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ABSTRACT- In this paper several methods are examined for initializing formations

in which all spacecraft start in a common elliptical orbit subsequent to separation

from the launch vehicle. The tetrahedron formation used on missions such as the

Magnetospheric Multiscale (MMS), Auroral Multiscale Midex (AMM), and Cluster

is used as a test bed. Such a formation provides full three degrees-of-freedom in the

relative motion about the reference orbit and is germane to several missions. The

type of maneuver strategy that can be employed depends on the specOqc initial

conditions of each member of the formation. Single-impulse maneuvers based on a

Gaussian variation-of-parameters (VOP) approach, while operationally simple and

intuitively-based, work only in a limited sense for a special class of initial conditions.

These 'tailored' initial conditions are characterized as having only a few of the

Keplerian elements' different from the reference orbit. Attempts to achieve more

generic initial conditions exceed the capabilities of the single impulse VOP. For

these cases, multiple-impulse implementations are always possible but are generally

less intuitive than the single-impulse case. The four-impulse VOP formalism

discussed by Schaub is examined but smaller delta-V costs are achieved in our test

problem by optimizing a Lambert solution.
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Semi-major axis (kin)

Eccentricity

Inclination (radian)

Right Ascension of the Ascending Node (radian)

Argument of Perigee (radian)

True Anomaly (radian)

Eccentric Anomaly (radian)

Mean Anomaly (radian)

Mean Motion (radian/s)

Time of Perigee Passage (s)

Earth's Gravitational Constant (3.986x105 km3/s 2)

[6x3] Variation of Parameters Matrix.

[3x6] Z Transpose.

[3x6] PseudoInverse Matrix



I-INTRODUCTION

In recent years, the need for spacecraft flying in close formation has increased significantly. Its

diverse applications range from synthetic aperture radar systems, like TechSat 21 to science

missions such as EO-1 or LISA. Correspondingly, many studies have been performed on the

relative motion of a spacecraft with respect to a reference orbit. Much of the literature, building on

the early work of Clohessy and Wiltshire [Cloh 60], is focused on solving the relative motion

between a spacecraft in a circular reference orbit and another spacecraft in a nearly circular orbit.

Their solution works fairly well for low eccentricity missions. Recently, however, several missions

have been proposed, designed or flown that need spacecraft flying in formation about a highly

elliptical reference orbit. Most of these missions, such as the European Space Agency's (ESA)

Cluster and NASA's Magnetospheric MultiScale (MMS), have space physics science objectives,

which involve at least four spacecraft moving in a "tetrahedron" configuration at apogee. The

shape and the separation of the configuration are designed to resolve spatial and temporal variations

in essential regions of the Earth's magnetosphere.
One of the central issues associated with formation flying is the determination of initial

conditions for each member spacecraft that gives desired cooperative dynamics and the maneuver

strategies used to establish them. Several models of the relative motion about arbitrary-eccentricity

orbits have been developed [Zare 90][Der 97]. These are, however, only a necessary first step in

determining initial conditions. The full process for determining the initial conditions involves

searching through all of the available initial-conditions to find the set that, when dynamically

propagated, best meets the mission metrics. These metrics may involve constraints on range and

range-rate between the member spacecraft, constraints on orientation of the formation, or

requirements on the volume contained within the region bounded by the spacecraft. The definition

of the available initial-conditions space is also a function of the on-board delta-V capability. Thus

there is established a practical coupling between the family of initial conditions that can be achieved

and the maneuver strategies used to achieve them.

This paper is an attempt to elucidate a portion of this coupling in a simplified setting. A simple

formation metric is defined and a test problem is constructed to evaluated each maneuver strategy

examined. The test problem formulation is discussed in Section 2. Two separate maneuver

strategies are examined. The first strategy, discussed in Section 3, is based on Gauss' variation-of-

parameters (VOP) equations. It provides us with an intuitive approach, which brings the physics to

the fore. There are specific types of initial conditions, termed 'tailored', that allow for the multiple-

impulse VOP method to work but that they are restricted to a sub-space of the initial-conditions

parameter space. Initial conditions, which are not restricted in this fashion, are termed 'generic'.

Generic initial conditions can always be established using a multiple-impulse VOP strategy but at

the cost of physical intuition and generally greater delta-V. These results are also discussed in

Section 3. Section 4 details a maneuver strategy based on solving Lambert's problem using the Der

form of the state-transition matrix [Der 97]. The method is completely general but lacks the

physical interpretation that can be attached to many of the VOP-equations strategies.

2 - FORMATION FLYING TEST PROBLEM

As discussed above, in a real mission design scenario, the formation initial conditions will be

chosen by a trade-study which finds the best fit to the desired mission metrics subject to the

mission- allocated delta-V. Depending on the goals of the mission and the number of spacecraft

this can be an immensely complex task. To avoid this difficulty, a test problem is used for the work

in this paper. We take as the only mission metric the establishment of a regular tetrahedron at

apogee about a baseline orbit characterized by a semi-major axis, a = 42095 km, an eccentricity, e =

0.81818, an inclination, i = 10 degrees, and with zero right-ascension of ascending node and

argument of perigee. Without loss of generality, the time of perigee passage was taken to be zero.



Usingthegeometricmodeldetailedby Schiff et al [Schi 00], a regular tetrahedron was constructed

about the baseline orbit's apogee. In the geometric model, the positions relative to the baseline

orbit are specified in the corresponding apogee VBN frame. Requiring that the period of all the

orbits be equal and that the velocity vectors be parallel at the moment the formation is established

then completes the full state. A tetrahedron formation was chosen since it gave all three degrees of

freedom in the relative motion and thus ensured a sample of in-plane and out-of-plane motion. For

the test case each spacecraft was positioned 1000 km from the baseline orbit S_, as shown in

Figure 1.
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Fig. 1: Schematic of the Formation Configuration.
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So and '_t are the in-plane components. S0 lies along the velocity direction and S_ lies on the

binormal direction. $2 and $3 are the out-of-plane spacecraft. $1, $2 and $3 are evenly

distributed (spacing of 120 degrees) in the 1}-Nplane and form a regular tetrahedron with S0.

The orbital elements for the reference and the spacecraft in the formation are presented in Table 1.

The semi-major axis of all the member spacecraft are equal to the baseline value, ensuring that all

the spacecraft have the same period. Note that the out-of-plane spacecraft ( S-2, $3 ) exhibit change

in all of the remaining orbital elements but the true anomaly. In addition, as they are symmetric

about the orbit plane, their maneuver strategy will be identical, reducing the number of spacecraft to

study to three.

Table 1 Orbital Elements of the Formation Flying at fro =180 °

O bital oft-set s2
Elements from Sb

a (km) 42095 Aa (km) 0 0 0 0

e 0.818181 Ae 0.000189-0.023756 0.011993 0.011993

i (deg) 10 Ai (deg) 0 0 0.0205 0.0205

D (deg) 0 A_ (deg) 0 0 3.704 -3.704

(9 (deg) 0 A(9 (deg) 0.915 0 -3.648 3.648

f (deg) 180 Af (deg) -0.166 0 0 0

The final ingredient in the test problem is the application of a maneuver strategy to take the

spacecraft from the baseline orbit to the initial state on the tetrahedron. To avoid the timing

problems that would arise otherwise, it was required that all the spacecraft must reach their

corresponding tetrahedron state at the same time, independent of where they start on the baseline

orbit. This requirement ensures that each member of the formation begins its dynamics in concert



with the others. While tile maneuverstrategiesexaminedare basedon analytic approximations,
FreeFlyer® was used to confirm the approximations in a fully modeled simulation. Details of such

simulations are discussed in [Schi 00]. In all of the simulations, the FreeFlyer® targeter was run to

achieve an accuracy in the desired goals of 0.1% and the results were used as a benchmark for a

comparison between the different methods. For simplicity, the propagation force-model consisted

only of the point-mass gravity due to the Earth. This is a good approximation, since it is envisioned

that all maneuver scenarios will be performed over one orbit, during which the effects due to the

orbital perturbations are minimal.

3 - VOP METHODS

In this section maneuver strategies are discussed for initializing the formation based on the

Gaussian variation-of-parameters (VOP) equations. The reason for employing a VOP method was

that it is inherently based on Keplerian elements. Since the Keplerian elements offer more physical

insight into orbital mechanics than the corresponding Cartesian formulation, one might expect that

the VOP equations would bring the same type of physical insight to what the maneuver (or

maneuvers) are needed to initialize each spacecraft efficiently. However, this expectation generally

proves false for reasons discussed below.

To begin, a basic single-impulse formalism is presented. The Gaussian VOP equations can be

modeled as a [6x3] matrix where the rows represent the six Keplerian_elements and the column the

radial (R), tangential (T) and normal (N) thrust acceleration components [Prus 93]:

/&,

&

%

2.e.sinf 2 .(l+e.cosf)
/'l-_ ]'1"_

0 0 cos, +s,;i/I+e.cosf

p_ sin (oJ+ f) .0 0 sin/- (1+ e-cos f)
cos/. sin (co+ f)

p_# cosf p_ sinf .(2+e.cos f) pj-_# 1

- e e.O+_.co_f) - sini.(l+e.cosf)

fl'(2e-cOsf-e'¢Os2f) fl.sinf.(2+e.cosf)

(1+ e. cos/) (1+ e. cos f) 0

(la)

where

Z =n.r (lb)

p:a-(1-e 2) (lc)

a: _l-e 2 (ld)

-a.p (le)
P- -p.e

The maneuvers are impulsive and it is assumed that the VOP matrix (Z) is constant during the burn

and that it depends only on the initial (i. e. baseline) orbital elements.

Different approaches using these equations can be envisioned. In general, the VOP equations

will not provide the exact final state for a single impulse strategy, as only three control variables are

available to target six final orbital elements. In the cases where the exact final state can be



achieved,portionsof the Z matrix becomeidenticallyzero,effectivelydecouplingsomesetof the
Keplerianelementsfrom the others. As anexample,considertheclassiccasewhereonly anormal
componentis performedandonly changein i is desired. An arbitrary normal maneuver will cause

changes in i, ff_, and co unless the true anomaly is chosen such that sin(m + f) vanishes. These

cases physically correspond to performing the single impulse at the point on the initial orbit where

it is intersected by the final orbit. To successfully exploit this, special initial conditions for the

formation, termed 'tailored', must be chosen that ensure that this intersection condition is true.

While it may be possible to achieve these tailored conditions, it is not physically intuitive how to

proceed. In addition, restriction of the initial conditions to satisfy the intersection condition

generally implies that the probability that the final orbit also satisfies the formation metrics is

smaller than if sampled from 'generic' initial conditions (where 'generic' is defined as not

restricted). The reason the probability is necessarily equal to or smaller is that if solutions exist

which satisfy the metrics, then the locus of these solutions must be a sub-space of the initial-

conditions parameter space. Insisting that the solutions must also be a part of another sub-space to

satisfy the intersection constraint requires that the two sub-spaces intersect. Obviously, if the initial

conditions are not restricted, then the sub-space for the maneuver strategy is the entire initial-

parameter space and intersection is assured by the above argument. As a result of this reasoning the
intersection condition was dismissed as an avenue of further research.

The next avenue explored, referred to here as VOP1, was based on using the pseudo-inverse

matrix (L*) of the VOP Z. This least-square type inverse is the closest solution for a one-burn

strategy to the system of equations expressed in (la). The resulting AV is:

• At

a9= .At =

• At

r Aa

Ae

Ai
L*.

Af/

Aco

,AZ target

(2)

Note that the pseudo-inverse matrix exists only and only if the product Z r • Z is non-singular.

Also it should be noted that this method practically guarantees that all of the elements of the final

state will only be partially achieved.

Before reporting the resulting delta-Vs for the VOP1 model, two multiple-impulse solutions are

investigated• In principle, (la) should have at least locally unique solutions for two-impulse

strategies. In this case, there would be six control values (two sets of R, T, and N components) and

six changes in the Keplerian elements. Solutions to this system of nonlinear, coupled equations

could then be obtained using standard numerical techniques. However, this type of approach offers

no physical insight into the problem nor does it offer the simplicity of the single-impulse VOP1

strategy. Since well-known techniques for solving the Lambert problem using two-impulse

strategies exist, this approach was not pursued.

There is a well-defined four-impulsive burn strategy that employs some physical reasoning to set

the spacecraft on the exact desired final target [Scha 00]. This method will be referred to as VOP2

in this paper. The concept elaborated by Schaub et. al. was to restrict the influence of each burn

component (radial, tangential and normal) to only two orbital elements. The inclination change was

performed by a normal burn at latitude 0 ° or 180 ° leaving both the argument of perigee and right



ascensionof theascendingnodeunchanged.Thevariation in right ascensionof the ascendingnode
maneuveroccurredat latitude90°. The latterburn induceda changein argumentof perigeethat
wascorrectedduring the argumentof perigeeburn. The argumentof perigeeand meananomaly
werevariedusingtwo impulsiveburnsalongtheradial direction,oneat perigeeandoneat apogee.
Finally, the semi-majoraxis and eccentricitywere modified using the sametwo impulsive burn
strategybut alongthetangentialdirection. In thecasewheretheinitial argumentof perigeeis zero,
thetotal numberof maneuversreducesto three.

Table2 presentsa comparisonof the optimal AV estimated by the different VOP approaches.

Overall, it was observed that the pseudo-inverse method VOP1 gives a better AV cost than the

multiple-impulse VOP2 method at the expense of not exactly achieving the desired final state. This

is primarily due to the fact that making changes to specific orbital elements in a physically intuitive

sequence, as in VOP2, forces the dynamics move along several orthogonal directions in the VOP

parameter space. Moving in a general space in such a fashion is usually more costly and inefficient

than moving along a single curve connecting the initial and final points. Note that when only one or

two orbital elements were varied, the pseudo-inverse method did not provide consistent results.

Indeed, the VOP matrix is highly coupled and a maneuver in one direction will vary up to four

orbital elements. Therefore, the pseudo-inverse method is unlikely converge on any valid solution

for simple cases and a more intuitive approach, like VOP2, is necessary.

Table 2 Total AV comparison between VOP and FreeFlyer®

Method So Sl $2 / $3

VOP 1 2.0 m/s N/A 40 m/s

VOP2 71 m/s 64 m/s 96 m/s

As discussed above, the VOP1 method generally fails to achieve any of the desired changes

precisely. Thus a fair comparison between the two VOP methods can only be done after it was

determined whether the deviation from the final state when using the VOP1 method was tolerable.

For simplicity, only the out-of-plane spacecraft $2 was examined. The different deviations in

orbital elements were plotted (Figs. 2A-B) and the pseudo-inverse method showed a "close" match

with the final state for a true anomaly around 80 ° (i.e. all the deviations close to zero except for one

orbital element). While there is no way of judging within the context of the model problem whether

these inaccuracies are tolerable, in the context of the MMS mission they are unacceptable.

Up to this point, the pros and cons associated with the VOP methods for initializing individual

spacecraft have been discussed. This section is concluded with a note about a cooperative timing in

the VOP methods. Some reflection on the nature of the VOP methods points out that there is a

problem associated with initializing the formation as a whole. Since the time of flight does not

figure into the VOP equations, it is unclear how to conveniently specify the desired final state (i.e.

the initial state of the formation) simultaneously with the desired final time. This means that

although the desired final orbit state with the correct orbital elements may be obtained, the state

may not be achieved at the appropriate epoch. Since the cooperative dynamics of a formation

depends on the spacecraft all being in a specific point on their respective orbits at a given time this

presents a serious problem to which we currently have no general solution or mitigation for VOP
related methods.
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4 - THE STATE TRANSITION MATRIX

In this section a general two-impulse maneuver strategy based on the Lambert problem

expressed in a Cartesian state formulation [Pru 93] is investigated. Under the general theory,

Cartesian offsets dr and 8v about the baseline orbit at an arbitrary time are related to the initial

offsets dr 0 and &, 0 by:

) (4)
, (Sv, j

where _(t,t 0) is the state transition matrix. To solve the Lambert problem, the matrix is partitioned

into four [3x3] matrices:

The final relative position and velocity are expressed as functions of the initial relative position and

velocity:

8r = M .6r + N . Sv. (6)

8v= S.&, + T.dv,, (7)

If the spacecraft is assumed to initially lie in the baseline orbit then 6roli,i, = 0. The two impulses

needed to rendezvous with the final state are then immediately calculated to be:

and

AV_,,a,t =N-' .drl-SVo[_,,t (8)

AVr,.,, = Sv I a,,o, - r. N-' .Sr I (9)

Since our aim is to initialize a formation about an elliptical baseline orbit, the Hill-Clohessy-

Wiltshire approximation to the state transistion matrix (STM) is not applicable. However, there

exist many forms for general STMs which are valid for elliptical orbits. An STM formulation by

Der [Der 97] was used in this work. Der's formulation is expressed in terms of universal variables,

and has the advatage that it is valid for arbitrary conics. Figure 3 presents a comparison of the AV

between the estimate based on the Der analytic solution to the Lambert problem and the

corresponding FreeFlyer® targeter simulation for all four spacecraft. Despite the linearization

used to solve the Lambert problem the analytic model using the Der STM matched the FreeFlyer®

results almost perfectly. Thus, the Der matrix could be used stand-alone as a relatively accurate

tool to provide the AV budget for initializing the formation to arbitrary initial conditions.

As previously mentioned, valid formation dynamics depend on getting the member spacecraft into

the correct orbits at the correct time. A constraint was applied to the time of flight and the targeted

positions to ensure the proper relative motion is achieved. The strategy required the same fixed

epoch for all the final states, regardless of the epoch of the initial state. This puts a constraint on the

time of flight that is dependent on the epoch of the initial maneuver. This method guaranteed that

the desired formation metrics were unambiguously achieved. It is worth noting that another

possible strategy exists, in which the time associated with the final states 'floats'. Each final state

would then be specified at an independent epoch and when propagated to a common time would
then form the desired formation. The formation would not be considered 'initialized' until the last

spacecraft joined the array. Such a strategy may afford delta-V savings but is beyond the scope of

the current study.
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5- CONCLUSIONS

Two methods were investigated to estimate the maneuvers to initialize the formation. Strategies

based on the Gaussian variation of parameters (VOP) were highly dependent on the initial

conditions. Single-impulse VOP strategies lacked the ability to deal with general initial conditions

directly. An attempt to use a pseudo-inverse method (VOP1) showed some success but the method

was generally too inefficient to use in practice. Multiple-impulse VOP methods also exist but are

more complex, lacking a great deal of physical intuition. In particular a four-impulse method

(VOP2) based on the work of Schaub was examined. The method was found best suited for a select

class of formation initial conditions in which only a few of the Keplerian elements changed relative

to the baseline. Because the initial conditions in this class were subject to severe constraints, they

had a lower probability of achieving the mission imposed formation metric as well. For more

general initial states, the VOP2 method led to a fairly high AV cost. In addition, all the VOP

methods suffered from too few restrictions on the time-of-flight. Ambiguities arose as to how

ensure that each member of the formation arrived at the right state at the correct time. The second

method considered involved solving a Lambert problem using the Der state transition matrix. In

general, it exhibited good accuracy at a relatively low AV expense and the timing constraints

associated with initializing the formation were easily satisfied. In addition, this closed form

solution showed a good match with the FreeFlyer® numerical targeter.
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