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ABSTRACT

This paper presents recent work on developing methods

for analyzing radiation heat transfer between diffuse-

gray surfaces using p-version f'mite elements. The work
was motivated by a thermal analysis of a High Speed

Civil Transport (HSCT) wing structure which showed

the importance of radiation heat transfer throughout the
structure. The analysis also showed that refining the

finite element mesh to accurately capture the

temperature distribution on the internal structure led to

very large meshes with unacceptably long execution
times.

Traditional methods for calculating surface-to-surface

radiation are based on assumptions that are not

appropriate for p-version f'mite elements. Two methods

for determining internal radiation heat transfer are

developed for one and two-dimensional p-version finite
elements. In the first method, higher-order elements are

divided into a number of sub-elements. Traditional

methods are used to determine radiation heat flux along

each sub-element and then mapped back to the parent
element. In the second method, the radiation heat

transfer equations are numerically integrated over the

higher-order element. Comparisons with analytical
solutions show that the integration scheme is generally
more accurate than the sub-element method.

Comparison to results from traditional finite elements

shows that significant reduction in the number of

elements in the mesh is possible using higher-order (p-

version) finite elements.

INTRODUCTION

Background

One of NASA's main goals is to provide the United

States' Aeronautics Industry with the technology it

needs to lead the international aerospace industry into

the next century. This includes developing enabling

technologies, one of which is to "provide next-

generation design tools and experimental aircraft to

increase design confidence, and cut the development

cycle time for aircraft in half."[1] This paper presents
initial work on one of these tools, methods for accurate

thermal analysis of aircraft structures. The goal of this

work is to enable thermal analysis of large-scale

components or full aerospace vehicles on a mid-level
workstation.

NASA sponsored several projects aimed at reducing
barriers to commercially viable high-speed civil and

space transportation. The High Speed Research (HSR)

Program had a goal "of reducing the travel time to the

Far East and Europe by 50 percent within 20 years, and

to do so at today's subsonic ticket prices."[1] These

aircraft will experience higher in-flight temperatures

due to the increased rate of aerodynamic heating

associated with high-speed flight. The Reusable

Launch Vehicle (RLV) program's goal of "reducing the

payload cost to low-Earth orbit by an additional order

of magnitude" [1] challenges designers to come up with
both materials and structural concepts that can

withstand the reentry environment while minimizing

the weight of the vehicle. RLV designs are single-
stage-to-orbit vehicles that use cryogenic propellant.

The propellant tanks are an integral part of the vehicle

structure, which, in addition to holding the cryogenic

fuel, must withstand the elevated temperatures
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associatedwiththereentry.Inaddition,thesematerials
mustalsowithstandthethermalandstructuralcycling
ofrepeatedflights.Manyofthematerialsthatcan
withstandtheelevatedtemperaturesofhigh-speedflight
donothavehighthermalconductivitytoefficiently
dissipatetheheatthroughoutastructure.Thusother
modesofheattransfer,radiationinparticular,become
moresignificant.[2]Theimportanceofradiationheat
transferaswellasthedifficultyinvolvedinits
modelingwasdemonstratedbyKoet aL [2] in their

work on the Space Shuttle thermal analysis. These

issues are directly applicable to the design of high-

speed commercial aircraft as well as the RLV.

NASA's Space Program also has an interest in

improved methodologies for radiation heat transfer.
Besides the access to space issue mentioned above,
radiation is a dominate mode of heat transfer in most

orbiting space structures and satellites. Chin et al. [3]

discuss some of the problems associated with thermal

modeling of spacecraft, and in particular the problems

associated with computation of radiation heat transfer.

One of the problems highlighted in reference 3 is the

assumption of isothermal, constant radiation heat flux
surfaces used in most radiation computations. This

assumption tends to under-predict the temperature

gradients in the structure. In addition, the assumption
of constant radiation heat flux over an element may

degrade the accuracy of the calculated temperature field

especially where partial shading (blockage) occurs.

The desire for better tools led to an initial study of the

heat transfer in a High Speed Civil Transport (HSCT)

wing. The study confirmed the significance of radiation

in the heat transfer throughout the vehicle's wing

structure. The study also demonstrated the relative

difficulty of such an analysis, especially when the

ultimate goal is to compute the temperatures throughout

the whole wing without reverting to reduced models. A

summary of this study is given in the following section.

Case Study: High Speed Civil Transport Wing

Thermal Analysis

As part of the HSR Program at NASA Langley
Research Center (LaRC), a thermal analysis of a HSCT

wing was undertaken. The purpose of the analysis was

to determine the capabilities of the methods currently
used for thermal analysis of aerospace structures and

determine what, if any, areas of improvement were

required.

The wing geometry model used for the thermal analysis

is shown in Figure 1. The wing is approximately 113

feet long at the root and 55 feet wide at the trailing

edge. The wing skin was assumed to be constructed of

hat-stiffened corrugated panels made from titanium. To
model the three-dimensional hat-stiffened skin with

two-dimensional elements, equivalent properties

(density, capacitance, and thermal conductivity) were

derived. For simplicity, this construction was also used

for the internal ribs and spars.

Figure 1: HSCT wing geometry model.

A five-hour flight trajectory, representative of a

commercial airline or transport route, was used in the

analysis. The majority of the trajectory, 3.8 hours,
consisted ofa mach 2.4 cruise at an altitude between

60,000 and 70,000 feet. Aerodynamic heating rates

were determined using LANMIN, NASA Langley's

version of the MINIVER computer code which uses

engineering relations to calculate the aerothermal

heating (or cooling) to surfaces. The heating rates

applied to the upper and lower wing surfaces were

generated by MINIVER for each element in the mesh

using fiat plate boundary layer relations based on the

element running length and local flow angle.
MINIVER used inviscid flow relations to obtain the

undisturbed flow conditions behind the bow shock off

the fuselage nose and wing leading edge.

Structural temperatures of the wing throughout the

trajectory were computed using MacNeal-Schwendler
Corporation's P/Thermal t [4] software on a Silicon

Graphics Workstation with an R4000 CPU, 96 Mbytes

of memory and one Gbyte of disk space. The initial
mesh consisted of roughly one element for each

geometry surface shown in Figure l resulting in 154
nodes and 237 elements. Solutions obtained for this

i The use of trademarks or names of manufacturers in

this report is for accurate reporting and does not

constitute an official endorsement, either expressed or

implied, of such products or manufacturers by the

National Aeronautics and Space Administration.
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meshbothwithandwithoutintemalradiationshowed
verylittledifferenceintemperaturedistribution.Note
howeverthatallthenodesinthismodelarelocatedon
thewingsurfaces(attheintersectionsofthelinesin
Figure1)wheretheheattransferisdominatedbythe
aerodynamicheating.Thusallthecomputed
temperaturesrespondveryquicklytochangesinthe
aerodynamicheatingrates.Thelackofnodesalongthe
internalstructure,wheretemperaturesarenotdirectly
affectedbytheaerodynamicheatingandthusrespond
slower,resultsinamisleadingtemperaturedistribution
forthewingstructure.

v

Figure 2: HSCT wing, refined mesh and
temperature contours (Temperatures in °F).

A second analysis was performed with a mesh refined

to have elements with edge lengths of 18 inches on both

the internal structure and wing surfaces. This mesh size

was driven by the desire to have at least two elements

across the height of the internal structure while keeping
the overall size of the model within reason. The mesh,

which consisted of 3624 nodes and 4037 elements, is

shown in Figure 2 overlaid on a contour plot of the

lower surface temperature at the beginning of cruise.
The solution shown in Figure 2 did not include internal

radiation heat transfer because the view factor

calculation never ran to completion. It is also

interesting to note that the view factor computation

required over 600 Mbytes of disk space before

crashing! Neglecting intemal radiation resulted in a

peak internal temperature of less than 150°F and a

temperature gradient of 220°F across the intemal
structure at the beginning of cruise. The large

temperature difference between the external and
internal structures raises the possibility of significant

radiation exchange.

The problems with the view factor calculation as well

as the desire to get a more detailed temperature
distribution for the internal structure led to the

development of a wing box model. This model allowed

for a more detailed analysis of a smaller section of the

wing, in this case a box defined by adjacent ribs and

spars and the corresponding upper and lower surface

sections. Solid elements with equivalent properties

were used for all sides of the box so that temperature

gradients through the thickness of the panels could be
determined in addition to the effects of internal

radiation. The finite element mesh used for the wing

box thermal analysis is shown in Figure 31

E
Figure 3: Finite element mesh used for the thermal

analysis of a wing box (Note node 957 is located on
the lower wing surface).

The model was first run without internal radiation and

the transient temperature response of the nodes labeled

in Figure 3 are shown in Figure 4. Internal radiation
was added for the next run and the results are shown in

Figure 5. These figures clearly show the significant

impact of internal radiation heat transfer on the

temperatures of the internal wing structure. Ko et al.

have also shown the importance of internal radiation in
their work on the Space Shuttle[2]. Their results for the

in-plane temperature distributions for the upper and
lower surfaces suggest that higher order basis functions

might be well suited to this application. This behavior

coupled with the difficulties encountered using

traditional methods lead to the idea of applying

hierarchical p-version elements to radiation heat
transfer in enclosures.

American Institute of Aeronautics and Astronautics
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Figure 4: Transient temperatures for wing box
model with no internal radiation.
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Figure 5: Transient temperatures for wing box
model with internal radiation.

FINITE ELEMENT FORMULATION

The finite element method and its application to thermal

problems is well established. For the interested reader,

Huebner et al. [5] provides a detailed formulation of the

problem. Here it will simply be noted that the approach

begins by subdividing the problem region into elements

and approximating the temperature in each element
with some function in the form of

T(e)(x,y,z,t ) r= _. Ni(x,y,z)<.(t ) (1)
i=1

where N_ are interpolation functions and T_nodal

quantities related to the temperature at time t. The

corresponding finite element equations can be written

(see [5]):

}+{RJ+lR} (2)
la

where

[C]= _pcp{N__N_r[lf2

[<]=f[ ] [kl[sl a

[Kh]= I h{N_NJdF
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{R_}: I Q{N_tf2

{R}= I q_ {N]dF

{Rh}= I h Tj {N}dF
_gt'l"' flS:

{Rr}:-- Iqr{N}dF
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with r, % and k being the material density, specific

heat, and thermal conductivity, respectively. Boundary
conditions included in the above definitions are:

specified heat flux q, on surface S_, convection on

surface S: with a convection coefficient h and a fluid

temperature Ty,and net radiation heat flux q_ on surface

$3. Q represents any heat source or sink in the material.

In general, any given element in the solution domain

will not have all of the above terms. For example, only
elements on the surface of the domain will have the

terms associated with the boundary conditions, and

even then they will only have the terms associated with

the boundary conditions that apply to the element. The

terms are calculated individually for each element in the

domain and then assembled into a global system of

equations using traditional finite element techniques

[5].

Traditional methods for determining the radiation heat

transfer flux qr are based on the assumptions that
surfaces are isothermal and the incident radiant heat

fluxes on them are uniform. The isothermal surface

assumption is inconsistent with finite-element

formulation since the temperature over the element

varies according to its shape function. To minimize the

error introduced by this assumption, the mesh size must

be controlled to limit the temperature variation over an

element surface. This can lead to a large number of

elements for structures with large temperature variation

throughout. View factors will have to be computed
between all of these surfaces, a process that requires N 2

computations for N elements. Also, since radiation
links surfaces throughout a structure, matrices are no

longer sparse as they are with conduction problems.
Thus mesh refinement in a radiation heat transfer

problem can quickly become overwhelming as

demonstrated in the case study. In addition, Lobo and

American Institute of Aeronautics and Astronautics



Emery[6]reportthatwithintenseradiationheatfluxes,
methodsemployinglow-orderbasisfunctionscan
produceerroneousresults.

Analternativetomeshrefinement(h-refinement) is to
increase the order of the basis functions in the fmite-

element formulation (p-refinement). In a follow-up

report to their earlier work (cited above), Lobo and

Emery [7] demonstrate that the errors occurring under
intense radiation heat flux conditions are due to the

violation of the Discrete Maximum Principle. They

show that one way to alleviate this problem is to use

higher-order basis functions along the surfaces of

radiating elements. Surana et al.[8] have demonstrated

the effectiveness of p-version finite element methods

for conduction problems, but they do not include

radiation. Kuppurao and Derby [9] use linear and

quadratic basis functions for pure radiation problems

arising in crystal growth systems, and develop several

methods which do not rely upon the isothermal

assumption. This work takes a slightly different

approach to implementing higher-order basis functions

and presents results for test problems representative of

the wing box analysis.

RADIATION HEAT TRANSFER WITH

HIGHER ORDER ELEMENTS

Fundamental to the accurate implementation of the p-

method in heat transfer problems with enclosure
radiation is the accurate computation of the radiant heat

flux qr, and it's variation, over a surface. The

governing equations for the radiant heat flux are of

integral form. By assuming the surfaces are isothermal
with uniform radiant heat fluxes, these integral

equations can be separated into a set of integral

geometry equations (view factors) and net radiation

equations (algebraic set of equations). Forgoing these
assumptions leaves a set of simultaneous integral

equations that must be solved. Daurelle et al. [10, 11]

shows that solving the set of integral equations leads to
more accurate results even when using linear basis

functions for the temperature field. Their work
indicates that the set of integral equations is slower to

solve for a given mesh; however, for a given accuracy
the set of integral equations is twice as fast as the

traditional approach using the isothermal surface with
uniform radiant heat flux assumptions. Two methods

are developed here: the Radiation Sub-Element method,

which takes advantage of the well-developed traditional

methods; and the more accurate Integration method,

which solves a set of integral equations.

Radiation Sub-Elements (RSE)

The Radiation Sub-Element approach is the simplest

and most straightforward technique to implement
variable surface radiation. Any code that can currently

handle surface-to-surface radiation can implement this

procedure without major modifications. This approach
breaks the radiation elements into sub-elements for the

surface to surface radiation exchange problem. These
radiation sub-elements are then treated in the classical

approach, i.e. assume that they are isothermal and then
calculate view factors and absorbed heat fluxes. The

sub-element absorbed heat fluxes are then transferred

back to the parent element generating a variable

radiation heat flux along the element. Several different

methods to approximate the varying heat load on the

element have been investigated.

A one-dimensional problem was used to determine how

accurately the absorbed heat flux should be modeled.

The energy equation for one-dimensional heat
conduction in a rod with an applied heat flux qP is:

kA d2T = q'(x)S
dx 2

where

k is the thermal conductivity, A is the cross sectional

area of the rod, S is the rod's surface area, and qO is the

variable heat flux expressed as a polynomial in x.

Integrating twice gives the general solution:

T(x) = -_A _Sq" (x)dxdx + c,x + c 2

The point of interest here is that the temperature

solution is a polynomial of order p + 2, that is, it is 2

orders higher than the polynomial describing q.

Applying this to finite element analysis, given a shape

function of order m for the temperature distribution

along a rod element, the radiation heat flux should be
calculated to an order of m - 2.

Five methods to transform the discrete heat fluxes on

the radiation sub-elements to a continuous function on

their parent element were investigated. Two two-

dimensional test problems with one-dimensional
elements were solved using sixth order polynomials for

temperature interpolation function on the elements.
The radiation load vectors were calculated to fourth

order. This required dividing each element into five

radiation sub-elements yielding five absorbed heat

fluxes for each parent element. These five heat fluxes

were then integrated (numerically) with the shape

functions to generate the radiation load vector [RJ in

equation 2.

5
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Thefirstmethodmodelstheheatfluxalongtheelement
asastepfunction.Thisisconsistentwiththemethod
usedforgeneratingtheheatfluxes(theclassical
approachassumestheincidentradiationtobeconstant
alongasurface).However,incidentradiationdoesnot
typicallyvaryinthisfashion,ratherit isusuallya
smoothfunctionwhichmayhavesignificantvariation
dependingonthe geometry involved. (And if higher

order elements are being used for the analysis, there

probably are large variations along the element.)

The second method approximated the heat flux by

linearly interpolating between the five heat flux values.

The heat fluxes were placed at their sub-element

centroid for the interpolation process. This method

interpolates between two values when possible,
otherwise the closest value is used. Values outside of

two element centroids (i.e., near the open ends of the

surface) are assigned the same value as the element
centroid.

A simple extension of the interpolation method is the

interpolation/extrapolation method. As the name

implies, this method simply extrapolates the local heat
flux value when interpolation is not possible. While

this method may lead to more accurate solutions in

many problems, it may also lead to problems if the
extrapolated values become unrealistic.

To improve the absorbed radiation heat flux

approximation a fourth order curve fit was implemented
next. The five heat fluxes were located at their sub-

element centroid, and a fourth order polynomial was fit

to the points.

The final radiation heat flux approach uses cubic

splines. Once again the question arises as to how to
best extrapolate the data when interpolation is not

possible (i.e. near the end points of an element). Three

extrapolation methods for the cubic spline were

investigated. The first approach, also called a natural

cubic spline, sets the second derivative of the curve to
zero at the end points. This translates to a linear

extrapolation of the heat flux values and yielded the
poorest results. The second method extrapolated the
data based on a constant second derivative. This

significantly improved the results. The third method

allows for a fully cubic curve at the end points and is

based on a linearly extrapolated second derivative. This

proved to be the most accurate of all the RSE methods,

and while no problems were encountered in testing, it

still extrapolates data and therefore is susceptible to the

problems associated with such operations.

Integration Method (IM)

Regardless of the approach used in the RSE method to

approximate the radiation heat flux on an element, the

approximation is based on data from the traditional

calculation procedures. While this makes

implementation simple, it still suffers from the

assumptions used in developing the traditional

approaches, namely the uniform temperature and

uniform incident radiation assumptions (albeit they are

made on sub-elements).

To study the problem without making the above

assumptions consider an element k that is part of an

enclosure of N elements. A heat balance at the point xk
on element k is:

qk (xk) = H, (x k ) - J, (xk) (3)

where

H_(x,) = ekoq'k'(x,) + p, J, (x,) (4)

N

dA_J k(x,) = Z I Hj (x j)dF___k (x , x, )dA
j=l Aj

This last equation can be simplified by applying the
reciprocity relation

to give

dAj dF e_e_ = dA _dF .___,

N

I
j-IA

J

H j (x j)dFdk _ dj (x j, x k )

Substituting this expression into equation 3 gives:

q_ (x k) = H k (x_) - _ I Hj (xi)dFuk_e, (x j, x k ) (5)
i=1 Aj

Equations 3 and 4 can be combined to eliminate the

surface irradiation term yielding:

4 1-c k
Hk(x_)=GT_(x_)---qk(xk)

E_

which can then be substituted back into equation 5 for

Hk and Hj (with the subscript changed from k to j) to

give

qk (xk)
-- =,_rj(x,)-

1-c
Z _[cr_'(x_) -_qj(x,)]dFa-u,(x_,xk) (6)
j=l Aj gj

This equation relates the net surface heat flux to the

surface temperatures. Note that it is a nonlinear integral
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equationandthatto calculate the heat flux on surface k,
the surface heat flux on all other surfaces must be

known in addition to the temperatures of all surfaces

(including surface k). While this might seem a bit more

complex, recall that an iterative solution technique is

generally required to solve the nonlinear finite element

equations. Thus, the temperatures and heat fluxes from
the previous iteration values can be used on the right

hand side of equation 6.

There are several ways to evaluate equation 6, but

doing it numerically will only give a single value at

some point x,. Thus to obtain a function qk(Xk), some

approximation method similar to those shown in the

RSE method is required. But the radiation heat flux is

only used to calculate a load vector {Rr}, where it is

multiplied by the element shape function and integrated

over the area of the element. If this integration is done

numerically, the heat flux does not need to be a

continuous function; it only needs to be evaluated at the

points defined by the numerical integration scheme.

The approach taken here is to evaluate the radiation

load vectors using Gauss Integration. Thus the heat

flux on an element only need be determined at the

Gauss points along the element. Also, by using the

same integration scheme to evaluate the integrals in

equation 6, no approximating function qk(xk) is

required. The following steps are used to determine the
radiation load vector for this solution method:

1. Initialize unknowns (temperatures and

radiation heat fluxes).

2. Calculate differential form factors

between Gauss points on all elements.

(Begin iteration)

3. Calculate radiation heat fluxes at Gauss

points on all elements.

4. Integrate radiation heat fluxes to obtain
radiation heating load vector.

5. Solve for and update temperatures.

6. Check convergence and repeat iteration if

necessary (go to step 3).

APPLICATION

Two-Dimensional Test Problems

To investigate these techniques, two simple test

problems were developed. The test problems involve
two one-dimensional elements in radiative equilibrium.

The first test problem, shown in Figure 6, represents
heat transfer in the comer of a rectangular enclosure.

The two elements are oriented at right angles with each

other and share a common end point location (there is a

separate node at this location for each element). The

vertical element is held at a constant temperature of
1000°R and the horizontal element is allowed to come

to radiative equilibrium. The horizontal element's

length was set to 5 times the vertical element length in

order to allow a reasonable temperature gradient to

develop along the element. Both surfaces were
modeled as black bodies so that an exact solution could

be found.

T = 1000°R

------I_ X

I I
Figure 6: Schematie of test problem 1.

The second test problem is shown in Figure 7. This

problem considers two parallel black plates each of

length L separated a distance d apart. Once again the

top plate was held at a constant temperature and the

other plate allowed to come to radiative equilibrium.

Results presented here are for a d/L ratio of 0.1.

_[

T = 1000°R

/-

....-_X

I L I
Figure 7: Schematic of test problem 2.

Results

Radiation Sub-element Method

Results for test problem 1 using the RSE methods are

shown in Figure 8. Results for all the methods of

approximating the radiation heat loads are shown along

with the exact solution. Although the step function
method is consistent with the isothermal/uniform heat

flux assumption used to generate the heat flux data, the

resulting temperature prediction was poor with the error

approaching 20% at the element end points.

Results of the interpolation method are slightly better

than the step function results; however, both methods

significantly under-predict the peak temperature at xFL
= 0. The problem here is that the incident heat flux is

rising rapidly (x/L = 0 corresponds to the comer
location). Both the step function and linear

interpolation methods model the heat flux as constant in

American Institute of Aeronautics and Astronautics



thisarea(stepfunctionholdsthevalueconstantfrom
x/L=0 to 0.2, linear interpolation function holds the

value constant from x/L = 0 to 0.1) and thus under-

predict the actual temperature. Extrapolating the data
near the endpoints improves the results considerably

cutting the error at these locations by approximately

50%. The extrapolated heat flux values still under

predict the actual heat flux values near x/L=0, and over

predict the actual heat flux values near x/L=5.

go0

800 i

700

l=

i 600

500

4O0

30O

_%_A\ ] _, step function _ linear Interp. ]

] = Interp/extrap • 4th order cf ]

[ • cubic sptine --exact

0 1 2 3 4

x/L

Figure 8: Results for test problem ].

The fourth order curve fit gives excellent results over
most of the element; however, there is a significant

error in the temperature at x/L of 5. This behavior is
due to the nature of the fourth order polynomial defined

by the 5 heat flux values. While the actual radiation
heat flux for this problem continues to decrease slowly

as x/L approaches 5, the polynomial fit begins to
increase here. Several approaches could be

implemented to avoid this problem; however, while

extrapolating the results is causing errors at x/L=5, it is

helping yield a better answer at x/L=0. One approach
that would certainly improve the results for this case
would be to subdivide the element into additional

radiation sub-elements and use a curve fit to smooth out

the polynomial. The problem here is the additional

computations required for the new sub-elements.

Finally, the cubic spline curve fit gave the best overall

results. The results shown in Figure 8 are for the fully

cubic spline. The temperature results show good

agreement over the whole element with the largest

errors occurring near x/L=5.

In general all the approximation methods suffer near the

endpoints, regions where the data must be extrapolated.
These methods may be improved by calculating the

heat flux at the endpoints of the element. This would

require computation of radiation heat fluxes at points,

as opposed to f'mite surfaces. The traditional methods
used to calculate the heat fluxes on an element would

have to be modified to handle both finite areas as well

as points; however, this complication is only minor and
may well be worth the additional effort. Another

consequence which might prove more significant is that

the interior points would be farther apart (assuming

only 5 points) possibly increasing the approximation
error in the interior of the element.
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Figure 9: Results for test problem 2.

Figure 9 shows the results of these methods applied to

test problem 2 along with the exact solution. The
results are similar to those from test problem 1 with the

cubic spline curve fit method giving the best overall

results. To quantify the overall performance of the

various methods, the following error indicator was
calculated for each method:

errorindicator=_ yT_j

where TFE is the temperature from finite element

calculation, T_,,,ct is the temperature from the analytical
solution, and i indicates the number of the i '_' data point

shown in the figures (total of 21points)

This error indicator is shown in FigurelO for test

problem 1 and in Figure l I for test problem 2. As
expected the cubic spline curve fit has the lowest error
indicator value.

0.09

0.08

0.07

0.06

0.05

0.04

0.03

002

001

0

step function linearinterp, interplextrap 4th order cf cubic spline

Figure 10: Error indicator for test problem 1.
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Figure ] ] :Error indicator for test problem 2.

Integration Method

The results for test problem 1 using the integration
method are shown in Figure 12. The figure shows

results using a 7 Gauss point integration scheme, which

performs so well that it is difficult to distinguish

between the integration method and the exact solution.
The results for the cubic spline radiation sub-element

method are also included to gage how well the

integration method performs against the best radiation

sub-element method. The integration method has

nearly an order of magnitude reduction in the error
indicator.

900 ............................................................................................

700 _ cubic sl_ine ]

/ t integration method 6O0

4O0

3O0

1 2 3 4 5

x/L

Figure 12: [IV[ vs. RSE results for test problem 1.

Results for test problem 2 are shown in Figure 13.

Once again results for the cubic spine radiation sub-
element method are included for comparison. Note that

the integration method slightly over-predicts the

temperature at the center of the element while the
radiation sub-element method slightly under-predicts

the temperature there. The integration method used 16

Gauss points to obtain this solution, significantly more

than was necessary for the first test problem. This

higher accuracy scheme was necessary because of the

geometry associated with test problem 2, namely large

surfaces separated by a small distance. This is a

common problem in radiation heat transfer and view

factor calculations and is discussed in many view factor
references.
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_ 965

_ _5_5
_ 8.5

865

845

825 _

0 02 04 06 08 1

x/L

Figure 13: IM vs. RSE results fro test problem 2.

Several additional f'mite element analyses were

performed to compare these methods to traditional

methods for computing radiation heat transfer. Each

test problem was analyzed using the traditional finite

element approach-linear shape functions for the

temperature field with the radiation heat flux assumed
constant over each element. Each surface was

subdivided into a number of linear elements and the

mesh was refined until the error indicator was reduced

to the level produced by the higher-order methods.

Table 1 lists the number of linear elements required to

match the solution accuracy of the new methods. The

traditional approach required 10 elements for test

problem 1 and 17 elements for test problem 2 to match

the error indicator for a single element using the cubic

spline radiation sub-element method. Similarly, the

traditional approach required 46 elements for test

problem 1 and 42 elements for test problem 2 to match

the error indicator for a single element using the
integration method. These traditional analyses were

carried out using a totally separate computer code

previously developed by the author. This code had very

little similarity to the code used to develop the higher

order methods, so no attempt was made to compare the

computational costs (run times) for the methods.

Table 1: Number of linear elements required to

match the accuracy of a single p = 6 element using
the RSE and IM methods.

Test

problem
1

2 17 42

Radiation sub-element

method Integration

(cubic sp.line curve fit) method
10 46

9
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Three-Dimensional Test Problem

Based on the results from the two-dimensional test

problems, the cubic spline curve fit RSE and integration

methods were implemented in a three-dimensional

finite element code. The test problem for this case,

shown in Figure 14, consists of two parallel six-inch

square plates separated by a distance of six inches. The

top plate is held at 1000°F and there is no conduction in

either plate. The emissivity of both plates is 1.0 so that
the analytical solution could be obtained:

]

  x, )-- 0o0Fii.Loo x-)'+(y-y-y +36]'

A surface plot of this solution is shown in Figure 15.

A slightly different method was used to measure the

accuracy of the solutions for this test problem so that
comparison with h-refinement could be made. The L 2
norm of the error for element K is:

llell2L:= l. (r,,.,,,,,,c- z .....)2 dy

The error for the problem is found by taking the square
root of the sum of all the element errors in the domain

-- elL ,
Solutions for this problem were generated using h-

refinement with the traditional radiation approach

(isothermal surfaces with uniform radiation heat flux);
L z norms for these cases are shown in Table 2. The

amount of mesh refinement was limited by limitations

in the view factor software; however, the cases

presented give a good indication of how quickly the

error drops with h-refinement. Results for the radiation

sub-element method are presented in Table 3. The data

indicate that increasing the interpolation function gives

more accurate solutions for a given number of degrees
of freedom. However, the integration method provides

the best accuracy as the data in Table 4 show. Only the

even polynomial results are presented because the

solution is an even function, and the odd polynomials

do not improve the solution accuracy. Note that using a

single element with a polynomial of order 2 (in each

direction) with the integration method provides a

solution more accurate than any of the other

approaches. For nine degrees of freedom, the h-
refinement L z error norm is 19.45, the radiation sub-

element method with nine degrees of freedom has an L 2

error norm of 1.97 and the integration method with nine

degrees of freedom has an L 2 error norm of 0.23. In all

cases, for a given number of degrees of freedom, the
integration method produces the lowest error followed

by the radiation sub-element method with the h-

refinement method giving the largest error.

T
6 in.

6 in.

_=1 /
Y

T= 1000oF

X

Figure 14: Parallel plates under radiation

equilibrium conditions with the lower plate held at a

uniform temperature.

Figure 15: Analytical solution for 3-D test problem.

Table 2: Error norms for h-refinement using the
traditional radiation method.

Number of Number of L z error

p=l elements degrees of norm
freedom

1 4 L9.4522
4 9 19.4522

9 16 9.74385
16 25 6.51942

25 36 4.65848

36 49 3.56349

49 64 2.83546

64 81 2.32688

81 100 1.95422

100 121 1.67149

400 441 0.59645
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Table 3: Error norms forp-refinement using the
radiation sub-element method.

Order of

element (p)

Number of

degrees of
freedom

L 2error

norlTl

19,4522
1.966142 9

3 16 1.10128
4 25 0.73404

5 36 0.52810

6 49 0.40612

Table 4: Error norms for p-refinement using the

integration method.

Order of

element (p)

1
m

Number of

degrees
Of freedom

4

L 2 error

norm

19.4547
0.231852 9

4 25 0.00789

6 49 0.00081

CONCLUSIONS

Two methods for determining internal radiation heat

transfer have been developed for higher-order finite

elements. The first method divides the higher-order
element into a number of sub-elements, calculates the

radiant heat flux on the sub-elements using traditional

methods, and then curve fits this data to determine the

radiation heat flux along the higher-order parent

element. The second method numerically integrates the

radiation heat transfer equations over the higher-order

element using an efficient Gaussian integration scheme.

Comparisons with analytical solutions show that the

integration scheme is generally more accurate than the
sub-element method. Comparisons of these results to
those of traditional linear f'mite elements demonstrate

the potential for improved computational performance

given a required level of accuracy.

3. Chin, J. H., Panczak, T. D., Fried, L., "Spacecraft Thermal

Modelling ", International Journal for Numerical Methods in

Engineering, Vol. 35, No. 4, 1992.

4. MSC/PATRAN User Manual, MacNeaI-Schwendler

Corporation, Version 6.0 (August 1996).

5. Huebner, K. H., Thornton, E. A., Byrom, T. G., The Finite
Element Method for Engineers, 3rded., John Wiley and Sons,

New York, 1995.

6. Lobo, M., Emery, A. F., "Special Radiation Elements and

Their Interfacing for Thermal Radiation Analysis", Radiation

Heat Transfer, ASME HTD Vol. 154, 1990, pp. 1-8.

7. Lobo, M., Emery, A. F., "The Discrete Maximum

Principle in Finite-Element Thermal Radiation Analysis",

Numerical Heat Transfer, Part B: Fundamentals, Vol. 24,

1993, pp. 209-227.

8. Surana, K. S., Teong, K. W., "p-Version Three
Dimensional Solid Element for Heat Conduction", Mechanics

Computing in 1990 's and Beyond, Proceedings of the

Conference, ASCE, New York, N-Y, 1991, pp. 142-146.

9. Kuppurao, S., Derby, J. J., "Finite-Element Formulations
for Accurate Calculation of Radian Heat Transfer in Diffuse-

Gray Enclosures", Numerical Heat Transfer, Part B:

Fundamentals, Vol. 24, 1993, pp. 431-454.

10. Daurelle, J. V., Occelli, R., Martin, R., "Finite-Element

Modeling of Radiation Heat Transfer Coupled with

Conduction in an Adaptive Method", Numerical Heat

Transfer, Part B: Fundamentals, Vol 25, 1994, pp. 61-73.

1 I. Daurelle, J. V., Occelli, R., Martin, R., "Modelization by

Finite Element Analysis of Radiative Heat Transfers with Non

Constant Radiative Properties Coupling with Conduction",

Advanced Computational Methods in Heat Transfer II, Vol. I:

Conduction, Radiation and Phase Change, Computational

Mechanics Inc. Billerica, MA,1992, pp. 195-204.

References

1. Aeronautics & Space Transportation Technology: Three
Pillars for Success, Office of Aeronautics & Space

Transportation Technology, National Aeronautics and Space
Administration, Washington, D.C., March 1997

2. Ko, W. L., Quinn, R. D., Gong, L., Finite-Element Reentry

Heat-Transfer Analysis of Space Shuttle Orbiter, NASA T.P.

2657, 1986.

11

American Institute of Aeronautics and Astronautics


