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ABSTRACT. There are procedures and methods for verification of coding algebra and
for validations of models and calculations that are in use in the aerospace computational
fluid dynamics (CFD) community. These methods would be efficacious if used by the
glacier dynamics modelling community. This paper is a presentation of some of those
methods, and how they might be applied to uncertainty management supporting code
verification and model validation for glacier dynamics. The similarities and differences
between their use in CFD analysis and the proposed application of these methods to
glacier modelling are discussed. After establishing sources of uncertainty and methods
for code verification, the paper looks at a representative sampling of verification and
validation efforts that are underway in the glacier modelling community, and establishes
a context for these within overall solution quality assessment. Finally, an information
architecture and interactive interface is introduced and advocated. This Integrated
Cryospheric Exploration (ICE) Environment is proposed for exploring and managing
sources of uncertainty in glacier modelling codes and methods, and for supporting
scientific numerical exploration and verification. The details and functionality of this
Environment are described based on modifications of a system already developed for
CFD modelling and analysis.

INTRODUCTION AND BACKGROUND

Verification of numerical glacier models generally intends to answer the question of
whether the governing equations were solved correctly. That is, does one believe that the
process of solving a model of discretized equétibns plus their boundary conditions, initial
conditions, any input data, and conceptuél modelling assumptions has yielded a
converged solution that is correct within bounded numerical error. Verification arises by
assessing numerical accuracy against expectations of the theoretical model, and by strict
uncertainty modelling and analysis of the model parameters, limits, and numerical
convergence histories of the code over specified grids. Usually, the problem statement
itself should indicate what counts as an acceptable level of numerical accuracy and
solution stability by defining the purpose and fidelity of the analysis. Accuracy is
measured against the scientists’ codified expectations from this problem statement.
Expectations arise from a variety of sources: field observations and data, satellite sensor
data, and laboratory experiments, each of which are incomplete data-sets that



approximate reality; benchmark analytic solutions intended to exercise the code; code
performance across a variety of grids; parameter resolution studies and sensitivity-
uncertainty analyses; and the matching of results to previously verified solutions and
methods on “similar” computational problems within a specified tolerance. The model’s
ability to match expectations can constitute a verification of that model as long as the
sources of numerical error are understood and can be accounted for in terms of technical
analyses. Such analyses includes identification of both computational and flow physics
uncertainties, formal discretization order and accuracy, solution stability during grid
convergence studies, and general robustness of the numerical method.

However, there exists a distinction between verification of a code or model (the
numerical accuracy) and validation of the model (the correct conceptual problem
statement), and uncertainty and errors can arise from both sources. Here again, the
problem statement itself will dictate what counts as a solution by projecting expected
results or solution behavior. Consider the process of recovery from mismatched results.
If data and model results do not agree, either one decides that the model is accurate and
then analyzes why the data may be faulty, incomplete, inconsistent, or not fully
applicable (data errors); or one decides that the data are accurate and hence the model
results must be numerically wrong. If the model is wrong, the problem may either be
improper discretization or non-convergence over the chosen grid (verification errors) and
the numerical scheme must be reformulated; or the model may be an inaccurate
representation of the physical situation of interest (validation errors). In that case, the
equation results will never match the observed data, and the model itself must be
reformulated to capture the correct physics. We may be solving the equations correctly,
but we are solving the wrong set of equations. Note that an incomplete representation of
the physics is not by itself a validation error or a wrong set of equations. It may well be
an intentional model simplification or approximation in order to isolate and study certain
processes or to maintain numerical tractability. But, an incomplete representation will
induce uncertainties. o

Verification and validation of codes and models are thus distinct processes.
However, since the overall goal is to establish the credibility and solution quality of the
numerical model, to match the conceptual model to reality, and to identify and manage
the uncertainties, these two processes are frequently employed together to these ends. In
fact, the two processes may be intertwined whereby validation establishes the context and
content of the physical problem being modelled and dictates levels of acceptability and
uncertainty, and verification establishes the numerical accuracy of the codes and
mathematical constructs through rigorous methods. The two processes together create
credibility, confidence in solution quality, and insight and intuition for further
exploration.



In 1994, Oreskes and others published an article in Science entitled “Verification,
Validation, and Confirmation of Numerical Models in the Earth Sciences.” In this paper
they argue, from a philosophical point of view, that verification and validation of
numerical models in the earth sciences is impossible due to the fact that natural systems
are not closed, so we can only know about them incompletely and by approximation.
Although surfacing significant philosophical issues for verification, validation and truth
in numerical models, unfortunately their arguments to support this thesis fail frequently
due to actual conflation and misuse of the very terms and concepts the paper is intended
to elucidate. They correctly argue that numerical accuracy of the mathematical
components of a model can be verified. They also hold that the models that use such
mathematical constructs (the algorithms and code) represent descriptions of systems that
are not closed, and therefore use input parameters and fields that are not and cannot be
completely known. But this is not a successful argument against the possibility of model
verification; rather, it is an issue of whether the application of a numerical model
appropriately represents the problem being studied. Hence, this is a problem in model
validation or model legitimacy, not one in verification.

In terms of model validation, Oreskes and others (1994) discuss establishing the
“legitimacy” of the model as akin to validation. As far as it goes, this representation is
accurate; but they claim further that a model that is internally consistent and evinces no
detectable flaw can be considered as valid. This is a necessary, but not sufficient,
condition for validation of models, and it derives from the philosophical usage of
establishing valid logical arguments, not from practices in computational physics. Hence,
once again their arguments are using terms from the philosophical literature that carry
different technical meaning and reference from those same terms in the scientific
literature. Such misuse is clear when they say that it is “misleading to suggest that a
model is an accurate representation of physical reality” (p.642). In point of fact, the
intent of the scientific model is to represent reality or a restricted and defined
simplification of physical processes, and validation is specifically the process that
demonstrates the degree to which the conceptual model (the mathematical representation)
actually maps to reality. The fact that a model is an approximation to reality does not
mean such representation is “not even a theoretical possibility” (p.642) due to
incompleteness of our data-sets. Rather, such analysis and mapping dictates exactly what
validation of the model means, and what the limits of applicability of the model are.
Establishing validation means establishing the degree to which the conceptual model is
even supposed to encompass physical reality.

Verification, validation, and recognition and control of uncertainties are precisely
the way the scientific community deals directly with the acknowledged problem of open
systems and incomplete data at a variety of scales. There are certainly philosophical
issues to be addressed in verification, validation, and uncertainty management for
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dynamical systems modelling, such as choice of closure of equations in analysis and
representation in simplified or reduced models. But numerical accuracy and verification
of models is not about philosophical truth or common usage of terms. Credibility of
simulations is established by recognizing computational and flow physics uncertainties
and by quantifyihg them. The scientific community properly deals with incompleteness
and openness of natural systems through quantificatfon of model limits and ranges of
applicability, through model representation alternatives, through specific numerical
accuracy tests, through analyzing the scale of coupling of various linked flow processes,
through sensitivity and uncertainty analysis, and so on. Once “natural philosophy”
became rigorous and computational, then verification, validation, and uncertainty
management in science codes and science strategy scenarios is certainly not only possible
but necessary. And whereas understanding numerical accuracy of codes is important for
credibility, understanding model limitations is essential for model applicability and use in
science problems. _

The aerospace computational fluid dynamics (CFD) community has been engaged
in substantial efforts at defining and quantifying uncertainty, and developing verification,
validation, and code calibration processes since the mid-1980’s (Mehta, 1991, 1998;
Roache, 1997, 1998). This paper presents some of these methods, and clarifies the
similarities and differences between their use in CFD analysis and proposed application
of these methods to glacier modelling. First, the sources of uncertainty and errors are
discussed. Then appropriate procedures for validation and verification are presented.
Next, the paper looks at a representative sampling of verification and validation efforts
that are underway in the glacier modelling community, and establishes a context for these
papers within overall solution quality assessment. Finally, an information architecture is
introduced and advocated. This Integrated Cryospheric Exploration (ICE) Environment
is proposed for supporting scientific numerical exploration and for exploring and
managing sources of uncertainty, whether from data-set, verification, or validation errors.
The details and functionality of this Environment are described based on modifications of
a system already developed for CFD modelling and analysis.

SOURCES OF UNCERTAINTY IN MODELS AND CODES

Uncertainty refers to a perceived lack of reliability or confidence in the results of a
simulation of some physical process. Uncertainty specifically refers to errors, but not to
mistakes. Errors are expected to arise simply from the fact that the physical process of
interest is being modelled by continuum partial differential equations (PDEs) and their
boundary conditions, and from the fact that the continuum model is then re-represented in
discrete mathematics for machine implementation. Identifying and quantifying
uncertainties, and understanding their origins and propagation through both the



conceptual and numerical models and codes, is done to establish credibility in these
representations of reality.

It is very important to separate sources of errors and uncertainties that arise from
the representation of the physical process as a mathematical model from those that arise
from the discretization of the math model and its operation by the computer. For
example, two sources of error in a code may interact or cancel each other at some scales
and resolutions thereby hiding real features, or non-physical behavior may arise in the
numerical process that is then masked. Alternatively, changes that are made for
convenience to a boundary condition in the code must be evaluated as to whether this is a
reasonable boundary condition in the continuum model, or non-physical simulations may
result even though the numerical model converges. Such interactions and changes must
be tracked and isolated so that actual uncertainties can be measured. This desire has led
to separating the model validation process from the code verification process. Thus in
glacier modelling, one must be separately concerned with errors and uncertainties arising
from the flow physics representations, with those strictly due to the numerical scheme,
and with the propagation of errors that are associated with local features in model or code
into more regional or global parts of the model. Local errors and uncertainties are
frequently accessible to analysis by algorithmic methods. But as such uncertainties
propagate through the model evolution, or impact upstream or downstream of their
source, the tracking of such uncertainties becomes a problem in model interpretation that
is frequently not amenable to algorithmic analysis. Strategies to explore impacts and
propagation of errors must be worked out based on target results and variations of these.

In this section, the sources of errors and uncertainties that arise in glacier models
and their computational flow codes are discussed. The basis for this discussion and
categorization of features and errors is drawn from the development of uncertainty
identification and management that has been occurring recently in the CFD community
(Mehta, 1991, 1998; Oberkampf and Blottner, 1998; Roache, 1997, 1998). Clearly, both
in use and focus, CFD for aerospace development and design is rather different from that
of fluid dynamics for glacier and ice sheet modelling. However, the lessons learned in
the CFD community can be mapped into expectations and guidance for development of
verification and validation scenarios by the glacier modelling community. Furthermore,
the structure of uncertainty analysis between aerodynamics and glacier modelling can be
remarkably similar. Both disciplines start their analysis from the Navier-Stokes
equations for momentum balance; they both include auxiliary process models that
become proxy for and replace simple boundary conditions; and the failing of theorems
about equivalence between continuum and discrete models arises due to the nonlinearity
of the PDEs rather than just presence or absence of various terms like inertial or viscous
relations that normally distinguish glacier flow from aerodynamic analysis.



Sources of Modelling Uncertainty :

Uncertainties in creating a mathematical model of a physical process are caused by
inaccuracies, approximations, and assumptions in the mathematical representation. These
errors are completely distinct from numerical errors that will be discussed later. Such
inaccuracies may be intentional in that we know an approximation to the physics has
been made to ensure mathematical tractability or from the desire to isolate certain
processes. However, the extent of the inaccuracies, or their impact on model evolution
and representation, may not be fully anticipated. Other inaccuracies arise unintentionally
due to our paucity of understanding of the details and interaction scales of the processes
being modelled. In any case, these inaccuracies can be categorized as to source if not
effect or extent. Part of exploration of these uncertainties and their propagation is to
develop better scientific understanding, intuition for future refinements, and for general
model validation through comparison to data from experiments (physical or
computational), from field work on glaciers or deglaciated beds, and from satellite
Sensors. S

Consider first the uncertainties that arise from the PDEs of fluid dynamics. There
is often not a complete understanding of the phenomena or processes being modelled -- in
fact, this is usually the reason for doing the simulation. Hence, the mathematical
representations will be incomplete. The modelling parameters may be incompletely
known or be intentionally averaged. There may be a lack of field data for describing
expected ranges of these parameters or other dependent variables. In short, the math
model is generally a simplified picture of reality. The uncertainties related to this
simplification depend heavily on whether the mathematical representation has captured
the dominant physics at the right scale for the process being investigated. To guarantee
control or understanding of the uncertainties, frequently the PDEs are formulated so that
the simplest appropriate forms of the equations can be used. Then the equations are
extended to more complicated flow situations in a reasoned manner. But as the model is
extended, more accurate information about the processes is required, and hence more
uncertainty may be introduced. Errors occur at each level of approximation.

The model may be written to isolate features or processes of interest, and these
are then uncoupled from real system behavior. The purpose of isolation may be to better
understand the process or simply that it is not feasible to model everything
simultaneously. However, such isolation implicitly assumes that either there is no
influence between the process and the rest of the system, or that the influence is known
and understood. The degree to which this is untrue introduces uncertainties into the PDE
model and its final results.

Oberkampf and Blottner (1998) describe a chain of increasing complexity of flow
problems in which more detailed physics is added during CFD analysis. Usually the
aerodynamicist starts with inviscid equations. One then progresses to full viscous
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Navier-Stokes equations using the inviscid results as guidance, although this can give
misleading results. A variety of increasing approximations and complexity directions can
follow. One can analyze mixed species flows. One can include turbulence models for
recognizing and simulating particular features in certain flow configurations, namely
types of shock structures or vortex cores. Alternatively, one might add or couple together
specific physical phenomena with the general flow field, or perhaps use transition models
that cross both laminar and unsteady flow conditions through changing temporal and
spatial characteristics. '

In glacier modelling, a parallel series of increasing complexity might be to start as
normal with restricted viscous flow but with complicated rheology. Then one might add
thermodynamic models. Our mixed species equivalent could be modelling entrained
debris at the ice-bedrock interface or till deposition models coupled to the ice flow. If a
true coupling of ice flow and basal processes are modelled, this requires additional
algebraic relations or perhaps new PDEs rather than just specified boundary conditions
(Blatter and others, 1998). Next one might envision developing models for transient
phenomena. For example, one model might assess the transient flow characteristics that
arise as a glacier evolves from one steady state to another. A second model might study
the growth to finite amplitude of secondary flow structures in the ice. These would
require solution of additional PDEs. Then, rather than using averaging methods or
scaling of governing equations, one might couple these specific transient phenomena into
the general flow field. Increasing complexity leads to increasing understanding, but also
to increasing uncertainty in the PDEs that must be evaluated.

Modelling may inadvertently introduce extraneous physical (or computational)
phenomena and features due to the perturbation and constraint of existing flow conditions
from use of simplification. For example, a 2-dimensional representation automatically
eliminates the possibility of modelling 3-dimensional features like vortices or even
simple transverse flow. That simplification is understood and frequently made
intentionally. But restricting flow to 2-dimensions also introduces extraneous constraints
at boundaries unless complicated flux boundary conditions are created to prevent over-
constraining the flow that could introduce non-physical instabilities or discontinuities.
The ramifications of such assumptions must be thoroughly explored and understood in
order to maintain credibility of the resulting flow solutions.

Uncertainties can arise separately in the auxiliary physical models as well, some
of which themselves may be PDEs. Generally, auxiliary physical models refers to
equations needed to close the momentum balance equations so that a solution is possible.
In simplified CFD, this usually means employing equations of state approximations and
thermodynamic parameters or relations. As the CFD equations increase in complexity,
the auxiliary relations include transport properties and constitutive relations between
stress and strain-rate in order to model eddy viscosity. The flow may also be coupled to



structural bending due to pressure loads over a wing. Also, new turbulence models are
used whose ranges of applicability must be determined by experimental results (usually
in wind tunnels) to resolve rapidly varying flow conditions.

In the glacier modelling analog, our auxiliary relations are the constitutive
relations and flow laws from which effective viscosity profiles are derived. We may
include thermodynamic relations and heat flux models that require additional energy
balance equations coupled to the flow equations. An asymmetry occurs in glacier
modelling in that the equations are initially written requiring stress tensor derivatives.
Laboratory tests on ice samples yield strain-rate data, and field measurements on glaciers
yield velocity and strain-rate data. Viscosity is derived by modelling this data with flow
law assumptions, and the governing equations are then written either in terms of
velocities, viscosities, and their derivatives, or in terms of velocities and strain-rates with
viscosity becoming an explicit function of strain-rates through the assumed flow law.
Alternatively, the equations may also be written entirely in terms of ice thickness and
fluxes with the flow law as an auxiliary constraint. Thus, these auxiliary relations and
transformations lead to highly nonlinear PDEs even for simple flow fields.

Finally, sources of modelling uncertainty arise from the representation of
boundary conditions (BCs). Dirichlet conditions that specify velocity and temperature
offer no problems; but any BC that specifies more than that requires information from the
interior domain of the flow. Generally the flow solution must be found, then that solution
is used in a separate PDE as a consistency condition, and this new equation is solved.
Selecting the correct matching condition or consistency relation is necessary to control
the uncertainty in the model. Additionally, BCs along a glacier bed may require
boundary discontinuities in velocity or stress, accurate or scaled representations of
bedrock geometry, and analysis of the fidelity of the computation over that geometry (see
for example, Colinge and Blatter, (1998) and Blatter and others (1998), for problems
identified and the impact at the numerical level). One obvious discontinuity comes from
representing the flow field at glacier margins, and uncertainties arise related to selecting
an adequate resolution of conditions at these moving or fixed margins. Mathematical
singularities may be handled in the continuum mathematics; but with the ultimate goal of
deriving numerical simulations, such singularities may be very difficult to program
numerically. Hence, the PDEs and their discrete representations will turn out to be
different problems.

Uncertainty in free surface conditions generally arises from the problem of
selecting the correct matching conditions to apply based on the phenomena to be
analyzed. For example, a simple claim of continuity or vanishing normal velocity or
shear stress at a deformed surface may not be sufficient if actual mass transport is
anticipated across that surface to induce flow perturbations from an accumulation event.
Interface conditions are equally important; for example, one may decide that heat flow is



continuous across the interface but perhaps a simple match of temperatures will be
sufficient for the case at hand. Numerical modelling schemes may also introduce layers
of interfaces across which constraints against discontinuities are imposed.

The most difficult conditions are probably the open BCs. These include
inflow/outflow conditions in CFD, and include flux conditions in glacier modelling.
Examples would be specifying coupling or transition conditions from an ice divide into
channelized flow, ice sheet coupling to ice streams (Marshall and Clarke, 1996), or
modelling till deformation coupled with entrainment or deposition from the ice flow
field. The issue is how to specify them while maintaining control on uncertainty, and
often where to apply them (at infinity margins or near features of interest, like ice rises).
If the PDE is over-constrained by these conditions, the solution may exhibit instabilities
that contaminate the actual flow solution; if the flux conditions are not coupled properly,
the resulting solution is spurious.

The overall lesson is that developing the mathematical model requires
identification and management of uncertainties. These uncertainties are what must be
expunged, mitigated, or accommodated during the model validation process, whether
results are compared with lab or field data or with previously benchmarked flow
solutions that act as test cases for validation.

Sources of Code and Numerical Uncertainty

Code and numerical uncertainty leads directly to issues of verification as opposed to
validation. Generally, all sources of errors in codes and calculations arise either from
questions of equivalence of the discrete computational model to the original
mathematical PDE model, or from questions of the numerical accuracy of the
discretization scheme and its implementation. In this section, these two sources of
uncertainty and error are examined.

Roache (1998) outlines five sources of error in code development and use. Code
authors can make errors during code generation and while developing code use
instructions. Code users can make errors in their problem set-up, in their definition and
coding of benchmark cases (possibly analytic) for use in results comparison, and in their
interpretation of code results. Hopefully, the code verification process would remove the
error source derived from code and instruction development. Code use errors however
may arise anytime a (verified) code is applied to a new problem statement. When a code
is applied to a new problem, the fact that the code has been previously verified does not
give any estimate of its accuracy for this new problem. Systematic grid convergence
studies are needed to verify the code on the new problem domain, and this is separate
from the activity of validation that the PDEs are appropriate for the new problem.

Consider the problem of code and instruction generation. The solution procedure
used in an algorithm or code is an approximation to the original PDEs. Errors arise in



coding due to the discretization scheme selected that is intended to map the PDE model
into a finite difference, finite element, or finite volume representation. Thus, the PDEs,
the auxiliary equations, and the boundary conditions are all discretized to some order,
defined by a truncation error of the series solution. The truncation error allows one to
define the order of accuracy of the solution; the discretization error gives the numerical
error of the calculation due to the fact that the solution is sought over a finite number of
grid points. In addition to discretization errors, there can also be errors in the computed
solution of the set of discretized equations representing the PDEs, and these are not
necessarily related to grid convergence (the discretization accuracy), or to the numerical
mapping and establishment of order of accuracy. These additional errors arise from the
behavior of the numerical scheme itself.

The foundation for the discrete math approach to solving PDEs numerically is
based on an equivalence theorem (Oberkampf and Blottner, 1998) that says: 1) the
difference equations are equivalent to the differential equations (guaranteeing
consistency); and 2) the solution remains bounded as it is solved iteratively over the
space and time discretizations A (guaranteeing stability). The problem for the PDEs of
fluid dynamics and of glacier modelling is that this theorem only provides necessary and
sufficient conditions for convergence for linear PDEs. For nonlinear problems,
consistency and stability are only necessary conditions (not sufficient) that the numerical
solution will converge to the continuum solution in the limit of infinitesimal A. Hence,
the numerical solution may oscillate, diverge, or only converge slowly and perhaps to an
alternate solution or spurious steady state. Hindmasrh and Payne (1996) introduce the
use of iterated maps as a way of following the evolution of the numerical solution so as to
understand its reasons for oscillations or spurious convergences. So, in terms of practical
equivalence, how the difference equations are written and solved can determine what
solution flow field is obtained. This behavior is especially apparent in either over- or
under-specification of the discretized boundary conditions, but it also has to do with the
residual accuracy of the calculation -- sometimes thought of as the speed of iteration to an
acceptable convergence. However, Roache (1997, 1998) makes the point that grid
generation errors or the construction of bad grids will add to the size of the discretization
error, but they do not add new terms to the error analysis. So as the discretization
improves, all errors that are ordered in A will go to zero, and hence an error taxonomy
should not include both grid and discretization errors as separate categories. This is
because one cannot take the limit of infinite order (equivalent to zero truncation error)
without also taking the limit of infinite number of grid points. Yet in practice, the code
developers may include iterative tuning or relaxation parameters, that are problem
dependent, to speed iterative convergence, and this may contaminate the actual grid
convergence (discretization accuracy) results.
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Equivalent sources of error can arise from the discretization of the auxiliary
relations and the boundary conditions. If the auxiliary equations are linear algebraic
expressions, the formal error is equivalent to the machine round-off error. But since
many of the auxiliary relations for our PDEs are nonlinear expressions, then some
iterative technique is required for their solution and coupling to the momentum equations.
Any errors that arise in any iterative step that is not fully converged will propagate
through the solution process. In glacier modelling, such errors might arise when
modelling equilibrium chemistry at the glacier bed, or transport and deformation of
substrate materials. Many errors can be reduced by good interpolation schemes, but one
needs to know the required accuracies of the problem in order to impose interpolations
that do not induce uncertainties. In particular, the errors in the approximate
representation of the properties and features being studied need to be on the same order
as the errors introduced by the approximation techniques for interpolation, or else the
numerical model cannot resolve the features. In CFD, the turbulence models used must
be appropriate for the conditions and flight configurations being simulated. In glacier
modelling, an auxiliary model of preferred fabric orientation that might enhance flow to
surge status may not be appropriate as an auxiliary model, even if physically accurate,
due to the disparity between scale of resolution of the flow model to ice fabric scales.
Rather, a model would need to be created that mapped changes in fabric to changes in
strain-softening in the effective viscosity. This 3-dimensional viscosity model would act
as a proxy for material nonlinearities, coupling fabric orientation and stress gradients, and
it would operate in the momentum balance equations as an auxiliary relation.

The discretized boundary conditions must provide consistent information for the
solution of the discretized PDEs. According to Oberkampf and Blottner (1998), the
balance between over- and under-specification of knowledge on the boundaries of the
finite-difference model is more difficult to obtain and implement than is this information
for the original PDEs. Recall that over-specification of discrete BCs can cause
divergence in the numerical scheme, and under-specification can cause lack of
convergence, solution wandering, or convergence to alternate steady states depending on
grid sizes, features to be resolved, and relaxation parameters used. They speculate that
this additional difficulty of matching BCs in the discrete case is due to the fact that the
particular differencing scheme and the grid size determines the degree of coupling of the
BCs to the interior flow equations. Conversely, in continuum math, the PDEs are always
fully coupled to the boundaries. Thus sources of error and uncertainties need to be
monitored and explored to maintain credibility of the model verification results. Only a
rigorous grid refinement study will establish the overall order and accuracy of the
complete numerical scheme (equations, auxiliary relations, and BCs) and will provide
confidence in matching accuracy and spatial differencing scales. Grid convergence
methods are discussed in the following section.
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Additional representation complications, and hence sources of numerical error
and uncertainty, arise from the cases of flux BCs and the use of unsteady or moving BCs.
As mentioned previously, flux BCs are difficult to select and implement in the continuum
PDE case, and in the discrete case these problems remain even for steady laminar flow.
Oberkampf and Blottner (1998) site CFD cases wherein there is clash between numerical
solutions and experimental data. When comparing the analytic limit of A—> 0 for the
inflow/outflow BCs, these were found to be incompatible with the original PDEs (p.693).
For cases of unsteady or moving BCs, the CFD example is one of analysis of reacting
flows. For the glacier analog, instead of a specific BC for basal conditions, we might
envision process models as consistency conditions that are used to describe entrainment
of till and general bed deformation. Such complications are realistic, but are difficult to
model and match to the glacier flow field. One way to gain confidence in these processes
is to numerically experiment with the sensitivity of the flow to variations in these process
models. One could then eventually extract a representative moving boundary relation; or
one might use the ice “ceiling” as a BC for a basal deformation flow model and thus
circumvent moving boundaries.

Finally, consider Roache’s (1998) error categories that pertain to code use,
namely problem set-up, coding of benchmark cases, and interpretation of results. These
all refer to errors and uncertainties in the final discrete solution and results comparisons.
It is important to note that to minimize solution errors, the magnitude of change tolerated
on the dependent variables during iterations depends on the time step limit (Hindmarsh
and Payne, 1996; Oberkampf and Blottner, 1998) as well as on the current convergence
rate. One wants the iterative convergence error (that is, the residual accuracy) to be
smaller than the temporal discretization error before going to the next time step. Hence
one needs to compute the residual for each equation at each grid point, and let this
residual approach some bounded value for all difference equations at all grid points. This
will guarantee control of the discrete solution errors, and is necessary for stability. It is
not always sufficient to merely iterate a solution until there are small changes in the
dependent variables; non-movement of dependent variables does not guarantee small
solution error. Solution strategies and their specific implementations must be explored to
‘gain appreciation for the variability of discretization schemes and system performance.
This knowledge lends credibility to target solution results.

PROCEDURES FOR VALIDATION AND VERIFICATION

The strategy for carrying out validation and verification processes is iterative. The
outcome of model validation is meaningless without identifying and understanding the
effects of numerical errors and their propagation on the model. This would say that
verification should proceed validation. But part of validation is establishing the correct
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problem statement, the best representation for that problem in various sets of continuum
PDEs and their boundary conditions, and an assignment of parameter values or ranges.
This needs to be done before the discretized PDEs are formulated, the numerical scheme
and gridding is selected, the code is calibrated across test cases in numerical experiments,
and the scheme is verified. Thus, the process is iterative, and refinement of fidelity of
both the physics and its numerical representation must proceed step-wise.

This section first examines validation methods that establish the context and
content of problem statements. It is followed by presentation of some rigorous numerical
methods, that have been developed and used for incompressible Navier-Stokes and
related PDEs, and that can be used to verify the numerical accuracy and limits of such
discretized codes. In this sense, verification is the process of doing experiments on the
numerical schemes themselves, and this is different from the process of benchmarking
the codes to test cases that represent a certain fidelity of reality.

Model Validation Procedures

Rizzi and Vos (1998) outline a procedure for validation, and it is very similar to the goals
and intents of the EISMINT (European Ice Sheet Modelling Initiative) experiments.
Validation is also a step-wise process, and between the steps of increasing code fidelity
lie opportunities for code and calculation verification. In the CFD world, as in the glacier
modelling community, the validation process is carried out by comparing representative
simulations with trustworthy detailed experimental measurements, and this is done with
increasing maturity of the PDE model and its numerical code. At the development stage,
research codes that are assumed to accurately model the continuum PDEs are validated
by comparison with benchmark experimental test cases of relatively simple flows, on
simple geometric configurations, and include a single dominant flow feature. These
experiment test cases are wind tunnel or flight simulation experiments for aerospace
CFD, but in glaciology the benchmark cases are derived computational models with
pedigree in extensive laboratory and field data or in previously verified simple flow
models.

At the second stage, the physics and code is extended to include at least two flow
features or phenomena that interact with each other. This analysis is done in the CFD
case over a component of an aerodynamic system (such as interacting shock wave and
boundary layer over a wing). In the glacier modelling case, this stage is similar to the
pre-Level IT EISMINT model intercomparison experiments that contributed to the 1997
Grindlewald Meeting. At that phase, several aspects of ice-sheet model phenomena that
were not addressed in the EISMINT-1 needed exploration, but still over simplified
geometry. These aspects included:
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1. full coupling of temperature evolution with flow through
T-dependent ice rheology; ,

2. temperature and form response times to step changes in
the boundary conditions;

3. divide migration rates in response to accumulation;

4. response to simple, T-dependent sliding laws; and

5. response to topographic variation.

(see Payne: http://www.soton.ac.uk/~ajp2/eismint2/eismint2.htm).
Like the CFD case, these experiments also represent two interacting flow phenomena and
are still carried out over simplified geometry.

Finally, the mature stage of validation, one that is anticipated in later EISMINT
model intercomparison exercises, is detailed by Rizzi and Vos (1998) as using full
production code, relying on comparison with complete systems configuration, focussed
on global performance data of the computational model. In the EISMINT case, this
would match numerical models against derived Greenland and Antarctic representations
and geometries. The test cases for the mature code use full system models not just
components, and they involve complex flows with multiple interacting features that
represent a specific fidelity and scale of the physics.

To carry out these validation efforts, a degree of model calibration and tuning is
required. Although calibration is intended to tune the numerical code with a particular
fluid dynamics model in order to improve its predictive capacity of globally integrated
(and measurable) quantities, calibration in fact leads to a loss of generality in the model.
Hence, calibration must be carried out over several test cases that cover both presence
and absence of the various physical phenomena of interest in order to bound the effects.
This defines a restricted class of flow problems and features to which the model and code
is sensitive, and is hence part of validation.

Code Verification Procedures

At this point, it becomes necessary to intertwine verification steps with the model
validation process, for as we have seen, verification of a code for one problem does not
guarantee the same level of accuracy for other problems. Similarly, the simulation is
only valid for a certain class of problems in that agreement of a calibrated model with
reality may be only fortuitous when it is used under conditions different from the original
calibration set. Grid convergence testing probably needs to be carried out whenever the
problem statement is substantially enhanced to establish or maintain equivalent solution
accuracy. This process is almost never done due to the expense of either setting up
multiple new grids and running the code while monitoring errors, or running multiple
variations of the code across the same grid. However, each instance of verification
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establishes the level of accuracy and sensitivity of solution results and parameters in the
" numerical scheme. If the code is new and increasingly complicated, and there is limited
experience with it, then it is worth re-verifying that it numerically converges to
previously verified versions of code, or to available, manufactured exact solutions.

The sensitivity of the simulation to discretization error is established through
convergence to known solutions or through grid refinement studies; for example, by
comparing several simulations of the same problem across different grid resolutions. The
iterative process is: evaluation of model uncertainty using sensitivity analysis; then
validation via comparison with measurements or test case models; next code verification;
then extensions of the model; and back to rigorous verification of the new set of
equations. As one progresses, it is important to demonstrate the degree to which the
previously calibrated models and their uncertainties are transferable to the new problem
of interest. Below are two methods for verification of codes: one using recovery of a
manufactured analytic solution that exercises all derivatives in the code, and one that
bounds grid resolution errors through refinement studies.

Oberkampf and Blottner (1998) describe a method for verifying a numerical code
using analytic solutions. Their discussion is a summary of an extensive paper by
Steinberg and Roache (1985) that uses MACSYMA symbolic manipulation for the
analytic expansion of derivatives as needed in this procedure. Roache (1994, 1997, 1998)
further extends and summarizes the method as part of uncertainty analysis for CFD
codes, and he includes grid refinement as part of the method. The appeal of this
procedure arises when one understands that to verify a code, one does not have to be
evaluating convergence to a physically realistic solution. One only has to be sure that all
derivatives in the code are exercised, including cross-derivative terms, and that all
iterations go to full convergence.

If one has an analytic solution to a PDE, then showing that the numerical model
converges to this solution constitutes a verification of that code. Generally, in CFD and
in glacier modelling, analytic solutions are not available for the PDEs of interest. Thus,
the Steinberg and Roache process is to construct one. First, they choose a specific form
of a solution function, similar to the class of problems treated by the code, and assume it
satisfies the PDE. Inserting this solution form into the PDE requires expansion of all the
derivatives analytically. Simplify the equation, and because the assumed solution does
not exactly satisfy the PDE, there will be inequalities of terms between each side of the
equation. Now group all terms resulting from this inequality into a forcing function term,
Q(x, y, z, t), and add this to the original assumed solution as a source term. This new
solution will now satisfy the PDE exactly and is an analytic, albeit not necessarily
physically realistic, solution. Next the BCs for this PDE experiment can either be
Dirichlet conditions, specifying the new solution function on the boundary, or they can be
Neumann or mixed conditions derived from the new solution function. The calculated
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source term Q and the new BCs must now be programmed into the numerical scheme.
The numerical code is then run to convergence, and the converged solution is mapped
against the manufactured analytic solution for agreement. If the agreement is acceptable,
then a substantial number of numerical aspects of the code have been verified. These
aspects include the numerical method and the spatial differencing scheme; the spatial
transformation technique used in grid generation; the coordinate transformation used for
exercising all terms in the code (discussed below); the grid spacing technique; and the
coding correctness and the general solution procedure.

Roache (1998) extends this method to include a grid refinement study, and in
doing so also verifies the order of the observed discretization (possibly different from the
theoretical order anticipated). The grid refinement study is described below; it shows that
systematic truncation error convergence is monitored during several runs of the code over
progressively refined grids. Thorough iterative convergence is required. As a metric, the

p-th order of error, Ej = error / AP | for grid spacing A, should remain constant during

grid refinement if the code is doing what is expected of it. No drift in this error during
refinement verifies that the numerical method is accurate to order p over all points for all

derivatives.
One issue that arises is guaranteeing that the chosen solution function exercises all

derivatives in the numerical experiment, and generally a coordinate transformation is
chosen to ensure this fact. Steinberg and Roache (1985, p. 274-277) select the function

as follows. Assign coordinates x; = (X, X5, X3) to be
x, =8, +& +tanh (d; &, 6, &), i=1,2,3

where & = (§;, &,, &3) , with &; values being linear from O to 1 accordingto & = h; *
(i-1),etc. Here h is the scale A in the original finite difference approximation. &
represents a zero point shift in coordinate to avoid singularities at the origin. The d, is a
control parameter that adjusts the severity of coordinate stretching. If d; = 0, then there is

no stretching in x; . For non-zero d; , the tanh function allows non-zero values for all
derivatives in the PDE. Steinberg and Roache (1985) note that errors will show up more
readily when all coefficients of the PDE operator are of the same order. If this is not the
case, it is sufficient to scale the coefficients to help identify the source of the truncation
error during grid refinements. Later this solution can be used as guidance for problems
wherein the operator coefficients are of disparate size.
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Grid Refinement Procedures

Inadequate grid resolution can be a major source of overall numerical solution error. For
finite difference schemes, the spatial discretization error can be estimated using the
Richardson iterated extrapolation method. The method requires at least two numerical
solutions with different grid sizes for the discretization error to be estimated. Usually, the
fine grid solution is calculated over double the number of grid points in each direction of
the coarse grid. Roache (1994) developed a grid convergence index based on the
Richardson method that basically ratios an error estimate obtained on grids that are not
doubles (or halves) of each other, and converts the estimate to an equivalent grid
doubling estimate. Richardson’s iterated extrapolation, or deferred approach to the limit,
(see for example Oberkampf and Blottner, 1998, or Roache, 1998) says that for series
solutions

f

exact = Idiscrete

+ oA’ + HOTinA

where p is the assumed-known order of accuracy of the numerical scheme. The
coefficient o is a constant for a given solution and does not depend on any particular
discretization. Its value is also derived in the refinement process. Two numerical
solutions over different grids are computed, and these are combined to compute a new
estimate on the exact solution and a measure of the discretization error. Oberkampf and
Blottner (1998) point out that in practice, more than two refined solutions will be
required. First, the global accuracy of the method over solutions and integrated or
differentiated solution functionals (like integrated discharge, or differentiated velocities
yielding strain-rate fields) can be degraded due to inaccuracies or errors in
implementation. These errors may not show up in the first refinement or may have
cancelled out until the refinement shifts resolution scale. Second, the higher-order terms
in the extrapolation are not negligible at first because insufficient grid resolution was
undoubtedly used on the first few solution attempts. Refinements must continue until the
computed grid convergence rate matches the known order of accuracy of the code. At

that point, the method can be used to estimate the error between f, .
fine-grid solution (Roache, 1998).

Richardson extrapolation is best used not to obtain the correct discrete solution,
but to obtain an estimate of error by differencing the solutions derived. Accurate

t and the discrete

application of the method for error estimation, with known order of accuracy p, requires
that the observed convergence rate equals the formal convergence rate. When this
happens, the leading order truncation error term in the error series is known to dominate
the error, so the estimate is accurate. Note, however, that nonlinear features of the
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equations may contaminate grid convergence, so if excessive refinement seems required
to match convergence rates, it may indicate other problems.

If the goal is to verify the actual order of accuracy for a problem rather than using
a known p to estimate error, then a variation of this method suffices. The actual observed
order may be different from the predicted order based on the scheme because the
observed order of convergence depends on achieving the asymptotic range of the solution
at small residuals. The observed order may also be different from the order previously
verified in a test case. Roache (1998) shows that observed order p can be extracted from
operations with three grid-refined solutions, and this p can be compared to the assumed

theoretical order. Let f| represent a fine-grid solution calculated over grid spacing h, ,
and let f; represent a coarse grid solution over spacing hy , with f, and h, being
intermediate to these. Let r be the grid refinement ratio definedas r=(h,/h;)>1 or r

= (h; / h, ) > 1, assumed constant but not necessarily r = 2. Then from combining
Richardson extrapolation equations for each solution, there arises the relation:

p=1In {(f5-f) / (E,-f)} [ In (¥)

where p is the observed order. If r is not constant over these grid sets, then a more
general equation must be solved for p. Let €, and €,, represent the solution differences

(f5-f,) and (f,-f)) respectively, and let r,3 and ry; be the respective grid refinement ratios.
Then the general equation to be solved for p is:

Enl (g -1 =10 { €/ @, - D}

For r not constant, this equation is transcendental in p and Newton-Raphson techniques
(or similar) can be used to extract the order p.

One final point of interest in obtaining estimates for discretization error that can
lead to methods of examining error propagation. Instead of examining leading order
terms in the truncation error, one can approach the problem through spectral methods.
An overall solution discretization error says nothing about what grid locations and
clusterings, or what parts of the solution, are contributing most to the errors. For series
solutions, an energy spectrum of the solution and solution error can be created. These
include solutions that can be decomposed into harmonic components, that can be
represented by recursion relations, by discrete wavelets, or represented by non-periodic
spectral methods such as Maximum Entropy Methods. For localizing an error estimate,
short data records must be used, and the Maximum Entropy Methods (Ulrych, 1972,
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McDonough, 1974; Press and others, 1992) are especially useful in assessing the
frequency spectra of short data records. The method is simply autoregressive spectral
analysis carried out in the space dimensions rather than in time. The spectrum indicates
the amount of energy partitioned in solution wavenumber (inverse wavelength). The
local error associated with every spatial discretization scheme can be modelled as the
inner product of the accur.acy at that location times the energy spectrum of the solution at
that location. If the gridding and analysis is done so that regions of interest can be
isolated and local solution results can be extracted there, then one can examine how the
energy in the solution falls off at higher frequencies. The total local error in the discrete
approximation is then the integral over all wavenumbers of the spatial discretization
scheme’s error e g(®) at location d times the energy distribution E of the discrete solution

fy(w) as:

Local Error = J e 5(w) E(fy(w)) do

This gives the size of the error where the solution shows the most spectral energy.
Figure 1 is a schematic representation of this situation, and shows graphically the
discretization error from this integral. The plot is solution energy E vs. wavenumber o .
The normal growth of error is from low frequency (small wavenumber or long spectral
wavelength) into the high frequencies. If the energy falls off in a well-behaved manner
as in curve ‘a’, then there is very little intersection of the solution energy curve with the
error growth. However, if the solution energy falls off more gradually as in curve ‘b’,
then high frequencies are being polluted, and there is much more discretization error
(‘d.e.’) in the solution. By evaluating the solution quality and accuracy in small block
regions decomposed from original multi-block grids, the contribution of discretization
error in those regions can be evaluated independently. If the source of error is upstream
of a feature of interest in the model, then this error stands a high chance of propagating or
convecting into that region and being enhanced. Formal localization of error sources and
growth thus allows exploration of how the solution is evolving, and how the spatial
resolution may need to be altered to capture the physics of interest. It may be possible to
estimate downstream propagation of error without formally solving an error equation or
an error convection equation.
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Figure 1. Schematic representation of
solution energy E vs. wave number ®
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SOLUTION QUALITY IN GLACIER MODELLING

Solution quality means solution accuracy. To control solution quality, one must explore
how to control or assure solution accuracy. In this section, a series of recent publications
in the glaciological literature are examined not for their results, but for their methods.
These representative example methods are being used to successfully maintain solution
quality, and these papers are offered as models for quality benchmarking, model
calibration, validation studies, verification studies, or error analysis.

The glaciology community has recently published a variety of results from
extensive numerical experimentation and benchmarking of models and codes for the ice-
sheet equation as part of the European Ice Sheet Modelling Initiative (EISMINT)
(Huybrechts and others, 1996). Fifteen ice-sheet models were submitted to the model
intercomparison tests at the Level I exercise. The exercise published the numerical grid
and model constants and parameters on which the participants were to exercise their
respective codes. Boundary conditions were established for both a fixed margin
experiment and a moving margin experiment. Both steady-state and time-dependent
behavior was evaluated, and simulations were to be run over an evolution period of 200
000 years. The submitted models had different ways of calculating the ice fluxes, and the
discretization schemes were different; although two broad schemes were recognized. All
teams adopted a staggered gridding scheme due to the known problem of unstable
performance of non-staggered grids in representing diffusion effects in the flux
calculations. An exact analytic solution was available for the 2-dimensional experiments,
and thus the various broad categories of schemes could be analyzed for estimates of
truncation error in the solution, and for discretization error forced by the grid/mesh
interval. These results can provide guidance for accuracy in the 3-dimensional models.
A consensus was reached concerning resulting flow and temperature fields for each of the
variety of experiments. This consensus provides reference solutions against which future
modelling codes can be assessed for accuracy and consistency. Note that the code
verification and accuracy was left to each modelling group, apart from comparison of
results to the 2-dimensional analytic solution and the consensus achieved through the
experiments. Any large divergence in results from the consensus was considered to be
caused by numerical inaccuracies. Running the experiments under fixed and moving
margins with steady and sinusoidal climate boundary conditions provides a calibration
for the participating models. Model validation is not an explicit issue in these
experiments because at Level I, the physics is constrained to be rather simple, and only
the numerical stability and accuracy of the participating models is sought. Error analysis
was presented as variations between model results because most errors were controlled
by the details of the experiments.

A second phase of the EISMINT experiments was also run (Payne:
http://www.soton.ac.uk/~ajp2/eismint2/eismint2.htm), as discussed above. It was
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recognized that several aspects of ice-sheet model phenomena had not been addressed in
the EISMINT-1 experiments, and additional trials would enhance the calibration and
performance of the submitted models. These aspects included sets of two interacting
flow phenomena that could be explored over the same planar geometry of the original
experiments. In addition to adding calibration and better model validation, these
experiments help spawn new papers that used the EISMINT process as the source for
benchmark solutions against which to expand physical understanding.

Hindmarsh and Payne (1996) represent such a study in extrapolation of methods.
They examine three different discretization schemes for the ice-sheet equation, and run
numerical experiments with these using different time-step schemes (marching and non-
linear iterations) to isolate the stability features of the methods. Accuracy is determined
over various grid resolutions, and time-step limit bounds are developed for the schemes
to maintain accuracy. Comparison is made for the accuracy of the various discretization
schemes with available analytic solutions in 1-dimension for flow law parameter n = 3,
and in 2-dimensions with n = 1. This provides full verification of numerical accuracy for
models of that complexity. Computational efficiency of various iterated and non-iterated
time-marching schemes is compared. EISMINT 2-dimensional, n = 3, results are used
for carrying out extrapolation to more complex models. The use of iterated maps as the
representation of the numerical solution is introduced and developed here, and these aid
in understanding and controlling uncertainty in model evolution. The onset of numerical
instability is found to depend on the method of time-stepping, and a correction vector is
developed that represents the evolution of the equations in such a way that appropriately
small time steps can be selected without computational investment in extensive specific
experimentation. A great part of the value of this paper is the way it specifically controls
the accuracy of the numerical experimentation, isolates causes of variability in solutions,
and compares several schemes in exploring solution quality.

Marshall and Clarke (1996) use a conventional 3-dimensional finite-difference
model, and by employing coupling terms to model mass exchange, they examine sheet-
ice and stream-ice components in the same model without having to explicitly develop
ice stream physics. Yet, ice stream physics can be explored by these methods. Ice
streams are sub-grid at the current resolutions of gridding schemes for the ice-sheet
equations. The authors thus convert a complicated physics problem into a form that can
be modelled using well-proven codes. They parameterize the creep exchange process
between sheet ice and stream ice, and they separately model stream ice fluxes by
subglacial bed deformation and de-coupled sliding at the ice-sediment interface. The
areal activation of ice streams is controlled by basal conditions. Sensitivity tests are run
on EISMINT benchmark configurations, and resulting thickness and velocity profiles are
derived and compared. With that heritage, the results enhance the benchmark cases, and
the sensitivity analysis bounds the model uncertainty. The mixture of steam ice and sheet
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ice within the same model, without the need to specifically model sub-grid physics,
provides an excellent enhancement to existing models and their use. The validation and
calibration of their models are ensured because of the detailed development of the
physics and the PDEs before application of the numerical scheme. Assumptions and
constraints are explicitly identified, and the ramifications of such simplifications are
discussed providing conditions of applicability for their models. Fairly simple mass
balance equations can be used numerically because of the extensive work in developing
mixture and exchange relations that define the problem statement. The dynamic coupling
of the ice mixture is parameterized in such as way as to allow examination of effective
control, activation, and development of ice streams even in a full 3-dimensional flow
field. Finally, the exploration contained in the sensitivity tests demonstrates the range of
applicability of these methods for further enhancements.

Hindmarsh (1997) explores the use of normal modes of eigenvalue problems,
derived from linearized versions of the ice-sheet diffusion equation, to initialize models
and examine small scale changes in features and response-times. In non-linear models,
accumulation rates and viscous properties must be parameterized and tuned in order to
calculate ice thicknesses. Such tuning is not needed in linear models, and fluxes are
derived directly from balance relations. With the increasing availability of highly
accurate digital elevation maps from satellite altimetry, actual ice sheet geometry can be
modelled rather than calculated. Here, model validation arises from initializing the
numerical models using actual data, and carrying out perturbations about EISMINT
solutions. The normal mode solutions are compared to similar normal mode analyses
derived from Antarctic digital elevation models, and balance flux results are computed
across varying grid scales. The normal mode analysis permits resolution of small scale
features in Antarctic elevation models; in non-linear models, the small scale structure in
such data is relaxed out due to numerical instability. The linear methods, although
having some identified shortcomings, allow modelling and examination of small scale
effects. Code verification becomes essentially unnecessary because with the linearization
scheme Hindmarsh uses, grid-centered difference fluxes are computed via linear
equations and matrix inversions that do not require the verification methods of PDEs.
These results also extend the applicability of the EISMINT results, and can be used as
additional benchmark test cases.

The EISMINT benchmark test cases and their derived extensions work well for
models that assume ice-sheet configurations and aspect ratios. However, when one
intends to explore the behavior of valley glaciers or of ice sheets under conditions where
the approximations in the simple slab model break down, such as near the ice divide or in
ice streams, then new methods must be sought. Some of these conditions were explored
in the Marshall and Clarke (1996) sensitivity studies on ice streams. Additional methods
are now considered. Models of stress and velocity fields in glaciers are analyzed in two
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companion papers, one that examines finite difference schemes for higher-order glacier
models (Colinge and Blatter, 1998), and one that explores sliding and basal stress
distributions using the first model (Blatter and others, 1998). In both papers, substantial
headway is made in applying numerical methods to improve grid resolution, and then
enhancing the representation of basal velocity and shear models with moving stress
concentrations within this framework.

Colinge and Blatter (1998) create several numerical schemes and evaluate their
stability for modelling 2-dimensional stress and velocity fields, including stress gradients,
in glaciers. In particular, the paper looks at the modelling of conditions wherein the usual
approximations of shallow-ice aspect ratio break down. A scaling scheme allows the
development of a linear perturbation method on the governing equations. The equations
are separated according to order of the small scaling parameter, and numerical methods
are examined on these sets of equations. Distinction is drawn through numerical
experimentation on the efficiency, accuracy and conditions of applicability for the
methods. The equations are transformed so they can be written as a series of coupled,
first-order ordinary differential equations and one algebraic constraint. This allows
application of the method of lines wherein discretization occurs in all directions except
one, and a shooting integration scheme is developed from the glacier bed to the surface.
The shooting requires iteration and correction. Because of the kind of coupling in the
governing equations, it is found that even for each discretized derivative of order p, the
over scheme is of order p - 1. Thus, the derivatives in the algebraic constraint must be
discretized to order p + 1 in order to maintain and overall scheme order of p. Boundary
_conditions at the base are set to be either no-slip or functionally related sliding velocity
and shear traction, with a tangency constraint between horizontal and vertical velocities
at the base. Experiments are run on each condition. Single shooting schemes are run for
both fixed-point iterations and non-linear Newton iterations, and the flexibility and
fidelity of each is compared. Additional constraints are discovered between the form of
the surface tractions as a function of the respective basal tractions, and this function must
be infinitely differentiable to guarantee solution uniqueness. For fixed-point methods, a
criterion is developed to ensure existence and uniqueness of the solution as well. A
condition number is derived for the Newton iteration method, for both single- and
multiple-shooting schemes, which dictates the instability of the algorithm in situations
when there is high sensitivity to the initial values at the glacier bed. These methods are
applied to mixed basal boundary conditions, prescribing both basal velocities and basal
shear tractions over regions of the bed. Experiments with the method show the rise of
numerical instabilities and even-odd oscillations over two grid-cells. Through refined
exploration, a non-symmetric discretization scheme is discovered that removes
oscillations while maintaining well-defined order. The schemes are calibrated and
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validated for the particular model of parallel-sided plane slab flow, and first- and second-
order solutions are derived and éompared across a variety of grid point schemes.

Because the idea of shooting schemes is to learn corrections to the initial starting
conditions, this method is ripe for sensitivity analysis experimentation that controls
instability. Verification is done here by examining the stability of the method and
convergence rates, and by evaluating stability criteria that dictate step size. An
unrealistic solution arises in which second-order solution profiles show negative shear
stress in the interior of the sliding area (p.454), and the authors speculate that this is
related to small oscillations around zero-stress values over the order of two grid-cells, and
believed it to be numerically induced. Considering the degree of customization that has
been developed in this paper for specific discretization schemes, it might be worthwhile
to explore manufacturing an analytic solution against which to test the authors’ numerical
schemes, as advocated by the previously described methods of Steinberg and Roache
(1985) and Roache (1994, 1998). The authors indicate that the most serious limitation to
their methods (for validation) is the lack of general knowledge of spatial variations of
basal velocities and coupled longitudinal stresses at the bed. These conditions are of
course the initial integration conditions of the model, and sensitivity of results in these
conditions has been previously mentioned.

In an effort to experiment on sensitivity of basal conditions, the companion paper
of Blatter and others (1998) uses the schemes developed in Colinge and Blatter (1998),
thereby becoming a validation exercise for the previous models and schemes. Here,
numerical experiments are carried out to study the interaction between basal velocities
and the spatial distribution of shear stress distributions, at several scales. These
experiments yield the important result that sliding is not a local phenomenon in cause.
Experimenting with both sliding and mixed basal conditions, the authors show that for
spatially periodic sliding / non-sliding conditions, a distance of 5-10 times the ice
thickness is necessary before the average sliding velocity can be considered uncoupled
between one period and the next. Sliding areas are discovered to be responding to
conditions that are not local to the observed sliding area, and are in fact responding to
conditions within distances on the order of the width or substantial parts of the glacier
length. Hence, the theory has provided important insight for interpretation of field data,
and the necessity of multiple taps to the glacier bed in order to understand local physics.
Multiple numerical experiments are run. Because the average basal shear over the entire
bed remains invariant under changes in sliding patterns, this becomes a benchmark
metric. If there is local reduction in basal shear traction, then the ice is sliding or the bed
is deforming. Calibration of the models is carried out by computing the stress and
velocity fields over a 2-dimensional geometry section of the Haut Glacier d’Arolla and
discovering that the flow and stress patterns over realistic geometry are the same as for
simpler slab geometry. Exact location of sliding cannot be predicted, only that it has
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occurred. But this calibration maps and establishes a range of applicability of the model.
Additional experiments are run under cases of infinite effective width, such as with ice
streams that are wide compared to their thickness, or that flow within their own ice
channels. These experiments help to isolate the effects of side drag compared to basal
drag. The series of experiments in this paper challenge the previously held validity of
using flow laws to indirectly determine basal stress components. Even given
measurements on basal strain rates, this coupled with knowledge of the flow law does not
approximate the basal drag well because of non-locality, and hence these should not be
used to derive basal shear tractions. Small spatial scale variations can lead to rapid stress
variations, and perhaps migrations of these along large stress gradients. The suite of
numerical experiments and sensitivity investigations provides credible validation and
calibration of the physical models being proposed. The matching of the derived results
against patterns in actual valley glacier geometries lends credibility toward verification of
the extensive numerical codes developed in Colinge and Blatter (1998), even though this
by itself does not represent a formal verification process.

All of the above papers present excellent strategies for their analysis methods and
explanations of the detailed physics captured in the problem. Where possible, codes are
verified through comparison with benchmark results or analytic solutions. Where formal
verification has not been possible, extensive sensitivity studies have worked to
demonstrate the range of applicability of the numerical methods and the model
parameterizations. Formal error analysis and explicit ramifications of assumptions have
been frequently included. The sophisticated results justify the effort expended to
maintain solution quality and to yield understanding of complex flow physics in the
glacier environment.

As analysis becomes even more complicated and data-sets become more diverse
and heterogeneous, it becomes increasingly important that the codes and methods be
controlled through a managed process of experimentation. Validation and verification by
teams of researchers, each with access to others’ results and methods, will become more
needed in order to control the expansion of information and refinements in flow physics.
In the following section, an information architecture is presented that will help unify and
manage the physics explorations, will help deploy field and satellite data in service of
boundary conditions. The system will also keep track of the physical problems and
limitations for which particular codes and discretization schemes are applicable.

THE ICE COMPUTATIONAL ENVIRONMENT

An Integrated Cryospheric Exploration (ICE) Environment is now proposed for exploring
methods and managing sources of uncertainty in glacier modelling. The details and
functiénality of this Environment are described based on modifications of a system
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developed during the past two years at NASA Ames to support aerospace Computational
Fluid Dynamics analysis. The original system was created in concert with aerospace
companies who were using wind tunnels for testing and validating aircraft wing and wing
element re-designs for purposes of improving the flight performance characteristics of the
original design. First, wind tunnel test results were made available on-line during a
single test entry. Then, multiple test entries were archived and compared. Next, there
was a desire to have CFD results across the same configurations made available during
the wind tunnel tests, and to have the results of CFD exploration provide suggestions of
enhanced design configurations or changes in the model. These changes could then be
rapidly manufactured as new physical models for testing. Ames personnel built an
interactive infrastructure that launches a variety of CFD flow solver codes across highly
complicated wing/element geometries and grids, and organizes the resulting solution
fluxes, forces, moments, and integrated parameters into a form that is accessible for
visualization and design refinement decisions. The current version of this system is now
called the Advanced Design Technologies Testbed (ADTT). The ICE Environment is
being developed using the experience from ADTT development, and it consists of solver
codes and models inserted into that same information infrastructure. A discussion of
ADTT functionalities follows.

Description of the ADTT

The ADTT supports multiple functions for grid generation, initializing solver codes,
running and monitoring the codes, and analyzing the CFD solutions. A geometry toolkit
is available on-line that allows simple grid generation over simple geometries. It also
links in full overset grid technology methods that are developed off-line for complex
geometries, and it can merge off-line and on-line grid generation for mid-range fidelity
geometries and gridding. The resulting grids are then used by multiple flow solvers.
Parameterized CAD objects allow for non-expert use. Input files and CAD automation
change easily in response to changes to parameters in the user interface. The solver code
initialization window prompts users with standard parameter values, but allows flexibility
in resetting these. The entire user interface is backed up with dependency relations that
maintain feasibility in problem set-up, and thus the user avoids launching a code with
parameters mis-identified or with improper values, or with gridding parameters un-
matched. All auto-gridding and auto-launching relies on rule-based schemes, but an
unlimited number of gridding or solver processes can be organized and launched from a
single Graphical User Interface. The jobs are partitioned and directed according to
customized encoded rules. This enhances process control and bookkeeping of the
numerical experiments and their variations. Furthermore, multiple geometric
configurations can be set-up and linked in a series of runs in order to explore variations in
a particular design parameter space. Such variations can be set-up as special cases, but it
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is not done automatically and relies on the user to create, maintain, and deploy the overall
strategy.

Various finite difference schemes are supported and can be changed out, but none
of this selection is automated. All differencing schemes are set-up off-line, then linked in
and launched according to the numerical experiment to be run. However, multiple
schemes can be used and compared. Most boundary conditions are encoded with
applicability relations that constrain their use to particular problems so as to avoid non-
physical flow results. The turbulence models and other auxiliary equations are likewise
encoded with constraints, some of which are suggestions only, whereas others cannot be
overridden and are locked in as a default setting in the codes.

A variety of flow solver codes are supported, each with increasing fidelity and
complexity. They are Fortran codes that were written before the ADTT was created, so
they are wrapped and linked in by Unix scripts, and launched on a multiple CPU SGI
cluster. All codes are initialized and launched from the User Interface that maintains
dependency relations between code parameters. There are two ways the codes are
monitored during a run. First, the user can pre-set a threshold parameter or target
convergence residual in advance (interim or final), and the code will launch and run to
the threshold, publish its state, then continue or use up an allocated time resource.
Interim check-point files can be saved along with final results in a directory structure if
this feature is set-up before the code is launched. Such interim files can also be saved to
a database for future analysis of trends and error analysis. Second, a Procedural
Reasoning System (PRS), that was developed under external contract, has been linked in
that monitors the state of progress of the solver. The PRS takes in information about the
executing code and matches that against a library of procedures that can monitor and
dynamically adjust the flow solver activities. At the simplest level, the PRS can detect
difficulties in convergence, and adjust solver parameters to the experiment during
runtime. Multiple procedures can be spawned and execute asynchronously, so one
process can be kept running while, for example, the time step might be changed in a
parallel process to see if this helps convergence. The PRS can be user-driven or set to
operate autonomously after certain defaults are recognized. A generic post-processing
strategy is not currently available, but may become useful if the whole system becomes
CORBA compliant. Currently, strategies for post-processing and analysis are maintained
off-line and can be linked in for a given numerical experiment. Additionally, if a strategy
were to deploy a variety of boundary conditions to test sensitivity, this could be
organized at the beginning of multiple runs, but the current system does not allow
interruption at such a level during a run. Such a change would have to be deployed
asynchronously to the original process, but it could also be monitored by the PRS.

ADTT has been able to function well using commercial visualization packages
and tools. Retrieval from the database is based on query or tree-browser object/data
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attribute selection. Two-dimensional data plots, flow field, vortex, or streamline
representations, and contour plotting, with web-enabled remote sharing of views has
turned out fully sufficient. Originally, it was envisioned that customized data
presentation packages and plotting routines would be needed, and several advanced
visualization systems have been created under separate funding that can respond to the
data streams generated from traditional CFD output files or from wind tunnel test data.
However, to date, such customized routines have not been necessary within ADTT since
most visual analysis for the CFD is done by plotting routines, wherein the user picks
contour intervals, boundaries, and database variables and these are brought up to a plot
window by Java applets or simple search agents. Feature recognition capabilities exist,
but this is dependent on the code resolution and is hence problem and solver code
dependent. The only error recognition currently used is based on convergence criteria.
This is generally because the user interface has guaranteed that the problem launched is
feasible, and if there are global problems in solution, they will show up in non-
convergence. At that point a separate verification activity would have to be undertaken.
To date, this has been unnecessary in the aerospace design process because the design has
been tested first on proven, lower-fidelity codes (2D-incompressible, 2D plus sweep in a
third direction), and the full Reynolds averaged Navier-Stokes codes are only used
sparingly to refine the results of the multiple, lower-fidelity runs. However, there is no
reason that a verification strategy could not be created and deployed across the system.
There is currently no automatic linking of interim or post-processing results back to the
code initialization window to re-start a current run or set-up a new problem sequence.
Once particular methodologies are learned from experience, then rules and models and
their dependencies can be extracted that help automate this process.

A customized data management system has been created, but it is not generic. It
is a simple directory structure that keeps track of solver runs for a particular problem
configuration. Rizzi and Vos (1998) have suggested a hierarchy for CFD databases that
represents a cascade structure with each flow regime under study at the top of the
hierarchy. Then under each aircraft flow regime, there could be large sets or subsets of
systems or aircraft types, followed by integral subsystems and components, and finally
features or flow phenomena that occur over these components. Once such features would
be recognized, they could be used to prescribe what kind to modelling would be needed
to refine the flow regime resolution. In ADTT, there is no sophisticated indexing on
context or particular flow features because for the problems currently presented to ADTT
from industry, there has always been a very detailed configuration and geometry that is
being tested. This geometry drives any hierarchy, so indexing on the geometry is
sufficient. Features are sought that occur over the particular configuration of interest, and
these are indexed to that geometry. ADTT deploys results to a separate on-line system
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for comparison of its CFD results with relevant wind tunnel test results, and the results of
this comparison by designers starts an effort to create new physical models.

ADTT in practice has intentionally not run any code verification experiments
because the codes are very well known by the developers. The projects have not required
any experiments on validation because this is done by the test engineers who compare the
CFD results with the wind tunnel test benchmark cases. There is no on-line adaptive-
gridding or feature-following boundaries in the codes to date because the gridding has
been done with the code developers who are part of the industrial trials. For re-design
problems, they already know what flow characteristics they are trying to resolve.
Questions as to what conditions have been selected, which grids and why, and so on, that
might arise during an exploration experiment have not arisen during ADTT project use,
because the project is always driven by the design and purpose for the test -- to match and
compare results with wind tunnel configuration data. The flow solver code is selected for
the problem fidelity of interest, and assumptions are tied back to this problem. There
have been experiments that compare code performance, but usually this is done by
comparing results between codes of differing complexity to see what physics is captured
by each. '

Development and Use of the ICE Environment

The ICE Environment is being modelled after the ADTT, and many of its functionalities
are identical, though not yet fully completed. ICE is an information architecture that can
integrate multiple existing glacier flow models over simple bed geometries with
boundary conditions and auxiliary process models, in particular models for basal
conditions. These boundary conditions are derived from datasets from glaciers, from
‘climate and precipitation data, or from derived mass balance and basal conditions data
that are being encoded in a relational database. The process models that look at spatial
discontinuities in stress, velocity, temperature, and water pressure are being coded from
published literature and will follow a benchmarking process similar to that proceeding
within the EISMINT experiments. Field work is planned for the austral summer on
recently deglaciated regions near wet, active glaciers on the west coast Southern Alps of
New Zealand. This data will also be included to support basal conditions models. The
web-based user interface for ICE constrains problem set-up, launches and unifies these
codes and models, and it also compliments the analysis results with visualization tools in
which non-customary or alternative relations between archived datasets and model results
can be created on-line and explored. Parameter space can be navigated visually and
interactively, and stiffness of parametric regions against perturbations or variations can
be explored to locate model and process sensitivity and applicability boundaries, and
hence regions of computational risk.
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The ICE Environment is envisioned for exploring and managing sources of
uncertainty in glacier modelling codes and methods, and for supporting scientific
numerical exploration and verification. It can also support analysis of model’s sensitivity
to variation of parameters and processes, for locating changes during convergence, or for
comparison of alternative till deformation models coupled to flow models. The
Environment is a structure, so it is not constrained to certain fixed-use scenarios. But
likewise, the codes and models to be used must be scripted to allow insertion into the
structure, launching, manipulation, and monitoring of process flow. The Environment
can be used in developing a computational experiment or exploratory methodology for
initializing, launching, and comparing codes and results using the supporting
visualization tools. It can thereby support validation, calibration, benchmarking,
verification, and error analysis. A user would develop a strategy, and this strategy is
imposed across the elements of the Environment.

Implementing such strategies and scenarios with flexibility requires access to a
database system rather than merely a data directory structure. Rizzi and Vos (1998)
recommend a future database structure that starts with a flow taxonomy rather than the
geometry-driven structure current in the ADTT. For ICE there needs to be a hierarchical
taxonomy of features and structures of flows of interest. The features in the taxonomy
are then populated with experimental data, field data, satellite remote sensing data, or
data and results from previously validated flow and process models. Then representative
benchmark cases could be defined for each flow structure or model type, linking the data
for pedigree and index. These benchmark cases can then be used to construct the
database system. The system would include data manipulation tools that could generate
synthesis plots from across models and heterogeneous data types. A data-mining
technology is warranted that accesses this taxonomy and model results, and that presents
or displays data for correlation or comparison on demand. If the system is accessible
over the Web, then the cases can be used by researchers at their home sites to create data
plots, and to validate their codes or linked models. Appended to the cases through
metadata structures would be the knowledge of which physical models and auxiliary
models give the best predictions for flow behavior. Data exchange standards or full
CORBA development would support a unified fidelity in data representation, and this
would need to precede implementation of the remote-access system.

The data should be allowed to evolve and be replaced, upgraded, refined, and
corrected. But it would still need to be tied to the particular benchmark case or flow
structure as its base pedigree. This is accomplished through indexing on metadata. The
metadata are descriptors of what is in a particular dataset or results file. Instead of
searching or retrieving directly from sets of heterogeneous data, the metadata can be
searched and retrieved based on key words, on a more complicated indexing that includes
context, or on models of the data structures and relations themselves. Each of these
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indexing structures can be cross-referenced. Particular information retrieval starts at the
metadata level, and relevant content to a particular posed query is reorganized and
surfaced. Data used to need to be strictly formatted in advance to be retrieved and
presented on demand. This is no longer necessary with current manipulation tools and
search agents. The data can be reformatted by an agent so it can be compared and plotted
on demand. This includes versions of extrapolation, interpolation, and re-registering
methods, but of course such manipulation can introduce errors and bias.

A feature that would be very useful in ICE for exploration of multiple numerical
experiments would be to have the data sets and model results managed by a software
agent in such a way that all archived data, from whatever source, could be selected and
used to initialize new modelling runs. The software agent would pull out values and re-
populate the namelist or initializer of the flow solver. The extraction by the search agent
would feed a record of actions taken, it would be driven by an overall external or encoded
experiment strategy, and so these actions would become a process record of the
experiment flow. This feature is not currently part of the ADTT system; but technology
is available for such a feature, and ICE will be a good testcase for its development. Thus,
the database system and its agents would become an integral part of the experiment flow:
strategy initialization, problem set-up and initialization, flow solver launch, post-process
and archive results, visualization and analysis (perhaps asynchronously during a run), and
finally redefinition and restart of a similar or new problem. Of course, the database
system can remain fully functional without being directly tied into the flow solvers or
other analysis codes, and it can be run entirely by the users.

An additional use for the ICE will include exploration of what approximations in
the related basal process models are sufficient for resolution of a problem or feature, and
what is the fidelity and sensitivity of the information. A strategy might be to compare
and contrast various types of bed conditions, extracting stress, velocity, and temperature
data from current models or data-sets. The goal would be to create proxy representations
of the detailed models that would be sufficient for certain flow problems or validation
exercises. For example, under what conditions would a boundary layer model suffice
over a full basal process model, and for which problems is the full model required versus
simply a boundary condition? Are the test cases consistently better or worse than simpler
models that use mean quantities?

Once verification of models moves from EISMINT’s Level I (Huybrechts and
others, 1996), wherein modelled processes and parameters are fixed, to Level II, wherein
individual models are run including whatever processes are considered important along
with modeller’s preferred values of parameters, there is substantial risk of moving out of
the range of applicability of various models against the more complicated flow situations
being simulated. The ICE Environment will help understand and control that risk
through managing consistent numerical experiments, and it will enhance uncertainty

-32-

[



management by aiding in recognizing sources of numerical error during convergence
histories, or causes of non-physical solutions due to mismatched applicability. The
simpler models have analytic solutions for verification. As problems become more
complex, analytic solutions will not be available. The more complicated models and
linked processes will have to rely on constructed solutions for verification, on
comparison with previously verified and validated solutions, and on consensus physics as
targets for validation.

The ICE Environment can be used for error analysis experiments both through
tracking of features and their changes as solutions evolve, and between alternate
representations of solutions. Strategies to explore impacts and propagation of errors must
be developed whereby a series of code variations are launched. Since errors start as local
features, and may convect downstream in the flow field, a visualization capability that
created a “cone” of error flow, and an assumed Gaussian error growth distribution could
be modelled within this cone as an estimate for later model interpretation. In addition,
such an error model could be compared with results derived from field data that was
stored in the database. This experiment would also help establish whether uncertajnties
associated with calibrated models are transferring (or are even transferable) to other
problems of interest. The database agents would use interpolations and extrapolation
between archived data sets and model results to follow the error just as if it were a flow
feature.

Finally, the ICE Environment allows one to create and explore new physics
models and representations, even if they are believed to be ill-founded at the outset.
There is a long and successful heritage in the development of the appropriate governing
equations for glacier and ice sheet models. They incorporate nonlinear constitutive
relations and mathematically tractable assumptions such as the shallow-ice
approximation, absence of significant contribution from longitudinal stress gradients, and
of course the comparative insignificance of inertial terms in momentum balance due to
relative adjustment time scales (Colinge and Blatter, 1998). It is not the Author’s
intention to argue that glacier flow should not be fundamentally Stokesian. However, the
scalings and simplifications that are commonly used and grounded on the observed
behavior of glaciers (at least in their quiescent phase) are fundamentally unable to capture
transient flow behavior or transition conditions between quasi-steady states. For climatic
scale relaxation analysis, transition conditions are irrelevant. But fundamental changes
and complicated flow structures seem to be occurring at active glacier beds on rather
short time scales. These processes are of interest in and of themselves, but also as part of
the dynamic system of the glacier and its responses. Exploration strategies can be
developed to begin to evaluate this physics, even if it does not appear mathematically
tractable at first.
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For example, suppose one wants to model the mechanisms of how the ice flow
transitions to its new state. The time-dependent continuity model contains in its heritage
the understanding first formally articulated in several papers by Johannesson and others
(1989a, 1989b) and Raymond and others (1990) that the response time scale for glaciers
and ice sheets is that of the “volume time scale.” This time scale is a measure of the time
for a glacier or ice sheet to reach a new equilibrium state following a climatic or mass
balance event. Thus, computational time steps and non-dimensionalized time are
regularly scaled to be of order [H}/[a] in most analysis models since the mid-1980’s,
whether for kinematic waves or for long term climatic adjustments. This means that the
shorter duration transient behavior that is on the scale of the “first awareness” in the
glacier that a change is occurring, should perhaps be scaled differently so that rapid,
transient flow states may be captured and modelled. Steep, fast, wet glaciers may seldom
be in steady state, and longitudinal stress gradients as well as complicated basal processes
may contribute significantly to multiple flow states. Hence, certain spatial scaling
assumptions based on aspect ratio that ignore stress gradients may break down. The
appropriate time scales for these conditions may also be better represented by the short
time scale T, (Raymond and others, 1990) which is similar to the /e folding time
response of a system — the time between the climate event and the occurrence of first
changes in the system (as opposed to the time to fully relax to a new equilibrium state).
Thus, the equations of motion, while still not including inertial terms, might be scaled
differently in time from the normal spatial scaling in order to capture such flow physics,
and these types of analysis procedures would need to be verified anew. An experiment
could be devised to use the method of multiple time scales (Nayfeh, 1973; Kahn, 1990) to
explore the ramifications of such scalings, whether physically realistic or not, and see
where they break down numerically. This way, the rationale behind the scalings can be
teased out and the degree of inflexibility in modelling assumptions can be challenged.
The experiments may fail due to errors induced by inappropriate time-steps in the
numerical scheme that are meant to guarantee stability. But usually these time-steps are
calibrated according to the relaxation scale of the problem being modelled. Numerical
experiment with such strategies are not meant to disrupt the main agreements in the
glaciology community; rather, they are meant to see how the failings of such experiments
are tied back to better understanding of the physics or numerical methods, and thus to
better understand uncertainty.

CONCLUSIONS
Extensive analysis of the sources of uncertainty in mathematical modelling and numerical
representations relevant to computational fluid dynamics and glacier modelling has been

-34-



presented. Methods for code verification and model validation that are becoming more
frequently used in the aerospace CFD community are presented in this paper in an effort
to bridge these methods into the glaciological modelling community. Although
substantial differences exist between the physics of glacier and ice sheet flows and that of
aerodynamics, the numerical verification methods on the finite difference schemes,
boundary conditions, and auxiliary relations can be quite similar. Model validation
strategies for PDEs consist of both using benchmark test cases containing analytic
solutions or known data results, and using calibration of models to establish refined
applicability conditions that constrain the uncertainty inherent in the mathematical
representations. Sensitivity analyses are found to be necessary methods for both research
communities. Specific analysis of the plausibility and ramifications of both physical and
numerical assumptions become not only important for credibility, but such analysis also
dictates model interpretation methods.

Several example papers from the recent glaciological literature are presented to
demonstrate a suite of validation and verification methods and their applications. Some
suggestions are included to further refine these methods; but on the whole, these papers
are primarily presented as target examples of excellent verification and validation efforts.
The physics of glacier flow and the detailed conditions of the glacier beds are being
modelled to ever increasing complexity. As more satellite and field data becomes
available in heterogeneous forms to be used in model initialization or results validation, it
becomes imperative to carry out numerous numerical experiments in an effort to boot-
strap verification and validation methods into this more refined analysis. Error analysis
needs to be published along with the computational results. To this end, an information
architecture that has been developed for use by CFD researchers and design
aerodynamicists is presented and described as a tool for managing such experiments and
explorations. It is currently being modified for specific use in glacier modelling, and its
content and a variety of scenarios for its use are presented.
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