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Abstract

Understanding the performance of the Intemet's Transmission
Control Protocol (TCP) is important because it is the dominant
protocol used in the lnternet today. Various testing methods
exist to evaluate TCP performance, however all have pitfalls
that need to he understood prior to obtaining useful results.
Simulating TCP is difficult because of the wide range of vari-
ables, environments, and implementations available. Testing
TCP modifications in the global lnternet may not he the an-
swer either: testing new protocols on real networks endangers
other people's traffic and, if not done correctly, may also yield
inaccurate or misleading results. In order for TCP research to
be independently evaluated in the Interact research community
there is a set of questions that researchers should try to answer.
This paper attempts to list some of those questions and make
recommendations as to how TCP testing can be structured to

provide useful answers.

1 Introduction

[PF97] gives a thorough overview of the tradeoffs of different
ways to examine intemetwork performance and various con-
siderations that should he taken into account when running in-
ternetworking experiments. This paper extends the thoughts
outlined in [PF97] to the specifics of performing research on
the Transmission Control Protocol (I'CP) [Pos81]. Under-

standing the performance of TCP is important because it is
the dominant transport protocol used on today's lntemet. TCP
employs a set of end-to-end congestion control algorithms
[Jac88], which are the focus of a number of research papers
and presentations _. There are numerous methods for evaluat-
ing TCP's performance in various environments and the im-
pact of modifications to TCP's congestion control algorithms.
The manner in which an experimenter studies TCP has a direct
impact on the relevance and usefulness of the results obtained
and the conclusions derived.

When initially explained TCP appears to he a fairly sim-
ple and easy to understand protocol. Furthermore, it would
seem fairly straightforward to make some small change to the
algorithms and assess the costs and benefits of this change.
However, there are many subtleties to TCP's mechanisms, dy-
namics, and interactions with other traffic sharing a network
path. In our experience with running TCP experiments we
are constantly surprised by the interactions and dynamics that

"This paper appears in ACM Computer Communication Review, October
1999.

Iln this paper, we use the term "TCP" to include both the details of the TCP

protocol itself and also the congestion control algorithms used by TCP.

various TCP experiments illustrate. Thorough exploration into
the behavior of TCP, the behavior of proposed changes to TCP
and the impact of these changes on competing network traffic
is needed before a research study will be taken seriously and
have an impact on changing the protocol. As we review papers
and listen to presentations we are often dismayed at the types
of TCP experiments being performed and the conclusions de-
rived from the results. This paper is not meant to discourage
TCP research. Rather, we hope to encourage researchers to
carefully think about their TCP experiments such that the in-
vestigations are solid and will have a positive impact on the
continuing evolution of TCP.

Finally, we are also often dismayed by the lack of details in
reports and presentations about TCP experiments. As with all
scientific endeavors, details are important for thorough review
and analysis of TCP proposals 2. Without such details it may
be difficult for researchers to understand the results of TCP
experiments and therefore the tests become less compelling.

2: GhoosingaTCP I: The Forest

The first question that researchers need to carefully consider
before embarking on aTCP experiment is: Which TCP should
I use? Often this question implicitly breaks into two (or more!)
questions when carefully considered. This section considers
which TCP should:he used as a "baseline" against which ex-
perirn'ental' TCPs are compared, and which TCP should be
used as an experimental TCP.

FOrthe remainder of this section we will distinguish be-
tween today's current TCP implementations, denoted TCPc,
and the expected future TCP implementations, denoted
TCPI. While no two TCP implementations are identical,
most are similar in the algorithms implemented, so consider
TCPc to he a current, widely-used TCP implementation that
contains a typical set of TCP algorithms. While section 3 will
outline the specifics of the current TCPf, for this section just
assume that TCP! includes a number of widely-agreed upon
and standardized TCP enhancements that will likely be im-
plemented in the near future in most major TCP implementa-
tions. The difference between TCP_ and TCP! is the time it
takes for standardized TCP improvements to gain wide-spread
deployment. Note that generally a number of experimental
TCP! implementations are available for researchers to use
before such implementations become wide-spread in commer-
cial operating systems. Next, we use TCPe to denote a TCP
implementation containing a researcher's experimental modi-

2A nice reminder about the importance of details and the scientific method

can be found in [Fey85].



fication. Finally, we use TCPo to denote a TCP containing

other enhancements, possibly competing, that have been pro-

posed in the literature and may or may not be adopted in future
versions of TCP. Often it is useful to compare the impact of

TCP, with various versions of TCPo, especially if the TCP,

and TCPo are attempting to solve similar problems.
Often the first decision a researcher must make is which

TCP to use as a "baseline" against which aTCPe will be com-

pared. It is tempting to simply pick an "out of the box" TCPc
to obtain a baseline. However, such a choice can produce mis-

leading results for two reasons. First, if the TCPc chosen is
overwhelmingly used as a client in the Internet, it may show

less than optimal performance when pressed into service as
a server. Likewise, a TCP_ that is used mainly on servers

may exhibit poor performance when used as a client. The re-
searcher could cope with this problem by using two TCP¢

implementations, a popular client implementation and a pop-

ular server implementation. The second (more fundamental)
reason why a TCP¢ does not make a good baseline is that it

likely does not include any of the performance enhancements

that are expected to be widely deployed in TCPf implemen-
moons. Since the enhancements included in a TCP! are cur-

rently standardized and in the implementation process, a new
TCP modification is not likely to be deployed before TCP!

and therefore comparisons to TCP¢ are clearly not as com-

pelling as comparisons to TCP! implementations.

Note that a comparison of a TCP, stack to a TCP¢ im-

plementation is not entirely without merit. Such a comparison

can give the community insight into the performance improve-
ments we can expect in the future, as compared to the current

installed base. However, such a comparison does not generally

provide a compelling reason for changing TCP.
The second decision a researcher must make is which TCP

implementation to change and use as TCP_. Given the above
argument that building on a TCP! is best, the researchers
choices are often somewhat limited in that, as defined, TCP f

is hot widely 'deployed. In addition, note that many times the

operating system choice is further limited to only those operat-

ing systems that release source code. While the TCP enhance-

merits in TCP I may not be completely tested, we suggest that
researchers look for TCPs that have been proven to be stable

Over some period of time in production networks. This will

cut down On the number of bugs in the implementation and
increase ihe strength of the results produced. In all cases, the

researcher should carefully examine the TCP stack chosen, as
discussed in section 5.

3 Choosing a TCP II: The Trees

This section details the items researchers should currently look

for in a TCP implementation. Note that this list is subject to

change with time and that a good understanding of the current

state of the protocol is needed to answer the question of which
TCP should be used. The current state of many popular TCP

implementations is given by [Mah99].

The following items are standards track IETF mechanisms
that we recommend be in all TCP implementations used in

research experiments.

• Basic Congestion Control. We strongly suggest the

TCP chosen for a given piece of research should con-
tain the slow start, congestion avoidance, fast retransmit
and fast recovery congestion control algorithms, as out-
lined in RFC 2581 lAPS99]. Slow start and congestion
avoidance are required by the IETF standards, while fast

retransmit and fast recovery are recommended, mainly
as performance enhancements. These algorithms pro-
vide TCP with standard end-to-end congestion control

(as originally outlined in [Jac88]) and are widely imple-
mented in most versions of TCP.

Extensions for High Performance. The size of the

socket buffers that should be used in TCP experiments
is discussed in detail in section 6. Here we note that

the standard TCP header [PosSl] limits the advertised

window size (generally derived from the receiver socket

buffer size) to 64 KB, which is not adequate in many sit-

uations. Equation 1 defines the minimum window size

(W bytes) required for a TCP to fully utilize the given
amount of available bandwidth, B bytes/second, over

a network with a round-trip time (RTT) of R seconds

[Pos81].

W = B- R (1)

Therefore, a network path that exhibits a long delay
and/or a large bandwidth may require a window size of
more than 64 KB. RFC 1323 [JBB92] defines the win-

dow scaling extensions to TCP that allow the use a win-
dow size of more than 64 KB. Window scaling can lead

to more rapid use of the TCP sequence space. Therefore,

along with window scaling the Protect Against Wrapped
Sequence Numbers (PAWS) algorithm is required. In

turn, the PAWS algorithm requires the timestamp option

(also defined in RFC 1323). The timestamp option adds
12 bytes to each segment. These additional header bytes

are expected to be costly only to excessively low band-
width channels. The timestamp option also allows TCP

to easily take multiple RTI" samples per round-trip time.
As outlined in [JBB92], this is beneficial in obtaining an

• accurate estimate of the RTr, which is used for determin-

ing •when to retransmit a given segment.

The high performance options are currently being imple-
:mented in many popular operating systems and are ex-

pected to be in wide spread use relatively soon. While

some experiments may not require these extensions a re-
searcher needs to Carefully examine the scenario under

investigation and utilize these extensions when neces-

sary.

• Selective Acknowledgments. As originally defined,

TCP exchanges only gross information about which seg-

ments have been successfully received and which have

not. TCP uses a cumulative acknowledgment (ACK) that

simply indicates the last in-order segment that has ar-

rived. When a segment arrives out-of-order a duplicate

ACK (i.e., an ACK covering the last in-order piece of

data received) is transmitted. A cumulative ACK pro-
vides no information about which segment triggered it.

Therefore, the TCP sender does not have enough infor-

mation to intelligently figure out exactly which segments
have arrived.

The selective acknowledgment (SACK) option

[MMFR96] allows the TCP receiver to inform the

TCP sender of which segments have arrived and which

segments have not. This allows the TCP sender to

intelligently retransmit only those segments that have
been lost. In addition, it decouples the determination

of which segment to transmit from the decision about

when it is safe to resend a packet (from the perspective



ofcongestioncontrol).Thisdecouplingisdiscussedin
detailin[FF96,MM96b].
TheSACKoptiondiscussedin[MMFR96]onlyspec-
ifiestheformatforexchangingselectiveacknowledg-
mentinformation.ThereareseveralSACK-basedloss
recoveryalgorithmsthatusethisinformationtointel-
ligentlyaugmentTCP'straditionallossrecoverytech-
niques.Aconservativefastrecoveryreplacementisout-
linedin [FF96].Additionally,theforwardacknowl-
edgment(FACK)[MM96b,MM96c]andrate-halving
[MSML99]algorithmsofferalternativeSACK-basedap-
proachestoreplacefastrecovery.RFC2581[APS99]
allowstheuseofalltheabovealgorithms.
TheSACKoptionis currentlybeingimplementedin
manypopularoperatingsystemsandisexpectedtobe
inwidespreadusesoon.Therefore,werecommendthat
researchersalwaysincludeaTCPimplementationwitha
SACK-basedlossrecoveryalgorithm.

• Delayed Acknowledgments. RFC 1122 [Brag9] allows
that a TCP can refrain from sending an acknowledgment

for each incoming data segment, but rather should trans-

mit an ACK for every second full-sized data segment re-

ceived. If a second data segment is not received within

a given timeout (not to exceed 0.5 seconds) an ACK is
transmitted. This mechanism is widely deployed in real

TCP implementations and therefore we recommend that
it be used in future TCP experiments. Excluding this

mechanism does not necessarily yield useless data and

may be quite useful as a comparison to the delayed ACK

case. However, turning off delayed ACKs without care-

fully considering the costs and the impact on the conclu-
sions drawn should be avoided.

• Nagle Algorithm. The Nagie algorithm [Nagg4] is used

to combine many small bits of data produced by ap-

plications into larger TCP segments. The Nagle algo-
rithm has been shown to reduce the number of segments

transmitted into the network, but also interferes with the

H'VI'P [BLFN96, FGM+97] and NNTP [KL86] proto-

cols, as well as the delayed acknowledgment strategy

[Hei97, MSMV99], thus reducing performance. The Na-

gle algorithm is contained in many current TCP imple-
mentations and should be used in TCP tests whenever

possible.

The following mechanisms are not standardized exten-

sions to TCE However, they are currently receiving attention

in the research community and including these mechanisms as

part of TCP tests will provide valuable data towards to goal of

understanding the interactions between these mechanisms and

the currently standardized algorithms. In addition, such tests

may be useful is deciding whether to standardize the following

mechanisms.

• Larger Initial Windows. RFC 2581 [APS99] allows
TCP to utilize an initial congestion window of I or 2 seg-

ments. RFC 2414 [AFP98] outlines an experimental

TCP mechanism that would increase the initial conges-

tion window to 3-4 segments, based on the segment
size. While this mechanism is not standard, we encour-

age researchers to experiment with the change and com-

pare it with the standard initial congestion window in the
hopes that such experimental evidence will lead to a con-
crete decision on whether using a larger initial window

is worthwhile.

Explicit Congestion Notification. As outlined in

[Jac88, APS99], TCP interprets segment loss as indicat-

ing network congestion. However, RFC 2481 [RF99] de-
fines a method in which a router can send a TCP an ex-

plicit message stating that the network is becoming con-

gested, rather than dropping a segment. This Explicit

Congestion Notification (ECN) is further discussed in

[F1o94]. RFC 2481 is currently an experimental mech-
anism within the IETF pending further study into addi-

tional dynamics introduced by this new method of sig-

naling congestion. Researchers are encouraged to com-

pare ECN capable TCP connections with non-ECN con-

nections in their research.

4 Simulation, Emulation, or Live Internet Tests?

Another decision a researcher must make when considering

how to evaluate TCP is whether to simulate a network in soft-

ware entirely, to use a small testbed of hosts handling live

packets, to use some hybrid of simulation and a testbed (live
emulation), or to make transfers over the Internet. Each of

these methods of testing TCP has benefits and can yield use-
ful results. However, each method also has disadvantages and

one may be more useful than another for a particular experi-
ment. While there is no perfect way to test TCP, researchers
should understand the tradeoffs between the testing methods

and choose the most appropriate method for the given exper-

iment. The researcher should carefully consider and note any

expected consequences of choosing one method over the oth-

ers when reporting results.
Also note that, generally speaking, a single set of exper-

iments using one of these testing methods is not enough evi-

dence to get a particular mechanism widely adopted. Rather,

a variety of experiments using multiple test methods generally

provides a more compelling argument in favor of a change to
TCP. The following subsections discuss the advantages and

disadvantages of each method of testing.

4.1 Simulation

Many successful TCP performance evaluations have been con-
ducted via simulation (e.g., [FF96, Hoe96]). A large variety of

simulators for modeling internetworking protocols exist, and

are currently used by researchers. Some of these tools are

OpNet [Tee], x-sim [BP96], the Network Simulator [Hey90],
REAL [Kes88], ns [MF95], as well as specialized simulators

written by various researchers for their own use. Picking a
simulator to use is sometimes complicated. We encourage re-

searchers to investigate various simulators and choose the one

best geared towards the research at hand. For instance, one
simulator may have better models of a certain type of chan-
nel than another simulator. Also, the TCP model included in

the simulator should be considered when choosing a particu-

lar simulator (see sections 2 and 3 for a discussion of what to

look for in a TCP implementation). Finally, note that simu-

lation can only be used to concretely to say that a particular

TCP change is badly broken and that a particular proposal is

promising. That is, do not expect the networking community

to accept TCP changes only on the strength of a simulation

study.
The following is a list of the advantages of using a simula-

tor to evaluate TCP's performance.

• Simulators are not equipment intensive, as only a single
basic workstation is needed to run the simulations and



analyzethedata.

• Simulators allow a researcher to easily examine a wide

range of scenarios in a relatively short amount of time.
As outlined in [PF97], examining a large range of scenar-

ios is important for drawing general conclusions about

the performance of a protocol like TCP.

• Simulation also provides a means of testing TCP per-
formance across "rare" networks that a researcher does

not have good access to use (e.g., a cross-country gigabit
network).

• Simulators are not hindered by the physical speed of a

given network and therefore can be used to investigate

how TCP may perform in the faster networks in the fu-

ture.

• Complex topologies can be easily created via simulation,

whereas such topologies would not be easy to replicate
in a testbed environment.

• Simulators give the researcher access to data about all the
traffic transmitted in the simulation. This allows analysis

into the impact a particular change to TCP has on com-

peting traffic sharing the network.

• Simulators give the researcher an easy way to test the im-

pact of changes to the routing and queueing disciplines
on the performance of TCP. This can also he done in a
testbed or emulation environment (as outlined in the next

two subsections), however changing routers for live In-

temet tests is generally not possible.

• Simulators can give a researcher access to a specialized
network before such a network is ever built. For instance,

by using simulation, a researcher can assess the perfor-
mance of TCP over a low-Earth orbit satellite constella-

tion before the first satellite is launched.

While the advantages of using simulation to assess TCP's

performance are many, there are several downsides to this
method of testing, as follows.

• Some simulators use an abstract TCP implementation,

rather than using code found in real operating systems

(e.g., the one-way TCP implementation included in ns).
Such code can still be used to effectively analyze TCP

performance. However, the researcher should remem-
her that this code is one step removed from the real

world and therefore the results may not directly match

up with similar tests conducted over a real network.

In addition, most TCP implementations contain bugs

[Pax97a, Al197a, PAD+99], which may not be present
in the simulation. Of course, the reverse is also true.

Regardless of whether the TCP implementation is a real

in-kernel implementation, or an abstract version of the

TCP algorithms, researchers should carefully examine

the TCP used in their experiments. This point is explored
further in section 5.

Some simulators use code that is based on a real imple-

mentation of TCP (e.g., x-sim). Researchers should take

care to make sure that all fixes that have been identified

and applied to the real implementation are also included
in the version of the code present in the simulator (see

section 5 for a larger discussion of this topic). Whether

or not having "real" networking code in a simulator is

debatable. There is a possible tradeoff between having a

common implementation ("warts and all") and having a

correct implementation (possibly less warts, but no real

world experience behind it either).

• Simulators do not generally model non-network events

that may impact TCP performance. For instance, an op-

erating system's scheduler latency may have an impact
on the burstiness of a TCP connection on a very fast net-

work.

• Simulators sometimes make assumptions that shield the

TCP experiments from effects that may occur in the real
world. For instance, some simulators send packets of
uniform size and therefore could not be used to investi-

gate the interactions that have been found between the

delayed acknowledgment strategy and the Nagle algo-
rithm [Hei97, MSMV99]. While this is a shortcoming of

using a given simulator, the key is for researchers to un-
derstand what a particular simulator does well and where

it does not attempt to duplicate the "real world".

• Simulating competing traffic requires making many as-

sumptions. Poor choices for competing traffic can dras-
tically skew performance results. See section 9 for a dis-

cussion on generating competing traffic.

We suggest that anyone choosing to use simulation to as-

sess TCP performance read [PF97] on some of the pitfalls of
simulating the lnternet and methods for coping with these pit-
falls. In addition, [PF97] discusses several other considera-

tions that are not discussed further in this paper (e.g., choosing

a network topology).

4.2 Testing Real Implementations

While simulations can provide valuable insight into the per-

formance of TCP, they are often not as illuminating as tests
conducted with real TCP implementations over real networks.

This section outlines several methods for testing real TCP im-

plementations, including their costs and benefits.
When conducting experiments using real systems, as op-

posed to simulators, researchers should not focus on TCP to

the exclusion of all other aspects of the system. For instance,
if a TCP transfer is "slow," the cause should be investigated.

TCP may be the culprit, but it is also possible that the appli-

cation protocol (or implementation) or some component of the

operating system may be to blame. For instance, some ver-
sions of H'Iq'P introduce extra (idle) round-trip times into the

transfer time. Using a different version of HTI'P may help

isolate this source of delay. As discussed in section 10, taking

packet-level traces of the TCP transfers under consideration is
the best way to ensure that the effects being investigated are
indeed network related, rather than being a consequence of

using a particular operating system or application.

Note that investigating operating system and application

layer performance problems is also a worthwhile effort and

should be pursued to the extent possible (this may vary with

the availability of the source code). However, such investiga-

tions are beyond the scope of this paper.

4.2.1 Testbeds

Using real hosts on a small isolated testbed network can al-

leviate some of the problems with simulation and a number
of effective TCP studies have been performed using testbeds



(e.g.,[PBS+96]).In a testbed, real TCP implementations are

being tested (bugs and all) over real networks. The experi-
ments are therefore subject to things like scheduler delays and

router packet processing time that are hard to model via sim-
ulation. In addition, testbeds can incorporate hard to simulate

network components, such as a satellite link. On the other

hand, testbeds are limited in their complexity and speed by the

equipment on hand. Therefore, research utilizing testbeds can
be much more expensive than research via simulation. An-

other large disadvantage of using a testbed is that if commer-

cial operating systems are utilized the researcher generally has

no way to modify the TCP code to test new mechanisms. The
researcher can use one of the free Unix based operating sys-

tems (e.g., Linux). However, in doing so, the researcher may
not be able to test the dominant TCP implementations used in

the Interact.

4.2.2 Emulation

An emulator models a particular piece of the network path
between two real hosts. Therefore, emulation is a mix be-

tween simulation and using a testbed. For instance, several
researchers have turned a standard workstation into a router,

passing packets between two physical networks, as if there was
some network between the two real physical networks in the

testbed [Riz97, Fal99]. This can allow testing of real TCP im-

plementations over emulated satellite channels, for instance. A
number of studies have utilized emulation to effectively eval-

uate TCP performance (e.g., [ADLY95, HK99]). Another ad-

vantage of using emulation is that the researcher can modify

the queueing disciplines used in the touters and measure the

impact these changes have on real TCP stacks, whereas re-
searchers generally do not have access to alter the software

running on commercial routers.
On the other hand, like simulation, emulation abstracts

away some of the real behavior of the pieces of the network
modeled. Also, real hosts running through an emulated net-

work are still constrained by hardware speeds, as in the case

of using a testbed for experiments. Finally, emulators may not
be able to represent complex or changing topologies.

4.2.3 Live lnternet Tests

One way researchers might choose to decrease the impact of
an artificial environment, such as simulator or a testbed with

an emulator, is to run experiments over the Interact. Such tests

can be illuminating with regards to the behavior of TCP"in the

wild," as opposed to in some network a researcher has created.
There are several ways to conduct tests over the lnternet.

The most complete method for testing TCP over the ln-
ternet is to use a mesh of N hosts that can each make TCP

transfers to each other (yielding measurements over O(N 2)

network paths). This method of measuring the Interact is
outlined in [Pax97a, Pax97b, Pax97c]. An architecture and

the corresponding software for doing general purpose network
measurements between a mesh of hosts is currently being de-

veloped by the "NIMr' project [PMAM98]. An additional
consideration when choosing the N hosts for the mesh is that
the hosts be linked to the lnternet with a variety of types of

connections (i.e., various bandwidth and various delay con-

nections). If all N hosts in the mesh are similarly connected,

the results obtained from the tests may not be valid for net-
works that are connected to the network in a drastically dif-

ferent way (e.g., testing TCP performance between Internet

hosts connected via high-speed fiber provides no way to as-

sess the performance of TCP over slow dialup modem links).
Another consideration when choosing the hosts for the mesh is

to choose different TCP implementations, such that the results

are not biased by the particulars of any one TCP stack.
A downside of using NIMI-like environments is that often

TCP researchers need to change the TCP implementation in

the operating system. For instance, researchers may want to
investigate a particular change to TCP's slow start algorithm

that requires changing the TCP implementation in the kernel

(e.g., [AU98, Al199]). This may not be possible on a pre-

existing mesh of hosts, as the kernel change may interrupt or

invalidate experiments being conducted by other researchers.

Also, setting up a mesh of hosts all running a custom-built

kernel can be quite difficult and time-consuming. One way to

mitigate this problem is to employ a user-level implementa-
tion of TCP, such as TReno [MM96a], rather than an in-kernel

TCP implementation. However, this shares some of the disad-

vantages of modeling TCP faced by simulators (but, this time
in a real network).

Another method researchers have used to study the lnternet

is to transmit traffic from a single host, Ho, on their local net-

work to a large number of remote hosts, H_-H,, around the

lnternet. For example, a researcher might wish to capture all
traffic to and from a local WWW server and analyze the per-

formance of TCP using this data. While this method of testing

TCP can provide some useful data, the data is not nearly as

complete as when utilizing a mesh of NIMl-like hosts. On the
other hand, data collected using this method is much easier to

gather than data collected using a mesh of hosts. Using a sin-
gle sender when testing TCP can bias the results based on the
network behavior near the sender, H0. For instance, consider

the case when/-/o's site is connected to the Interact via an X

bits/second channel. The TCP transfers to the n Internet hosts

cannot be made any faster than X bits/second, even if some of
the n remote sites are better connected and could transfer data

at a higher rate if/-/o's link could support it. Finally, using a

single sender can bias the measurements due to bugs or partic-
ular behaviors of the particular TCP stack chosen to transmit

the data.

One of the disadvantages of conducting live experiments
over the Interact is the inability to assess the impact the send-

ing TCP has on the other network traffic sharing the network

path. Whereas, with simulators and testbeds it is fairly easy to
monitor all traffic on the given network, it is difficult to obtain

the same kind of monitoring of all the traffic competing with

the TCP transfer a researcher generates when running over the

Internet. In addition, assessing the impact of a new queue-

ing algorithm, or some other mechanism that is expected to be
placed in the middle of the network is difficult to accomplish
in tests conducted over the lnternet.

5 Know Your TCP Implementation

One important aspect of running TCP experiments is to have

a good understanding of the TCP implementation being used
(whether an abstract implementation in a simulator, an in-

kernel implementation or an implementation in a user-level

diagnostic tool). As outlined above, researchers should un-

derstand which options and algorithms the TCP implemen-

tation in question contains and how those options relate to
current state-of-the-art implementations. In addition, some

widely used operating systems have well-known TCP bugs
[Pax97a, PAD+99] that cause non-standard TCP behavior

(e.g., a TCP that does not initialize congestion window prop-



erlymayproducealargeburstofdatawhenatransferbegins,
ratherthanusingtheslowstartalgorithm).Thesebugsshould
befixed,if possible,assomeofthesebugscanhavealarge
impactonperformance.Ingeneral,researchersshouldtake
responsibilityforvalidatingthattheTCPimplementationcho-
senbehavesasexpectedandnottakethebehaviorforgranted
[Flo99].

if anabstractversionofTCPisused,theresearchershould
attempttounderstandthedifferencesbetweentheabstractim-
plementationandrealTCPimplementationsandwhatimpact
thesedifferencesmayhaveontheresults.Forinstance,the
one-wayTCPmoduleincludedwiththens simulator uses a

default clock granularity of 100 ms, while many real TCP im-

plementations use clocks with 500 ms granularity. The be-

havior of ns, in this case, is not wrong according to the TCP

standards. However, experiments conducted with ns (assum-

ing the granularity is not changed from the default) may not

highlight the performance implications of TCP timeouts to the

same degree as experiments with an implementation that uses

a coarser granularity clock.

Finally, the TCP congestion control algorithms, as outlined

in lAPS99] allow implementers some amount of latitude in im-

plementing some of the small details. For instance, lAPS99]

specifically says that slow start should be used when the con-

gestion window (cwnd) is less than the slow start threshoM

(ssthresh) and that congestion avoidance should be used when

cwnd > ssthresh. However, the document does not specify
which algorithm should be used when cwnd = ssthresh.

These small details can have a subtle impact on measured

TCP performance and should be fully specified such that oth-

ers can recreate (if only in their mind) the experiments. A

list of the under specified congestion control details is given

in [MA99]. Note that depending on the TCP implementation

used these details may not be available, but any that can be
inferred should be reported.

6 Choosing a Window Size

As shown in equation 1, the maximum window size a TCP

connection can utilize has a large impact on the resulting per-

formance. The maximum window size is generally the min-
imum of the send socket buffer (set on the TCP sender) and

the receive socket buffer (which generally determines the ad-
vertised window on the receiver). The TCP sender's conges-

tion window (cwnd) may further limit the amount of data the

sender can inject into the network, depending on the level of

congestion in the network path.
If the maximum window size is too small relative to the

available bandwidth of the network path, the TCP connection

will not be able to fully utilize the available capacity. Alterna-

tively, if the maximum window size is too large for the network

path to handle, the congestion window will eventually grow

to the point where TCP will overwhelm the network with too

many segments, some of which will be discarded before reach-

ing the destination. Therefore, it is tempting to calculate the

window size needed via equation 1 and use that window size.

This is often possible in the artificial environments in which

TCP is tested. However, by setting the maximum window

to the exactly appropriate value some of the naturally occur-

ring behavior of TCP is lost. That is, the congestion window

is increased to the right value and then never again changed.

Also, in general it is very difficult to pick the appropriate win-

dow size for all network paths and levels of congestion. If the

transfer is long enough, the TCP congestion control algorithms

naturally find a congestion window size that is appropriate for

the network path if the maximum window size is large enough

to overwhelm the network. Therefore, artificially limiting the
advertised window leads to less compelling results.

We suggest that researchers use automatic socket buffer

tuning [SMM98] in their TCP performance evaluations. An

operating system that uses autotuned socket buffers does not

impose a single maximum window size on the connection, but
rather the buffer sizes (and therefore, the maximum window

size) grows with the congestion window. Therefore, the net-

work path being used determines the maximum window size,

rather than the maximum window size being an arbitrary limit

placed on the connection by the end hosts. While autotuning

is not widely deployed at the present time, it can be consid-

ered part of TCP I and researchers can emulate the network
behavior provided by autotuning by setting their send and re-

ceive socket buffers very large, such that the network dictates

the behavior of TCP, rather than being limited by the end hosts.

One tempting comparison for researchers to make is to

compare a very modem version of TCP, complete with their

proposed tweaks, with an "out of the box" TCP with no

changes to the default socket buffer sizes. As discussed in

section 2, such a comparison may be interesting to show what

TCP performance users may be able to expect in the future

as compared to the performance experienced today, however

such an experiment does not provide a compelling reason to

implement the proposed change to TCP (without additional
experimentation).

7 Choosing Data to Send

Another question that researchers must consider is how much

data should be transmitted and what applications should be

used to send the data. Transfers that are small compared to the

delay-bandwidth product of the network have been shown to

underutilize the available bandwidth (in [Al197b], for exam-

ple) and therefore experiments with short transfers only show
a portion of TCP's behavior. On the other hand, very long

transfers show TCP's steady-state behavior quite nicely, but
the startup behavior is lost. While both short transfers and long

transfers provide solid data points about TCP's performance,

a study will have more impact if a variety of transfer sizes are

taken into account. As recommended in [PF97], we suggest
that researchers transfer a wide variety of file sizes to illustrate

the performance of TCP (and any proposed changes) across

an entire range of possible transfer lengths. We suggest using

transfers ranging from several hundred bytes to hundreds of

times larger than the delay-bandwidth product of the network

path, with a generous number of points in between.

In addition to varying the size of the TCP transfers, re-

searchers should carefully consider which application proto-

cols should be studied. Simple FTP [PR85] transfers lend

themselves to investigating TCP's behavior over a wide range
of transfer sizes. However, HTTP [BLFN96, FGM+97] is

currently the dominant application protocol on the Internet
[TMW97] and has much different behavior than FrP. For in-

stance, HTTP is likely to be used for small, interactive re-
quest/response transfers, whereas b-TP is more likely to be

used for bulk data transfer [TMW97].

Furthermore, simply choosing an application protocol is

sometimes not enough. For instance, there are a number of

different versions of H'Iq'P defined and running on the Inter-

net, and each of these versions has a slightly different sending

pattern. Each of these patterns exercises the underlying TCP

stack in a different way. For instance, some HTTP versions al-
low TCP connections to become "idle" waiting for additional



requestsfromtheuser.Thatis,theconnectionremainsopen
betweenthetwohosts,butnodataisexchanged.Different
TCPimplementationsdifferinthewaytheystarttransmitting
dataafteralonginactiveperiod[VH97]andthereforethein-
teractionbetweentheHTI'PimplementationandtheTCPim-
plementationisimportant.So,evenwhenchoosingapartic-
ularapplicationprotocol,researchersshouldalsotakecarein
choosingandspecifyinganappropriateversionoftheproto-
col,(generallybywhatisprevalentinthelnternet).Alterna-
tively,anyreportshouldincludeadiscussionaboutanyperfor-
mancedifferencesthatmaybeexpectedif adifferentversion
oftheapplicationprotocolwasused.

WesuggestthatresearchersuseFTP to measure the impact

of a given proposal on a variety of transfer sizes. In addition,
we recommend measuring the performance of HTrP traffic

since WWW traffic is the most prevalent type of traffic on the

Internet today [TMW97].
Note that successful TCP studies do not necessarily need

to include transfers of each application type currently being

used on the lnternet to provide solid, usable results. However.

researchers need to be clear when providing conclusions about

their experiments that the conclusions are only for the applica-
tions tested (and similar application protocols) and could po-

tentially be different if the application layer was changed.
Finally, note that as new application protocols and proto-

col versions are developed and start being used on the lnternet,

researchers should integrate these into their TCP performance
tests. In other words, researchers need to keep their testing

up-to-date with regards to the current applications that are be-

ing used on the lntemet to provide strong, compelling TCP
measurements.

8 Drawing Strong Conclusions from Single Flow Tests

Often times researchers attempt to draw strong conclusions

about TCP performance by running a single flow over their
testbed, emulated network or simulated network path. These

tests can be very useful for deriving information about the the-

oretical behavior of TCP or a proposed change to TCP. In ad-
dition, using only a single flow makes diagnosing problems
much easier than when attempting to diagnose the problems in

a dynamic network with many competing traffic flows. How-

ever, such single flow tests are not particularly realistic and
therefore, these tests should not be used to authoritatively say

that a given proposal should be widely implemented. First,

using a single connection on an otherwise unloaded network

path does not take into account the impact of competing traf-
fic on the TCP flow in question. Also, the impact of the TCP

flow on the competing traffic cannot be assessed (the proposed

change might make TCP unfair to other traffic, for instance).

Figures 1-3 show the behavior of an unchanged TCP (fig-

ure 1), denoted TCPo, and two experimental changes to TCP

(figures 2 and 3), denoted TCPI and TCP2 respectively, in
a wide variety of scenarios (various transfer sizes and various

router queue lengths). These figures and a discussion of the

proposed mechanisms can be found in [Al198]. These figures

are used in this paper as illustration, so the particular changes

being proposed are irrelevant. The proposed changes shown

are fairly minor and were not expected to radically change
TCP's behavior. However, as shown in figure 2, the changes

proposed in TCP1 drastically alter the ideal TCP behavior in

many circumstances. In this case, a set of single flow TCP

tests yields a strong conclusion that the change in question is
not beneficial to TCP performance. However, TCP2 shows

a fairly minor (yet, positive) change in TCP's behavior, as

expected. While it may be straightforward to conclude that
TCP_ is not an improvement over TCPo, this does not mean

that a conclusion can be drawn that TCP2 is an improvement

over TCPo, just that TCP2 does not show the large draw-
backs that TCP_ shows. While figure 3 shows a nice result,

these experiments cannot be used to definitively determine that

the proposed change (TCP2) should be widely implemented.

This experiment does not answer many prerequisite questions

to justify protocol changes such as: Does the change still rep-
resent a performance improvement when TCP2 is sharing the
network with other traffic? Does a TCP with this change com-

pete fairly with a TCP without the change? Does the change

pose any problems for other application protocols? Therefore,
we can conclude that while TCP2 is a promising change, the

proposal needs further study before we can conclude that it is

ready to be widely implemented and used in the Internet.

9 Introducing Competing Traffic

While tests involving only a single TCP flow in an othe,_vise

unloaded network can yield interesting theoretical observa-

tions they cannot be used to illustrate the performance of TCP
as it is used in real networks. Therefore, we recommend that

researchers also test TCP performance in a more dynamic en-

vironment with competing traffic flows (both TCP and non-

TCP traffic). Such tests can show more realistic effects, such

as ACK compression [Mog92] or the effect of unpredictable

loss patterns. In a dynamic environment we recommend re-
searchers examine not only TCP's performance, but also the

impact of the TCP modifications on the network in general

(e.g., impact on competing flows, router queue sizes, etc.).
Choosing exactly how to model competing traffic flows is a

difficult problem and researchers often use a simple, but inac-

curate model. For instance, simply using a Poisson process to

generate transfer sizes has been show to be inaccurate [PF95].

We strongly suggest that researchers read [PF97], which out-
lines several ways to cope with the difficulty of generating

accurate traffic patterns, before conducting experiments with

competing traffic.

10 Collecting and Analyzing Data

Many tools for evaluating various aspects of TCP performance
have been written. RFC 2398 [PS98] discusses a number of

popular TCP testing, analysis and visualization tools. RFC
2398 includes a brief discussion of each tool, including the

tool's purpose, the systems on which the tool will mn and

where to obtain the program. The tools outlined in RFC 2398

represent a wide variety of TCP testing and analysis software

(e.g., programs that coordinate TCP transfers, TCP data analy-
sis utilities, tools for testing a TCP for conformance against the

TCP specifications, etc.). Additionally, researchers can find
various utilities for analyzing packet trace files from the In-

ternet Traffic Archive [Arc]. We encourage researchers to be

aware of the above tools and choose the appropriate tools for

each set of experiments. Also note that a ready-made tool is

not always available to perform the needed analysis for a given

experiment and in that case the researcher should be prepared
to craft a tool themselves.

The straightforward way to gauge the performance of TCP
is to measure throughput, or the time required to transfer a

given number of bits of data. While this is a very telling met-
tic, it is not necessarily the only measurement that indicates
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howaparticularTCPversionbehaves.Inaddition,researchers
maywanttomeasuresomeofthefollowingquantities.

• Loss Rate. The number of segments dropped by the net-

work is an indicator of the aggressiveness of TCP (or an

extension) in a given scenario. Depending on how TCP

measurements are taken (see below) the loss rate may not

be available, but may be approximated by using the num-
ber of retransmissions, rather than the number of drops.

Note that the throughput is often highly correlated with

the loss rate (i.e., the higher the loss rate the lower the

performance). However, the correlation does not always
hold. For example, the throughput of small files is often

more dependent on the slow start algorithm than on the

loss rate.

• Fairness. The impact a TCP connection has on the other

traffic sharing the network path should also be assessed,

if possible (easy in a simulator, but hard in tests over the
Internet). The exact definition of fairness and, therefore

how to measure it, is somewhat fuzzy. Loosely, a "fair

TCP" does not steal bandwidth from competing flows.

For instance, consider a TCP flow, F, that never reduces

its congestion window. When the network becomes con-

gested competing TCP flows will back-off, while flow F
will not. Thus, flow F is stealing bandwidth from the

competing flows and using a disproportionate amount of
the bandwidth. Several methods for measuring TCP's

fairness to competing traffic have been used in various

studies [Jai91, BP95, Al199].

• Router Queue Length. Some TCP experiments can

benefit from measurements of the router queue length

(again, easy in a simulator but non-trivial in Internet

tests). The length of the router queue can have an im-

pact on the end-to-end delay seen by an application. For

instance, interactive applications may call for an end-

to-end delay as low as possible, while end-to-end delay

probably doesn't matter as much for bulk data transfers.

• Other Measurements. While the above list of metrics

is a good start, there are many other ways to assess the
behavior of TCE which may be of particular benefit to a

given experiment. For instance, some extensions might
cause an increase in burstiness, which should be quan-

tiffed. Meanwhile, other studies might involve measur-

ing the time a TCP connection spends waiting for the

retransmission timer to expire (e.g., [AP99]). Therefore,
we recommend that researchers think about exactly what

parts of TCP are being changed and what measurements

might make sense when determining what data to collect
and what measurements to distill from that data.

Next, the researcher must decide how to obtain the data

from which the above quantities can be derived. One popular

method for measuring the performance of TCP is to measure

throughput at the application level (most FTP applications re-
port throughput after a file has been transfered, for example).

However, for very short files the application-reported numbers

may be inaccurate in many cases. One problem is that an ap-

plication can simply hand an entire small file to the operating

system, which buffers it for transmission. From the point of

view of the application, all the data is sent and so the timer

that is measuring the transfer length is stopped and an overes-

timate of the throughput is reported. A contrast between the

throughput obtained from an VI'P application and the through-

put obtained from packet-level traces is given in [Ric99]. Also

note that the application cannot gather much beyond through-

put measurements (e.g., number of segment drops, etc.).
Given the problems with application reported perfor-

mance, we recommend researchers use packet-level trace
files to derive the measurements (in simulation or live

testbed/lnternet experiments). The "vantage point" from
which the trace is taken is also important. For instance, a trace

taken on the same machine that is sending the data will see all

the packets that are sent regardless of whether they are dropped

by intermediate routers. On the other hand, a trace taken at
the receiver can be used to figure out exactly which segments

successfully arrived and which were dropped by the network.

Therefore, we recommend taking packet-level trace files on

both the sending and receiving sides of the network path, if

possible, as such measurement provides the most complete set
of data. Such measurements can be somewhat complicated to

analyze, as explained in [Pax97a].
Finally, we note that in most cases we recommend that re-

searchers take packet-level traces on the hosts involved in the

TCP transfer. Alternatively. packet-level traces can be taken

on a nearby host that can watch the traffic to and from the

endpoint of the TCP connection. However, taking traces on a
second machine can be somewhat problematic. For instance,

the trace host may see a packet that the TCP endpoint does

not. Or, the trace host may see a packet sooner than the TCP

endpoint, hence skewing the transfer time. On the other hand,

if the TCP endpoint is a busy machine (generating many TCP

connections, for instance) it may not have the resources needed

to also obtain an accurate packet-level trace. In this case, an-
other host on the same local area network can be used to take

the packet-level trace without too many problems (in general).

11 Additional Considerations

Several non-TCP elements of a network can impact the results

of TCP experiments. We recommend that researchers give par-

ticular thought to the following elements of the network. And,

in general, researchers should think about all aspects of the
network path under their control (i.e., everything in simulation

and probably only the TCP settings in live lnternet tests).

• Segment size. The segment size used by the sending
TCP host has a direct impact on the performance ob-

tained [MSMO97]. Using common segment sizes (e.g.,

1500 byte Ethernet packets) is generally safe. Also, us-

ing Path MTU Discovery [MD90, MDM96] is encour-

aged, in order to utilize the maximum possible segment
size across a given network path (although, Path MTU

Discovery can also have a negative impact on through-

put, as discussed in lAGS99]).

• Queues. The maximum queue length and queueing dis-

cipline implemented in the routers along the network

path also have an impact on TCP performance. A good
rule of thumb for the maximum queue length is at least

that given in equation 1, where B is the bandwidth of

the channel for which the queue is assigned and R is

twice the propagation delay of the channel for which the

queue is assigned. The queueing discipline used should
reflect the currently implemented and used disciplines

in the Internet. Therefore, drop-tail queues (the TCPc

of queueing) and increasingly Random Early Detection
[FJ93, BCC+98] queues (the TCP¢ of queueing) should

be used in general TCP studies.



• Synchronization. Several studies have shown how ex-

periments can become synchronized thus biasing the re-

sults. For instance, [MSMV99] shows the synchroniza-

tion of data transmission based on the delayed acknowl-

edgment timer. When such synchronization is noticed

we suggest researchers either take steps to remove the

synchronization from the experiments, or explain how
the effect can happen "in the wild" and the implications

of such synchronization. Random telnet traffic (based on

tcplib [DJ91], for instance) can sometimes be useful to

remove synchronization from experiments.

• Link Layer. Researchers should pay particular attention

to the physical link under their control. Some link layer

technologies can be optimized for certain situations and

therefore can have a large impact on TCP measurements.

For instance, an FDDI ring can be tuned for low latency,

however should be tuned for high performance when

running TCP experiments. Also, half-duplex Ethernet

channels have been shown to exhibit a "capture effect,"
whereby TCP performance suffers because the data seg-

ments are competing for bandwidth with the ACK seg-

ments. Finally, there can be many interactions with ATM

link layers that can negatively impact TCP performance
measurements. We recommend that researchers become

very familiar with the particular link layer being utilized

and discuss the impact link characteristics have on the

results obtained when reporting their findings.

12 Conclusions

As outlined in this paper, there really is not a single "best

method" for experimenting with TCP. However, poorly con-

structed experiments and failure to complete a comprehensive

analysis of the results lead to research that is not taken seri-
ously by the research and standards communities. While there
is not a simple set of steps researchers can take to ensure they

produce quality research, the following items, along with the

discussion in this paper, provide a starting point. Note that

simply following these steps does not guarantee good results.

Assumptions, test inputs, and conclusions all must bear close

scrutiny because of the diversity of TCP implementations and
network environments found in the lntemet. However, the list

below represents the most significant factors that need consid-

eration and specification in TCP research.

• Choose your environment wisely. Generally, a combina-

tion of simulation, testbed tests (possibly with emulators)

and live Internet tests is needed to provide good evidence

about a particular change to TCP.

• In general, all sending TCPs should include slow start,

congestion avoidance, fast retransmit, fast recovery, a

SACK-based loss recovery strategy and the Nagle algo-

rithm. All TCP receivers should support delayed ACKs.

• The advertised window used should be large enough,
such that the network dictates TCP's behavior, rather
than a host limitation.

• The data transmitted and the applications employed

should be chosen carefully based on real network traffic

patterns. Additionally, realistic competing traffic should
be transmitted in the network under test.

• Be aware of your MTU, whether you are using MTU dis-

covery and consider how that may impact your results.
10

• Everything under the researcher's control should be ex-

amined and all configurations should be considered be-

fore running experiments.

The hope for this paper is not that it discourages future

research into TCP's performance and extensions to TCE but

rather that researchers carefully consider their experiments

such that the results are compelling and have a positive im-

pact on the continuing evolution of TCE
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