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Global Precipitation at One-Degree Daily Resolution From Multi-Satellite Observations

Abstract

The One-Degree Daily (1DD) technique is described for producing globally complete daily

estimates of precipitation on a l°xl ° lat/long grid from currently available observational data.

Where possible (40°N-40°S), the Threshold-Matched Precipitation Index (TMPI) provides

precipitation estimates in which the 3-hourly infrared brightness temperatures (IR Tb) are

thresholded and all "cold" pixels are given a single precipitation rate. This approach is an

adaptation of the Geostationary Operational Environmental Satellite (GOES) Precipitation Index

(GPI), but for the TMPI the IR Tb threshold and conditional rain rate are set locally by month

from Special Sensor Microwave/Imager (SSM/I)-based precipitation frequency and the Global

Precipitation Climatology' Project (GPCP) satellite-gauge (SG) combined monthly precipitation

estimate, respectively. At higher latitudes the 1DD features a rescaled daily Television Infrared

Observation Satellite (TIROS) Operational Vertical Sounder (TOVS) precipitation. The

frequency of rain days in the TOVS is scaled down to match that in the TMPI at the data

boundaries, and the resulting non-zero TOVS values are scaled locally to sum to the SG (which

is a globally complete monthly product). The time series of the daily 1DD global images shows

good continuity in time and across the data boundaries. Various examples are shown to illustrate

xz'_;d_tie" for ;nd ;'';a'''_l grid.box values shows a vep/high .oot-m.,n-oqt-.,re e=er, but it

improves quickly when users perform time/space averaging according to their own requirements.

1. Introduction

A long time series of fine-scale observation-based global precipitation is needed to support a

variety of studies, including global change, surface hydrology, and numerical weather and
climate model initialization and validation. However, data record, sampling, and algorithmic

considerations limit the range of scales that could be reported with reasonable accuracy. For

example, the World Climate Research Program (WCRP) established the Global Precipitation

Climatology Project (GPCP) with the initial goal of producing precipitation estimates on a

monthly 2.5°x2.5 ° lat/long grid for a number of years (WCRP, 1986). The GPCP is succeeding

in this goal, with over a decade of data available (1986-1999 at present), another seven years in

preparation (1979-1985), and routine production continuing a few months after real time.

Due to the lack of finer scale precipitation data numerous applications remain stymied.

Researchers wish to validate hydrologic stream flow models by forcing them with observed data

that resolve individual storms and catch basins. Even monthly-scale events are hard to study

with calendar-month averages. Extratropical blocking events are a typical example. They

initiate and decay within the span of a few days, but can persist for weeks (Blackmon et al.

1984). Calendar-month averages typically mix blocking and non-blocking periods, whereas

daily data allow the researcher to composite the data much more cleanly.

The fundamental barrier to finer-scale estimates is the lack of accurate, dense global data,

either from in-situ or remote sensors. Some regions do have the possibility of detailed

precipitation estimates thanks to local networks of sensors, such as the WSR-88D radar system

in the United States (Crum et al. t998). However, at most locations around the world it is

necessary to depend on satellite-based passive sensors. Microwave radiometers on polar-orbit

satellites produce fairly accurate instantaneous estimates, but their sparse temporal sampling



constrainsthetime/spacegriddingneededto achievereasonablerandomerrorsin the GPCPdata
set.

Infrared(IR) radiometersongeosynchronoussatellites(geo-IR)provideexcellenttime and
spacesampling,but thequantitybeingsensed(mostlycloud-toptemperature)is indirectly
connectedto precipitation,particularlyon theshortesttime andspacescales,andin extratropical
latitudes. A problemthat geo-IRdatasharewith mostsatellitedatasetsis thattheviewing
geometrybecomesunfavorablenearthe limb of eachsatellite'sview. This problemcanbe
solvedin partat tropicalandsubtropicallatitudesby mergingall availablegeo-IRdata,but the
issueremains,mostacutelyathigherlatitudesandin caseswheretheclosestgeosynchronous
satelliteis not reportingdata. An additionalbarrieris theneedto work with severalinternational
partnersto obtainadministrativepermissions,maintainroutinedatadeliveries,anddedicate
sufficient computingresourcesbeforetheuseof global,full-resolutiongeo-IRdatacanbea
reality.

Startingin October1996theGPCPsetthestagefor higherresolutionestimatesby working
with thegeosynchronous-satelliteoperatorsaroundtheworld to collecthistogramsof geo-IR
brightnesstemperature(Tb) on a 1°xl ° grid covering 40°N-40°S at 3-hourly intervals. The

availability of this data set prompted the authors to develop the Threshold-Matched Precipitation
"_ ] .... 1..

Index (TMPl) to cstimate precipitation from zl_c o-,:u,_,,: gco-IR histograms; described in sc,_tion

2. To complete the global coverage, a technique for estimating precipitation outside of the geo-

IR coverage using sounding data from polar-orbit satellites was developed, as described in

section 3. Together, these form the One-Degree Daily (1DD) dataset, which is a first approach to

estimating global daily precipitation at the l°xl ° scale strictly from observational data. Figure 1

illustrates how the 1DD is computed. The philosophy is to use statistical parameters from trusted

estimates to constrain the overall behavior of the 1DD estimates, and then use the geo-IR and

sounder data to determine the day-to-day behavior. In the same vein, the adjustments are

computed and applied a month at a time to ensure simplicity and stability. All of the

computations in this paper are carried out separately for each grid box (perhaps with some

smoothing) unless otherwise stated. Section 4 provides some examples of 1DD-based analysis,
while section 5 summarizes validation results. Throughout the paper the reader should keep in

mind that the geo-IR and sounder data are responding to clouds, rather than hydrometeors, so

there is a substantial algorithmic uncertainty at the finest scales.

2. TMPI

The GOES Precipitation Index (GPI; Arkin and Meisner 1987) is one popular IR technique

that simply labels all pixels with IR Tb below a threshold as "rain" and assigns a single rainrate to

all such pixels. The GPI threshold Tb is Tb(rain)=235K and the conditional rain rate is R_=3 mm
h -1. These constants were chosen to maximize correlations with half-monthly rainfall on a

2.5°x2.5 ° lat/long grid over the Global Atmosphere Research Program (GARP) Atlantic Tropical

Experiment (GATE) ship array in summer 1974. Adler et al. (1993) held Tb(rain) constant and

allowed I_ to vary according to calibration between (approximately) time/space-matched GPI

and SSM/I-based rain estimates accumulated for a month, creating the Adjusted GPI (AGPI). In

this paper we introduce the TMPI, which allows both Tb(rain) and Rc to vary. For simplicity and

stability, the (spatially varying) Tb(rain) and t_ are computed on a monthly basis in the TMPI.

The (observational) datasets used for the TMPI (Fig. 1) at present are as follows:



1. GPCPhistogramsofgeo-IR Tb are compiled on a I°X1 ° lat/long grid over 40°N-40°S at 3-hr

intervals. The histograms have 24 classes covering 190-270K.

GPCP Advanced Very High Resolution Radiometer (AVHRR) low-earth-orbit IR (leo-IR)

GPI estimates are compiled on a l°xl ° lat/long grid over 40°N-40°S in 3-hr averages•

The Special Sensor Microwave/Imager (SSM/I) occurrence of precipitation according to the

Version 4.0 Goddard Profiling algorithm (GPROF 4.0; Kummerow et al. 1996) is computed

by the Goddard Space Flight Center Laboratory for Atmospheres on a 0.5°x0.5 ° lat/long

global grid for each orbit. GPROF is a physically based retrieval that matches observed
radiances from all 7 SSM/I channels to cloud-model-based radiances, producing pixel-by-

pixel precipitation estimates.

The GPCP Version 2 Satellite-Gauge (SG; Huffman et al. 1997) combination precipitation

estimates (rscj) are produced on a 2.5°x2.5 ° lat/long global grid by month, and box-

interpolated to l°xl ° for this study. The SG applies a sequential combination technique to

SSM/I, geo-IR, TOVS (introduced below), and rain gauge analyses

After the geo-IR histograms are corrected for zenith angle effects (Joyce et al. 2000) and

interpolated to a 1K interval (Joyce and Arkin 1997), they are matched within +1.5 hr to the

microwave-based frequency of precipitation and each is accumulated for the month. To further
• "7 -'=t D "" - "cnsurc s',abilit;,', the monthly matched accumulations are smoothed with a, x,-_11dbox boxcar.

In each gridbox, the geo-IR histogram is summed starting with the coldest bin until the

cumulative fraction of total pixels matches the microwave-based fractional coverage, and

Tb(rain) is set to the corresponding Tb. This Tb(rain) is applied to the 7x7-box-smoothed sum of

all Tb histograms in the box for the month, yielding the fractional occurrence of rain in the full

geo-IR dataset for the month, fla. The single local conditional rainrate for all raining pixels is

computed as

•

•

.

Rc = rs___G_O (1)
fIR

because we require the TMPI to sum to the (monthly) SG product over the month to maintain

consistency between daily and monthly products.

Preliminary work showed that the Tb(rain) and 1% computed in this first round of estimation

contain some unrealistic values. Various combinations of parameters were tested for diagnosing

this problem, of which the plot of 1% as a function of Tb(rain) seemed the most useful. Not that

most points are tightly clustered (Fig. 2), but there is a scatter of high-1% outliers. Outliers

usually occur in coherent patches (i.e., inside the red lines on Fig. 3 for the sample month

January 1998) that tend to be associated with light rain or strong gradients in rain amount, likely

due to sampling problems in the SSM/I data. Such values would tend to cause estimation of a

few unrealistically heavy precipitation events during the month. Accordingly, an audit procedure

was developed that determines new Tb(rain) that are consistent with the SG values, when

required. We lack a definitive theoretical basis for identifying outliers, so we have subjectively

chosen a linear cutoff that parallels the main cluster and excludes the highest 10% of boxes for

the example month (Fig. 2). At this level of approximation we have neglected the hints at non-

linear behavior for low Tb(rain). The outlier 1% values are deleted and the pockets of missing are

smoothly filled from the surrounding values (Fig. 3). The "audited" values are used to generate

auditedfand then Tb(rain) estimates. As shown in Fig. 3, the resulting audited fields are

physically reasonable. Small errors in setting these parameters are likely not crucial, since the



smoothingdueto 1°xl ° gridding anddaily summationwill maskthedetailedpixel-level
occurrenceof rain. TheauditingprocedurealwaysreducesR_andincreasesTb(rain)andf
(exceptfor Tb(rain)--269K).

Eventhis auditingcannotsolveall problemsat Tb(rain)=269KbecausethewarmestTb bin in

the merged geo-IR dataset contains all values >270K. A region with low cloud-tops, such as a

subtropical high, likely should have Tb(rain)>270K, but Tb(rain) must limited to the last

distinguishable temperature bin of 269K (the uniform orange areas in Fig. 3), and will be given

an artificially high R¢ in the first round of estimation. Presently the auditing procedure replaces

R_ outliers by (lower) smooth-filled values, even though Tb(rain) is constrained to 269K. This

prevents unreasonable instantaneous values at the cost of failing to sum to the monthly SG value.

The penalty for this choice is small because nearly all cases are in low-precipitation regions.

Note that the corresponding lower limit of the histogram bins (190K) is not a problem in

practice.

The final audited R_ and Tb(rain) fields (Fig. 2) provide important insights into the systematic

regional variations in geo-IR data. R_ and Tb(rain) are near the GPI values in tropical oceanic

zones with "heavy" precipitation, but the corresponding land areas show much colder Tb(rain)

with higher I_. This implies that heavy convection in tropical land areas is deeper and more

concentrateci than over tropical oceans. In the relatively dry subtropical highs Tb(rain) is warm

because there is little or no penetrative convection. The relatively low Tb(rain) and Rc over the

Sahara Desert help screen out non-precipitating cirrus that passes over this region during the

boreal winter. The gradients along the northern coast of Africa reflect the transition from desert

to the pattern of boreal wintertime storms that typifies the Mediterranean.

Holes occur in individual geo-IR images, most routinely in the Indian Ocean sector, where no

geo-IR data were available until June 1998. To compensate, leo-IR estimates are processed to

fill in holes as necessary. The leo-IR data are only available as GPI estimates in the GPCP

merged IR dataset. Therefore. the instantaneous leo-IR estimate for the TMPI is simply the

instantaneous leo-IR GPI value scaled by the ratio of the SG for the month to the sum of all leo-

IR GPI values in the grid box for the month. The adjustment ratios are limited to the range

[0,2.5] to ensure reasonable behavior, but this limitation only becomes important in areas of light
rain.

The basic output of the TMPI is 3-hrly instantaneous estimates, mostly resulting from geo-

IR. In the current release, the 3-hrly images in each UTC day (00Z ..... 21Z) are summed to

produce the daily value. The daily product is considered more reliable than individual 3-hrly

images for two reasons. First, GPI-type IR estimates show better correlation with precipitation

as the averaging period increases (Arkin and Meisner 1987). Second, the current procedure does

not take into account the time of day (i.e., diurnal cycle biases). As a result, the individual 3-hrly

estimates are not part of the current release.

One interesting result of the TMPI procedure is insight into the frequency of occurrence of

precipitation. If we define " fractional coverage " as the fraction of all satellite pixels

contributing to the gridbox that have non-zero rain, and "rain days" as the fraction of days on

which a gridbox has non-zero rain (i.e., at least one pixel with non-zero rain sometime during the

day), then we expect the fractional coverage to be less than rain days. In the case of the TMPI,

the ratio of fractional coverage to rain days is less than 0.4 almost everywhere (Fig. 4).

Furthermore, TMPI and GPI rain day maps are closer to each other than to the rain days
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apparentlyimplied by summingGPROFovera day. Thus,"low" (instantaneouspixel-level)
fractionalcoverageis consistentwith "high" (day-averagegridbox-level) raindays. This implies
thatthe"low'"GPROFrain daysvaluesarethe resultof poor time sampling,usually1or 2
samplesin aday, ratherthanindicatingthat theGPROFfractionalcoverageis unrealistically
low. Comparing Figs. 3 and 4, the results also verify that TMPI rain days are higher (lower) than

GPI rain days for the TMPI threshold above (below) the GPI Tb(rain) of 235K.

We find that the instantaneous TMPI fields show good temporal and spatial consistency

among images, and with the daily TMPI field (Fig. 5). As we expect, the daily fields are

smoother, broader, and have lower maxima than the instantaneous fields. Tests show" that the

daily TMPI correctly sum to the monthly SG, except in the subtropical North Pacific, where

threshold saturation becomes serious for this particular month. We also note that monthly sums

of GPROF have significant differences from monthly sums of the TMPI (i.e., the SG field: not

shown), demonstrating that the GPROF fractional occurrence can be used to formulate the TMPI

without GPROF precipitation rates somehow affecting the computation.

3. Rescaled Daily TOVS

Outside the latitude band covered by the merged IR dataset (40°N-40°S) it is necessa_ to

base the IDD on a aifferent aataset. We selected the Susskina et al. (199"/) precipitation

estimates, which are based on Television Infrared Operational Satellite (TIROS) Operational

Vertical Sounder (TOVS) data. The original Susskind et al. (1997) precipitation algorithm is a

regression between TOVS-based cloud parameters and surface data stratified by latitude, month,

and land/ocean surface type. The result is instantaneous pixel-by-pixel precipitation estimates.

The choice of the TOVS precipitation was based on global coverage, reasonable performance,

and the authors' previous experience with monthly accumulations of this product in developing

the GPCP Version 2 SG product. The TOVS precipitation algorithm developers provided the

TOVS estimates as daily averages on a l°xl ° global grid. However, we find that the number of

rain days in TOVS is systematically high compared to the TMPI for all months and locations.

As well, we wish to ensure that the daily values outside 40°N-40°S sum to the monthly GPCP

SG.

As a first solution to these issues, we reduce the number of TOVS rain days in a month at

each gridbox as follows: We compute the ratio of the zonal average number of TMPI rain days in

the month to the same for TOVS separately for 39°-40°N and 39°-40°S. Then the number of

TOVS rain days for the month at each point in an entire hemisphere is scaled by the

corresponding ratio (i.e., 39°-40°N for the Northern Hemisphere). We achieve this smaller

number of rain days (in the month for the gridbox) by zeroing the smallest rain accumulations

(Fig. 6). The largest daily rain amount to be zeroed is labeled as the "revised zero point." The

remaining rain days are linearly rescaled to sum to the monthly SG.

The resulting revised TOVS estimates show good agreement with the TMPI across the 40°N

and 40°S data boundaries. However, enough discrepancy remained on daily maps that

smoothing is performed at the boundaries. Specifically, on each day the differences between

TMPI and revised TOVS estimates are computed for each of the 39-40°N and 39-40°S grid

boxes, then the difference fields are linearly tapered to zero at 50°N and 50°S, respectively, and

added to the revised TOVS. Some spurious "feathering" occurs near the edge of the TMPI

domain, but the general effect is beneficial.



4. Examples

The 1DD has been computed for 1 January 1997 - 30 April 1999, and new months continue

to be appended a few months after real time. The days 1-2 January 1998 (Fig. 7) are typical of

the estimates. Activity in the tropical Pacific reflects the significant El Nifio in progress at the

time. Note the smooth day-to-day progression of the storm system across the North Pacific. The

black dots at high latitudes denote missing data in the original TOVS, mostly due to distortions

in the grid at those latitudes.

Focussing on a particular event, Fig. 8 shows the progression of hurricane Mitch in late 1998.

[Note that the color bar scale covers twice the range of that in Fig. 7.] This storm moved

northwest in the western Caribbean, then stalled just offshore of northern Honduras. Mitch lost

strength as it meandered across western Honduras, but a remnant circulation wandered west-

northwest and emerged in the Bay of Campeche. It rejuvenated to Tropical Storm status, moved

quickly northeast across Florida and became extratropical. This dataset allows the events

reported on land to be seen in the context of the storm's complete rain production. Individual

daily totals were consistent with values for other tropical storms, but the slow forward speed,

looping path, and orographic focussing promoted severe flooding across Honduras and

Nicaragua.

The 1DD is particularly useful for forming regional/temporal averages of the user's choosing.

For example, the Indian Monsoon is summarized in Fig. 9, which displays Hovmoller diagrams

for 1997-1998 of daily precipitation averaged over 85-95°E (roughly the span of the Bay of

Bengal) displayed for the band 30°N-30°S. For 1DD (Fig. 9, left panel), the main envelop of

precipitation broadens from the Equatorial Indian Ocean (just west of Indonesia) to include the

Bay of Bengal in late boreal spring and then retreats six months later, following the annual

march of the Sun. The figure shows spectacular, short-lived precipitation events due to

averaging over a relatively small area. Careful inspection of Fig. 9 shows that the contours tend

to be tilted toward the lower right, indicating that many events move south to north, occasionally

from well south of the Equator (e.g., see May in both 1997 and 1998). For comparison with the

observed data (Fig. 9, left panel), similarly processed NCEP Reanalysis estimates (Kalnay et al.

1996) are shown in the right panel of Fig. 9. There is fair agreement, even at the daily scale.

The NCEP Reanalysis tends to have more widespread light precipitation than the 1DD, and

somewhat lower peak values. As a result, the 1DD distinguishes more clearly between active

and break periods in the summer. Such differences are qualitatively consistent with the

performance that the authors have seen in the Reanalysis, but the quantitative implication

depends on further research.

5. Validation

An initial validation was carried out over Oklahoma for the period January 1997 - December

1998 for the 1DD using the Oklahoma Mesonet rain gauge data. Mesonet data were used as the

validation because the network is fairly dense and none of the stations contributes to the monthly

scaling carried out in the 1DD. Figure 10 shows the signal to noise ratio (shading) and reference

numbers for the l°xl ° boxes over Oklahoma. A higher signal to noise ratio indicates there is less

error in the Mesonet estimate associated with that box (Morrissey and Greene 1998). This

information was used to delete boxes 4 and 7 as having insufficiently robust estimates for

gridbox values. For brevity, single-box results are displayed for Box 20, except as noted.
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A plot of the 1DD (solid line, blacksquares)andMesonet(dashedline, graydiamonds)daily
precipitationover thefirst six monthsof 1997(Fig. 11)is representativeof thetime seriesplots
over theentiretwo yearperiodof record.Thetwo timeseriesareclearlyrelated,with dry and
wet periodsshowingagreement.Overtheentire 1997-1998recordthecorrelationcoefficientfor
Box 20 is 0.73. Looking moreclosely,thehistogramsof daily precipitationamountsfor the
1DDandMesonetaccumulatedfrom thetwo yearsof dataarevery similar (Fig. 12). The 1DD
hasabout7%moreraindaysthantheMesonet,with theexcessdaysspreadfairly evenlyacross
therangeof precipitationamounts.At theseasonaltimescaletheresultsaresimilar to Fig. 12,
with Spring(March-April-May; MAM) andFall (September-October-November;SON)showing
excellentagreementbetween1DDandMesonet,while Summer(June-July-August;JJA) and

Winter (December-Januarb'-February; DJF) vary somewhat more.

The scatter plots for the Summer and Winter seasons (Fig. 13) reveal a higher correlation

during Winter than during Summer. The scatter plots also show fewer outliers during Winter

than during Summer. Each scatter plot includes the best-fit line (heavy solid), the associated

linear equation, and the R 2 value. Note that the days for which both the Mesonet and 1DD

estimates equaled zero were not removed from the scatter plots, which results in a cluster of

points at the origin, tends to tie the best-fit line to the origin. The light dotted line is the one-to-

one line. In both seasons the best fit shows the 1DD overestimating large precipitation values,

with a stronger overestimation in Summer. Ti_e intercept of the best-firline is close to zero in

both seasons, although of opposite sign.

The bias (defined as the 1DD mean divided by the Mesonet mean) and mean absolute error

were produced for each 3-month period for each box. The zero-zero points ,,,,ere not removed

from the bias calculation, while they were removed from the calculation of the mean absointe

error. The bias plot (Fig. 14, top) reveals a semi-annual fluctuation, with underestimation during

the Spring and Fall, and nearly unbiased values during the Summer and Winter. Since the 1DD

is scaled to the monthly SG, and since SG values are dominated by the gauge analysis in most

land areas, it appears that there are systematic differences between the Mesonet and GPCC gauge

analyses. The mean absolute error plot (Fig. 14, middle) has a strong maximum during the late

Summer season and a minimum during the Winter season. Such variation could result from

changes in the character of the precipitation. Specifically, for a fixed set of gauge sites,

stratiform precipitation characteristic of the cool season typically yields more accurate area

averages, while the warm season's convective precipitation is harder to correctly observe because

convection usually has smaller spatial scales. Non-precipitating cirrus is a year-round problem

for the IR-based TMPI; in the cool (stratiform) season the principal problem is frontal bands,

while in the warm (convective) season it is transient convective anvils. Variations in error could

also result from changes in the mean precipitation because precipitation errors tend to scale with

mean precipitation amount (Huffman 1997). In the present case Summer convection and

maximum average observed (Mesonet) precipitation (Fig. 14, bottom) reinforce each other,

leading to the strong annual cycle in mean absolute error. Future work will focus on the relative

importance of changes in precipitation type and mean precipitation rate.

Looking more broadly, we computed the average of the 13 box correlation coefficients for

each season, as well as the entire record, and compared them to the seasonal and annual

correlation coefficients of the 13-box average daily rainfall values (Table 1). As expected, the

area averaging improves the correlations significantly, in the range of 15%. Spring and Summer

show the greatest improvement, implying that box-to-box fluctuations are larger in those

seasons, consistent with a higher incidence of convective activity.
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6. Concluding Remarks

The One-Degree Daily (IDD) precipitation estimation technique is a complete first-

generation scheme for estimating global daily precipitation on a l°xl ° grid. The algorithm

contains two parts; the Threshold-Matched Precipitation Index (TMPI) over the latitude band

40°N-40°S based on a merged geo-IR dataset with leo-IR fill-in, and a rescaled TOVS at higher

latitudes based on the Susskind et al. (1997) TOVS precipitation estimates. Both are designed to

sum to the GPCP Version 2 monthly Satellite-Gauge combination. The TMPI reflects the

frequency of precipitation occurrence computed from SSM/I, while precipitation occurrence in

the rescaled TOVS is adjusted to the TMPI at 40°N and 40°S separately. The 1DD has been

computed for 1 January 1997-30 April 1999, and additional months are being computed a few

months after real time. The time series of global images show strong continuity from day to day

and across the 40°N and 40°S data boundaries. Initial validation studies show that RMS errors

are relatively large, as one would expect from cloud-based methods at fine time and space scales.

On the other hand, users should see better accuracy if they time- and/or space-average the 1DD

fields according to their own requirements.

Further development of the 1DD is expected to take a number of directions. First, we expect

to work toward releasing individual 3-hrlyestimates, aitilough there will be gaps in individuai

fields at higher latitudes. The major issue in this effort is the importance of the time lag between

precipitation and cloud-based estimators. Second, estimates based on lo_v-orbit microxvave data

will be combined directly into the present scheme. This might include Special Sensor

Microwave/Imager, Tropical Rainfall Measuring Mission (TRMM) Microwave Imager, and

Advanced Microwave Sounding Radiometer data. Third, other sensor systems will be examined

for inclusion, including daily gauge data. The last suffers significant difficulties in coverage and

time-of-report diversity. Finally, we expect to evaluate more-sophisticated IR and TOVS

algorithms for possible improvements in accuracy.
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List of Tables

. Average over 13 1°xl ° latitude boxes covering most of Oklahoma (all numbered boxes

except 4 and 7 in Fig. 10) of correlation coefficient between daily Mesonet precipitation

analyses and 1DD precipitation estimates for the seasons and the total dataset, the root-

mean-square difference among the 13 correlation coefficients in each average, and the

seasonal and annual correlation coefficients for daily values averaged over the same 13

boxes.
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List of Figures

1. Block diagram of the 1DD algorithm. The data flow for computing coefficients is shown

with solid lines, while production data flow is shown with dashed lines. Gridded data fields

are shaded, and the output fields are shown as boxes with heavy' borders.

2. Scattergram of the TMPI 1% vs. Tb(rain) for January 1998 before any auditing is performed.

The solid line defines the boundary between outliers and acceptable values (above and below

the line, respectively).

3. Audited Yb(rain) in K (top), and audited 1% in mm hr 1 (bottom) for the January 1998 TMPI.

Blacked-out areas have no data due to a lack ofgeo-IR data. Red lines enclose areas that
have been audited.

.

.

Occurrence of rain as represented by the TMPI fr.i,, (top), TMPI rain days (upper middle),

GPI rain days (lower middle), and GPROF rain days (bottom) in % for January 1998.

Instantaneous 00Z (top) and 12Z (middle) TMPI, and daily TMPI (bottom) in mm d I for 1

January 1998. Blacked-out areas have no data.

.

.

Schematic diagram of revising TOVS by establishing a revised zero point (top) and

precipitation rate transformation (bottom).

1DD images for 1-2 January 1998 in mm d -1 (respectively top, bottom). Blacked-out areas
have no data.

8. Bilinearly interpolated 1DD images in mm d -_ for 23 October - 05 November 1998,

illustrating the precipitation associated with Hurricane Mitch. The black X's denote Mitch's

12Z position on each day for which it was available (storm identity was lost during much of

2-3 November as it traversed southern Mexico into the Bay of Campeche). The lower right-

hand panel displays the 14-day average, multiplied by 4 to fit the same gray-shade key.

9. Hovmoller diagrams in mm d -1 of 1DD (left) and NCEP reanalysis (right) daily data for the

period 1 January' 1997 - 31 December 1998. The diagram extends over 30°S-30°N latitude,

and each value is an average over the longitudes 85-95°E.

10. Locator map of Oklahoma Mesonet stations (dots), l°xl ° lat/long grid boxes used in this

study (numbered boxes), and signal to noise ratio computed for the Mesonet analyses used in
this study (shading).

I 1. Plot of the 1DD (solid line, black squares) and Mesonet (dashed line, gray diamonds) daily
precipitation in mm d -j over the first six months of 1997 in box 20.

12. Histograms of daily precipitation amounts for the 1DD and Mesonet (both as in Fig. 11)
accumulated for 1997-1998 in box 20.

13. Scattergrams of daily Mesonet data vs. 1DD in mm d _ for box 20 for the December-February

Winter (top) and June-August Summer (bottom) seasons. The thin dashed line is the 1:1 line,

while the heavy solid line is the best-fit line, whose equation and R 2 are also shown.

14. Bias, computed as the ratio of average 1DD to average Mesonet (top); mean absolute error of

1DD from Mesonet in mm d -1 (middle); and average Mesonet in mm d -I (bottom). All

quantities are computed for box 20 as 3-month "climatologies" for the period 1997-1998.
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Table 1. Averageover 13 1 °xl ° latitude boxes covering most of Oklahoma (all numbered boxes

except 4 and 7 in Fig. 10) of correlation coefficient between daily Mesonet precipitation analyses

and 1DD precipitation estimates for the seasons and the total dataset, the root-mean-square

difference among the 13 correlation coefficients in each average, and the seasonal and annual

correlation coefficients for daily values averaged over the same 13 boxes.

Season Box-by-box RMS of box-by- Correlation
correlation box correlation coefficient of

coefficient coefficient 13-box daily

averaged over 13 averaged over 13 average
boxes boxes

Winter .669 .143 .764

Spring .752 .084 .874

Summer .594 .160 .719

Fall .695 .138 .765

Annual .681 .096 .783
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