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A 3-D Coupled CFD-DSMC Solution Method With
Application To The Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoflo

Aerothermodynamics Branch, NASA LaRC, Hampton, VA, USA, 23681-2199

Abstract. A method to obtain coupled CFD DSMC, 3 D flow field solutions for highly blunt bodies at low incidence is
presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique.
CFD is used to solve the high density blunt forebody flow defining an inflow boundal3r condition for a DSMC solution of
the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow
field is modeled in an appropriate manner.

INTRODUCTION

Different computational methods are needed to determine the aerodynamic and aerothermodynamic

characteristics along the entire flight trajectory for aerospace vehicles ascending to orbit or descending through an

atmosphere to a planet's surface. Predictions at high altitudes corresponding to the rarefied flow regime are usually
accomplished using probabilistic methods such as direct simulation Monte Carlo (DSMC) [1], and predictions at

lower altitudes corresponding to the continuum regime use deterministic methods such as computational fluid
dynamics (CFD) [2]. However, in a mixed transitional flow regime with rarefied and continuum conditions, such as

blunt body wakes, sharp leading edges, and expanding reaction control system plumes, a combination of both
techniques can provide a predictive method that exploits the advantages of each technique in its suitable flow
domain.

This study presents an approach that is applied to a vehicle encountering mixed transitional and continuum flow,

namely the Mars Sample Return Orbiter (MSRO), which is part of the Mars Sample Return project. The project's
mission is to return surface material from Mars back to Earth. The MSRO vehicle has as its payload the Earth Entry
Vehicle (EEV) and the associated sample material transfer hardware. To be placed into Mars orbit, the MSRO

vehicle is to perform a controlled, single-pass aerocapture maneuver in the Martian atmosphere; thus, the vehicle or

portions of the vehicle are subjected to flow in the transitional regime at various times during the aerocapture
portion of the trajectory. One MSRO vehicle concept consists of an Aeroassist Flight Experiment (AFE) [3] type

aeroshell forebody with the payload located behind the aeroshell. Ideally, the payload is contained within the
vehicle wake, which minimizes payload exposure to contamination and large aerodynamic and aerothermodynamic

loads. However, numerical studies are needed to quantify the wake flow and confirm whether shear layer
impingement occurs and adequate protection is provided.

To quantify blunt body wake flow, a recent report of the AGARD Fluid Dynamics Panel Working Group 18
(WG 18) activity of computational and experimental hypersonic blunt body flows was published [4], which outlines

activities supported to both define the physics of such flows and provide the results to apply to the design of future
planetary vehicles. The blunt body configuration employed was an axisymmetric, 70-deg blunted cone with a

circular shoulder blended into an aft flat section normal to the flow direction (c_ = 0°). The flat aft section is

attached to a sting section for tunnel support and to provide basic understanding of the wake closure location of the
various test points. When subjected to a hypersonic flow, the configuration yields a flow field that is compressed by

the forebody and expands rapidly about the shoulder forming a wake region, which closes on the sting.
Various comparisons for the blunted cone configuration have l_en made; for example, Navier-Stokes and DSMC

results of Mach 20, low density wind tunnel condition are presented and compared in [5] and experimental and
Navier-Stokes results of Mach 10, low density air are presented and compared in [6]. The primary goal of [6] was



A 3-D Coupled CFD-DSMC Solution Method With
Application To The Mars Sample Return Orbiter

Christopher E. Glass and Peter A. Gnoflo

Aerothermodynamics Branch, NASA LaRC, Hampton, VA, USA, 23681-2199

Abstract. A method to obtain coupled CFD DSMC, 3 D flow field solutions for highly blunt bodies at low incidence is
presented and applied to one concept of the Mars Sample Return Orbiter vehicle as a demonstration of the technique.
CFD is used to solve the high density blunt forebody flow defining an inflow boundal3r condition for a DSMC solution of
the afterbody wake flow. By combining the two techniques in flow regions where most applicable, the entire mixed flow
field is modeled in an appropriate manner.

INTRODUCTION

Different computational methods are needed to determine the aerodynamic and aerothermodynamic

characteristics along the entire flight trajectory for aerospace vehicles ascending to orbit or descending through an

atmosphere to a planet's surface. Predictions at high altitudes corresponding to the rarefied flow regime are usually
accomplished using probabilistic methods such as direct simulation Monte Carlo (DSMC) [1], and predictions at

lower altitudes corresponding to the continuum regime use deterministic methods such as computational fluid
dynamics (CFD) [2]. However, in a mixed transitional flow regime with rarefied and continuum conditions, such as

blunt body wakes, sharp leading edges, and expanding reaction control system plumes, a combination of both
techniques can provide a predictive method that exploits the advantages of each technique in its suitable flow
domain.

This study presents an approach that is applied to a vehicle encountering mixed transitional and continuum flow,

namely the Mars Sample Return Orbiter (MSRO), which is part of the Mars Sample Return project. The project's
mission is to return surface material from Mars back to Earth. The MSRO vehicle has as its payload the Earth Entry
Vehicle (EEV) and the associated sample material transfer hardware. To be placed into Mars orbit, the MSRO

vehicle is to perform a controlled, single-pass aerocapture maneuver in the Martian atmosphere; thus, the vehicle or

portions of the vehicle are subjected to flow in the transitional regime at various times during the aerocapture
portion of the trajectory. One MSRO vehicle concept consists of an Aeroassist Flight Experiment (AFE) [3] type

aeroshell forebody with the payload located behind the aeroshell. Ideally, the payload is contained within the
vehicle wake, which minimizes payload exposure to contamination and large aerodynamic and aerothermodynamic

loads. However, numerical studies are needed to quantify the wake flow and confirm whether shear layer
impingement occurs and adequate protection is provided.

To quantify blunt body wake flow, a recent report of the AGARD Fluid Dynamics Panel Working Group 18
(WG 18) activity of computational and experimental hypersonic blunt body flows was published [4], which outlines

activities supported to both define the physics of such flows and provide the results to apply to the design of future
planetary vehicles. The blunt body configuration employed was an axisymmetric, 70-deg blunted cone with a

circular shoulder blended into an aft flat section normal to the flow direction (c_ = 0°). The flat aft section is

attached to a sting section for tunnel support and to provide basic understanding of the wake closure location of the
various test points. When subjected to a hypersonic flow, the configuration yields a flow field that is compressed by

the forebody and expands rapidly about the shoulder forming a wake region, which closes on the sting.
Various comparisons for the blunted cone configuration have l_en made; for example, Navier-Stokes and DSMC

results of Mach 20, low density wind tunnel condition are presented and compared in [5] and experimental and
Navier-Stokes results of Mach 10, low density air are presented and compared in [6]. The primary goal of [6] was



anaxisymmetricstudy,butduringtheMach10experimentangle-of-attack,ct,ofthebluntbodywasvaried+20 ° to
yield forebody and afterbody (sting) heating. As the angle of attack was changed, windside sting heating increased

by over a factor of 2 and the location of maximum heating moved upstream towards the blunt body base [6].
Several other important conclusions of the WG 18 activity [4] are that the Navier-Stokes solutions of the wake

region match those of the DSMC for Knudsen number based on the free stream conditions and appropriate body
length (forebody diameter), KnL, less than a value of about 0.001; that functional relationships exist between the

flow rarefaction (KnL) and the strength of the wake vortical flow; and the locations on the afterbody (sting) of free
shear layer impingement and of maximum heating are not the same (These results are also shown in [5].).

The basic features of the flow field and surface produced by the axisymmetric configuration (i.e., blunt body
flow compression, rapid expansion of a thermally excited, non-equilibrium flow to a rarefied condition, closure of

the wake by shear layer convergence, and differences on the afterbody in shear layer impingement and maximum)
should be qualitatively similar to those of the MRSO during its Mars aerocapture trajectory. However, to provide

quantitative flight results for a three-dimensional configuration such as the MSRO, a numerical computation using
the most reliable predictive methods is needed. The flow field and corresponding surface pressure and heating

distributions for the axisymmetric case can then be employed to provide a qualitative comparison or a so called
"sanity check" of features of the full three-dimensional configuration.

SOLUTION METHODOLOGY

A combination of rarefied and continuum methods is needed to properly analyze flow fields having continuum,

transitional, and rarefied regions. The physical nature of the flow field dictates the proper treatment of the boundary
between the continuum and rarefied portions. For example, solution methods for unsteady flow containing both

continuum and rarefied regions must strongly couple the two so that information can be transferred between them
[7]. The boundary for this case must track temporal and spatial fluctuations between the regions. However, for an

assumed steady flow field solution with a region of continuum fluid expanding into a rarefied region, such as shown
in the studies presented in [8-10], the continuum region is obtained with CFD, which in turn provides an inflow

boundary for a DSMC solution domain. By combining the continuum and non-continuum solutions, flow fields with
order of magnitude changes in density from continuum to rarefied flow can be obtained without the complexity of

strong coupling, but with the advantage of using the best method in each region.
Comparisons between fully coupled and zonally decoupled solutions of forebody and afterbody flow about an

axisymmetric blunt body are presented in [10]. The fully coupled solution consisted of an overlap region between
the CFD and DSMC portions of the flow to account for the non-equilibrium condition of the flow as it expands

about the forebody to the wake region. The zonally decoupled solution used the equilibrium temperature of the CFD
as the inflow DSMC overall temperature. Results from [10] show that the zonally decoupled solutions adequately

defined the wake flow when compared to the coupled solutions. In addition, for the conditions of [10], no
significant difference in the mean-flow wake properties were produced by not including the non-equilibrium effects

at the CFD-DSMC interface. Therefore, an approach similar to the zonally decoupled method of [10] is employed
for the present study.

The current approach for 3-D flow field modeling of the MSRO is to apply the continuum analysis of CFD using
the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) code [11] to the high-density blunt

forebody flow field region of the aeroshell and the molecular analysis of DSMC using the DSMC analysis
code (DAC) [12] to the afterbody wake flow field. Shown in Fig. 1 is a side view of the MSRO configuration with

the interface between the CFD and DSMC portions of the flow field shown as the solid line dividing the regions at
the aeroshell lip. The cavity behind the forebody aeroshell shown in the figure, which forms a bowl-like shape with

flow reversing direction if it follows the inner shell geometry, is contained in the DSMC portion of the solution
domain. The planar CFD flow field variables at the interface provide an inflow boundary condition for the DSMC

wake flow field simulation. A planar surface was chosen to divide the two computational regions to primarily
capture the expanding flow about the aeroshell lip as the sharp-edged lip between the forebody and afterbody

provides a natural transition between continuum and rarefied treated regions, and secondarily because of ease of
setup and implementation of the scheme.

In addition, to model the wake flow field about a 3-D configuration with a near continuum free stream

condition (KnL = 0.001), a DSMC computation that includes a fully adapted grid behind the plane at the aeroshell lip

would require an exorbitant number of simulated molecules and be too costly in both computational resources

2
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(memory, cpu's, etc.) and wall time to produce with today's computational resources. Therefore, the concept of a

near body adapted grid is presented and employed for the near continuum DSMC cases presented below. To
incorporate the near body adapted grid into a solution, a modification was made to the DAC [12] preprocessor.

Because the preprocessor adapts level II cells into a level I uniformly distributed grid, the near body adaptation
routine was easily implemented by limiting level I cell adaptation to those closest to the body.

As discussed above, CFD for the forebody was performed by the LAURA code. The Mars atmosphere was

modeled as an eight specie, non-equilibrium gas. The forebody temperature was held constant at 1500K and the
wall was assumed fully catalytic. All DSMC simulations performed by the DAC code include translational,

rotational, and vibrational contributions employing a nine specie model of the Mars atmosphere for which argon was

ignored to match LAURA chemistry. The MSRO surface is assumed fully diffuse, non-catalytic, and constant
temperature. For the two higher KnL cases the wall temperature was fixed at 300K; for the two lower KnL cases, the

wall temperature was 500K. Additionally, the nearest neighbor collision algorithm of DAC, which selects closest
molecules that are normal to the surface as most probable collision partners and provides virtual cell enhancement,

was employed. The algorithm reduces the need for wall cells to be sized on the order of the local mean free path.

RESULTS AND DISCUSSION

Given in this section are simulation results that correspond to various altitudes in the CO2-N2 Mars atmosphere

at times near the start of the aerocapture maneuver of a proposed MSRO mission. Cases at four altitudes are

considered with KnL = 0.2, 0.02, 0.002, 0.0004. (Note that the free stream mean free path, )_, calculated using the

hard sphere model, and the maximum body length of the aeroshell, L, of 3.65m, shown in Fig. 2, are used to
determine KnL.) Emphasis will be placed on two cases: KnL = 0.02 and KnL = 0.002, which are in the transitional

regime between continuum and rarefied. The two most rarefied cases are computed with DSMC only. For
KnL = 0.02, solutions from a near body adapted grid and a fully adapted grid solution are presented to assess the

viability of only employing finely spaced grid near the body. Then, DSMC is applied to the body adapted grid to
produce solutions for the KnL = 0.002 and 0.0004 cases, which use the CFD forebody inflow boundary solution.
Finally, some noteworthy surface results on the aflerbody as a function of KnL are presented and discussed to

summarize the study.

A side view of the MSRO configuration is shown in Fig. 1. All results given in the present study are for the

configuration at angle-of-attack, _, of -4 °. All solutions are presented so that the free stream velocity vector is
horizontal as shown in Fig. 1. Note that the negative angle-of-attack rotates the flow toward the upper cylindrical

aflerbody portion of the configuration. Surface pressure and heating along the upper cylindrical surface, which are
given subsequently, are presented as a function of s/1 as shown in Fig. 2. In addition, when presented, wake flow

properties are taken at either one of the two downstream stations (X = 3m and X = 6m) from the MSRO (See
Fig. 2.).

The computational size of a 3-D simulation of a blunt body wake flow with KnL _ 0.001 can be reasonably
reduced if fine grid adaptation is confined to the region near the configuration surface. It is supposed that by

capturing only near body gradients with sufficient grid resolution the simulation will not be sufficiently degraded.
To this end, two simulations were performed at the KnL = 0.02 fight condition for DSMC only. The KnL = 0.02 flow

condition simulations were on a configuration with the only difference being the grid. Therefore, a fully adapted
and a near body adapted grid were obtained from the same initial grid; The symmetry plane from each is shown in
Figs. 3 and 4, respectively. DSMC using the DAC code was applied to the two grids and the number of simulated

molecules was reduced by over one-third with the near body grid. Although forebody region grid reduction is

included, a comparison of the two grids does show that by not finely gridding the bow shock wave past the 3-D
configuration, a reduction of the number of cells is still realized.

Results of the DSMC computations on the upper cylinder surface are shown in Fig. 5. The Cp and CH values rise
from the root region to the cylinder end at s/1 = 1 with the same general shape. (The pressure coefficient is

Cp : (p-p_)/Vzp_V_ 2and the heat transfer coefficient is C H : q/1/2p_V_3. ) For both Cp and CH, the near body adapted
grid yields values that are lower than the fully adapted grid. However, the maximum difference is small: 5%

difference in Cp.... and 3.5% difference in CH..... Presented in Fig. 6 are the overall temperature profiles at the two
X stations shown in Fig. 2. Generally, the temperature difference between the two simulations at 3m and 6m
stations follow the same trends. At the maximum temperature, the difference is less than 50K (about 1%). Based on
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configuration, a reduction of the number of cells is still realized.

Results of the DSMC computations on the upper cylinder surface are shown in Fig. 5. The Cp and CH values rise
from the root region to the cylinder end at s/1 = 1 with the same general shape. (The pressure coefficient is

Cp : (p-p_)/Vzp_V_ 2and the heat transfer coefficient is C H : q/1/2p_V_3. ) For both Cp and CH, the near body adapted
grid yields values that are lower than the fully adapted grid. However, the maximum difference is small: 5%

difference in Cp.... and 3.5% difference in CH..... Presented in Fig. 6 are the overall temperature profiles at the two
X stations shown in Fig. 2. Generally, the temperature difference between the two simulations at 3m and 6m
stations follow the same trends. At the maximum temperature, the difference is less than 50K (about 1%). Based on



theresultsgiveninFigs.5and6,it isconcludedthatforthiscase,thenearbodyadaptedgridsolutionissufficiently
accuratetodefinethesurfaceandnearwakeflowfieldwithconsiderablereductionincomputationalresources.

Althoughthenearbodygridadaptationschemeisvalidatedforawake,whichismorerarefied,theresultsgive
promisethatthetechniquemayallowreasonablepredictionsof flowsimulationsof lessrarefiedwakeflows.
Therefore,thenearbodygridmethodisappliedtoa lowerKnLcondition.Fig.7showsthenearbodyadaptedgrid
atthesymmetryplanefortheKnL= 0.002condition.Thefinegridaboutthebodyis shownasagrayshading
becausethecellsaresosmall.ThewakedensityprofilegiveninFig.8showsthevariationfromthefreestream
valuebelowthelowerbowshock,increasinganddecreasingacrosstheshockwavemovingupward,thenthrough
thelowdensitywakedownstreamof theMSROandupperportionofthebowwake,whichis capturedbythe
DSMCcomputation.Thecombinationofthestreamlinesin thedensityfieldandvelocityvectorsattheX = 3mand
6mlocationsshowthattheflowcloseto theupperlip travelsdownwardclosetotheconfigurationbeforebeing
sweptintothewake.Thevectorsshowadeficitin thevelocitybelowthecenteroftheconfigurationatthe3m
station,whichpersiststo the6mstation,asa resultof theflowabouttheforebody.Notethatthereis flow
impingementontheuppercylindersurfacewithaprimaryandsecondaryvortexstructureproducedin therecessed
regionbehindtheaeroshelljustbelowandtotheleftoftheflowimpingementpoint.

Onthecylindersurface,asshownin Fig.9,theC_v value initially falls slightly from the root value (s/1 = 0),
recovers, and then rises before reaching a maximum prior to the end of the cylinder. However, CH monotonically
rises from a minimum value at the cylinder root to a maximum at the cylinder end (s/1 = 1). Flow field translational,

rotational, and vibrational temperatures in the wake at the X = 6m station are given in Fig. 10 for this condition. The
temperatures show that all three energy modes modeled by the DSMC are energized; thus, the wake is in a

non-equilibrium state. Hence, it is important to properly define the wake flow chemistry for this condition.

Figs. 11 and 12 summarize the flow field effects on the MSRO afterbody cylinder from all cases computed.
Surface shear stress was analyzed to define the location of the primary vortex attachment and separation and the

location of the secondary vortex near the cylinder root. The analysis of shear stress showed that the flow attachment
and separation were at zero valued shear stress with the sign of shear stress defining the local flow direction

elsewhere. Although the use of the body grid adaptation scheme for Knk = 0.0004 has not l_en established, it was
employed, and the results are presented in Fig. 11 to help establish trends.

The triangles shown in Fig. 11 represent the attachment of the primary vortex and of flow expanding about the
upper aeroshell lip onto the cylinder as a function of KnL. The gradient symbols represent the separation of the
primary and secondary (if present) vortices from the surface. Note that the secondary vortex for the KnL = 0.002

condition is shown in Fig. 8 close to the cylinder root (s/1 = 0) by the small rolled streamline trace. As KnL
increases, the attachment moves down the cylinder, the extent of the primary vortex tends to remain the same, but

the secondary vortex becomes smaller (Note the location and distance between the flow attachment and separation.)

until the secondary vortex disappears for KnL > 0.02 and the primary vortex size decreases further. As shown on the

figure, the effect of increasing KnL on the maximum Cp and CH location is to move that point toward the cylinder
end, opposite the direction of flow attachment location. For KnL > 0.002, CH.... is at the cylinder end and for

KnL = 0.02, Cp.... is located at the end. These results are similar to those presented for an axisymmetric blunt
body [4]; i.e., the size of the wake vortex region increases as Knk decreases and flow attachment does not coincide

with maximum Cp and CH. The values of Cp.... and CH.... as a function of KnL are given in Fig. 12. (Note the value
for the KnL = 0.0004 condition is not included in the figure because the level II cells near the maxima were not

spaced closely enough to provide adequate flow resolution.) The trend of the Cp.... data is that it decreases with
increasing KnL; Conversely, the trend shown for CH.... is that it increases with increasing KnL.

CONCLUSIONS

Two methods have l_en developed to reduce the computational demand of producing 3-D DSMC blunt body

wake solutions for configurations with flow conditions of Knk = 0.001 or greater. It has l_en previously shown that
DSMC is required to provide adequate simulation in the wake region for this flow condition. The present study

introduces, for the 3-D MSRO configuration, a method that uses a CFD forebody solution as an inflow condition to
the DSMC at a planar boundary at the aeroshell lip. In addition, fine grid adaptation is limited to the near body
region only to capture with fine grid flow details near the body. Although the results from this study are given as a

"work in progress," the methods employed are encouraging in reducing the grid and, hence, the total computational

effort to produce these near continuum solutions. Trends presented for the vortical flow near the afterbody cylinder

4
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are similar to those given previously [4], i.e., the size of the wake vortex region increases as Kn L decreases and flow

attachment does not coincide with maximum Cp and CH, thus giving some credence to the present method. In

addition, the results show that in the wake region for the flow conditions of this study, non-equilibrium chemistry is

present in the wake behind the blunt body and should be accounted for in the simulation.
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