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Abstract

Scientific visualizations of two-dimensional compressible flow of a

gas with discontinuities are presented. The numerical analogue to

experimental techniques such as schlieren imaging, shadowgraphs,

and interferograms are discussed. Edge detection techniques are

utilized to identify the discontinuities. In particular, the zero cross-

ing of the Laplacian of a field (usually density) is recommended for

extracting the discontinuities. An algorithm to extract and quantify

the discontinuities is presented. To illustrate the methods developed
in the report, the example chosen is that of an unsteady interaction

of a shock wave with a contact discontinuity.

1 Introduction

The inviscid flow of a compressible fluid is governed by a system of

hyperbolic conservation laws (which are also called the compress-

ible Euler equations) [1 ]. It is only in exceptional and rather rare

circumstances that these nonlinear partial differential equations al-
low a closed form analytical solution. In most situations, and for

almost all problems of practical importance, these equations have
to be solved numerically.

It is well-known, that for nonlinear systems of hyperbolic con-

servation laws with C _ Cauchy data, the solution may develop

discontinuities in a finite time. Examples include the formation of a

shock on a wing in transonic flight or the formation and propagation

of a shock wave from compressive piston motion. The most com-

mon discontinuities which develop in gas dynamics are: (a) shock

waves and (b) contact-discontinuities. In the theory of hyperbolic

conservation laws, shocks are called genuinely nonlinear waves

while, contact discontinuities are called linearly degenerate waves.

Numerically, the discontinuities are handled by "shock-capturing"

techniques which typically smear the discontinuities over several
grid cells ]2). Furthermore, with grid refinement, the physical ex-

tent of the smeared shock reduces in extent, while the number of

grid cells over which it is smeared still remains the same for a

given numerical method. Consequently, although the derivatives

of various field quantities (such as the density or the pressure) are

ill-defined, the captured discontinuities in the numerical solution

exhibit large gradients over a very small spatial extent, and a nu-

merical evaluation of the derivatives is permitted. The reader is

reminded that there are other types of discontinuities in compress-
ible flows such as detonations which will not be discussed in this

report.
There are scant instances of visualizations of/low fields with

discontinuities in the scientific visualization literature. Noteworthy

efforts in shock wave visualization include the work of Pagendarm

and Seitz [3], Ma et al. [4] and Lovely and Haimes [5]. Most of the

discussion in literature pertains to shock wave detection in stea@
three-dimensional flow fields. Some of these shock-detection al-

gorithms rely on the gradients of the density field and isosurfaces

of unit Mach number. This works because the Mach number (de-

noted by M) changes from greater than one (supersonic flow) to
less than one (subsonic flow) across a shock. However, this criterion

(M = 1) is not uscful for unsteady flows. We do note that Lovely

and Haimes [5] have provided correction terms in their algorithm

for unsteady flows. Several visualization algorithms which assume

at least a continuous field (if not continuity of several derivatives)

run into unexpected problems. While the visualization community

has not paid enough attention to flows with discontinuities, the ex-

perimental literature is full of beautiful instances of shock-wave
visualizations. The earliest scientific work on shock-wave visu-

alization is due to Toepler who developed the schlieren method:

followed by Dvorak, one of Mach's assistants who modified the

schlieren method to give the shadowgraph method [6].

In this paper, we review filtering functions which may be used on
the numerical solution to generate visual images which correspond

to experimental techniques. The main focus of this paper is to go

beyond generating pictures of flow fields with discontinuities and to

present quantifications of shock waves and contact-discontinuities

in the flow. Many details of the quantification algorithm are in-
cluded,

We will consider the interaction of shock waves with contact dis-

continuities in two dimensions as a canonical problem which is un-

steady and exhibits several interesting features of the discontinuities

including bifurcations. Shown in Fig. ! is a schematic depiction of

the physical problem. A shock wave of Mach number M translat-

ing from left to right encounters an interface initially inclined at an
angle _ separating two gases. The gas on the left (right) has a den-

sity p_ (p2). At the interface, the shock wave refracts and bifurcates
into a transmitted shock and a reflected wave which may be a shock

or an expansion wave. Further reflections of these waves at the top

and bottom boundaries and secondary interactions lead to a com-

plex flow field rich in discontinuities, A 3-tuple (M, p2/pl, ct) de-

tines the principal parameters in this interaction. For results shown

in this report, we will use uniform meshes with square cells. This

is not a restriction as the proposed techniques can be extended to

body-fitted curvilinear meshes.

The sample case for which results are shown in this paper will

now be described. The principal parameters defining the interaction

are (2.0, 3.0, rr/4) and the ratio of specific heats of the gases is

"t = 1.667. The domain of simulation is: [-0.5, 1.5] x [0, 1.0], and

is discretized by a uniform mesh with 800 points in the .r-direction

and 400 points in the !t-direction. Unless specified in the figure

caption, the images and results in the paper also shown at time t =
0.72. Note that time is normalized such that it takes unit time for

a sound wave in the unshocked incident gas to traverse the width

of the shock tube. Finally, a second order Godunov method was

employed for the simulation (details are in reference. [71).
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Figure 1: Schematic of the initial conditions for an unsteady two-

dimensional shock contact-discontinuity interaction. The physical

geometry is a two-dimensional rectangular shock-tube.
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2 Visualization techniques

In this section, we will first discuss the numerical analogue of ex-

perimental flow visualization techniques.

2.1 Numerical analogue of experimental flow visu-

alization techniques

In an experiment, as a light ray travels through a compressible gas
with density variations (density variations are related to the varia-

tions in index of refraction via the Gladstone-Dale formula ]8]), it

undergoes three effects. The first is a displacement from its path
which it would have taken in a uniform medium. The second is the

angular displacement with respect to an undisturbed path, and the

third is a phase shift from the undisturbed light ray. These three ef-

fects corresponds to the three main experimental visualization tech-
niques for flows with discontinuities.

I. Schlieren imaging. This experimental technique depends
upon the change in the refractive index as a function of the

density of the gas. In fact, schfieren imaging relies on the an-

gular deflections of light rays. The intensity of the schlieren

images corresponds to the gradient of the density [8]. In the

edge detection literature, the gradient is used in various meth-

ods to identify edges. These methods include the Roberts

cross, Sobel, Compass, and Prewitt edge detectors [91. Each
of these methods uses a different "convolution mask" (con-

volution mask is the jargon used in image processing). The
Roberts cross edge detector is written below in our notation:

pi+l,j+l -- pi,j

v_h
Pid+l -- Pi+lo

_7ypi,j :__
v_h

" 2 !Vpi,j --= [( *O',_)- +(%P_,J) ]_.

The Sobel edge detector is written below in our notation:

_'xpi,o

"_'__p i ,.j

_pl ,j

(I)

1

8h [2(pi+1,, -- pi-l,j)+

pi+l,j+l -- pi-l,j+l + pi+l,j-t -- pi-l,j-t],

1

-- 8h [2(p,,j+l - pi,j-1)+

pi+l,j+.t -- Pt+l,j-1 4- p,-1,j+t -- p,-1,3-i],

_-7 2 . 1-= [( ,viol + (VuPi,j)2] _, (2)

Figure 2: Density field of a two-dimensional shock contact-

discontinuity interaction at time t = 0.72.

The density image is shown in Figs. 2 at time t = 0.72. In

edge detection literature, The schlieren images, correspond-

ing to the above two methods, are shown in Figure 3. The

Sobel edge detector, because of its larger stencil, is smoother
and less sensitive to noise. We do note that for this example,

visually there is little difference between the Sobel and the

Roberts cross edge detectors.

2. Shadowgraphs. This technique relies on the displacement of

a light ray due to the change in refractive index because of
spatial density variations in the gas [8]. It can be shown that

the displacement experienced by a light ray depends on the

second derivative of the density. The numerical equivalent

of this is obtained by taking the the second derivative of the

density field. A central difference approximation to calculate

this at a point (i, j) on a uniform mesh is the following:

_72Di,j =---pi+l,j -4-pi-l,j -t- pi.J+lh2 + p,,j-I - 4[-)i,j , (3)

where h is the mesh spacing. This formula is applied to the

density field in the shock-contact simulation. The shadow-

graph image is shown in Figs. 4, at time t = 0.72. in edge

detection literature, this technique of finding edges is some-

times referred to as the "Marr Edge Detector"[ 10]. Note that,

in actual practice, shocks and contact discontinuities actually

cause a significant amount of light diffraction as opposed to

light refraction. Nonetheless, the technique that is proposed

highlights the discontinuities in the numerical flow field.

3. h_terferometrv. The fringe patterns in an interferogram arise

due to the phase shift of light as it moves through a density

field [8]. Numerically we approximate the interferogram as
follows:

Ii,) = O(resp.1) (4)

if rood (integer(N I pi,j - p ..... ), 2) = O(re.sp.1),

N

\ P .... - p,,,,, /

where Nf is the number of fringes in the range [p,n,,,, p .... ]

determined by the user. I is the intensity pattern on the result-

ing image. Shifts in the fringe patterns occur at the disconti-

nuities (see Figure 5).



Figure3:Numericalschlierenimagesofatwo-dimensionalshock
contact-discontinuityinteraction.Thetopimageisgeneratedusing
theRobertscrossedgedetector,whilethebottomimageisgener-
atedusingtheSobeledgedetector.

Figure5: Numericalinterferogramsof atwo-dimensionalshock
contact-discontinuityinteraction.Thetop(bottom)imageisgener-
atedwith64(128)fringes.

Notethattheabovethreemethodsareextensivelyusedtovisual-
izeexperimentswhereinthedensityinonedirectionisintegratedto
elicitinformationabouttheflowfieldintwodimensions.Therefore
theabovetechniquesareusefulinvisualizingtwo-dimensionalex-
periments.Experimentaltechniquestoobtainschlierenimagesand
interferogramsincoloralsoexist.Furthermore,thereareseveral
variantstoschlierenandinterferometrywhichwewillnotdiscuss
here.Thereaderisreferedtothebookb_/Merzkirch[8].Forour
purposes,thenumericalshadowgraph(X-7Up)inparticularprovesto
beusefulinisolatingdiscontinuitiesinunsteadytwo-dimensional
numericalexperiments.

Figure4: Numericalshadowgraphof atwo-dimensionalshock
contact-discontinuityinteractionatt = 0.72.

2.2 Smoothing and noise suppression

Because derivative operations are generally an order less in accu-

racy than the computed solution, the shadowgraph and the schlieren

images are susceptible to error noise. This problem is further ex-
acerbated since most shock-capturing methods reduce to first-order

accuracy near discontinuities to maintain monotonicity. To miti-

gate the effects of noise, the following smoothing techniques have
been examined. The first one employs a window around a Ix_int as

follows

,_/2 n/2

qi,j : _ _-a Wk,lqi+k,j+l (5)

k=-n./2 I=-rz/2

such that the weights _ wk,t = 1. In the above equation ,q is the

resulting smoothed field. Another smoothing function which has

been prominently employed in the image processing literature is to



Figure6:Laplacianofthepressurefieldinatwo-dimensionalshock
contact-discontinuityinteraction.

convolvethefieldwithanisotropicGaussianas

gli,j = Z Z G_,,tqi+k,j+t
k l

2 2

1 xk,l + Yk,l
Ga.,t = _ exp( ½_5 , (6)

where o- is the standard dcviation in the Gaussian distribution. It is

common practice in edge detection [10] to combine the Laplacian

and the Gaussian operations into one convolution mask called the

Laplacian of Gaussian or LoG.

2.3 Selection of variables

The selection of the field to highlight discontinuities in the flow

is a nontrivial issue. From our experience, gathered by applying

the edge detection algorithms to various fields such as the density,

pressure, entropy, etc.. we recommend the following variables:

• Magnitude of gradient and Laplacian of the density to visual-
ize shocks and discontinuities,

• Gradient magnitude and Laplacian of the pressure, as well as

the divergence of the velocity tield to visualize shocks (See

Fig. 6). Contact discontinuities do not show up in these vari-
ables because, in theory, the pressure and normal velocity
are both continuous across contact discontinuities. The di-

vergence of the velocity field (V.U) proves to be useful in

picking out the shock fronts (see Fig. 7). Note that, because

shocks in perfect gases are always compressive, V.U is al-

ways negative at the shocks.

• It has been shown that the entropy jump across a shock wave

is a third-order quantity, i.e., As = O(M - 1)311 I] where

M is the Math number of the shock. Consequently, entropy

gradients are useful to identify strong shocks in the flow field.
Note that entropy is also discontinuous across contacts. The

variable K-'_.s is shown in Fig. 8. The transmitted shock and

the primary contact are very clear, while the reflected shocks,

which are significantly weaker, are not detected.

3 Quantification of shocks and contacts

By quantification of discontinuities we mean the representation of
discontinuities in a two-dimensional flow lield by curves along

Figure 7: Divergence of the velocity field in a two-dimensional
shock contact-discontinuity interaction.

Figure 8: Laplacian of the entropy field in a two-dimensional shock

contact-discontinuity interaction.
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Figure 9: Difference in the numerical location x, and analytical
location x, of the reflected shock (R), contact discontinuity (C), and

transmitted shock (T) at various resolutions in a one dimensional

shock contact-discontinuity interaction. The interaction parameters

are (M, "p2/pl, a) = (2.0, 3.0, 0.0). The mesh spacing is h.

which certain properties, such as the shock strength, are deter-

mined. The discontinuity is extracted as the contour corresponding

to the zero crossing of the Laplacian of the field (typically chosen

as the density field). This is further modified by requiring the gradi-

ent of the field at the zero crossing to be larger than a user specified
threshold.

3.1 One-dimensional example

In this section, we will examine the following question: How accu-

rate is the zero crossing of the Laplacian (of density in this example)

in quantifying the shock and contact discontinuity locations'? This

issue is addressed by simulating a one dimensional shock contact-

discontinuity interaction (c_ = 0 in Fig 1). In this interaction, the in-
cident shock bifurcates into a reflected and a transmitted shock. The

one-dimensional interaction also permits an analytical solution [7].
We examine the difference in location of the zero crossing of V2p

in the numerical solution and the analytical solution for various res-

olutions (See Fig 9). We observe that, for all resolutions, the dif-

ference in the computed shock location and the analytical location

differs by less than one grid cell. As the resolution is increased, this

difference approaches zero. The contact discontinuity, which is typ-

ically smeared over a larger extent, is located accurately to within

2h, twice the mesh spacing. Furthermore, with further mesh refine-

ment, it appears that the zero crossing of V2p does not converge to

the analytical location for a contact discontinuity.

3.2 Algorithm

The details of the algorithm to quantify shocks and contacts in two-

dimensional compressible flows follow.
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Figure 10: Simplicial decomposition of the mesh and generation of

Triangle Table and Edge Table.

Simplicial decomposition of the mesh
The mesh is composed of quadrilaterals and numbered such

that quadrilateral (i, j) has four vertices at Y:(i, j), _(i + 1, j),

£-(i + 1,j + 1) and _(i,j + 1) where i = 0,1,2,... ,M.

j = 0, 1, 2,-- -, N. Each mesh quadrilateral is decomposed

into two triangles. Note that such a decomposition is not

unique, but we will not concern ourselves with this issue at

this time. Each triangle is given a unique id number which is

given by id = 2(M - 1)j + 2i + k, and where k = O, 1.

A table of triangles with attributes, called the Triangle Table,

is generated. The initial setup by this step in the algorithm
is schematically depicted in Fig. 10. Then, a global table

of edges in the mesh (called the Edge Table) is generated.
Each edge is given a unique identification number given by

eid = 3Mj + 3i + k, k = 0, 1, 2. Included in the attributes

for each entry in the table of triangles are the unique identili-

cation tag for the triangle and three structures (E0, El, E2)
which contain two pointers. One of these pointers points to

the global Edge Table. Since each edge is shared by two tri-

angles or is at the boundary of the domain, the second pointer

points to an entry in the Triangle Table which is the neighbor-

ing triangle sharing this edge. If the edge is on the boundary,



thesecondpointerissettoNULL.Eachentryintheglobal
EdgeTableessentiallycontainspointerstoaVertexTable(not
shownintheschematicfigure)whereinthecoordinatesofthe
verticesareactuallystored.

2. Zero crossing of the Daplacian
The next step in the process is to compute the Laplacian of

the field variable of interest. The edges intersected by the zero

contour of the Laplacian are identified. Furthermore, we ex-

clude those edges intersected by the zero contour of the Lapla-

clan where the gradient of the field is below a threshold value.

Mathematically, the intersection point is calculated as

V2P(2') (7)
i.i + (_2 - x_)-V2p(_ ) _ V"p(_)

if V2p(22) . _"Zp(_l) < 0

and (_"p(Y:2) q- _'Tp(Xl)) > 2(_Tp)thrvshotd,

where _x, _2 are the vertices of the edge. Thus, in the above

equation, 5: is the location of the zero crossing of the Lapla-

cian on the edge whose end points are at 2t and _2; and we

choose only those edges for which the average gradient of the
field of interest is larger than a user-specified threshold value

(Vp)thr_sho,_. This is done to eliminate locations where we

have a zero Laplacian but which do not lie within a high gra-
dient region. At the end of this step, we have identified all

intersection points of the zero contour with all the edges.

Extraction of the discontinuity curve

In this step, the intersection points identified in the previous

step are connected to form the curves which define the dis-
continuities in the flow. Each discontinuity is a curve which

is stored as a linked list of points. The process of identifying

curves is recursive, and the pseudo-code is given in Appendix

A.

4. Spline interpolation

In the above step, we have isolated curves which are a list of

points. The distribution of these points is, clearly, not uni-

form. In this step we fit natural cubic splines [12] to these.
The curves are re-meshed so that points along the curve are

uniformly distributed.

5. Shock and contact discontinuity identification
For each curve (this curve is now the fitted spline curve), we

identify whether the discontinuity is a shock wave, a contact

discontinuity or neither, i.e., a spurious discontinuity is iden-

tified. The process of identifying shocks is as follows. Recall
that the curve is discretized with equally spaced points. At

each point along the curve, a line normal to the curve is gen-
erated with equally spaced points. For equally spaced points

on either side of the curve, the flow variables (p,p, fi) are

calculated using bicubic interpolation. Then we evaluate the

normal jump conditions using equally spaced points on ei-

ther side of the curve. The question that arises is how far

must we go in the normal direction so that we are not in the

smeared zone of the discontinuity. For shocks, we travel along
the normal direction and lind the location where a certain cost

function, to be defined later, is minimized. Then the prop-

erties at these locations are evaluated, and one can then as-

sign the shock speed, shock strength, etc. along a shock front
and strength of the vortex sheet along a contact discontinu-

ity. Clearly, the points closest to the shocks do not satisfy the

jump conditions because of smearing. Let W and u,, be the

shock and fluid velocity, respectively, in a direction normal
to the shock front. The shock speed is calculated using the

following jump condition

IV -- p2u,_2 -- pl'u_l (8)
p2 -- pl

We define a cost function, S using the three jump conditions

for a shock moving with speed W, as

,)

$1 = 1 P-P_ + 1 (9)
(/t 2 + pr)p_ '

$2 = 1 - p2 + pz(W -u,_2) 2 (10)
pl +pL(W- u_l) 2

Sa = 1 -h2+(IV-u'_2)2/2 (11)
hi + (W-u,_L)2/2

S = w_,iSi, i= 1,2,3, (12)

wherep_ - p'2/pl, p_ =- p2/pl, p2 _ ('7+ 1)/(_ - 1),

"7 is the ratio of specific heats of the gas, and h is the en-
thalpy. Ideally, the jump conditions across the shock must be
satisfied and therefore S, = 0, i = 1, 2, 3 across the shock.

Numerically, due to shock smearing and, since we have only

approximately determined the shock front, the jump condi-
tions are not exactly satisfied. The final form of the cost func-

tion ,5" is a weigthed average of Si with weigths w_.i. For
curves which are not shocks, the jump conditions are obvi-

ously not satisfied. We have some simple physically-based

constraints which eliminate points as not belonging to shocks.

For example, both the density ratio and pressure ratio across

shocks in perfect gases have to be greater than unity. Further-
more, the local normal Mach number, computed by using the

relative velocities, changes from larger than unity to smaller

than unity across the shocks. Therefore, to eliminate compu-
tational costs, points not satifying these constraints are elimi-

nated and not processed any further.

For contact discontinuities, we use the fact that the pressure

and normal velocities are continuous across the contacts. One

difficulty with contacts is that they tend to diffuse out more
than shocks. The cost function lbr a contact discontinuity is

delined as follows:

C1 = 1 - p_.2.e,C2 = 1 - --u"2 (13)
pl /tnl

C = w_,iCi, i = 1,2. (14)

We find the locations on either side of the discontinuity which min-

imize the cost functions, (S for shocks and and C for contact dis-

continuities).

3.3 Two-dimensional example

We now apply the above algorithm of extracting discontinuities
to the two-dimensional interaction of a shock with a contact dis-

continuity. The threshold used in Eqn. 8 is _pthreshohl -_-

0.008Vp ....... Furthermore, the field V2p was subjected to

smoothing in Eqn. 5 with n = 2 and weights w±_.±l = 1/16,

w0,±t = 1/8, w±l,o = 1/8 and w0,o = 1/4, applied recursively
four times. The extracted curves are shown in Fig. I 1. Curves la-

beled ' 1', 'Y, '5', "6', and '7' are shock waves, while the remaining

curves are contact discontinuities. A brief explanation of the num-

bering system follows. The algorithm starts by scanning the xy do-

main from left to right and bottom to top. Whenever a discontinuity

is encountered, a label is generated for it. Thus, in our example,
the reflected shock labeled "1" is first encountered, followed by the

primary discontinuity labeled '2'. The next discontinuity that the

algorithm encounters is the transmitted shock "3' and so on. Note
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Figure I 1: Extracted shocks and contacts in the two-dimensional

shock contact-discontinuity interaction, Curves labeled ' 1', ' 3', '5',

'6", and '7" are shock waves, while the remaining curves are contact

discontinuities. Labels 'TI' and "T2' are locations of triple points

where three shocks and one contact discontinuity meet. The _: and

y axes in the figure are normalized by the mesh spacing.
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Figure 12: Magnified neighborhood of triple point 'TI'. The ex-

tracted shocks are '3' and '5' and contact is '4'. The z and y axes

in the figure are normalized by the mesh spacing.

that in regions where the discontinuities intersect each other, the ex-

tracted curves do not intersect. In fact, curves in these regions show

an unphysical turning with a high curvature. We simply caution the

reader that this region of unphysical turning must be ignored in the

quantification process. As an example of this phenomenon consider

Fig. 12. There, we have magnified the region where shocks labeled

"3' and '5" meet the contact discontinuity labeled '4'.

We now apply the quantification part of the above algorithm. In
practice, we found that the cost function which best quantifies the

shock istheone with weights,_,s,l = 1,_s,2 = _,_,3 = 0. This cost

function has a very well-defined minimum as we traverse the along

a direction normal to shock curve. The magnitude of the normal

shock velocity for shocks labeled '1' and '3' is plotted in Fig. 13 as

a function of the length of the shock curve. For reference, we also

plot the speeds of the reflected and transmitted shocks in a one-

dimensional interaction. Note that shock '3' is really comprised of

three different shock fronts. These are the Math stem extending

from the lower boundary to 'TI', followed by the shock front from

"TI' to 'T2', and finally from 'T2' to the upper boundary. The zero

Figure 13: Normal shock speed as a function of arc length s of

the shock fronts identified by labels ' I' and '3". Labels 'TI' and

'T2' on shock number '3' are approximate locations of the triple

points on the shock front. The horizontal lines are the speeds of the
reflected (labeled H_')) and the transmitted shock (labeled H,'t) in a

i D shock-contact interaction, and they are shown for reference.

crossing of the Laplacian of density (in fact even other variables)

fails to distinguish between these three shocks and identifies these

as a single shock. However, in the quantification of the shock front,

we see large changes in the normal shock speed. We also observe

that the normal shock speed of shock ' I' is not smooth. This may
be due to several sources of error: the numerical method used to

compute the flow, the error in the identification method of the zero

crossing (which essentially employes linear interpolation), or the

cost function used to quantify the shock front, or a combination of

these. A thorough analysis of these errors is beyond the scope of
the present study and is left for future work.

3.4 Tracking contacts via the level set approach

A useful method to "track" the contact discontinuity in compress-

ib[e flows is to use a level-set approach [ 13] whereby one solves the

following partial differential equation in two dimensions in addition

to the equations governing fluid motion:

Op_ + Op_u Op(v
o---/- -SUx+ 0--if-=0, (_5)

where _ is the level-set variable. We initialize _ = +1 on either

side of the interface so that at time t the level set _(t) = 0 defines

the interface (see Fig. 14). This method is useful if we need to

track a "primary" contact discontinuity such as the interface in our
case. A comparison of the extraction of the primary contact, using

the algorithm presented in the previous section, and the level set

method showed little difference between the two except in the roll-

up in the vicinity of the lower boundary. This region is shown in
Fig. 15.
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Figure 14: The zero level set at various times in the two-

dimensional shock contact-discontinuity interaction. The times

shown are tO = 0.0, tl = 0.20, t2 = 0.38, t3 = 0.54, t4 =

0.72. The x and y axes in the figure are normalized by the mesh

spacing.
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Figure 15: A comparison of the zero level set and zero crossing

of the Laplacian for the primary contact discontinuity in the two-
dimensional shock contact-discontinuity interaction. The x and y

axes in the figure are normalized by the mesh spacing.

4 Conclusion

In this report, we presented the numerical analogue of experimen-
tal flow visualization techniques for the compressible flow of a gas
with shocks and contact discontinuities. An algorithm based on the

zero crossing of the Laplacian of a field quantity (usually density)

was developed to extract the discontinuities. The discontinuities

were characterized by curves which were extracted using a recur-

sive technique. Furthermore, we also quantified properties along
the extracted curve such as the local strength of the shock or the

normal shock speed based on the examination of the minimum of
a cost function in a direction normal to the shock front. The ex-

tracted discontinuities with associated properties may be thought of

as a means of data reduction. By way of illustration, we applied

the methods developed in this report to the unsteady interaction of
a shock wave with a contact discontinuity which yields a flow field

rich in bifurcations and discontinuities. An extension of the extrac-

tion and quantitication algorithm to three dimensions is left for the

future. Several other topics were briefly mentioned in this paper.

These include the selection of appropriate variables, it is recom-

mended that density be used to extract both contact discontinuities

and shock, pressure and the divergence of velocity to extract only

shocks and entropy to extract contacts and strong shocks. Different

edge detection techniques were covered in the paper. We clearly
recommend the use of the zero crossing of the Laplacian of a field

variable (a la Mart edge detector) to extract discontinuities. One-
dimensional test indicate that the location of the contact may not

be exactly correct. For special cases, the level-set method proves

useful in tracking contact discontinuities.

Finally, we remark that there are several sources of noise in the

entire process: from the simulation method, to the extraction tech-

nique, to the form of the cost function used to quantify the prop-
erties along the discontinuity. A judicious application of some

smoothing techniques mitigates some noise. Quantification of the
error sources is also left for future work. In addition, tracking of

the discontinuities from one time step to the other is also left for the

future.
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Appendix A: Pseudo-code to extract the
discontinuity curves

Triangle triangle[NTriangles] ;

Curve curve[] ;

int n;

int ncurve;

int nedge;

int i ;

for(n=0;n<NTriangles;n++){

// If triangle is cut only once

// this is the beginning of a curve.

if(triangle[n].ncut==l) (

// Determine which edge is cut.

for(i:0;i<3;i++){

if(triangle[n] .edge[i] .iscut)

nedge=i; break;}

}

// Get the coordinates of the



/ intersection point with the cut edge.

triangle[n].edge[nedge].

GetIntersectionPoint(&x, &y);

triangle[n].edge[nedge] .iscut=0;

if(triangle[n] .edge[nedge].

neighbor_triangle!=NULL) {

nt=triangle[n] .edge[nedge].

neighbor triangle.id;

triangle[n] .ncut=0;

/ Add intersection point to the curve.

curve[ncurve].AddPoint(x,y);

/ Traverse the curve using the

/ following recursive routine.

TraverseCurve(ncurve,nt);

}

ncurve++;

// The curve can also start at the boundary.

if(ncut==2 && triangle[n].IsOnBoundary){

for(i=0;i<3;i++){

if(triangle[n] .edge[i] .iscut &&

triangle[n].edge[i] .

neighbor_triangle==NULL){

nt=triangle[n] .edge[i].

neighbor triangle.id;

triangle[n].ncut=0;

triangle[n] .edge[i] .iscut=0;

triangle[n] .edge[i] .

GetIntersectionPoint(&x, &y) ;

// Add intersection point to the curve.

curve[ncurve] .AddPoint(x,y) ;

// Traverse the curve using the

// following recursive routine.

TraverseCurve(ncurve,nt) ;

ncurve++;

break;

}

}

}

// Recursive routine to traverse the curve.

TraverseCurve(int ncurve, int n)

{

// Reached end of curve

if(triangle[n].ncut:=l){

triangle[n].ncut=0;

return;

}

// Still on the curve.

if(triangle[n].ncut==2 ) {

//

for(i=0;i<3;i++){

if(triangle[n].edge[i] .iscut &&

triangle[n].edge[i] .

neighbor triangle==NI/LL) {

nt=triangle[n] .edge[i] .

neighbor triangle.id;

triangle[n] .ncut=0;

triangle[n] .edge[i] .

GetIntersectionPoint(&x, &y);

triangle[n].edge[i] .iscut=0;

Add intersection point to the curve.

curve[ncurve] .AddPoint(x,y);

Traverse the curve using the

following recursive routine.

TraverseCurve(ncurve,nt);

break;

}

}

}

/ Should never reach here.

return;
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