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ABSTRACT. There are procedures and methods for verification of coding algebra and

for validations of models and calculations that are in use in the aerospace computational

fluid dynamics (CFD) community. These methods would be efficacious if used by the

glacier dynamics modelling community. This paper is a presentation of some of those

methods, and how they might be applied to uncertainty management supporting code

verification and model validation for glacier dynamics. The similarities and differences

between their use in CFD analysis and the proposed application of these methods to

glacier modelling are discussed. After establishing sources of uncertainty and methods

for code verification, the paper looks at a representative sampling of verification and

validation efforts that are underway in the glacier modelling community, and establishes

a context for these within overall solution quality assessment. Finally, an information

architecture and interactive interface is introduced and advocated. This Integrated

Cryospheric Exploration (ICE) Environment is proposed for exploring and managing

sources of uncertainty in glacier modelling codes and methods, and for supporting

scientific numerical exploration and verification. The details and functionality of this

Environment are described based on modifications of a system already developed for

CFD modelling and analysis.

INTRODUCTION AND BACKGROUND

Verification of numerical glacier models generally intends to answer the question of

whether the governing equations were solved correctly. That is, does one believe that the

process of solving a model of discretized equations plus their boundary conditions, initial

conditions, any input data, and conceptual modelling assumptions has yielded a

converged solution that is correct within bounded numerical error. Verification arises by

assessing numerical accuracy against expectations of the theoretical model, and by strict

uncertainty modelling and analysis of the model parameters, limits, and numerical

convergence histories of the code over specified grids. Usually, the problem statement

itself should indicate what counts as an acceptable level of numerical accuracy and

solution stability by defining the purpose and fidelity of the analysis. Accuracy is

measured against the scientists' codified expectations from this problem statement.

Expectations arise from a variety of sources: field observations and data, satellite sensor

data, and laboratory experiments, each of which are incomplete data-sets that
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approximatereality; benchmarkanalytic solutionsintendedto exercisethe code; code
performanceacrossa variety of grids; parameterresolution studies and sensitivity-
uncertainty analyses;andthe matchingof results to previously verified solutions and
methodson "similar" computationalproblemswithin a specifiedtolerance.The model's
ability to matchexpectationscanconstitutea verification of that model as long asthe
sourcesof numericalerror areunderstoodandcanbeaccountedfor in termsof technical

analyses.Suchanalysesincludesidentificationof bothcomputationaland flow physics
uncertainties,formal discretization order and accuracy,solution stability during grid
convergencestudies,andgeneralrobustnessof thenumericalmethod.

However,thereexistsa distinctionbetweenverification of a codeor model (the
numerical accuracy) and validation of the model (the correct conceptual problem
statement),and uncertaintyand errorscan arise from both sources. Here again, the
problem statementitself will dictatewhat countsasa solutionby projecting expected
resultsor solutionbehavior. Considerthe processof recoveryfrom mismatchedresults.
If dataandmodel resultsdonot agree,either onedecidesthat the model is accurateand
then analyzes why the data may be faulty, incomplete, inconsistent, or not fully
applicable(dataerrors);or onedecidesthat the dataareaccurateand hencethe model
resultsmustbe numericallywrong. If the model is wrong, the problemmay either be
improperdiscretizationor non-convergenceover thechosengrid (verificationerrors)and
the numerical schememust be reformulated; or the model may be an inaccurate

representationof the physical situationof interest(validation errors). In that case,the
equation results will never match the observeddata, and the model itself must be
reformulatedto capturethecorrectphysics. We maybesolving theequationscorrectly,
but we aresolving thewrongsetof equations.Note that anincomplete representation of

the physics is not by itself a validation error or a wrong set of equations. It may well be

an intentional model simplification or approximation in order to isolate and study certain

processes or to maintain numerical tractability. But, an incomplete representation will

induce uncertainties.

Verification and validation of codes and models are thus distinct processes.

However, since the overall goal is to establish the credibility and solution quality of the

numerical model, to match the conceptual model to reality, and to identify and manage

the uncertainties, these two processes are frequently employed together to these ends. In

fact, the two processes may be intertwined whereby validation establishes the context and

content of the physical problem being modelled and dictates levels of acceptability and

uncertainty, and verification establishes the numerical accuracy of the codes and

mathematical constructs through rigorous methods. The two processes together create

credibility, confidence in solution quality, and insight and intuition for further

exploration.
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In 1994, Oreskes and others published an article in Science entitled "Verification,

Validation, and Confirmation of Numerical Models in the Earth Sciences." In this paper

they argue, from a philosophical point of view, that verification and validation of

numerical models in the earth sciences is impossible due to the fact that natural systems

are not closed, so we can only know about them incompletely and by approximation.

Although surfacing significant philosophical issues for verification, validation and truth

in numerical models, unfortunately their arguments to support this thesis fail frequently

due to actual conflation and misuse of the very terms and concepts the paper is intended

to elucidate. They correctly argue that numerical accuracy of the mathematical

components of a model can be verified. They also hold that the models that use such

mathematical constructs (the algorithms and code) represent descriptions of systems that

are not closed, and therefore use input parameters and fields that are not and cannot be

completely known. But this is not a successful argument against the possibility of model

verification; rather, it is an issue of whether the application of a numerical model

appropriately represents the problem being studied. Hence, this is a problem in model

validation or model legitimacy, not one in verification.

In terms of model validation, Oreskes and others (1994) discuss establishing the

"legitimacy" of the model as akin to validation. As far as it goes, this representation is

accurate; but they claim further that a model that is internally consistent and evinces no

detectable flaw can be considered as valid. This is a necessary, but not sufficient,

condition for validation of models, and it derives from the philosophical usage of

establishing valid logical arguments, not from practices in computational physics. Hence,

once again their arguments are using terms from the philosophical literature that carry

different technical meaning and reference from those same terms in the scientific

literature. Such misuse is clear when they say that it is "misleading to suggest that a

model is an accurate representation of physical reality" (p.642). In point of fact, the

intent of the scientific model is to represent reality or a restricted and defined

simplification of physical processes, and validation is specifically the process that

demonstrates the degree to which the conceptual model (the mathematical representation)

actually maps to reality. The fact that a model is an approximation to reality does not

mean such representation is "not even a theoretical possibility" (p.642) due to

incompleteness of our data-sets. Rather, such analysis and mapping dictates exactly what

validation of the model means, and what the limits of applicability of the model are.

Establishing validation means establishing the degree to which the conceptual model is

even supposed to encompass physical reality.

Verification, validation, and recognition and control of uncertainties are precisely

the way the scientific community deals directly with the acknowledged problem of open

systems and incomplete data at a variety of scales. There are certainly philosophical

issues to be addressed in verification, validation, and uncertainty management for
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dynamical systemsmodelling, suchas choiceof closureof equationsin analysisand
representationin simplified or reducedmodels. But numericalaccuracyandverification
of models is not about philosophicaltruth or commonusageof terms. Credibility of
simulationsis establishedby recognizingcomputationaland flow physicsuncertainties
andby quantifyingthem. The scientificcommunityproperlydealswith incompleteness
andopennessof naturalsystemsthroughquantification of model limits and rangesof

applicability, through model representationalternatives, through specific numerical
accuracytests,throughanalyzingthescaleof coupling of variouslinked flow processes,
through sensitivity and uncertainty analysis,and so on. Once "natural philosophy"
became rigorous and computational, then verification, validation, and uncertainty
managementin sciencecodesandsciencestrategyscenariosis certainlynotonly possible
but necessary.And whereasunderstandingnumericalaccuracyof codesis importantfor
credibility, understandingmodellimitationsis essentialfor modelapplicabilityandusein
scienceproblems.

The aerospacecomputationalfluid dynamics(CFD)communityhasbeenengaged
in substantialeffortsat definingandquantifyinguncertainty,anddevelopingverification,
validation, and code calibration processessince the mid-1980's (Mehta, 1991, 1998;
Roache, 1997, 1998). This paperpresentssomeof thesemethods,and clarifies the
similarities anddifferencesbetweentheir usein CFD analysisandproposedapplication
of thesemethodsto glacier modelling. First, the sourcesof uncertaintyanderrors are
discussed. Then appropriateproceduresfor validation and verification are presented.
Next, the paperlooks at a representativesamplingof verification andvalidation efforts
that areunderwayin theglaciermodellingcommunity,andestablishesacontextfor these
paperswithin overall solutionqualityassessment.Finally, an informationarchitectureis
introducedandadvocated.This IntegratedCryosphericExploration (ICE) Environment
is proposed for supporting scientific numerical exploration and for exploring and
managingsourcesof uncertainty,whetherfrom data-set,verification,or validationerrors.
Thedetailsandfunctionalityof thisEnvironmentaredescribedbasedonmodificationsof
a systemalreadydevelopedfor CFDmodellingandanalysis.

SOURCES OF UNCERTAINTY IN MODELS AND CODES

Uncertainty refers to a perceived lack of reliability or confidence in the results of a

simulation of some physical process. Uncertainty specifically refers to errors, but not to

mistakes. Errors are expected to arise simply from the fact that the physical process of

interest is being modelled by continuum partial differential equations (PDEs) and their

boundary conditions, and from the fact that the continuum model is then re-represented in

discrete mathematics for machine implementation. Identifying and quantifying

uncertainties, and understanding their origins and propagation through both the
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conceptualand numerical modelsand codes,is doneto establishcredibility in these
representationsof reality.

It is very importantto separatesourcesof errorsanduncertaintiesthatarisefrom
therepresentationof the physicalprocessasa mathematicalmodel from thosethat arise
from the discretization of the math model and its operation by the computer. For
example,two sourcesof error in acodemayinteractor canceleachotherat somescales
andresolutionstherebyhiding real features,or non-physicalbehaviormay arisein the
numerical process that is then masked. Alternatively, changesthat are made for
convenienceto aboundaryconditionin thecodemustbeevaluatedasto whetherthis is a
reasonableboundaryconditionin thecontinuummodel,or non-physicalsimulationsmay
resulteventhoughthe numericalmodelconverges.Suchinteractionsandchangesmust
be trackedandisolatedsothat actualuncertaintiescanbemeasured.This desirehasled

to separatingthemodel validationprocessfrom the codeverification process.Thus in
glaciermodelling,onemustbeseparatelyconcernedwith errorsanduncertaintiesarising
from the flow physicsrepresentations,with thosestrictly due to the numericalscheme,
andwith thepropagationof errorsthatareassociatedwith local featuresin modelor code
into more regional or global parts of the model. Local errors and uncertaintiesare
frequently accessibleto analysisby algorithmic methods. But as suchuncertainties
propagatethrough the model evolution, or impact upstreamor downstreamof their
source,thetrackingof suchuncertaintiesbecomesaproblemin model interpretationthat
is frequently not amenableto algorithmic analysis. Strategiesto explore impactsand
propagationof errorsmustbeworkedoutbasedon targetresultsandvariationsof these.

In this section,the sourcesof errorsanduncertaintiesthatarisein glaciermodels
and their computationalflow codesarediscussed. The basis for this discussionand
categorization of featuresand errors is drawn from the developmentof uncertainty
identification andmanagementthat hasbeenoccurringrecentlyin theCFD community
(Mehta, 1991,1998;OberkampfandBlottner, 1998;Roache,1997,1998). Clearly, both
in useandfocus,CFD for aerospacedevelopmentanddesignis ratherdifferent from that
of fluid dynamicsfor glacierand icesheetmodelling. However, the lessonslearnedin
the CFD community canbemappedinto expectationsandguidancefor developmentof
verification andvalidation scenariosby theglaciermodellingcommunity. Furthermore,
the structureof uncertaintyanalysisbetweenaerodynamicsandglaciermodellingcanbe
remarkably similar. Both disciplines start their analysis from the Navier-Stokes
equations for momentumbalance; they both include auxiliary processmodels that
becomeproxy for andreplacesimpleboundaryconditions;andthe failing of theorems
aboutequivalencebetweencontinuumanddiscretemodelsarisesdueto the nonlinearity
of the PDEsratherthanjust presenceor absenceof varioustermslike inertial or viscous
relationsthatnormallydistinguishglacierflow from aerodynamicanalysis.
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Sources of Modelling Uncertainty

Uncertainties in creating a mathematical model of a physical process are caused by

inaccuracies, approximations, and assumptions in the mathematical representation. These

errors are completely distinct from numerical errors that will be discussed later. Such

inaccuracies may be intentional in that we know an approximation to the physics has

been made to ensure mathematical tractability or from the desire to isolate certain

processes. However, the extent of the inaccuracies, or their impact on model evolution

and representation, may not be fully anticipated. Other inaccuracies arise unintentionally

due to our paucity of understanding of the details and interaction scales of the processes

being modelled. In any case, these inaccuracies can be categorized as to source if not

effect or extent. Part of exploration of these uncertainties and their propagation is to

develop better scientific understanding, intuition for future refinements, and for general

model validation through comparison to data from experiments (physical or

computational), from field work on glaciers or deglaciated beds, and from satellite

sensors.

Consider first the uncertainties that arise from the PDEs of fluid dynamics. There

is often not a complete understanding of the phenomena or processes being modelled -- in

fact, this is usually the reason for doing the simulation. Hence, the mathematical

representations will be incomplete. The modelling parameters may be incompletely

known or be intentionally averaged. There may be a lack of field data for describing

expected ranges of these parameters or other dependent variables. In short, the math

model is generally a simplified picture of reality. The uncertainties related to this

simplification depend heavily on whether the mathematical representation has captured

the dominant physics at the right scale for the process being investigated. To guarantee

control or understanding of the uncertainties, frequently the PDEs are formulated so that

the simplest appropriate forms of the equations can be used. Then the equations are

extended to more complicated flow situations in a reasoned manner. But as the model is

extended, more accurate information about the processes is required, and hence more

uncertainty may be introduced. Errors occur at each level of approximation.

The model may be written to isolate features or processes of interest, and these

are then uncoupled from real system behavior. The purpose of isolation may be to better

understand the process or simply that it is not feasible to model everything

simultaneously. However, such isolation implicitly assumes that either there is no

influence between the process and the rest of the system, or that the influence is known

and understood. The degree to which this is untrue introduces uncertainties into the PDE

model and its final results.

Oberkampf and Blottner (1998) describe a chain of increasing complexity of flow

problems in which more detailed physics is added during CFD analysis. Usually the

aerodynamicist starts with inviscid equations. One then progresses to full viscous
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Navier-Stokesequationsusing the inviscid resultsasguidance,although this cangive
misleadingresults. A varietyof increasingapproximationsandcomplexitydirectionscan
follow. Onecananalyzemixed speciesflows. Onecan includeturbulencemodels for
recognizing and simulating particular featuresin certain flow configurations, namely
typesof shockstructuresor vortexcores.Alternatively,onemightaddor coupletogether
specificphysicalphenomenawith thegeneralflow field, or perhapsusetransitionmodels
that crossboth laminar andunsteadyflow conditions throughchangingtemporal and

spatialcharacteristics.
In glaciermodelling,aparallelseriesof increasingcomplexitymightbe to startas

normalwith restrictedviscousflow but with complicatedrheology. Thenonemight add
thermodynamicmodels. Our mixed speciesequivalentcould be modellingentrained
debrisat the ice-bedrockinterfaceor till depositionmodelscoupledto the ice flow. If a
true couplingof ice flow and basalprocessesare modelled, this requires additional
algebraicrelationsor perhapsnew PDEsratherthanjust specifiedboundaryconditions
(Blatter and others, 1998). Next one might envision developingmodels for transient
phenomena.For example,onemodelmightassessthetransientflow characteristicsthat
ariseasa glacierevolvesfrom onesteadystateto another.A secondmodelmight study
the growth to finite amplitude of secondaryflow structuresin the ice. Thesewould
require solution of additional PDEs. Then, rather than using averagingmethods or
scalingof governingequations,onemight couplethesespecifictransientphenomenainto
the generalflow field. Increasingcomplexityleadsto increasingunderstanding,but also
to increasinguncertaintyin thePDEsthatmustbeevaluated.

Modelling may inadvertentlyintroduceextraneousphysical (or computational)
phenomenaandfeaturesdueto theperturbationandconstraintof existingflow conditions
from useof simplification. For example,a 2-dimensionalrepresentationautomatically
eliminates the possibility of modelling 3-dimensional featureslike vortices or even
simple transverse flow. That simplification is understood and frequently made
intentionally. But restrictingflow to 2-dimensionsalsointroducesextraneousconstraints
at boundariesunlesscomplicatedflux boundaryconditionsarecreatedto preventover-

constrainingthe flow that could introducenon-physicalinstabilities or discontinuities.
The ramificationsof suchassumptionsmustbe thoroughlyexploredandunderstoodin
orderto maintaincredibility of theresultingflow solutions.

Uncertaintiescanariseseparatelyin the auxiliary physicalmodelsaswell, some
of which themselvesmay be PDEs. Generally, auxiliary physical models refers to
equationsneededto closethemomentumbalanceequationssothat asolution is possible.
In simplified CFD, this usuallymeansemployingequationsof stateapproximationsand
thermodynamicparametersor relations. As the CFD equationsincreasein complexity,
the auxiliary relations include transportpropertiesand constitutive relations between
stressandstrain-ratein orderto modeleddyviscosity. The flow may alsobecoupledto
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structuralbendingdue to pressureloadsover a wing. Also, new turbulencemodelsare
usedwhoserangesof applicability mustbedeterminedby experimentalresults(usually
in wind tunnels)to resolverapidly varyingflow conditions.

In the glacier modelling analog, our auxiliary relations are the constitutive
relations and flow laws from which effective viscosity profiles are derived. We may
include thermodynamicrelations and heat flux models that require additional energy
balance equationscoupled to the flow equations. An asymmetryoccurs in glacier

modelling in that the equationsare initially written requiring stresstensorderivatives.
Laboratorytestson ice samplesyield strain-ratedata,andfield measurementsonglaciers
yield velocity andstrain-ratedata. Viscosity is derivedby modellingthis datawith flow
law assumptions,and the governing equations are then written either in terms of
velocities,viscosities,andtheir derivatives,or in termsof velocitiesandstrain-rateswith
viscosity becomingan explicit function of strain-ratesthroughthe assumedflow law.
Alternatively, the equationsmay alsobe written entirely in termsof ice thicknessand
fluxes with the flow law asan auxiliary constraint. Thus,theseauxiliary relationsand
transformationsleadto highly nonlinearPDEsevenfor simpleflow fields.

Finally, sources of modelling uncertainty arise from the representationof
boundaryconditions(BCs). Dirichlet conditionsthat specify velocity andtemperature
offer noproblems;but anyBC thatspecifiesmorethanthatrequiresinformation from the
interior domainof theflow. Generallytheflow solutionmustbe found,thenthatsolution
is usedin a separatePDE asa consistencycondition,andthis new equationis solved.
Selectingthecorrectmatchingcondition or consistencyrelation is necessaryto control
the uncertainty in the model. Additionally, BCs along a glacier bed may require
boundary discontinuities in velocity or stress,accurateor scaledrepresentationsof
bedrockgeometry,andanalysisof thefidelity of thecomputationover thatgeometry(see
for example,Colinge and Blatter, (1998.)andBlatter and others (1998), for problems
identified andtheimpactat thenumericallevel). Oneobviousdiscontinuitycomesfrom
representingthe flow field at glaciermargins,anduncertaintiesariserelatedto selecting
anadequateresolutionof conditionsat thesemoving or fixed margins. Mathematical
singularitiesmaybehandledin thecontinuummathematics;but with theultimategoal of
deriving numerical simulations, such singularitiesmay be very difficult to program
numerically. Hence,the PDEs and their discrete representationswill turn out to be
differentproblems.

Uncertainty in free surfaceconditions generally arises from the problem of
selecting the correct matching conditions to apply basedon the phenomenato be
analyzed. For example,a simpleclaim of continuity or vanishingnormal velocity or
shearstressat a deformedsurfacemay not be sufficient if actual masstransport is
anticipatedacrossthatsurfaceto induceflow perturbationsfrom anaccumulationevent.
Interfaceconditionsareequallyimportant;for example,onemaydecidethatheatflow is

-8°



continuous acrossthe interface but perhapsa simple match of temperatureswill be
sufficient for thecaseat hand. Numericalmodellingschemesmay alsointroducelayers
of interfacesacrosswhichconstraintsagainstdiscontinuitiesareimposed.

The most difficult conditions are probably the open BCs. These include
inflow/outflow conditions in CFD, and include flux conditions in glacier modelling.
Exampleswould bespecifyingcouplingor transitionconditionsfrom an ice divide into
channelizedflow, ice sheetcoupling to ice streams(Marshall and Clarke, 1996), or
modelling till deformationcoupled with entrainmentor depositionfrom the ice flow
field. The issueis how to specify themwhile maintainingcontrol on uncertainty,and
oftenwhereto apply them(at infinity marginsor nearfeaturesof interest,like ice rises).
If the PDE is over-constrainedby theseconditions,thesolutionmayexhibit instabilities
thatcontaminatetheactualflow solution;if theflux conditionsarenotcoupledproperly,
theresultingsolutionis spurious.

The overall lesson is that developing the mathematical model requires
identification and managementof uncertainties. Theseuncertaintiesarewhat must be
expunged,mitigated, or accommodatedduring the model validation process,whether
results are comparedwith lab or field data or with previously benchmarkedflow
solutionsthat actastestcasesforvalidation.

Sources of Code and Numerical Uncertainty

Code and numerical uncertainty leads directly to issues of verification as opposed to

validation. Generally, all sources of errors in codes and calculations arise either from

questions of equivalence of the discrete computational model to the original

mathematical PDE model, or from questions of the numerical accuracy of the

discretization scheme and its implementation. In this section, these two sources of

uncertainty and error are examined.

Roache (1998) outlines five sources of error in code development and use. Code

authors can make errors during code generation and while developing code use

instructions. Code users can make errors in their problem set-up, in their definition and

coding of benchmark cases (possibly analytic) for use in results comparison, and in their

interpretation of code results. Hopefully, the code verification process would remove the

error source derived from code and instruction development. Code use errors however

may arise anytime a (verified) code is applied to a new problem statement. When a code

is applied to a new problem, the fact that the code has been previously verified does not

give any estimate of its accuracy for this new problem. Systematic grid convergence

studies are needed to verify the code on the new problem domain, and this is separate

from the activity of validation that the PDEs are appropriate for the new problem.

Consider the problem of code and instruction generation. The solution procedure

used in an algorithm or code is an approximation to the original PDEs. Errors arise in
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codingdueto the discretizationschemeselectedthat is intendedto mapthe PDE model
into a finite difference,finite element,or finite volumerepresentation.Thus, thePDEs,
the auxiliary equations,andthe boundaryconditionsareall discretizedto someorder,
definedby a truncationerrorof the seriessolution. The truncationerror allows one to
definethe order of accuracyof the solution; thediscretizationerrorgivesthe numerical
errorof thecalculationdueto thefact that thesolutionis soughtovera finite numberof

grid points. In additionto discretizationerrors,therecanalsobeerrorsin the computed
solution of the set of discretizedequationsrepresentingthe PDEs, and thesearenot
necessarilyrelatedto grid convergence(thediscretizationaccuracy),or to thenumerical
mappingand establishmentof orderof accuracy.Theseadditionalerrorsarisefrom the
behaviorof thenumericalschemeitself.

The foundationfor the discretemath approachto solving PDEs numerically is
basedon an equivalencetheorem(OberkampfandBlottner, 1998) that says: 1) the
difference equations are equivalent to the differential equations (guaranteeing
consistency);and 2) the solution remainsboundedas it is solvediteratively over the
spaceand time discretizations,5 (guaranteeing stability). The problem for the PDEs Of

fluid dynamics and of glacier modelling is that this theorem only provides necessary and

sufficient conditions for convergence for linear PDEs. For nonlinear problems,

consistency and stability are only necessary conditions (not sufficient) that the numerical

solution will converge to the continuum solution in the limit of infinitesimal A. Hence,

the numerical solution may oscillate, diverge, or only converge slowly and perhaps to an

alternate solution or spurious steady state. Hindmasrh and Payne (1996) introduce the

use of iterated maps as a way of following the evolution of the numerical solution so as to

understand its reasons for oscillations or spurious convergences. So, in terms of practical

equivalence, how the difference equations are written and solved can determine what

solution flow field is obtained. This behavior is especially apparent in either over- or

under-specification of the discretized boundary conditions, but it also has to do with the

residual accuracy of the calculation -- sometimes thought of as the speed of iteration to an

acceptable convergence. However, Roache (1997, 1998) makes the point that grid

generation errors or the construction of bad grids will add to the size of the discretization

error, but they do not add new terms to the error analysis. So as the discretization

improves, all errors that are ordered in A will go to zero, and hence an error taxonomy

should not include both grid and discretization errors as separate categories. This is

because one cannot take the limit of infinite order (equivalent to zero truncation error)

without also taking the limit of infinite number of grid points. Yet in practice, the code

developers may include iterative tuning or relaxation parameters, that are problem

dependent, to speed iterative convergence, and this may contaminate the actual grid

convergence (discretization accuracy) results.
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Equivalent sources of error can arise from the discretization of the auxiliary

relations and the boundary conditions. If the auxiliary equations are linear algebraic

expressions, the formal error is equivalent to the machine round-off error. But since

many of the auxiliary relations for our PDEs are nonlinear expressions, then some

iterative technique is required for their solution and coupling to the momentum equations.

Any errors that arise in any iterative step that is not fully converged will propagate

through the solution process. In glacier modelling, such errors might arise when

modelling equilibrium chemistry at the glacier bed, or transport and deformation of

substrate materials. Many errors can be reduced by good interpolation schemes, but one

needs to know the required accuracies of the problem in order to impose interpolations

that do not induce uncertainties. In particular, the errors in the approximate

representation of the properties and features being studied need to be on the same order

as the errors introduced by the approximation techniques for interpolation, or else the

numerical model cannot resolve the features. In CFD, the turbulence models used must

be appropriate for the conditions and flight configurations being simulated. In glacier

modelling, an auxiliary model of preferred fabric orientation that might enhance flow to

surge status may not be appropriate as an auxiliary model, even if physically accurate,

due to the disparity between scale of resolution of the flow model to ice fabric scales.

Rather, a model would need to be created that mapped changes in fabric to changes in

strain-softening in the effective viscosity. This 3-dimensional viscosity model would act

as a proxy for material nonlinearities, coupling fabric orientation and stress gradients, and

it would operate in the momentum balance equations as an auxiliary relation.

The discretized boundary conditions must provide consistent information for the

solution of the discretized PDEs. According to Oberkampf and Blottner (1998), the

balance between over- and under-specification of knowledge on the boundaries of the

finite-difference model is more difficult to obtain and implement than is this information

for the original PDEs. Recall that over-specification of discrete BCs can cause

divergence in the numerical scheme, and under-specification can cause lack of

convergence, solution wandering, or convergence to alternate steady states depending on

grid sizes, features to be resolved, and relaxation parameters used. They speculate that

this additional difficulty of matching BCs in the discrete case is due to the fact that the

particular differencing scheme and the grid size determines the degree of coupling of the

BCs to the interior flow equations. Conversely, in continuum math, the PDEs are always

fully coupled to the boundaries. Thus sources of error and uncertainties need to be

monitored and explored to maintain credibility of the model verification results. Only a

rigorous grid refinement study will establish the overall order and accuracy of the

complete numerical scheme (equations, auxiliary relations, and BCs) and will provide

confidence in matching accuracy and spatial differencing scales. Grid convergence

methods are discussed in the following section.
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Additional representation complications, and hence sources of numerical error

and uncertainty, arise from the cases of flux BCs and the use of unsteady or moving BCs.

As mentioned previously, flux BCs are difficult to select and implement in the continuum

PDE case, and in the discrete case these problems remain even for steady laminar flow.

Oberkampf and Blottner (1998) site CFD cases wherein there is clash between numerical

solutions and experimental data. When comparing the analytic limit of A --> 0 for the

inflow/outflow BCs, these were found to be incompatible with the original PDEs (p.693).

For cases of unsteady or moving BCs, the CFD example is one of analysis of reacting

flows. For the glacier analog, instead of a specific BC for basal conditions, we might

envision process models as consistency conditions that are used to describe entrainment

of till and general bed deformation. Such complications are realistic, but are difficult to

model and match to the glacier flow field. One way to gain confidence in these processes

is to numerically experiment with the sensitivity of the flow to variations in these process

models. One could then eventually extract a representative moving boundary relation; or

one might use the ice "ceiling" as a BC for a basal deformation flow model and thus

circumvent moving boundaries.

Finally, consider Roache's (1998) error categories that pertain to code use,

namely problem set-up, coding of benchmark cases, and interpretation of results. These

all refer to errors and uncertainties in the final discrete solution and results comparisons.

It is important to note that to minimize solution errors, the magnitude of change tolerated

on the dependent variables during iterations depends on the time step limit (Hindmarsh

and Payne, 1996; Oberkampf and Blottner, 1998) as well as on the current convergence

rate. One wants the iterative convergence error (that is, the residual accuracy) to be

smaller than the temporal discretization error before going to the next time step. Hence

one needs to compute the residual for each equation at each grid point, and let this

residual approach some bounded value for all difference equations at all grid points. This

will guarantee control of the discrete solution errors, and is necessary for stability. It is

not always sufficient to merely iterate a solution until there are small changes in the

dependent variables; non-movement of dependent variables does not guarantee small

solution error. Solution strategies and their specific implementations must be explored to

gain appreciation for the variability of discretization schemes and system performance.

This knowledge lends credibility to target solution results.

PROCEDURES FOR VALIDATION AND VERIFICATION

The strategy for carrying out validation and verification processes is iterative. The

outcome of model validation is meaningless without identifying and understanding the

effects of numerical errors and their propagation on the model. This would say that

verification should proceed validation. But part of validation is establishing the correct
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problemstatement,thebestrepresentationfor that problemin varioussetsof continuum
PDEsandtheir boundaryconditions,andan assignmentof parametervaluesor ranges.
This needsto bedonebeforethediscretizedPDEsareformulated,thenumericalscheme

andgridding is selected,thecodeiscalibratedacrosstestcasesin numericalexperiments,
and the schemeis verified. Thus,the processis iterative,andrefinementof fidelity of
both thephysicsandits numericalrepresentationmustproceedstep-wise.

This section first examinesvalidation methodsthat establishthe context and

contentof problemstatements.It is followed by presentationof somerigorousnumerical
methods, that have been developedand used for incompressibleNavier-Stokesand
relatedPDEs,andthat canbe usedto verify thenumericalaccuracyand limits of such
discretizedcodes. In this sense,verification is the processof doing experimentson the
numerical schemesthemselves,and this is different from the processof benchmarking
thecodesto testcasesthatrepresentacertainfidelity of reality.

Model Validation Procedures

Rizzi and Vos (1998) outline a procedure for validation, and it is very similar to the goals

and intents of the EISMINT (European Ice Sheet Modelling Initiative) experiments.

Validation is also a step-wise process, and between the steps of increasing code fidelity

lie opportunities for code and calculation verification. In the CFD world, as in the glacier

modelling community, the validation process is carried out by comparing representative

simulations with trustworthy detailed experimental measurements, and this is done with

increasing maturity of the PDE model and its numerical code. At the development stage,

research codes that are assumed to accurately model the continuum PDEs are validated

by comparison with benchmark experimental test cases of relatively simple flows, on

simple geometric configurations, and include a single dominant flow feature. These

experiment test cases are wind tunnel or flight simulation experiments for aerospace

CFD, but in glaciology the benchmark cases are derived computational models with

pedigree in extensive laboratory and field data or in previously verified simple flow

models.

At the second stage, the physics and code is extended to include at least two flow

features or phenomena that interact with each other. This analysis is done in the CFD

case over a component of an aerodynamic system (such as interacting shock wave and

boundary layer over a wing). In the glacier modelling case, this stage is similar to the

pre-Level II EISMINT model intercomparison experiments that contributed to the 1997

Grindlewald Meeting. At that phase, several aspects of ice-sheet model phenomena that

were not addressed in the EISMINT-1 needed exploration, but still over simplified

geometry. These aspects included:
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1. full coupling of temperature evolution with flow through

T-dependent ice rheology;

2. temperature and form response times to step changes in

the boundary conditions;

3. divide migration rates in response to accumulation;

4. response to simple, T-dependent sliding laws; and

5. response to topographic variation.

(see Payne: http://www.soton.ac.uk/-ajp2/eismint2/eismint2.htm).

Like the CFD case, these experiments also represent two interacting flow phenomena and

are still carried out over simplified geometry.

Finally, the mature stage of validation, one that is anticipated in later EISMINT

model intercomparison exercises, is detailed by Rizzi and Vos (1998) as using full

production code, relying on comparison with complete systems configuration, focussed

on global performance data of the computational model. In the EISMINT case, this

would match numerical models against derived Greenland and Antarctic representations

and geometries. The test cases for the mature code use full system models not just

components, and they involve complex flows with multiple interacting features that

represent a specific fidelity and scale of the physics.

To carry out these validation efforts, a degree of model calibration and tuning is

required. Although calibration is intended to tune the numerical code with a particular

fluid dynamics model in order to improve its predictive capacity of globally integrated

(and measurable) quantities, calibration in fact leads to a loss of generality in the model.

Hence, calibration must be carried out over several test cases that cover both presence

and absence of the various physical phenomena of interest in order to bound the effects.

This defines a restricted class of flow problems and features to which the model and code

is sensitive, and is hence part of validation.

Code Verification Procedures

At this point, it becomes necessary to intertwine verification steps with the model

validation process, for as we have seen, verification of a code for one problem does not

guarantee the same level of accuracy for other problems. Similarly, the simulation is

only valid for a certain class of problems in that agreement of a calibrated model with

reality may be only fortuitous when it is used under conditions different from the original

calibration set. Grid convergence testing probably needs to be carried out whenever the

problem statement is substantially enhanced to establish or maintain equivalent solution

accuracy. This process is almost never done due to the expense of either setting up

multiple new grids and running the code while monitoring errors, or running multiple

variations of the code across the same grid. However, each instance of verification
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establishesthe level of accuracy and sensitivity of solution results and parameters in the

numerical scheme. If the code is new and increasingly complicated, and there is limited

experience with it, then it is worth re-verifying that it numerically converges to

previously verified versions of code, or to available, manufactured exact solutions.

The sensitivity of the simulation to discretization error is established through

convergence to known solutions or through grid refinement studies; for example, by

comparing several simulations of the same problem across different grid resolutions. The

iterative process is: evaluation of model uncertainty using sensitivity analysis; then

validation via comparison with measurements or test case models; next code verification;

then extensions of the model; and back to rigorous verification of the new set of

equations. As one progresses, it is important to demonstrate the degree to which the

previously calibrated models and their uncertainties are transferable to the new problem

of interest. Below are two methods for verification of codes: one using recovery of a

manufactured analytic solution that exercises all derivatives in the code, and one that

bounds grid resolution errors through refinement studies.

Oberkampf and Blottner (1998) describe a method for verifying a numerical code

using analytic solutions. Their discussion is a summary of an extensive paper by

Steinberg and Roache (1985) that uses MACSYMA symbolic manipulation for the

analytic expansion of derivatives as needed in this procedure. Roache (1994, 1997, 1998)

further extends and summarizes the method as part of uncertainty analysis for CFD

codes, and he includes grid refinement as part of the method• The appeal of this

procedure arises when one understands that to verify a code, one does not have to be

evaluating convergence to a physically realistic solution. One only has to be sure that all

derivatives in the code are exercised, including cross-derivative terms, and that all

iterations go to full convergence.

If one has an analytic solution to a PDE, then showing that the numerical model

converges to this solution constitutes a verification of that code. Generally, in CFD and

in glacier modelling, analytic solutions are not available for the PDEs of interest• Thus,

the Steinberg and Roache process is to construct one. First, they choose a specific form

of a solution function, similar to the class of problems treated by the code, and assume it

satisfies the PDE. Inserting this solution form into the PDE requires expansion of all the

derivatives analytically. Simplify the equation, and because the assumed solution does

not exactly satisfy the PDE, there will be inequalities of terms between each side of the

equation. Now group all terms resulting from this inequality into a forcing function term,

Q(x, y, z, t), and add this to the original assumed solution as a source term. This new

solution will now satisfy the PDE exactly and is an analytic, albeit not necessarily

physically realistic, solution. Next the BCs for this PDE experiment can either be

Dirichlet conditions, specifying the new solution function on the boundary, or they can be

Neumann or mixed conditions derived from the new solution function. The calculated
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source term Q and the new BCs must now be programmed into the numerical scheme.

The numerical code is then run to convergence, and the converged solution is mapped

against the manufactured analytic solution for agreement. If the agreement is acceptable,

then a substantial number of numerical aspects of the code have been verified. These

aspects include the numerical method and the spatial differencing scheme; the spatial

transformation technique used in grid generation; the coordinate transformation used for

exercising all terms in the code (discussed below); the grid spacing technique; and the

coding correctness and the general solution procedure.

Roache (1998) extends this method to include a grid refinement study, and in

doing so also verifies the order of the observed discretization (possibly different from the

theoretical order anticipated). The grid refinement study is described below; it shows that

systematic truncation error convergence is monitored during several runs of the code over

progressively refined grids. Thorough iterative convergence is required. As a metric, the

p-th order of error, Ep = error / Ap , for grid spacing A, should remain constant during

grid refinement if the code is doing what is expected of it. No drift in this error during

refinement verifies that the numerical method is accurate to order p over all points for all

derivatives.

One issue that arises is guaranteeing that the chosen solution function exercises all

derivatives in the numerical experiment, and generally a coordinate transformation is

chosen to ensure this fact. Steinberg and Roache (1985, p. 274-277) select the function

as follows. Assign coordinates x i - (x 1, x 2, x3) to be

Xi = _s + _i + tanh (d i _1 _2 _3) , i = 1, 2, 3

where _i = (_1, _2, _3) , with _i values being linear from 0 to 1 according to _1 = hi *

(i - 1), etc. Here h is the scale A in the original finite difference approximation, ks

represents a zero point shift in coordinate to avoid singularities at the origin. The d i is a

control parameter that adjusts the severity of coordinate stretching. If d i = 0, then there is

no stretching in x i . For non-zero d i , the tanh function allows non-zero values for all

derivatives in the PDE. Steinberg and Roache (1985) note that errors will show up more

readily when all coefficients of the PDE operator are of the same order. If this is not the

case, it is sufficient to scale the coefficients to help identify the source of the truncation

error during grid refinements. Later this solution can be used as guidance for problems

wherein the operator coefficients are of disparate size.
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Grid RefinementProcedures

Inadequategrid resolution can be a major source of overall numerical solution error. For

finite difference schemes, the spatial discretization error can be estimated using the

Richardson iterated extrapolation method. The method requires at least two numerical

solutions with different grid sizes for the discretization error to be estimated. Usually, the

fine grid solution is calculated over double the number of grid points in each direction of

the coarse grid. Roache (1994) developed a grid convergence index based on the

Richardson method that basically ratios an error estimate obtained on grids that are not

doubles (or halves) of each other, and converts the estimate to an equivalent grid

doubling estimate. Richardson's iterated extrapolation, or deferred approach to the limit,

(see for example Oberkampf and Blottner, t998, or Roache, 1998) says that for series

solutions

fexact = fdiscrete + O_Ap + H.O.T in A

where p is the assumed-known order of accuracy of the numerical scheme. The

coefficient o_ is a constant for a given solution and does not depend on any particular

discretization. Its value is also derived in the refinement process. Two numerical

solutions over different grids are computed, and these are combined to compute a new

estimate on the exact solution and a measure of the discretization error. Oberkampf and

Blottner (1998) point out that in practice, more than two refined solutions will be

required. First, the global accuracy of the method over solutions and integrated or

differentiated solution functionals (like integrated discharge, or differentiated velocities

yielding strain-rate fields) can be degraded due to inaccuracies or errors in

implementation. These errors may not show up in the first refinement or may have

cancelled out until the refinement shifts resolution scale. Second, the higher-order terms

in the extrapolation are not negligible at first because insufficient grid resolution was

undoubtedly used on the first few solution attempts. Refinements must continue until the

computed grid convergence rate matches the known order of accuracy of the code. At

that point, the method can be used to estimate the error between fexact and the discrete

fine-grid soIution (Roache, 1998).

Richardson extrapolation is best used not to obtain the correct discrete solution,

but to obtain an estimate of error by differencing the solutions derived. Accurate

application of the method for error estimation, with known order of accuracy p, requires

that the observed convergence rate equals the formal convergence rate. When this

happens, the leading order truncation error term in the error series is known to dominate

the error, so the estimate is accurate. Note, however, that nonlinear features of the
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equations may contaminate grid convergence, so if excessive refinement seems required

to match convergence rates, it may indicate other problems.

If the goal is to verify the actual order of accuracy for a problem rather than using

a known p to estimate error, then a variation of this method suffices. The actual observed

order may be different from the predicted order based on the scheme because the

observed order of convergence depends on achieving the asymptotic range of the solution

at small residuals. The observed order may also be different from the order previously

verified in a test case. Roache (1998) shows that observed order p can be extracted from

operations with three grid-refined solutions, and this p can be compared to the assumed

theoretical order. Let fl represent a fine-grid solution calculated over grid spacing hj ,

and let f3 represent a coarse grid solution over spacing h 3 , with t'2 and h 2 being

intermediate to these. Let r be the grid refinement ratio defined as r = (h 2 / hj ) > i or r

= (h 3 / h 2 ) > 1 , assumed constant but not necessarily r = 2. Then from combining

Richardson extrapolation equations for each solution, there arises the relation:

p = In { (f3-f2) / (f2-fl) } /In (r)

where p is the observed order. If r is not constant over these grid sets, then a more

general equation must be solved for p. Let E23 and El2 represent the solution differences

(f3-f2) and (f2-fl) respectively, and let r23 and rl2 be the respective grid refinement ratios.

Then the general equation to be solved for p is:

E23/(r23 p- 1) = r12p { E12/(r12 p- 1) }

For r not constant, this equation is transcendental in p and Newton-Raphson techniques

(or similar) can be used to extract the order p.

One final point of interest in obtaining estimates for discretization error that can

lead to methods of examining error propagation. Instead of examining leading order

terms in the truncation error, one can approach the problem through spectral methods.

An overall solution discretization error says nothing about what grid locations and

clusterings, or what parts of the solution, are contributing most to the errors. For series

solutions, an energy spectrum of the solution and solution error can be created. These

include solutions that can be decomposed into harmonic components, that can be

represented by recursion relations, by discrete wavelets, or represented by non-periodic

spectral methods such as Maximum Entropy Methods. For localizing an error estimate,

short data records must be used, and the Maximum Entropy Methods (Ulrych, 1972;
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McDonough, 1974; Pressand others, 1992) are especially useful in assessing the

frequency spectra of short data records. The method is simply autoregressive spectral

analysis carried out in the space dimensions rather than in time. The spectrum indicates

the amount of energy partitioned in solution wavenumber (inverse wavelength). The

local error associated with every spatial discretization scheme can be modelled as the

inner product of the accuracy at that location times the energy spectrum of the solution at

that location. If the gridding and analysis is done so that regions of interest can be

isolated and local solution results can be extracted there, then one can examine how the

energy in the solution falls off at higher frequencies. The total local error in the discrete

approximation is then the integral over all wavenumbers of the spatial discretization

scheme's error e 8(c0) at location 5 times the energy distribution E of the discrete solution

fd(o_) as:

Local Error = _ e 8(o3) E(fcl(CO)) do

This gives the size of the error where the solution shows the most spectral energy.

Figure 1 is a schematic representation of this situation, and shows graphically the

discretization error from this integral. The plot is solution energy E vs. wavenumber co.

The normal growth of error is from low frequency (small wavenumber or long spectral

wavelength) into the high frequencies. If the energy falls off in a well-behaved manner

as in curve 'a', then there is very little intersection of the solution energy curve with the

error growth. However, if the solution energy falls off more gradually as in curve 'b',

then high frequencies are being polluted, and there is much more discretization error

('d.e.') in the solution. By evaluating the solution quality and accuracy in small block

regions decomposed from original multi-block grids, the contribution of discretization

error in those regions can be evaluated independently. If the source of error is upstream

of a feature of interest in the model, then this error stands a high chance of propagating or

convecting into that region and being enhanced. Formal localization of error sources and

growth thus allows exploration of how the solution is evolving, and how the spatial

resolution may need to be altered to capture the physics of interest. It may be possible to

estimate downstream propagation of error without formally solving an error equation or

an error convection equation.
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Figure 1. Schematic representation of

solution energy E vs. wave number co
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SOLUTION QUALITY IN GLACIER MODELLING

Solution quality means solution accuracy. To control solution quality, one must explore

how to control or assure solution accuracy. In this section, a series of recent publications

in the glaciological literature are examined not for their results, but for their methods.

These representative example methods are being used to successfully maintain solution

quality, and these papers are offered as models for quality benchmarking, model

calibration, validation studies, verification studies, or error analysis.

The glaciology community has recently published a variety of results from

extensive numerical experimentation and benchmarking of models and codes for the ice-

sheet equation as part of the European Ice Sheet Modelling Initiative (EISMINT)

(Huybrechts and others, 1996). Fifteen ice-sheet models were submitted to the model

intercomparison tests at the Level I exercise. The exercise published the numerical grid

and model constants and parameters on which the participants were to exercise their

respective codes. Boundary conditions were established for both a fixed margin

experiment and a moving margin experiment. Both steady-state and time-dependent

behavior was evaluated, and simulations were to be run over an evolution period of 200

000 years. The submitted models had different ways of calculating the ice fluxes, and the

discretization schemes were different; although two broad schemes were recognized. All

teams adopted a staggered gridding scheme due to the known problem of unstable

performance of non-staggered grids in representing diffusion effects in the flux

calculations. An exact analytic solution was available for the 2-dimensional experiments,

and thus the various broad categories of schemes could be analyzed for estimates of

truncation error in the solution, and for discretization error forced by the grid/mesh

interval. These results can provide guidance for accuracy in the 3-dimensional models.

A consensus was reached concerning resulting flow and temperature fields for each of the

variety of experiments. This consensus provides reference solutions against which future

modelling codes can be assessed for accuracy and consistency. Note that the code

verification and accuracy was left to each modelling group, apart from comparison of

results to the 2-dimensional analytic solution and the consensus achieved through the

experiments. Any large divergence in results from the consensus was considered to be

caused by numerical inaccuracies. Running the experiments under fixed and moving

margins with steady and sinusoidal climate boundary conditions provides a calibration

for the participating models. Model validation is not an explicit issue in these

experiments because at Level I, the physics is constrained to be rather simple, and only

the numerical stability and accuracy of the participating models is sought. Error analysis

was presented as variations between model results because most errors were controlled

by the details of the experiments.

A second phase of the EISMINT experiments was also run (Payne:

http://www.soton.ac.uk/-ajp2/eismint21eismint2.htm), as discussed above. It was
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recognizedthat severalaspectsof ice-sheetmodelphenomenahadnot beenaddressedin
the EISMINT-1 experiments,and additional trials would enhancethe calibration and
performanceof the submittedmodels. Theseaspectsincluded setsof two interacting
flow phenomenathat could be exploredover the sameplanargeometryof the original
experiments. In addition to adding calibration and better model validation, these
experimentshelp spawnnew papersthat usedthe EISMINT processasthe sourcefor
benchmarksolutionsagainstwhichto expandphysicalunderstanding.

HindmarshandPayne(1996)representsucha studyin extrapolationof methods.
They examinethreedifferentdiscretizationschemesfor the ice-sheetequation,andrun
numericalexperimentswith theseusingdifferent time-stepschemes(marchingandnon-
linear iterations)to isolatethe stability featuresof themethods.Accuracyis determined
over variousgrid resolutions,andtime-steplimit boundsaredevelopedfor the schemes
to maintainaccuracy.Comparisonis madefor the accuracyof thevariousdiscretization
schemeswith availableanalyticsolutionsin 1-dimensionfor flow law parametern - 3,
andin 2-dimensionswith n = 1. This providesfull verificationof numericalaccuracyfor
modelsof thatcomplexity. Computationalefficiencyof variousiteratedandnon-iterated
time-marchingschemesis compared. EISMINT 2-dimensional,n = 3, resultsareused
for carrying outextrapolationto morecomplexmodels. Theuseof iteratedmapsasthe
representationof the numericalsolutionis introducedanddevelopedhere,andtheseaid
in understandingandcontrollinguncertaintyin modelevolution. Theonsetof numerical
instability is found to dependon themethodof time-stepping,and a correctionvector is
developedthat representstheevolutionof theequationsin suchaway that appropriately
small time stepscanbeselectedwithout computationalinvestmentin extensivespecific
experimentation.A greatpartof thevalueof thispaperis theway it specificallycontrols
the accuracyof thenumericalexperimentation,isolatescausesof variability in solutions,
andcomparesseveralschemesin exploringsolutionquality.

Marshall and Clarke (1996)usea conventional3-dimensionalfinite-difference
model, andby employingcouplingtermsto modelmassexchange,they examinesheet-
ice and stream-icecomponentsin the samemodel without having to explicitly develop
ice streamphysics. Yet, ice streamphysicscan be explored by thesemethods. Ice
streamsare sub-grid at the current resolutionsof gridding schemesfor the ice-sheet
equations.Theauthorsthusconvertacomplicatedphysicsprobleminto aform thatcan
be modelledusing well-provencodes. They parameterizethe creepexchangeprocess
betweensheet ice and streamice, and they separatelymodel stream ice fluxes by
subglacialbed deformationand de-coupIedsliding at the ice-sedimentinterface. The
arealactivationof ice streamsis controlledby basalconditions. Sensitivitytestsarerun
onEISMINT benchmarkconfigurations,andresultingthicknessandvelocity profiles are
derivedandcompared.With thatheritage,theresultsenhancethebenchmarkcases,and
thesensitivityanalysisboundsthemodeluncertainty.Themixtureof steamice andsheet
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ice within the samemodel, without the needto specificaIIymodel sub-grid physics,
providesanexcellentenhancementto existingmodelsandtheir use. The validation and
calibration of their models are ensuredbecauseof the detailed developmentof the

physics and the PDEsbefore applicationof the numerical scheme. Assumptionsand
constraintsareexplicitly identified, and the ramifications of suchsimplifications are
discussedproviding conditions of applicability for their models. Fairly simple mass
balanceequationscanbe usednumericallybecauseof theextensivework in developing
mixtureandexchangerelationsthatdefinetheproblemstatement.Thedynamiccoupling
of the ice mixture is parameterizedin suchasway asto allow examinationof effective
control, activation, and developmentof ice streamsevenin a full 3-dimensionalflow
field. Finally, theexplorationcontainedin thesensitivitytestsdemonstratestherangeof
applicabilityof thesemethodsfor furtherenhancements.

Hindmarsh (1997) exploresthe use of normal modesof eigenvalueproblems,
derived from linearizedversionsof the ice-sheetdiffusion equation,to initialize models
andexaminesmall scalechangesin featuresandresponse-times.In non-linearmodels,
accumulationratesand viscouspropertiesmustbeparameterizedand tunedin order to
calculate ice thicknesses. Such tuning is not neededin linear models,and fluxes are
derived directly from balancerelations. With the increasing availability of highly
accuratedigital elevationmapsfrom satellitealtimetry,actualice sheetgeometrycanbe
modelled rather than calculated. Here, model validation arises from initializing the
numerical modelsusing actual data, and carrying out perturbationsabout EISMINT
solutions. The normal modesolutionsarecomparedto similar normal modeanalyses
derived from Antarctic digital elevationmodels,and balanceflux resultsarecomputed
acrossvarying grid scales.Thenormalmodeanalysispermits resolutionof small scale
featuresin Antarctic elevationmodels;in non-linearmodels,the smallscalestructurein
suchdata is relaxed out due to numerical instability. The linear methods,although
having someidentified shortcomings,allow modelling and examinationof small scale
effects. Codeverificationbecomesessentiallyunnecessarybecausewith the linearization
scheme Hindmarsh uses, grid-centered difference fluxes are computed via linear
equationsand matrix inversionsthat do not require the verification methodsof PDEs.
Theseresultsalso extendthe applicability of theEISMINT results,andcanbe usedas
additionalbenchmarktestcases.

The EISMINT benchmarktest casesand their derivedextensionswork well for

models that assumeice-sheetconfigurations and aspectratios. However, when one
intendsto explorethebehaviorof valleyglaciersor of icesheetsunderconditionswhere
theapproximationsin thesimpleslabmodelbreakdown,suchasneartheice divideor in
ice streams,thennewmethodsmustbesought. Someof theseconditionswereexplored
in theMarshall andClarke(1996)sensitivitystudieson icestreams.Additional methods
arenow considered.Modelsof stressandvelocity fields in glaciersareanalyzedin two
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companionpapers,onethat examinesfinite differenceschemesfor higher-orderglacier
models (Colinge and Blatter, 1998), and one that explores sliding and basal stress
distributionsusingthe first model(Blatterandothers,1998). In both papers,substantial
headwayis madein applying numericalmethodsto improve grid resolution,and then
enhancingthe representationof basalvelocity and shearmodelswith moving stress
concentrationswithin this framework.

Colinge and Blatter (1998)createseveralnumericalschemesandevaluatetheir
stability for modelling2-dimensionalstressandvelocityfields, includingstressgradients,
in glaciers. In particular,thepaperlooksatthemodellingof conditionswhereintheusual
approximationsof shallow-iceaspectratio breakdown. A scalingschemeallows the
developmentof a linearperturbationmethodon thegoverningequations.Theequations
areseparatedaccordingto orderof the small scalingparameter,andnumericalmethods
are examined on these sets of equations. Distinction is drawn through numerical
experimentationon the efficiency, accuracy and conditions of applicability for the
methods. The equationsare transformedso they canbe written asa seriesof coupled,
first-order ordinary differential equationsand one algebraicconstraint. This allows
applicationof the methodof lines whereindiscretizationoccursin all directionsexcept
one,anda shootingintegrationschemeis developedfrom theglacierbedto the surface.
The shootingrequiresiteration andcorrection. Becauseof the kind of coupling in the
governingequations,it is found thatevenfor eachdiscretizedderivativeof order p, the
over schemeis of orderp - I. Thus,thederivativesin the algebraicconstraintmustbe
discretizedto orderp + 1 in orderto maintainandoverall schemeorderof p. Boundary
conditions at thebasearesetto beeither no-slipor functionally relatedsliding velocity
andsheartraction,with a tangencyconstraintbetweenhorizontalandvertical velocities
at thebase. Experimentsarerunoneachcondition. Singleshootingschemesarerun for
both fixed-point iterations and non-linear Newton iterations, and the flexibility and

fidelity of each is compared. Additional constraints are discovered between the form of

the surface tractions as a function of the respective basal tractions, and this function must

be infinitely differentiable to guarantee solution uniqueness. For fixed-point methods, a

criterion is developed to ensure existence and uniqueness of the solution as well. A

condition number is derived for the Newton iteration method, for both single- and

multiple-shooting schemes, which dictates the instability of the algorithm in situations

when there is high sensitivity to the initial values at the glacier bed. These methods are

applied to mixed basal boundary conditions, prescribing both basal velocities and basal

shear tractions over regions of the bed. Experiments with the method show the rise of

numerical instabilities and even-odd oscillations over two grid-cells. Through refined

exploration, a non-symmetric discretization scheme is discovered that removes

oscillations while maintaining well-defined order. The schemes are calibrated and
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validatedfor theparticularmodelof parallel-sidedplaneslabflow, andfirst- andsecond-
ordersolutionsarederivedandcomparedacrossavarietyof grid point schemes.

Becausethe ideaof shootingschemesis to learncorrectionsto the initial starting
conditions, this method is ripe for sensitivity analysisexperimentationthat controls
instability. Verification is done here by examining the stability of the method and
convergencerates, and by evaluating stability criteria that dictate step size. An
unrealistic solutionarisesin which second-ordersolution profiles show negativeshear
stressin the interior of the sliding area (p.454), and the authorsspeculatethat this is
relatedto smalloscillationsaroundzero-stressvaluesover theorderof two grid-cells,and
believedit to benumerically induced. Consideringthedegreeof customizationthat has
beendevelopedin this paperfor specificdiscretizationschemes,it might beworthwhile
to exploremanufacturingananalyticsolutionagainstwhich to test the authors' numerical

schemes, as advocated by the previously described methods of Steinberg and Roache

(1985) and Roache (1994, 1998). The authors indicate that the most serious limitation to

their methods (for validation) is the lack of general knowledge of spatial variations of

basal velocities and coupled longitudinal stresses at the bed. These conditions are of

course the initial integration conditions of the model, and sensitivity of results in these

conditions has been previously mentioned.

In an effort to experiment on sensitivity of basal conditions, the companion paper

of Blatter and others (1998) uses the schemes developed in Colinge and Blatter (1998),

thereby becoming a validation exercise for the previous models and schemes. Here,

numerical experiments are carried out to study the interaction between basal velocities

and the spatial distribution of shear stress distributions, at several scales. These

experiments yield the important result that sliding is not a local phenomenon in cause.

Experimenting with both sliding and mixed basal conditions, the authors show that for

spatially periodic sliding / non-sliding conditions, a distance of 5-10 times the ice

thickness is necessary before the average sliding velocity can be considered uncoupled

between one period and the next. Sliding areas are discovered to be responding to

conditions that are not local to the observed sliding area, and are in fact responding to

conditions within distances on the order of the width or substantial parts of the glacier

length. Hence, the theory has provided important insight for interpretation of field data,

and the necessity of multiple taps to the glacier bed in order to understand local physics.

Multiple numerical experiments are run. Because the average basal shear over the entire

bed remains invariant under changes in sliding patterns, this becomes a benchmark

metric. If there is local reduction in basal shear traction, then the ice is sliding or the bed

is deforming. Calibration of the models is carried out by computing the stress and

velocity fields over a 2-dimensional geometry section of the Haut Glacier d'Arolla and

discovering that the flow and stress patterns over realistic geometry are the same as for

simpler slab geometry. Exact location of sliding cannot be predicted, only that it has
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occurred. But thiscalibrationmapsandestablishesarangeof applicability of the model.

Additional experiments are run under cases of infinite effective width, such as with ice

streams that are wide compared to their thickness, or that flow within their own ice

channels. These experiments help to isolate the effects of side drag compared to basal

drag. The series of experiments in this paper challenge the previously held validity of

using flow laws to indirectly determine basal stress components. Even given

measurements on basal strain rates, this coupled with knowledge of the flow law does not

approximate the basal drag well because of non-locality, and hence these should not be

used to derive basal shear tractions. Small spatial scale variations can lead to rapid stress

variations, and perhaps migrations of these along large stress gradients. The suite of

numerical experiments and sensitivity investigations provides credible validation and

calibration of the physical models being proposed. The matching of the derived results

against patterns in actual valley glacier geometries lends credibility toward verification of

the extensive numerical codes developed in Colinge and Blatter (1998), even though this

by itself does not represent a formal verification process.

All of the above papers present excellent strategies for their analysis methods and

explanations of the detailed physics captured in the problem. Where possible, codes are

verified through comparison with benchmark results or analytic solutions. Where formal

verification has not been possible, extensive sensitivity studies have worked to

demonstrate the range of applicability of the numerical methods and the model

parameterizations. Formal error analysis and explicit ramifications of assumptions have

been frequently included. The sophisticated results justify the effort expended to

maintain solution quality and to yield understanding of complex flow physics in the

glacier environment.

As analysis becomes even more complicated and data-sets become more diverse

and heterogeneous, it becomes increasingly important that the codes and methods be

controlled through a managed process of experimentation. Validation and verification by

teams of researchers, each with access to others' results and methods, will become more

needed in order to control the expansion of information and refinements in flow physics.

In the following section, an information architecture is presented that will help unify and

manage the physics explorations, will help deploy field and satellite data in service of

boundary conditions. The system will also keep track of the physical problems and

limitations for which particular codes and discretization schemes are applicable.

THE ICE COMPUTATIONAL ENVIRONMENT

An Integrated Cryospheric Exploration (ICE) Environment is now proposed for exploring

methods and managing sources of uncertainty in glacier modelling. The details and

functionality of this Environment are described based on modifications of a system
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developedduring thepasttwo yearsatNASA Amesto supportaerospaceComputational
Fluid Dynamicsanalysis. The original systemwascreatedin concertwith aerospace
companieswho wereusingwind tunnelsfor testingandvalidatingaircraftwing andwing
elementre-designsfor purposesof improvingtheflight performancecharacteristicsof the
original design. First, wind tunnel test resultswere made availableon-line during a
single test entry. Then,multiple testentrieswere archivedand compared. Next, there
wasa desireto haveCFD resultsacrossthe sameconfigurationsmadeavailableduring
the wind tunnel tests,andto havethe resultsof CFD explorationprovidesuggestionsof

enhanceddesignconfigurationsor changesin the model. Thesechangescould thenbe
rapidly manufacturedas new physical models for testing. Ames personnelbuilt an
interactiveinfrastructurethat launchesavarietyof CFD flow solvercodesacrosshighly

complicated wing/elementgeometriesand grids, and organizesthe resulting solution
fluxes, forces, moments,and integratedparametersinto a form that is accessiblefor
visualizationanddesignrefinementdecisions.Thecurrentversionof this systemis now
called the AdvancedDesignTechnologiesTestbed(ADTT). The ICE Environment is
beingdevelopedusingtheexperiencefrom ADTT development,andit consistsof solver
codesand models inserted into that sameinformation infrastructure. A discussionof
ADTT functionalitiesfollows.

Description of the ADTT

The ADTT supports multiple functions for grid generation, initializing solver codes,

running and monitoring the codes, and analyzing the CFD solutions. A geometry toolkit

is available on-line that allows simple grid generation over simple geometries. It also

links in full overset grid technology methods that are developed off-line for complex

geometries, and it can merge off-line and on-line grid generation for mid-range fidelity

geometries and gridding. The resulting grids are then used by multiple flow solvers.

Parameterized CAD objects allow for non,expert use. Input files and CAD automation

change easily in response to changes to parameters in the user interface. The solver code

initialization window prompts users with standard parameter values, but allows flexibility

in resetting these. The entire user interface is backed up with dependency relations that

maintain feasibility in problem set-up, and thus the user avoids launching a code with

parameters mis-identified or with improper values, or with gridding parameters un-

matched. All auto-gridding and auto-launching relies on rule-based schemes, but an

unlimited number of gridding or solver processes can be organized and launched from a

single Graphical User Interface. The jobs are partitioned and directed according to

customized encoded rules. This enhances process control and bookkeeping of the

numerical experiments and their variations. Furthermore, multiple geometric

configurations can be set-up and linked in a series of runs in order to explore variations in

a particular design parameter space. Such variations can be set-up as special cases, but it
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is not doneautomaticallyandrelieson theuserto create,maintain,anddeploytheoverall

strategy.
Variousfinite differenceschemesaresupportedandcanbechangedout, but none

of this selectionis automated.All differencingschemesareset-upoff-line, then linked in
and launchedaccording to the numerical experiment to be run. However, multiple
schemescan be used and compared. Most boundary conditions are encodedwith
applicability relationsthat constraintheir useto particularproblemssoasto avoid non-
physicalflow results. The turbulencemodelsandotherauxiliary equationsare likewise
encodedwith constraints,someof whicharesuggestionsonly, whereasotherscannotbe
overriddenandarelockedin asadefaultsettingin thecodes.

A variety of flow solvercodesaresupported,eachwith increasingfidelity and
complexity. They areFortrancodesthat werewritten beforethe ADTT wascreated,so
they are wrappedand linked in by Unix scripts, andlaunchedon a multiple CPU SGI
cluster. All codesare initialized andlaunchedfrom the User Interfacethat maintains

dependencyrelations betweencode parameters. There are two ways the codes are
monitored during a run. First, the user can pre-seta thresholdparameteror target
convergenceresidualin advance(interim or final), and thecodewill launchandrun to
the threshold, publish its state, then continue or useup an allocated time resource.
Interim check-pointfiles canbesavedalongwith final resultsin a directory structureif
this featureis set-upbeforethecodeis launched.Suchinterim filescanalsobesavedto
a databasefor future analysis of trends and error analysis. Second,a Procedural
ReasoningSystem(PRS),thatwasdevelopedunderexternalcontract,hasbeenlinked in
that monitorsthestateof progressof thesolver. ThePRStakesin informationaboutthe
executingcode and matchesthat againsta library of proceduresthat can monitor and
dynamicallyadjustthe flow solveractivities. At the simplestlevel, thePRScandetect
difficulties in convergence,and adjust solver parametersto the experiment during
runtime. Multiple procedurescan be spawnedand executeasynchronously,so one
processcan bekept running while, for example,the time stepmight be changedin a
parallel processto seeif this helpsconvergence.ThePRScanbe user-drivenor set to
operateautonomouslyafter certaindefaultsarerecognized. A genericpost-processing
strategyis not currently available,but maybecomeusefulif thewhole systembecomes
CORBA compliant. Currently,strategiesfor post-processingandanalysisaremaintained
off-line andcanbe linked in for agivennumericalexperiment.Additionally, if a strategy
were to deploy a variety of boundary conditions to test sensitivity, this could be
organized at the beginning of multiple runs, but the current systemdoes not allow
interruption at sucha level during a run. Sucha changewould have to be deployed
asynchronouslyto theoriginalprocess,but it couldalsobemonitoredby thePRS.

ADTT hasbeenableto function well using commercialvisualizationpackages
and tools. Retrieval from the databaseis basedon query or tree-browserobject/data
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attribute selection. Two-dimensional data plots, flow field, vortex, or streamline

representations, and contour plotting, with web-enabled remote sharing of views has

turned out fully sufficient. Originally, it was envisioned that customized data

presentation packages and plotting routines would be needed, and several advanced

visualization systems have been created under separate funding that can respond to the

data streams generated from traditional CFD output files or from wind tunnel test data.

However, to date, such customized routines have not been necessary within ADTT since

most visual analysis for the CFD is done by plotting routines, wherein the user picks

contour intervals, boundaries, and database variables and these are brought up to a plot

window by Java applets or simple search agents. Feature recognition capabilities exist,

but this is dependent on the code resolution and is hence problem and solver code

dependent. The only error recognition currently used is based on convergence criteria.

This is generally because the user interface has guaranteed that the problem launched is

feasible, and if there are global problems in solution, they will show up in non-

convergence. At that point a separate verification activity would have to be undertaken.

To date, this has been unnecessary in the aerospace design process because the design has

been tested first on proven, lower-fidelity codes (2D-incompressible, 2D plus sweep in a

third direction), and the full Reynolds averaged Navier-Stokes codes are only used

sparingly to refine the results of the multiple, lower-fidelity runs. However, there is no

reason that a verification strategy could not be created and deployed across the system.

There is currently no automatic linking of interim or post-processing results back to the

code initialization window to re-start a current run or set-up a new problem sequence.

Once particular methodologies are learned from experience, then rules and models and

their dependencies can be extracted that help automate this process.

A customized data management system has been created, but it is not generic. It

is a simple directory structure that keeps track of solver runs for a particular problem

configuration. Rizzi and Vos (1998) have suggested a hierarchy for CFD databases that

represents a cascade structure with each flow regime under study at the top of the

hierarchy. Then under each aircraft flow regime, there could be large sets or subsets of

systems or aircraft types, followed by integral subsystems and components, and finally

features or flow phenomena that occur over these components. Once such features would

be recognized, they could be used to prescribe what kind to modelling would be needed

to refine the flow regime resolution. In ADTT, there is no sophisticated indexing on

context or particular flow features because for the problems currently presented to ADTT

from industry, there has always been a very detailed configuration and geometry that is

being tested. This geometry drives any hierarchy, so indexing on the geometry is

sufficient. Features are sought that occur over the particular configuration of interest, and

these are indexed to that geometry. ADTT deploys results to a separate on-line system
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for comparisonof its CFD resultswith relevantwind tunneltestresults,andtheresultsof
thiscomparisonby designersstartsaneffort to createnewphysicalmodels.

ADTT in practice has intentionally not run any code verification experiments
becausethecodesarevery well knownby thedevelopers.The projectshavenotrequired
anyexperimentsonvalidationbecausethis is doneby thetestengineerswho comparethe
CFD resultswith the wind tunnel testbenchmarkcases.There is no on-line adaptive-

gridding or feature-followingboundariesin the codesto datebecausethe gridding has
beendonewith the codedeveloperswho arepart of the industrial trials. For re-design

problems, they already know what flow characteristics they are trying to resolve.
Questionsasto whatconditionshavebeenselected,whichgrids andwhy, andsoon, that
might ariseduring anexplorationexperimenthavenot arisenduring ADTT project use,
becausetheprojectis alwaysdrivenby thedesignandpurposefor thetest-- to matchand
compareresultswith wind tunnelconfigurationdata. Theflow solvercodeis selectedfor
the problemfidelity of interest,andassumptionsaretied back to this problem. There
have been experimentsthat comparecode performance,but usually this is done by
comparingresultsbetweencodesof differing complexityto seewhatphysicsis captured
by each.

Development and Use of the ICE Environment

The ICE Environment is being modelled after the ADTT, and many of its functionalities

are identical, though not yet fully completed. ICE is an information architecture that can

integrate multiple existing glacier flow models over simple bed geometries with

boundary conditions and auxiliary process models, in particular models for basal

conditions. These boundary conditions are derived from datasets from glaciers, from

climate and precipitation data, or from derived mass balance and basal conditions data

that are being encoded in a relational database. The process models that look at spatial

discontinuities in stress, velocity, temperature, and water pressure are being coded from

published literature and will follow a benchmarking process similar to that proceeding

within the EISMINT experiments. Field work is planned for the austral summer on

recently deglaciated regions near wet, active glaciers on the west coast Southern Alps of

New Zealand. This data will also be included to support basal conditions models. The

web-based user interface for ICE constrains problem set-up, launches and unifies these

codes and models, and it also compliments the analysis results with visualization tools in

which non-customary or alternative relations between archived datasets and model results

can be created on-line and explored. Parameter space can be navigated visually and

interactively, and stiffness of parametric regions against perturbations or variations can

be explored to locate model and process sensitivity and applicability boundaries, and

hence regions of computational risk.
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The ICE Environment is envisioned for exploring and managing sourcesof
uncertainty in glacier modelling codes and methods,and for supporting scientific
numericalexplorationandverification. It canalsosupportanalysisof model'ssensitivity
to variationof parametersandprocesses,for locatingchangesduringconvergence,or for
comparison of alternative till deformation models coupled to flow models. The
Environment is a structure,so it is not constrainedto certainfixed-usescenarios. But
likewise, the codesandmodelsto beusedmust bescriptedto allow insertion into the
structure,launching,manipulation,and monitoring of processflow. The Environment
canbe usedin developinga computationalexperimentor exploratorymethodologyfor
initializing, launching, and comparing codes and results using the supporting
visualization tools. It can thereby support validation, calibration, benchmarking,
verification, and error analysis. A userwould developa strategy,and this strategy is
imposedacrosstheelementsof theEnvironment.

Implementingsuchstrategiesand scenarioswith flexibility requiresaccessto a
databasesystemrather than merely a datadirectory structure. Rizzi and Vos (1998)
recommenda futuredatabasestructurethat startswith a flow taxonomyrather than the
geometry-drivenstructurecurrentin theADTT. For ICE thereneedsto beahierarchical
taxonomyof featuresand structuresof flows of interest. The featuresin the taxonomy
are thenpopulatedwith experimentaldata,field data,satellite remotesensingdata,or
dataandresultsfrom previouslyvalidatedflow andprocessmodels. Thenrepresentative
benchmarkcasescouldbedefinedfor eachflow structureor modeltype, linking the data
for pedigreeand index. Thesebenchmarkcasescan then be used to construct the

database system. The system would include data manipulation tools that could generate

synthesis plots from across models and heterogeneous data types. A data-mining

technology is warranted that accesses this taxonomy and model results, and that presents

or displays data for correlation or comparison on demand. If the system is accessible

over the Web, then the cases can be used by researchers at their home sites to create data

plots, and to validate their codes or linked models. Appended to the cases through

metadata structures would be the knowledge of which physical models and auxiliary

models give the best predictions for flow behavior. Data exchange standards or full

CORBA development would support a unified fidelity in data representation, and this

would need to precede implementation of the remote-access system.

The data should be allowed to evolve and be replaced, upgraded, refined, and

corrected. But it would still need to be tied to the particular benchmark case or flow

structure as its base pedigree. This is accomplished through indexing on metadata. The

metadata are descriptors of what is in a particular dataset or results file. Instead of

searching or retrieving directly from sets of heterogeneous data, the metadata can be

searched and retrieved based on key words, on a more complicated indexing that includes

context, or on models of the data structures and relations themselves. Each of these
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indexing structurescanbecross-referenced.Particularinformationretrieval startsat the
metadatalevel, and relevant content to a particular posedquery is reorganizedand
surfaced. Data used to needto be strictly formatted in advanceto be retrieved and
presentedon demand. This is no longernecessarywith currentmanipulationtools and
searchagents.Thedatacanbereformattedby anagentsoit canbecomparedandplotted
on demand. This includesversionsof extrapolation,interpolation, and re-registering
methods,but of coursesuchmanipulationcanintroduceerrorsandbias.

A featurethat would bevery usefulin ICE for explorationof multiple numerical
experimentswould be to have the datasetsand model resultsmanagedby a software
agentin sucha way that all archiveddata,from whateversource,could be selectedand
usedto initialize new modellingruns. The softwareagentwouldpull out valuesandre-
populatethenamelistor initializer of theflow solver. Theextractionby thesearchagent
would feeda recordof actionstaken,it wouldbedrivenby anoverallexternalor encoded
experiment strategy, and so these actions would become a process record of the
experimentflow. This featureis not currentlypartof theADTT system; but technology

is available for such a feature, and ICE will be a good testcase for its development. Thus,

the database system and its agents would become an integral part of the experiment flow:

strategy initialization, problem set-up and initialization, flow solver launch, post-process

and archive results, visualization and analysis (perhaps asynchronously during a run), and

finally redefinition and restart of a similar or new problem. Of course, the database

system can remain fully functional without being directly tied into the flow solvers or

other analysis codes, and it can be run entirely by the users.

An additional use for the ICE will include exploration of what approximations in

the related basal process models are sufficient for resolution of a problem or feature, and

what is the fidelity and sensitivity of the information. A strategy might be to compare

and contrast various types of bed conditions, extracting stress, velocity, and temperature

data from current models or data-sets. The goal would be to create proxy representations

of the detailed models that would be sufficient for certain flow problems or validation

exercises. For example, under what conditions would a boundary layer model suffice

over a full basal process model, and for which problems is the full model required versus

simply a boundary condition? Are the test cases consistently better or worse than simpler

models that use mean quantities?

Once verification of models moves from EISMINT's Level I (Huybrechts and

others, 1996), wherein modelled processes and parameters are fixed, to Level II, wherein

individual models are run including whatever processes are considered important along

with modeller's preferred values of parameters, there is substantial risk of moving out of

the range of applicability of various models against the more complicated flow situations

being simulated. The ICE Environment will help understand and control that risk

through managing consistent numerical experiments, and it will enhance uncertainty
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managementby aiding in recognizingsourcesof numericalerror during convergence
histories, or causesof non-physical solutions due to mismatchedapplicability. The
simpler modelshave analytic solutions for verification. As problemsbecomemore
complex, analytic solutionswill not be available. The morecomplicatedmodels and
linked processeswill have to rely on constructed solutions for verification, on
comparisonwith previouslyverified andvalidatedsolutions,andonconsensusphysicsas
targetsfor validation.

The ICE Environmentcanbe usedfor error analysisexperimentsboth through

tracking of features and their changesas solutions evolve, and between alternate
representationsof solutions. Strategies to explore impacts and propagation of errors must

be developed whereby a series of code variations are launched. Since errors start as local

features, and may convect downstream in the flow field, a visualization capability that

created a "cone" of error flow, and an assumed Gaussian error growth distribution could

be modelled within this cone as an estimate for later model interpretation. In addition,

such an error model could be compared with results derived from field data that was

stored in the database. This experiment would also help establish whether uncertainties

associated with calibrated models are transferring (or are even transferable) to other

problems of interest. The database agents would use interpolations and extrapolation

between archived data sets and model results to follow the error just as if it were a flow

feature.

Finally, the ICE Environment allows one to create and explore new ph),sics

models and representations, even if they are believed to be ill-founded at the outset.

There is a long and successful heritage in the development of the appropriate governing

equations for glacier and ice sheet models. They incorporate nonlinear constitutive

relations and mathematically tractable assumptions such as the shallow-ice

approximation, absence of significant contribution from longitudinal stress gradients, and

of course the comparative insignificance of inertial terms in momentum balance due to

relative adjustment time scales (Colinge and Blatter, 1998). It is not the Author's

intention to argue that glacier flow should not be fundamentally Stokesian. However, the

scalings and simplifications that are commonly used and grounded on the observed

behavior of glaciers (at least in their quiescent phase) are fundamentally unable to capture

transient flow behavior or transition conditions between quasi-steady states. For climatic

scale relaxation analysis, transition conditions are irrelevant. But fundamental changes

and complicated flow structures seem to be occurring at active glacier beds on rather

short time scales. These processes are of interest in and of themselves, but also as part of

the dynamic system of the glacier and its responses. Exploration strategies can be

developed to begin to evaluate this physics, even if it does not appear mathematically

tractable at first.
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For example, suppose one wants to model the mechanisms of how the ice flow

transitions to its new state. The time-dependent continuity model contains in its heritage

the understanding first formally articulated in several papers by Johannesson and others

(1989a, 1989b) and Raymond and others (1990) that the response time scale for glaciers

and ice sheets is that of the "volume time scale." This time scale is a measure of the time

for a glacier or ice sheet to reach a new equilibrium state following a climatic or mass

balance event. Thus, computational time steps and non-dimensionalized time are

regularly scaled to be of order [H]/[a] in most analysis models since the mid-1980's,

whether for kinematic waves or for long term climatic adjustments. This means that the

shorter duration transient behavior that is on the scale of the "first awareness" in the

glacier that a change is occurring, should perhaps be scaled differently so that rapid,

transient flow states may be captured and modelled. Steep, fast, wet glaciers may seldom

be in steady state, and longitudinal stress gradients as well as complicated basal processes

may contribute significantly to multiple flow states. Hence, certain spatial scaling

assumptions based on aspect ratio that ignore stress gradients may break down. The

appropriate time scales for these conditions may also be better represented by the short

time scale 1:s (Raymond and others, 1990) which is similar to the 1/e folding time

response of a system -- the time between the climate event and the occurrence of first

changes in the system (as opposed to the time to fully relax to a new equilibrium state).

Thus, the equations of motion, while still not including inertial terms, might be scaled

differently in time from the normal spatial scaling in order to capture such flow physics,

and these types of analysis procedures would need to be verified anew. An experiment

could be devised to use the method of multiple time scales (Nayfeh, 1973; Kahn, 1990) to

explore the ramifications of such scalings, whether physically realistic or not, and see

where they break down numerically. This way, the rationale behind the scalings can be

teased out and the degree of inflexibility in modelling assumptions can be challenged.

The experiments may fail due to errors induced by inappropriate time-steps in the

numerical scheme that are meant to guarantee stability. But usually these time-steps are

calibrated according to the relaxation scale of the problem being modelled. Numerical

experiment with such strategies are not meant to disrupt the main agreements in the

glaciology community; rather, they are meant to see how the failings of such experiments

are tied back to better understanding of the physics or numerical methods, and thus to

better understand uncertainty.

CONCLUSIONS

Extensive analysis of the sources of uncertainty in mathematical modelling and numerical

representations relevant to computational fluid dynamics and glacier modelling has been
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presented. Methods for code verification and model validation that are becoming more

frequently used in the aerospace CFD community are presented in this paper in an effort

to bridge these methods into the glaciological modelling community. Although

substantial differences exist between the physics of glacier and ice sheet flows and that of

aerodynamics, the numerical verification methods on the finite difference schemes,

boundary conditions, and auxiliary relations can be quite similar. Model validation

strategies for PDEs consist of both using benchmark test cases containing analytic

solutions or known data results, and using calibration of models to establish refined

applicability conditions that constrain the uncertainty inherent in the mathematical

representations. Sensitivity analyses are found to be necessary methods for both research

communities. Specific analysis of the plausibility and ramifications of both physical and

numerical assumptions become not only important for credibility, but such analysis also

dictates model interpretation methods.

Several example papers from the recent glaciological literature are presented to

demonstrate a suite of validation and verification methods and their applications. Some

suggestions are included to further refine these methods; but on the whole, these papers

are primarily presented as target examples of excellent verification and validation efforts.

The physics of glacier flow and the detailed conditions of the glacier beds are being

modelled to ever increasing complexity. As more satellite and field data becomes

available in heterogeneous forms to be used in model initialization or results validation, it

becomes imperative to carry out numerous numerical experiments in an effort to boot-

strap verification and validation methods into this more refined analysis. Error analysis

needs to be published along with the computational results. To this end, an information

architecture that has been developed for use by CFD researchers and design

aerodynamicists is presented and described as a tool for managing such experiments and

explorations. It is currently being modified for specific use in glacier modelling, and its

content and a variety of scenarios for its use are presented.
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