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SUMMARY

Advanced launch systems (e.g., Reusable Launch Vehicle and other Shuttle Class concepts, Rocket-Based
Combine Cycle, etc.), and interplanetary vehicles will very likely incorporate fiber reinforced ceramic matrix com-

posites (CMC) in critical propulsion components. The use of CMC is highly desirable to save weight, to improve

reuse capability, and to increase performance. CMC candidate applications are mission and cycle dependent and

may include turbopump rotors, housings, combustors, nozzle injectors, exit cones or ramps, and throats. For reus-

able and single mission uses, accurate prediction of life is critical to mission success. The tools to accomplish life

prediction are very immature and not oriented toward the behavior of carbon fiber reinforced silicon carbide (C/

SIC), the primary system of interest for a variety of space propulsion applications. This paper describes an approach

to satisfy the need to develop an integrated life prediction system for CMC that addresses mechanical durability due

to cyclic and steady thermomechanical loads, and takes into account the impact of environmental degradation.
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INTRODUCTION

Currentstate-of-theartCMClifepredictionmethodologiesembodiedinNASALife(ref.1)andsimilarcodes
arebasedonempiricalformulations.Ingeneral,thesehavetobecalibratedusingexperimentaldata.Ashortcoming
oftheseapproachesisthatanykindof changesinfiberarchitecture,constituentvolumeratios,orothervariables
makethematerialsystemcompletely"new."Thisrequiresthattheempiricalrelationsberecalibratedbyextensive
additionalexperimentaltesting.Muchofthisadditionalcostandtimecanbereducedif theanalyticalmodelsare
basedonmicromechanics.OncecaI_ratedforaspecificCMCsystem,thepredictivecapabilityofthemodelcan
thenbeutilizedwithoutadditionalcalibration.NASALifewasdevelopedundertheEnablingPropulsionMaterials
ProjectoftheHighSpeedResearchProgram.Developmentofthesecodeshasfocusedonmaterialsystemsthatare
markedlydifferentfromcarbonfiberreinforcedsiliconcarbide.Theseapproachesarelackingbecausetheyarenot
physics-basedforaccuratepredictionofdamageduetofatigueandfractureloadingconditions.Theyalsodonot
accountforenvironmentaleffectsduetowatervaporattackofsilicaoxidescalesandcarbonoxidation,whichare
expectedtobemajorfactorsintheapplicationofC/SiCtospacepropulsionsystems.Thus,currentmethods,andthe
underlyingempiricalequationsuponwhichtheyarebased,areinadequateforpredictingthereusablelifeofC/SiC
spacepropulsionhardware.Theapproachoutlinedin thispaperisdesignedtoresolvetheseshortcomings.

APPROACHANDSTATUS

Theoveralleffortfocusesonprovidingarobustlifepredictionmethodologythatwillallowconfidentdetermi-
nationofthereusablelifecapabilityof C/SiCspacepropulsionhardware(fig.1).Forthereasonsoutlinedin
figure2,standardC/SiC(T-300fibers,SiCsealcoat)fromHoneywellAdvancedComposites,Inc.waschosenas
thebaselinematerialforthisstudy.ThiswillbeaccomplishedbyenhancingNASALifetocapturethedamageand
degradationmechanismsassociatedwithstaticandcyclicthermalandmechanicalloadingofC/SiCcomponentsina
hightemperature,highpressure,steamcontainingenvironment(figs.3and4).Also,approachesforlifeextension
willbesought.

Thereactionof silicascaleswithwatervaporis themoststraightforwardaspectoftheenvironmentalattack
problemtocharacterizeandmodelbecausestressstateinteractionsareinsignificant.Currentstateof the art consists

of both experimental data and a model for SiC and Si3N 4 recession due to formation of volatile silicon hydroxides in
combustion conditions typical of aircraft engines (figs. 5 and 6) (ref. 2). The model predicts material recession rates

as a function of water vapor partial pressure, total pressure, gas velocity, and material temperature. In this task the

model is being extended to pressures, gas chemistries, gas velocities, and material temperatures typical of the rocket

engine environment (figs. 7 and 8). High pressure, low velocity tests will be run upstream of the nozzle throat at

various H2/O 2 mixture ratios. Atmospheric pressure, high velocity tests will be run at various mixture ratios down-
stream of the throat.

The second aspect of the environmental attack problem arises because C/SiC composites have a microcracked

SiC matrix in the as-produced condition (fig. 9). As a result, the carbon coating on the fibers and the carbon fibers

themselves are subject to oxidation attack when the cracks are opened (refs. 3 and 4). This degradation mechanism

occurs at temperatures below the composite fabrication temperature under zero stress conditions (fig. 10), and at all

elevated temperatures sufficient for oxidation of the fibers when stress is applied (fig. 1 I). Since oxidizing condi-

tions are expected to be present in the service environment of most C/SiC components, prediction of oxidation

attack is a key ingredient of the life prediction model. A more thorough understanding of the effects of environment,

temperature, arid stress on the degradation of Carbon fibers is being developed so that material limitations can be

better identified and methods of improving oxidation resistance can be addressed. The development of a fiber oxida-

tion model is being pursued (figs. 12 and 13). The model is physics and experimentally based. It incorporates such

variables as reaction rate, diffusion coefficient, temperature, partial pressure, and environment. It tracks the reces-

sion of an array of fibers in-a cracked matrix so that the oxidation kinetics involved in carbon fiber degradation Can

be studied. Stress rupture tests conducted will aid in the development of the model.

Physics based, probabilistic lifting models are being pursued. The models will address issues inherently related
to composite materials--stochastic characterization of strength, life, and orthotropic material response. Experimen-

tal stress rupture and fatigue testing will be carried out in appropriate environments in support of model calibration

and validation. Additional testing will be done for the characterization of the mechanical behavior of advanced

ceramic composites proposed for use in space propulsion engine components, such as nozzle structures and turbo-
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machinery.TheliftingmodelsdevelopedwillbeimplementedinNASALife.Aparalleleffortforamicro-
mechanics(fiber/coating/matrix)basedapproachtopredictstiffness,strength,andlifeatthecouponlevelisalso
beingpursued(refs.5 to7).Currenton-goingresearchtaskshaveledtoalibraryofcomputercodes(CEMCAN/
WCMC,PCGINA)developedspecificallyforthedesignofCMC.ThesecomputercodeswillbeadaptedtoC/SiCto
providestateof theartdesigntools.

Liftingschemes,suchasthosecontainedwithinNASALifeandcurrentlyemployedforCMCs,areadapted
frommodelsoriginallydevelopedfordesignwithmetals.Thesetraditionalmodelsarecomprisedofmodified
Miner'srules,rain-flowcalculations,empiricalknockdownfactors,safetyfactors,etc.Underthecurrentresearch
program,aprobabilisticresidualstrengthmodelisbeingpursued.Residualstrengthistakenasthedamagemetric
forstressruptureandmechanicalfatiguelifemodels.Initialstaticstrength,intermediateresidualstrength,andtime
orcyclestofailurearealltreatedasrandomvariables(seefig.14).In addition,effortsareunderwaytodevelop
physicsbasedmodelsatthefiber/matrixlevelforlifedetermination,andenvironmentaleffects.Inthemeantime,
theresidualstrengthmodelutilizesempiricalrelationshipswhereneeded,butisopentomodificationandincorpora-
tionofnewmodels,suchasmicromechanicalmodelsandmodelsforenvironmentaldegradation,astheybecome
available.

Thetestmatrixfortensile,creep-rupture,andfatiguetestingwasformulatedtosatisfyseveralrequirements:(1)
Calibrationandverificationoftheprobabilisticresidualstrengthmodel.(2)Assessmentofusableserviceconditions
(i.e.,temperature,stress,andenvironment)forC/SiC.(3)Todeterminetheeffectofalternativefiberarchitectureon
materialbehaviorandmodelcapability(fig.15).Theinitialstress-rupturedatageneratedareshowninfigure16.
Testswereconductedinsixdifferentenvironments,usingatemperatureof 1200°Candstressof83MPa(10ksi)
foralltests.Similarliveswereobtainedforspecimenstestedinairandenvironmentscontainingsteam,while
specimenstestedinvacuumdidnotfail.ThesedataareconsistentwiththeSiCrecession(fig.5),TGA(fig.10),
andstressedoxidationdata(fig.11),indicatingthattheenvironmentplaysakeyroleinthehightemperature
performanceofC/SiC.

Methodstolimitenvironmentalattackbyoxidationandreactionwithwatervaporarebeingdeveloped.The
proposedworkwill explorethreewaystoprotecttheintegrityoftheC/SiCcomposite:(1)externalbarriercoatings,
(2)additivesandpretreatmenttopromoteoxidesealingof preexisting cracks and those that form in service, and

(3) interphase coatings to protect the carbon fiber from oxidation.

CONCLUDING REMARKS

Life prediction for C/SiC is a complex problem involving many interactive mechanisms. The plan outlined here

will analyze mechanisms in isolation as well as the interactions, develop mechanistic lifting models, understand the

importance of statistics in C/SiC behavior, and develop methods to extend C/SiC life.
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• Pdmary goal:

• Develop and verify a robust methodology for
confident determination of the reusable life

capability of C/SiC space propulsion hardware.

• Secondary goals:

• To ground the methodology with mechanism-based
descriptions of mechanically and environmentally
induced damage.

• To expand the database for C/SiC.

• To identify methods for life enhancement.

• To directly support flight experiments which use
CMC propulsion components.

Figure 1.--Program objectives.

• Positives • Negative

- Reproducible - Costly

- Readily available

- Realistic set of life
limiting mechanisms

- Controllable life

- Of real interest

Figure 2.--Standard ACI C/SiC chosen as model
material.

• Environmental
- Surface recession due to moisture
- Interface and fiber oxidation

• Mechanical
- Strains due to thermal and mechanical loads

- Cycling of loads (LCF, HCF)
- Creep

Figure 3._C/SiC life controlled by complex,
interactive mechanisms.
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Figure 4.pC/SiC life prediction task organization,
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Figure 5.--Pressure dependence of SiC recession
in combustion environments.

SiC + 3H20 = SiO 2 + CO + 3H 2

SiO2+ 2 H20 = Si(OH) 4

H20 Si(OH) 4

• Chemical model for Si(OH)4:

k I ~ exp(-57 kJ/mol/RT) p1.50 v0.50

Figure 6.--SIC volatilization mechanism in fuel-lean
combustion environments.

• Extend model for silica volatilization (SiC recession)

to pressures, gas chemistries, gas velocities, and

material temperatures typical of rocket engine
environments.

• Verify with materials tests in a rocket engine
environment.

- O/F (oxygen to fuel) ratio

- gas pressures

- gas velocities

- material temperatures

Figure 7._Steam environment model and data.
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Figure 8.mHydrogen/oxygen combustion test stand configurations.
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Figure 10.--Oxidation of C/SiC coupons in a TGA.
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Figure 11 ._tressed oxidation of C/SiC.
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Reaction

Controlled

L
Diffusion

- Controlled by C/O2 reactions

- Low temperature regime

- Entire section saturated in 02

- Similar reactivity throughout

=_ Starting Matrix
6x6 Fiber Tow Array

750 °C
25 ksi

 i!ii!

Controlled ;i_i_ii_i¸¸¸¸¸¸ ...... "' _'T_iiiiiii - Large gradient in 02 conc.

- Moving reaction front, shrinking core

Figure 12._Model development for prediction of C/SiC strength loss due to oxidation of carbon fiber.

Advance the development of a model that predicts
degradation of an array of carbon fibers in a
cracked ceramic matrix.

Determine the role that temperature, stress, and
environment play in the oxidation rate of carbon
fibers through experimentation (analysis of stress
rupture tests) and analysis in the model.

Develop a correlation between composite
strength/failure and carbon consumption so the
model can be used to predict the life of the CMC
material under application conditions.

Figure 13._Oxidation model development.

Three random variables of interest: 1

Original ultimate strength, _r, (0)
Residual strength, or, (n)

Number of cycles to failure, N

log S strength
degradation

S 1 law

$2

N1 N2

log N

Figure 14._Probabilistic model development for C/SiC.
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1, Material Design Limitation

• Creep-rupture in air, PO2and vacuum
(determine PC)2 for model testing).

• Creep-rupture in humidity
(determine material behavior in steam).

• Creep-rupture in PO2on narrow & wide specimens
(assess life dependency on specimen area)

2. Durability Model Calibration & Verification
(in partial pressure of 02).

• Tensile tests - 24 per temperature.
• Creep-rupture tests - 60 per temperature.

20 tested to failure (calibration).
20 stopped pdor to failure and residual strength

(verification).
20 to failure (verification).

3. Fatigue Model Calibration_ & Verification
(in partial pressure of O2).

• Fatigue tests - 60 per temperature.
20 tested to failure (calibration).
20 stopped prior to failure and residual strength

(verification).
20 to failure (ve_fication).

• Feature tests - specimens with holes, notches, etc.
(benchmark model predictive capability).

• Fatigue or creep rupture of altemate fiber
architecture (calibration).

Figure 15.--Test matrix.

100
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I •

I _ Both broke

• outside
steam

• chamber

I I I I I I I

Air 80% steam 50°1osteam 20% steam Ar in Vacuum
20°fo Ar 50% Ar 80% Ar steam rig

Test environment

Figure 16.--Stress-rupture lives for [0/90] C/SiC (tests conducted at 1200 °C, 10 ksi).
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