjusted downward to account for the fact that additional multi-disciplinary geometry constraints will be required and that some shape changes which could improve cruise drag will be negated by off-design penalties. With input from the HSR Configuration Aerodynamics (CA) team, the TCA's projected performance target level was fixed at a consensus level of about 95% of the theoretical optimum.
It should be noted that using this approach the total projected performance is defined as a specific L/D level that does not depend on knowing the performance of the "status" (unprojected) airplane--only its gross geometric parameters (span, length, volume, cross-sectional area, nacelle size, etc.). The size of the "projection increment" itself is simply the difference between the "target performance" level and the current best assessment of the airplane's status at full scale flight conditions.

In order to keep a constant check on the assumptions being made in the committed TCA performance levels, TI has maintained a "bottoms-up" check of the reasonableness of the tops-down projections. The projections for the three most critical high speed Mach numbers are shown above. Each bar is divided into identifiable sources of potential drag improvements that would sum up to the total projection at each Mach. In recent months, the CFD non-linear optimization tools appear to be well on their way to providing the 6.5 counts improvement assumed above at the Mach 2.4 cruise design point. It is believed that some combination of viscous and inviscid non-linear optimization, analysis, and flow visualization tools will enable additional improvements of 1.5 to 2.5 counts in detail design at Mach 2.4. CFD-aided detail design integration and multi-point design of body area rule, nacelle shapes and wing camber are believed to account for more than a third of the Mach 1.1 projection. As mentioned earlier, the other large piece of the Mach 1.1 projection will be in understanding the PIE effects well enough to reliably take credit for favorable transonic interference terms (or eliminating adverse effects) wherever possible.
Accounting for thrust and PIE effects, and optimizing the wing-body, nozzle, and tail contributions to trim drag at Mach 2.4 could account for 2 to 3 more counts of the cruise projection. Improved validation of subsonic CFD methods for subsonic Reynolds number effects, leading edge flap optimization and trim including aeroelastics, are assumed to account for most of the subsonic cruise projection. The projection of a 20% reduction in excrescence at all Machs appears to be a reasonable goal making up the remainder of the projections.

Based on experiences with the downselect to the TCA configuration in 1995, it was recognized that the HSR program would benefit from improved PD prediction methods. A TI "Airplane Design Process" (ADP) task was implemented, directed toward improving the Propulsion, Noise, Weights, and Aerodynamics groups' inputs to airplane level trade studies, metrics, and annual baseline updates. Aerodynamics discipline tasks under this on-going effort were divided into;

1) understanding differences between (and improving) the various linearized potential flow design and analysis codes used by NASA and industry, and
2) improving the accuracy of the build-up from the potential flow analysis results to the full scale flight drag "status" polars.
For the high speed performance regime (Mach >0.6) responsibility for the former task was given to the McDonnell-Douglas, while Boeing (BCAG) undertook the latter, with NASA LaRC contributing to understanding both areas. The BCAG effort includes sub-tasks addressing excrescence drag assessment, aft-body / trim drag, transonic flap predictions, and Tl's use of corrected wind tunnel data in the drag polar build-up process. The potential flow analysis methods, excrescence drag, and an alternate approach to wind tunnel trip drag corrections are the subjects of other papers in this Workshop. ADP work planned for 1997 includes updating TI's performance polars for CA's technology projections and TCA wind tunnel test data, as well as improving capability for drag predictions of multi-surface control concepts.

The "ADP" task must take an end-to-end view of the performance prediction process in order to identify sources of uncertainty and prediction improvements. Accurate aerodynamic performance prediction is important for all types of aircraft. For most military aircraft and civil light or utility aircraft, the most critical performance parameters are often those not directly dependent on cruise drag (e.g. thrust-to-weight ratio, turn capability, takeoff distance, roll rate, maximum payload, or range-at-any-cost). On long-range commercial transports where the economic margin for error is very small, the ability to very accurately predict absolute cruise performance is essential for success. The cruise performance parameters that directly impact the commercial viability of a transport are the payload carried, the distance flown in a given time, and the fuel burned to get there ---all of which are relatively easy to measure in flight on a given airplane to within 1% or less. To sell a new airplane type, the manufacturer must typically guarantee that a deviation of no more than a few percent will exist between the predicted performance and that measured in flight tests. Unfortunately, the preflight predictions can only be calculated from the constituent lift, drag, thrust, SFC, and mass properties, each of which have their own uncertainties (represented by Probability Density Functions, PDF). The ability of the Aero and Propulsion disciplines to accurately establish their components of performance can only be assessed in "hindsight" by back-calculating the corresponding components from the measurable flight test quantities. (Physical understanding, testing and CFD technologies and accounting methods can then be developed to minimize unpleasant surprises in the future.)

While most aerodynamic technology development and optimization work can focus on incremental CFD and test databases, the importance of establishing accurate absolutes as early as possible is obvious. The net impact of every one count cruise drag miss ($\triangle \mathrm{CD}=0.0001$) integrated over a complete flight results in a 10,000 LB increase in the design Maximum Takeoff Gross Weight (MTOW) required to fly the mission. Once the engine size is frozen and MTOW is fixed the airplane must loose 6 seats, or find a one ton savings in structural weight just to break-even with a one count cruise drag increase.
At this early stage of the HSCT program, there are really two main areas where integrated assessments of "absolute" drag levels are needed. One is in defining the conceptual airplane used as a confirmation of continued program viability and a common baseline airplane geometry for all disciplines to use. (The TCA now filling this role, along with periodic baseline concept updates will be the basis of several key program decisions in the next few months and years.) The second is to accurately calibrate the CFD tools and processes that are being developed to enable the design and optimization the future production HSCT.
From the preceding discussion of the TCA drag polar build-up it can be seen that the high speed drag polars for performance modeling are a complex combination of increments and absolutes from different sources. Each of these inputs has its own inherent precision and bias errors --- some easier to determine and control than others. For the purposes of the "flight polar build-up" ADP subtask, data used in the TCA polar build-up was assessed for potential sources of bias and precision (repeatability) error.

Examples of Uncertainty in TCA High Speed Drag Polars

- Test-to-test, and tunnel-to-tunnel differences (1.5ct)
- Wind tunnel model corrections:
- Trip drag / laminar run (2.0ct)
- Model fidelity and aeroelastics (2.5ct)
- Nacelle internal forces (2.0ct)
- Installation T\&1 (~2ct ? trans. / 0 super.)
- "Full scale airplane" drag increments:
- Excrescence (2ct)
- Empennage / trim (6ct)
- Propulsion induced effects (10ct trans. / 2 super.)
- Reynolds number/skin friction effects (4ct)

Significant sources of uncertainties in the absolute drag levels quoted for performance use were identified based on existing discrepancies between various semi-empirical, CFD, and wind tunnel sources. Uncertainties in the ability to obtain improvements with non-linear optimization technology, and any biases related to the basic linearized potential flow design and analysis tools were not considered.
Depending on the exact data sources compared, varying uncertainty levels can be assessed. Those shown in the chart above are believed to be the most representative relative to the specific components in the TCA polars. All quantities are $+/$ - the value shown.
As part of BCAG's portion of the ADP task in 1996, the areas of excrescence drag, empennage drag (upsweep, closure, tail trim), and wind tunnel database corrections and averaging were chosen for more detailed investigation. CFD solutions (Overflow and TLNS3D-MB) were used to get a better assessment of the the empennage drag terms and Reynolds number effects. It should be noted that the wind tunnel database uncertainties generally get incorporated into the status polars both directly through the "test-theory increments", and indirectly through the CFD-based geometry increments as the CFD codes were validated using wind tunnel data.
(The potential uses of CFD data in the assessment of excrescence drag and wind tunnel trip drag are the subject of additional BCAG papers.)

The tunnel-to-tunnel repeatability as seen on the Reference-H configuration (roughly $+/-1.5$ count) has been a concern for several years. The "Benchmark Models Program" co-op testing program begun by BCAG and NASA prior to HSR-2 was intended to uncover and resolve such discrepancies to reduce uncertainty in absolute level drags. (The Ames Unitary tunnel was unavailable to complete the model-to-model portion of the program and the remainder of the study was out-prioritized by HSR-2 and BCAG activities.) "Test-theory increments" to be applied to linearized potential flow results are shown in the above left bar chart based on various Ref.-H wind tunnel sources. Error bands about the individual wind tunnel levels are shown representing 80% confidence levels for measurement repeatability and uncertainties in the data corrections (primarily trip drags and model fidelity). Using just the Ref.-H wind tunnel database would have indicated that the TCA drag prediction would need an average 1.5 count test-theory increment at Mach 2.4. As shown, this was confirmed by the Ref.-H Overflow Navier-Stokes results. Pre-test CFD results for the TCA however, indicated a level about 1count below the uncorrected potential flow results. As it was believed that the higher sweep angles and more slender body of the TCA might have more favorable "real flow" effects than the Ref.-H, a test-theory increment of -1count was chosen for the TCA performance polars. The Ref.-H wind tunnel database test-theory increments was still used as a guide in fairing out the TCA's -1count across the Mach range (see upper right graph). TCA transonic/subsonic test results from LaRC 16T are still being analyzed.

TCA Status: Potential Flow Analysis vs. LaRC UPWT

Initial TCA test results show that the -1 count test-theory increment agrees with the measured drag polar of the "clean wing" model if one assumes that the net adjustment for trip drag+laminar run should correctly be 2.5 to 3.0 counts.
Unfortunately the statistical uncertainty in trip drag correction due to curve fit questions, basic data scatter, and laminar run correction unknowns, is significantly larger than the test-theory correction so a definitive answer is impossible at this time. A method using CFD results and excrescence drag calculation methods to reduce these correction uncertainties shows promise but requires calibration with additional very high quality wind tunnel data.
The other fact that can be gathered from the above test data plot is that the impact of model fidelity (including model excrescence) cannot be ignored. While the test-to-test repeatability of the TCA wing which included flap cut-outs was excellent (fractions of a count), it clearly has a 1.5 count model fidelity penalty relative to the second model which was built with a "clean" wing. The model fidelity penalty grows to nearly 2 counts for the nacelles-on case.
Subsonic and transonic TCA force data obtained recently in the LaRC 16 Ft transonic tunnel are still being analized at the time of this writing. No off-design supersonic data (i.e. Machs from 1.3-2.1) were taken on the TCA performance model so the large test-theory increment predicted from the Ref.-H data cannot be confirmed.

Several areas were identified where viscous CFD analysis might provide additional data to reduce the uncertainty levels in HSCT performance polars. The use of Navier-Stokes results in the resolution of trip drag corrections and excrescence drag estimates has already been mentioned. Navier-Stokes results were also used to provide an assessment of empennage drag and possible Reynolds number effects not capytured by the simplified PD methods used in the current polar buildups.
Considerable time and effort went into using TLNS3D-MB for empennage analysis. Seven different aft-body/ vertical tail geometries were run, plus three tail angles on the baseline TCA body. While the results of the trim drag portion were encouraging, the aft-body upsweep and closure increment study was inconclusive. Grid problems with viscous flow continuity at block boundaries and the unexpected complexity of the aft-body viscous flow caused significant errors in both the skin friction and viscous pressure drag of the various bodies. This problem is currently being investigated further.

CFD Assessment of Empennage Drag and Rn Effects

- TLNS3D-MB study of empennage drag:
- 7 aft-body / tail geometries
- 3 tail angles on baseline TCA aft-body
- Horiz. is unported at best trim angle
- Status trim o.k. (+1ct downwash, -1ct vert-horiz. interf.)
- Upsweep / closure drag results inconclusive
- Ref. H and TCA wing-body @ w.t. and flight Rn
- Overflow (dense grid, Bladwin-Barth)
- Both showed dCD/dRn slope 2ct less than flat plate calc.
- -1ct visc. pressure drag at flight on Ref.-H
- +2\% visc. CL at flight on TCA

The trim drag results showed that the baseline tail is unported at the optimum tail angle. If the tail is "resealed" to the body wiping surface, the large effective downwash (4 degrees) and poor installed tail polar cause a one count trim penalty. The total status tail drag is about equal to that predicted using the normalized trim approximation as there is also about one count favorable horizontal-vertical tail volume interference. Similar results were obtained across the Mach range. The tail polar and sensitivity to downwash and body shape indicate that the projected additional reduction of 1 to 2 counts is probably achievable with non-linear optimization. Of course wind tunnel data is still needed to validate the empennage CFD results for future designs and predictions.
Overflow solutions on the TCA and Ref.-H wing-bodies were studied to identify trends in skin friction and viscous pressure drag at cruise Mach conditions. Both geometries showed a CDf trend from wind tunnel to flight Reynolds number that is about 2 counts less than predicted from standard falt plate skin friction methods. In addition, the Ref.-H showed a potential 1 count pressure drag reduction in flight. The TCA showed a potential 2% increase in lift at flight Reynolds number. Again, test data and additional CFD-to-flat-plate theory comparisons are needed to reduce uncertainty in this area.

Summary Of Drag Polar Build-Up For High Speed Performance

- "Performance Polars" = Projected Level from tops-down method "Tech. Projection" = (Projected Level) - (Status polars © flight) "Status" =(W.T. database) + (potential flow, PD, CFD-based Δ 's)
- Uncertainty bands around Status can add significant program risk (e.g. viability assessment, technology metrics, downselects)

In addition to CFD analysis and optimization tools, HSCT testing and accounting methods must be validated to a high confidence level before production go-ahead, e.g. ...

- Empennage drag
- Propulsion induced effects (PIE)
- Rn effects on supersonic pressure drag and skin friction

This paper has reviewed the various components of the TCA high speed drag polars used for airplane sizing, mission performance analysis, and Technical Integration (TI) airplane level trade studies. The level of cruise L/D in the TCA polars has been set equal to the target cruise performance determined by concensus of the joint NASA-industry Configuration Aerodynamics (CA) team. An unprojected "status" level TCA polar was developed based on a combination of available wind tunnel data, geometry changes, and "real airplane" details. The "technology projection" is the drag improvement required to cover the difference between the concensus "tops-down" based performance LD and the status polar. A projection formula based on the percent change in cruise wave drag, and drag due to lift was then applied at all supersonic Mach numbers. A 20\% excrescence reduction at all Machs and a 6% improvement at subsonic conditions are also applied.
Potential errors in the absolute level of predicted drag can have an adverse impact on the determination of program viability or major concept downselects. Several sources of uncertainty in the current polars have been described. Some efforts under the TI "ADP" task to further quantify or reduce several uncertainty elements have been shown. The use of calibrated CFD solutions appears to offer benefits in several areas. Future wind tunnel tests to extend the existing wind tunnel databases and provide CFD validation must be carefully planned to obtain maximum data quality if significant progress is to be made in eliminating uncertainty sources.

References:

High Speed Civil Transport (HSCT) Technology Concept Airplane Outer Mold Line (OML) Definition, Mc Donnell Douglas and Boeing Commercial Airplane Group, Rev.A March 13, 1996.

High Speed Civil Transport (HSCT) Technology Concept Airplane Configuration Description Document, Mc Donnell Douglas and Boeing Commercial Airplane Group, April, 1996.

Acknowledgments:

The authors wish to thank Tsong-Jhy Kao of Boeing and Ross Sheckler of Dynacs Engineering Inc. who provided CFD grids and solutions for the HSR Technology Integration Task-20 Airplane Design Process (ADP) study outlined in this paper.

=MEN SPEE MESENHEM
Outline - Drag Bookkeeping

- CD Induced
- Goal - TRENDS
- CD Induced Codes
- WINGDES
- SDASDA389
- BRISTOW
- Mach 2.4 Flat Wing Comparisons
- Mach 2.4 Design
-Qualitative Assessments
- Mach 2.4 Analysis
- BRISTOW Designs
-TCA Prediction Comparisons
- Mach 1.1 Analysis of BRISTOW Designs
- CD Induced Summary
- Preliminary Conclusions and Future Plans
- References

 separate drag into the components that each method predicts. CD Friction process differences have been quantified and should not affect drag trends between designs; therefore, the differences are considered acceptable. Based on previous work, differences in CD Wave were relatively small and probably due to differences in the geometry analyzed and the number of cuts used--process improvements are still under investigation. CD Induced and $\Delta C D$ Nacelles were known to have the largest differences, so the most effort has been concentrated in those two areas. This paper discusses only the CD Induced results.
= MIGM SPEEP RESEUNCM
KEEPING
Status
Results Close
Acceptable
Conclusion
$\begin{aligned} & \text { So } \\ & \text { 気 } \\ & \text { ® }\end{aligned}$
pending

[^18]Assumption
Assumption
NFWD vs CFD/FP

DRAG BOOK

Far-Field
Vortex Lattice
CD Friction

CD Wave
 CD Induced

Δ CD Nacelles
Δ CD Trim
Δ CD Techno.
MOVYBSJU CBISS M3IM $=$
For Technology Integration studies, all methods will be corrected with a test to
 parallel task. Therefore, getting the correct change in drag between designs is more important than getting the correct drag level. To understand the differences between induced drag methods, the modeling was made very consistent between codes. Empirical corrections were dropped, the fuselage was modeled as a flat plate without thickness, and the panel density in роцәш јо d!̣чs.ıosuods вu!̣nu!̣uoo s، $\forall \mathrm{SVN}$ improvements has been put to good use. Work by Carlson, et. al., developed
enhancements in leading edge thrust calculation methodology used in
WINGDES, as documented in reference 3 . Under IRAD funding, the
attainable thrust limiting routines in BRISTOW were revised to match the
enhanced method. SDAS/A389 thrust limiting is based on the previous
method in reference 7 .

[^19]=-wIEM SPCEM RESENTEM
CD Induced
The \#1 goal is correct TRENDS between designs And modeling changes were made that reduced inconsistency (like not using
BRISTOW fuselage interference) and reduced interpolation error between
codes before proceeding to:
Wing Design
Wing/Warped-Plate-Body Analysis of Best Designs
CHICN SPEEN AESEARCN
Before this task, the drag of a design could vary 2 to 7 counts at Mach 2.4 and
was different by as much as 10 counts at Mach 1.1 . Modeling and
interpolation processess were made more consistent, and paneling density was
increased. With these updates, the no thrust vortex lattice methods for
similarly modeled, uncambered designs, the were shown to predict between 0
and 1 count of difference--a very consistent comparison.

All three codes use the same method to calculate full leading edge thrust, so
the differences in thrust increments are due to differences in the pressures used
to extrapolate the leading edge pressure. The consistent drag increments,
within 1 count at a CL of 0.10 , demonstrate agreement in these flat wing thrust
predictions.
mamasjy gims mim =
FLAT WING AND BODY - FULL THRUST

seri nssurn
Attainable thrust increments also agree within 1 count, but notice that the
SDAS/A389 attainable thrust is less limiting--relative to WINGDES and
BRISTOW. Probably due to differences in the reference 7 versus reference 3
methods.

- WHEM SPEED AKSEMCM

FLAT WING AND BODY - ATTAINABLE THRUST

=MIGH SPrED MESEMAKM
NASA, Boeing, and MDC each use different codes that calculate linearized potential flow using a vortex-lattice. Even though all codes employ the same theory, each code uses a different method to design optimally cambered wings. WINGDES (refs. 1-3) uses 8 shape functions plus up to 40 leading edge shape functions, SDAS/A389 (refs. 4-7) uses 5-17 loading functions, and BRISTOW
(refs. 3, 8-11) uses 432 panels' camber slopes as shape functions.
Further, each code has unique capabilities not found in the other codes.
WINGDES is the only code that designs for leading edge thrust (LET).
According to our linear analyses, LET designs have lower camber and 1 to 2
counts lower induced drag. SDAS/A389 has a Near-Field Wave Drag
(NFWD) method for rapidly estimating nacelle effectts and reflexing the wing
during camber optimization for improved performance with nacelles.
BRISTOW includes fuselage interference and wing thickness effects.
CD Induced Codes
Three Vortex-Lattice Codes
WINGDES (NASA)
Planer formulation, re
$\bullet 8$ shape +
\cdot Design for
\bullet
\bullet shape +40 LE shape functions in design

=MEM SPEED RESERREM
In FY95, a great deal of effort was expended to understand what the induced
drag increment should be between consistent, well optimized Arrow and Ref.
H planform designs. Wind tunnel data of CFD optimized designs were
considered. Linear designs were analyzed using CFD. And finally, CFD re-
optimization and analyses were performed on a series of consistent
configurations in reference 11, resulting in a final increment of 7 counts.

A $\triangle C D$ Induced trend of 7 counts between the Arrow and Ref. H planforms
was established in earlier planform studies and was verified by CFD. All codes' designs are within 1 count of the established trend.
Substantial differences exist in drag level, pressure loading smoothness, and
shape smoothness
= WIGN SPEED RESEMRCM

$$
\begin{aligned}
& \text { Drag levels are shown below for designs optimized and analyzed by their own } \\
& \text { code. Since WINGDES is the only code that can design for Leading Edge } \\
& \text { Thrust, two sets of WINGDES designs are shown: with LET and without } \\
& \text { (without is comparable to SDAS/BRISTOW). The WINGDES designs have } \\
& \text { been updated from the } 1996 \text { ADP report, using NASA's help, to correct the } \\
& \text { design inputs. All methods match the established trend when analyzed with or } \\
& \text { without leading edge thrust. }
\end{aligned}
$$

 increment by 0.9 counts because non-linear optimization results indicate that a linear Arrow wing design will benefit more from non-linear optimization because of its larger amount of subsonic swept leading edge.)

Qualitative Assessment:

[^20]movasiv cilus msin=

工HIGM SPEEA RESEARCH
Of course, these trends were based on each code analyzing its own designs.
To ensure consistency, the lowest drag BRISTOW designs were choosen to
be analyzed by the other codes to see if their results would match the
BRISTOW results. Using consistent modeling, the results were consistent
for all codes at the cruise condition.
=MGM SPEED RESELRCM

[^21]
= MEM SPETE meseman
BRISTOW DESIGN: ANALYSES COMPARED - ATTAINABLE THRUST

Predictions compare well with and without thrust estimates at $\mathrm{CL}=0.10$; however, at the minimum drag CL, SDAS/A389 predicts several counts more thrust--resulting in negative drag (at Mach 2.4 and 1.1). Further, SDAS/A389 thrust predictions of the TCA show a $1 / 2$ degree disagreement in alpha for zero thrust at Mach 2.4 (but no disagreement for TCA at Mach 1.2) compared with WINGDES and BRISTOW. Boeing takes a conservative approach by not using any LET predictions from A389 above Mach 1.5.

=-MIGH SPEED RESEARCM
Mach 2.4 Analysis of BRISTOW Designs - Full Thrust

\bigcirc	WINGDES
\square	BRISTOW
Δ	SDAS/A389
\bigcirc	WINGDES
\square	BRISTOW
Δ	SDAS/A389
	Arrow Planform
	Arrow Planform
	Arrow Planform
	Ref H Planform
	Ref H Planform
	Ref H Planform

= MIGH SPEED RESEABCW
TCA6 LET Prediction Comparison at Mach 2.4

$$
\begin{aligned}
& \text { In addition to comparing the linear methods to one another, a comparison } \\
& \text { was made against a CFL3D Euler calculation of the TCA configuration. } \\
& \text { Pressure predictions near the side-of-body show good agreement with a } \\
& \text { BRISTOW wing-body prediction. Only BRISTOW pressures are shown } \\
& \text { since WINGDES only calculates delta Cps and SDAS TCA decks from } \\
& \text { Boeing did not include fuselage effects in the lift analysis. (The oscillations } \\
& \text { in the BRISTOW predictions are due to a slight influence instability in the } \\
& \text { body paneling which dies out quickly, farther from the body, and does not } \\
& \text { seem to affect force predictions since the flow is isentropic.) }
\end{aligned}
$$

=AMEM SPEE BESEMAH

= WIGM SPEED RESEAMOM
Just inboard of the leading edge break, the lower surface pressure comparison still looks good. But contrary to the lower surface, the linear method predicts too much leading edge suction and not enough suction on the upper surface following the peak. This is believed to be a failure caused by the linearization of the potential flow equations. The lower surface pressure coefficients are much closer to zero, therefore, non-linear terms are smaller. The acceleration of the flow on the upper surface changes the local Mach number; and therefore, the influences of the panels on one another.
 par
 leading edge panels chin and all As you can see, this definitely affects leading edge thrust resuls and all force predictions. More examination of the consequences of this result are needed.

=hign speed bisearch

$$
\begin{aligned}
& \text { Since these are induced drag codes, they are designed to predict changes in } \\
& \text { drag versus CL. To compare their accuracy, a plot was made of the } \\
& \text { difference between TCA wind tunnel data and each codes' prediction. A } \\
& \text { CFL3D Euler prediction was added for comparison. To be a good induced } \\
& \text { drag method, the difference plotted should be a zero slope line. All three } \\
& \text { linear methods plot as parabolas, with good accuracy at, or a little below, } \\
& \text { cruise CL and worsening predictions beyond that. BRISTOW is shown with } \\
& \text { and without fuselage and wing thickness effects. The BRISTOW prediction } \\
& \text { including fuselage and wing thickness effects shows a substantially better } \\
& \text { trend versus CL, much closer to the Euler trend. }
\end{aligned}
$$

$=$ MIGM SPEED BESEARCM
TCA6: METHOD minus TEST at Mach 2.4- \triangle DRAG VERSUS CL Linear CDwave $=0.00187$

Here SDAS is shown without its LET estimate, since that is the way Boeing uses the code a Mach 2.4. SDAS/A389
However, when SDAS/A389 signs with and
with LET is 1 count worse (the no thrust result) instead of 2 counts better. Analysis without
LET estimates should not be used on wings designed for LET.
= HIGH SPEED RESEARCM
minus TEST at Mach 2.4- \triangle DRAG VERSUS CL
Linear CDwave $=0.00187$
TCA6: METHOD
$0: 0003 m 0$

$$
\begin{aligned}
& \text { CD Induced } \\
& \text { Mach 1.1 Analysis } \\
& \text { of BRISTOW Designs }
\end{aligned}
$$

MOHISSH C33dS M9MH=
BRISTOW Designs: Mach 1.1 CDinduced at $C L=0.15$

$$
\begin{aligned}
& \text { A plot of the spanwise leading edge thrust prediction from WINGDES and } \\
& \text { BRISTOW were compared to examine why thrust predictions differed. } \\
& \text { WINGDES had to reduce is paneling to } 19 \text { columns at Mach 1.1. BRISTOW } \\
& \text { used } 18 \text { columns but spline fits the leading edge pressure and integrates on } \\
& 1 \% \text { intervals. BRISTOW pressures yield a much smoother distribution } \\
& \text { (except for the discontinuous sweep break) and a more conservative } \\
& \text { prediction on the outboard sharp leading edge, but there is no way to tell } \\
& \text { which is more correct. Fortunately, sharp leading edge prediction differences } \\
& \text { are minimized when attainable thrust limiting is applied. Since transonic } \\
& \text { drags levels have less of an effect on the design, the inconsistency magnitude } \\
& \text { is considered acceptable. }
\end{aligned}
$$

=IIISN SPEEU AESEMACHI
CD Induced Summary

Conclusion

All codes produce similar trends
Should include in other codes
All Codes have similar trends
$?$
$?$
$?$
All Codes have similar results
$?$ Status
Mach 2.4 Design
Design
Only WDES has LET design
Mach 2.4 Analysis
Wing/Warped-Plate-Body
LET of SDAS not useable
Fuselage interference/Thickness
only in BRISTOW
Inaccuracies outboard
Mach 1.1 Analysis
Wing/WP-Body
SDAS LET predicts negative
CD at low CL

=MISN SPEEN RESEMCM

CD Induced Methods Drag differences were eliminated by improving modeling processes.
All codes now match in design and analysis trend predictions.
WINGDES is the only code to design with LET.
SDAS is the only code with rapid nacelle prediction and design, but data
comparisons are needed to validate the benefits.
SDAS is unable to use LET at Mach 2.4 .
BRISTOW is the only code calculating fuselage interference and wing
thickness, but more data comparisons are needed to validate the benefits.
Need to improve understanding of linear pressure prediction inaccuracies.

References

1. Carlson, H. W. and Walkley, K. B. "Neumerical Methods and a Computer Program for Subsonic and Supersonic Aerodynamic Design and Analysis of Wings With Attainable Thrust Considerations." NASA CR-3808, Aug. 1984.
2. Carlson, H. W. and Darden, C. M. "Validation of a Pair of Computer Codes for Estimation and Optimization of Subsonic Aerodynamic Performance of Simple Hinged-Flap Systems for Thin Swept Wings." NASA TP-2828, Nov. 1988.
3. Carlson, H. W.; McElroy, M. O.; Lessard, W. B. and McCullers, L. A. "Improved Method for Prediction of Attainable Wing Leading-Edge Thrust." NASA TP-3557, Apr. 1996.
4. Middleton, W. D. and Lundry, J. L. "A System for Aerodynamic Design and Analysis of Supersonic Aircraft. Part 1 General Description and Theoretical Development." NASA CR-3351, Dec. 1980.
5. Middleton, W. D. and Lundry, J. L. "A System for Aerodynamic Design and Analysis of Supersonic Aircraft. Part 2 User's Manual." NASA CR-3352, Dec. 1980.
6. Middleton, W. D. and Lundry, J. L. "A System for Aerodynamic Design and Analysis of Supersonic Aircraft. Part 3 Program Description." NASA CR-3353, Dec. 1980.
7. Carlson, H. W.; Mack, R. J. and Barger, R. L. "Estimation of Attainable Leading-Edge Thrust for Wings at Subsonic and Supersonic Speeds." NASA TP-1500, Oct. 1979.
8. Woodward, F. A. and Larsen, J. W. "A Method of Optimizing Camber Surfaces for Wing-Body Combinations at . Supersonic Speeds--Theory and Application." Document D6-10741--Part 1, Sept. 1965, The Boeing Co; also available as NASA CR-69181. Including Flow Properties in the Near Field - Part I - Theory and Application." NASA CR-73106, Aug. 1967.

References (cont.)

9. LaRowe, E. and Love, J. E. "Analysis and Design of Supersonic Wing-Body Combinations, Including Flow Properties in the Near Field - Part II - Digital Computer Program Description." NASA CR-73107, Aug. 1967.
10. Bristow, D. R. "Computer Program to Solve the Three-Dimensional Mixed Boundary Condition Problem
Subsonic or Supersonic Potential Flow." MDC A3190, Dec. 1974, McDonnell Aircraft Co, St Louis, MO
11. Kuruvila, G.; Hager, J. O.; Unger, E. R.; Arslan, A. E.; Bruns, D. B.; Sundaram, P.; Martin, G. and Agrawal, S. "Technology Integration CFD Planform Study of the 1400 Series. [1404-1407]" Contract NAS1-20220, Task 11 Report, Nov. 15, 1995; McDonnell Douglas Aerospace-Transport Aircraft, Long Beach, CA.

[^0]: This chart shows the various NAS parallel systems available and the resources availble under the HSR and HPCCP projects.

[^1]: split the any block in a The strategy
 ask distribution to various nodes,
 Grids have to be split for ta
 W/B singe-block grid is shown b
 multiblock grid.

[^2]: This chart shows the load distribution of the 31-block split grid with a predetermined per processor grid size of around 150,000 points (due to processor memory limitations).of the original
 22-block TCA baseline W/B/N/D Euler grid. It can be seen that simple block-to-processor
 mapping yields very poor load distribution amongst the processors. The load balancing software解 recommended number of nodes is 23 which increases the parallel efficiency by 25%.

[^3]: The input file for CFL3Dhp is similar to its serial version counterpart. However, since the input file preparation. In addition, this has to be done routinely and automatically to be useful. Since we already have a utility (precflinp) to automatically prepare the CFL3D input file at MDC, additional block splitting related modifications to the input file is also included.

[^4]: architectures can be expected to reduce the CPU requirements.

[^5]: This slide shows the pressure and airfoil variations at a wing semi-span of 67.9%, an
 increased with contribution from the upper and lower surfaces. In addition, the aft loading has increased and the mild pressure increase from the outboard nacelle/diverter appears to have been eliminated. For this cut, airfoil modifications appear minimal.

[^6]: Several new constraints were added to support the TCA optimization and are shown in the chart. The cross-sectional shape enclosure constraint was improved by adding a variant that is active over a range of fuselage stations.

[^7]: - Results show that the nacelles have been integrated without any
 significant pressure drag increase
 Viscosity reduces the installation pressure drag by one count
 TCA baseline did not satisfy the inlet flow alignment constraints
 Nacelles/diverters have been realigned to improve inlet flow field
 Inboard diverter LE indicate possibility of a 3 in. reduction in height modifications showed shape negligible drag benefits so far

[^8]: Navier-Stokes solutions are used to assess the Reference H nozzle boattail drag at
 ransonic speeds. The solutions were obtained using the CFL3D flow solver with the
 Baldwin-Barth turbulence model at $R e_{c}=40 \times 10^{6}$ for $M_{\infty}=0.9$ and 1.1.

[^9]: The differences in skin-friction drag between the highest and lowest values are 6 counts at
 $\mathrm{Re}_{\mathrm{c}}=10.3 \times 10^{6}, 4.5$ counts at $\mathrm{Re}_{\mathrm{c}}=30 \times 10^{6}$ and 5.3 counts at $\mathrm{Re}_{\mathrm{c}}=80 \times 10^{6}$. Also note that the two equivalent flat-plate methods predict identical skin-friction drag at this Mach number.

[^10]: Next, the ince slope at speeds 5 kts . slower than $\mathrm{V}_{\text {trim }}$ at the same . The figure shows that the difference in $\mathrm{d} \gamma / \mathrm{dV}$ is less than 0.05 degrees $/ \mathrm{kt}$. at all altitudes analyzed.

[^11]: Thus, with an additional 200 drag counts, and at flight idle thrust, the descent capabilities were evaluated. Descent . Descent weight cases. The results are presented as descent rate versus altitude. For the start-of-cruise weight, the require cruise met at altitudes above $10,000 \mathrm{ft}$. For the mid-cruise weight case the requirement is met above 6,000 feet, and for the end-of-cruise weight case the requirement is met at all altitudes in the flight envelope.

[^12]: Go Around Control Power was evaluated starting from a trimmed landing condition at approach velocity ($\mathrm{V}_{\text {trin }}=$ min-g pircond part of the requirement which
 品 ${ }^{\circ}$

[^13]: The diving pullout requirement states "It shall be possible to effect a 1.5 g pull-out at the $\mathrm{V}_{\mathrm{D}} / \mathrm{M}_{\mathrm{D}}$ boundary with one
 ughout the envelope. The wer a

[^14]: Requirements Not Satisfied:
 Does NOT meet the High Angle-of-Attack Recovery requirement.

[^15]: The NASA Langley UPWT is being extensively used in the HSR program to provide aerodynamic performance and stability and control characteristics at supersonic speeds. The ranges of Mach number and Reynolds number, the control of the dewpoint and stagnation temperature, the optical access to the test section, and the benign environment for the installation of digital and video imaging equipment are factors that render UPWT well-suited to the application of PSP and VMD techniques. The PSP and VMD systems are portable between the "low Mach" and "high Mach" number test sections. In addition, the present facility scheduling features one "active" test section while the "idle" test section is available for PSP and VMD system set-up, check-out, and test technique enhancements.

[^16]: From these data, it was concluded that the long-term repeatability is good at this
 Mach number.

[^17]: * Lead Engineer
 **Senior Engineer
 HSCT High Speed Aerodynamics
 Configuration Development Group

[^18]: tbd-time
 permitting

[^19]: ОІІМ
 ภе.рр

 since trends are of difference between a 2.4-7 Arrow Planform and Ref. compared.

[^20]: There is no clear advantage of one code's design over another, using consistent modeling; but there are some substantial differences. Final comparisons, using the LET, nacelle and fuselage/thickness effects unique to each code, will be investigated in future studies.

[^21]: Analysis of the same design by different codes yields the same trends and
 very similar drag levels with and without LET.

