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Abstract Introduction

This paper deals with the development and use
of scaled-down models in order to predict the structural
behavior of large prototypes. The concept is fully

described and examples are presented which
demonstrate its appficability to beam-plates, plates and
cylindrical shells of laminated cons_ction. The

concept is based on the use of field equations, which
govern the response behavior of both the small model
as well as the large prototype. The conditions under

which the experimental data of a small model can be
used to predict the behavior of a large prototype are
called scaling laws or similarity conditions and the term

that best describes the process is structural similitude.
Moreover, since the term scaling is used to describe the

effect of size on strength characteristics of materials, a
discussion is included which should clarify the
difference between "scaling law" and "size effect".

Finally, a historical review of all published work in the
broad area of stnmtural similitude is presented for

completeness.
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Aircraft and spacecraft comprise the class of

aerospace structures that require efficiency and wisdom
in design, sophistication and accuracy in analysis and
numerous and careful experimental evaluations of

components and prototype, in order to achieve the
necessary system reliability, performance and safety.

Preliminary and/or concept design entails the

assemblage of system mission requirements, system

expected performance and identification of components
and their connections as well as of manufacturing and

system assembly techniques. This is accomplished
through experience based on previous similar designs,

and through the possible use of models to simulate the
entire system characteristics.

Detail design is heavily dependent on

information and concepts derived from the previous

step. This information identifies critical design areas
'which need sophisticated analyses, and design and
redesign procedures to achieve the expected component

performance. This step may require several
independent analysis models, which, in many instances,

require component testing.

The last step in the design process, before
going to production, is the verification of the design.
This step necessitates the production of large

components and prototypes in order to test component
and system analytical predictions and verify strength
and peffom3ance requirements under the worst loading
conditions that the system is expected to encounter in
service.



Clearly then, full-scale testing is in many cases

necessary and always very expensive. In the aircraft

industly, in addition to full-scale tests, certification and
safety necessitate large component static and dynamic
testing. The C-141A ultimate static tests include eight

wing tests, 17 fuselage tests and seven empennage
tests. I Such tests are extremely difficult, time

consuming and defimtely absolutely necessary.

Clearly, one should not expect that prototype testing
will be totally eliminated in the aircraft industry. It is

hoped, though, that we can reduce full-scale testing to a
minimum

Moreover, crashworthiness aircraft testing

requires full-scale tests and several drop tests of large

components. The variables and uncertainties in crash
behavior are so many that the information extracted
from each test, although extremely valuable, is

nevertheless small by comparison to the expense.
Moreover, each test provides enough new and

unexpected phenomena, to require new tests, specially
designed to explain the new observations.

Finally, full-scale large component testing is
necessary in other industries as well. Ship building,

building construction, automobile and railway car
construction all rely heavily on testing.

Regardless of the application, a scaled-down
(by a large factor) model (scale model) which closely

represents the structural behavior of the full-scale
system (prototype) can prove to be an extremely
beneficial tool. This possible development must be
based on the existence of certain structural parameters
that control the behavior of a structural system when

acted upon by static and/or dynamic loads. If such
structural parameters exist, a scaled-down replica can
be built, which will duplicate the response of the full-

scale system. The two systems are then said to be
structurally similar. The term, then, that best describes
this similarity is structural similitude.

Historical Review

Similarity of systems requires that the relevant

system parameters be identical and these systems be
governed by a unique set of characteristic equations.
Thus, if a relation of equation of variables is written for

a system, it is valid for all systems which are similar to
it. 2 Each variable in a model is proportional to the

corresponding variable of the prototype. This ratio,

which plays an essential role in predicting the
relationship between the model and its prototype, is
called the scale factor. In establishing similarity
conditions between the model and prototype, two

procedures can be used, dimensional analysis and direct

use of governing equations.

Models, as a design aid, have been used for

many years, but the use of scientific models which are
based on dimensional analysis was first discussed in a
paper by Rayleigh. 3 Similarity conditions based on
dimensional analysis have been used since Rayleigh's

time (Macagno4), but the applicability of the theory of
similitude to structural systems was first discussed by
Goodier and Thomson s and later by Goodler. 6 They

presented a systematic procedure for establishing
similarity conditions based on dimensional analysis.

There exist several books that refer to all

elements of structural similitude. Murphy 7, Langha_,

Charlton 9, Pankhurst n° and Guldunan u all dealt with

similitude and modeling principles, and most of them
dealt with dimensional analysis. Kline 2 gives a

perspective of the method based on both dimensional
analysis and the direct use of the government equations.
Szucs _2 is particularly thorough on the topic of
similitude theory. He explains the method with
emphasis on the direct use of the governing equations

of the system. A recent book by Singer, Arbocz and
Weller t3 devotes an entire chapter on modeling with

emphasis on dimensional analysis concepts.

A few studies concerning the use of scaled-

down shell models have been conducted in the past.

Ezra _4presented a study based on dimensional analysis,
for buckling behavior subjected to impulse loads. A
similar investigation was presented by Morgen ns for an

orthotropic cylindrical shell subjected to a variety of
Static loads. Soede116 investigated similitude for

vibrating thin shells.

Due to special characteristics of advanced
reinforced composite materials, they have been used

extensively in weight efficient aerospace structures.
Since reinforced composite components require

extensive experimental evaluation, there is a growing
interest in small scale model testing. Morton .7

discusses the application of scaling laws for impact-
loaded cad_on-fiber composite beams. His work is
based on dimensional analysis. Qian el al.ns conducted

experimental studies of impact loaded composite plates,
where the similarity conditions were obtained by

considering the governing equations of the system.
These works and many other experimental

investigations have been conducted to characterize the
size effect in material behavior for inelastic analysis

(size effects are discussed in a later section).

In recent years, due to large dimensions and
unioue structural design of the vrovosed space station,



small scale model testing and similitude analysis have

been considered as the only option in order to
experimental data. Shill et al.19, Letchworth et al. ,
Hsu et al.2_ and McGowan et al.22 discussed the

possibility of scale model testing of space station
geometries, especially for vibration analysis. Most of
these studies have used complete similarity (defined in
a later section) between model and prototype.

The present authors have j_ublished several
papers (Simitses and _% Remeepazhand
et al.24, Re2aeepazhand et al.2s, Simitses and
Rezaeepazhand 26, Simitses et al.2_, and Rezaeepazhand
and Simitses 2s) that deal with the design of scaled-down
models and the use of test data of these models to
predict the behavior of large prototypes. The behavior
includes displacements, stresses, buckling loads, and
natural frequencies of laminated beam-plates, plates
and shells. In these studies, in the absence of model
test data, the authors theoretically analyzed the models,
and they used the similarity conditions, obtained by the
use of the governing equations, to predict the behavior
of the prototype. They then theoretically analyzed the
prototype and they compared these results to the
predictions. In most cases, the compared results were
very close to each other and they concluded that the
designed model can accurately predict the behavior of
the prototype. Very recently, Ochoa and her
collaborators 29'3° applied similitude theory to a
laminated cylindrical tube under tensile, torsion and
bending loads and under external and internal pressure.
They demonstrated the validity of developing a scale
model, testing it and use the similarity conditions to
predict the behavior of the prototype.

Scaling Effects in Composites

Considerable renewed interest has been
exhibited in the broad field of scaling in the recent
years, as evidenced by the multitude of research papers
that have appeared in the technical literature. Before
discussing any and all efforts, we must have a good
understanding, for clear discussion of the meaning of
the words that have been used. These words are scaling
or scale effects, similarity conditions or scaling laws
and size effects.

Scaling effects mean the effect of changing the
geometric dimensions of a structure or structural
component on the response to external causes. The
external causes include all types of forces. Examples of
the above is a beam made out of metallic material or
man-made composite and subjected to bending. The
main questions associated with predicting the response
of the beam are: Are stiffness and strength affected by
scaling? This means is the effective Young's modulus

(both in tension and compression), which is usually
obtained from small specimens affected by scale. In
addition, is the strength affected by scale? Recognizing
that beams are primarily designed for strength, the
answer to the second question is important. On the
other hand, since columns are primarily designed for
stiffness (buckling), the answer to the first question is
important

In this context, the use of the term size effect
is similar to the term scale effect. On the other hand,
one may wish to find the conditions under which the
behavioral response of a small size beam and a large
size beam are similar. In this case, the interest is to find
the similarity conditions or scaling laws in order to
achieve similarity in response. In this context, the
primary interest is to be able to test a small scale model,
obtain response characteristics (displacements, buckling
loads, vibration frequencies, etc.) and use the scaling
laws to predict the behavior of the large prototype. In
this second case, one can still use the term scaling
effects, if he clearly does not refer to size effects on
strength and stiffness.

Size Effects

There exist two main sources of recent studies

of size effects. First, Ref. 31 contains an outline of
papers presented at a Wod_hop on Scaling Effects in
Composite Materials and Structures, and second, Ref.
32 is a compilation of papers dealing with, primarily,
fracture scaling.

From the conclusions, of virtually all
presenters at the workshop 3! who dealt with size
effects, one can say that the size effect on stiffness is
almost nonexistent.33"u'3s Similarly, the size effect on
strength has created some controversy. Jackson33
concludes that there is considerable size effect on
strength. Grimes _ contends that for solid laminates,
the largest size effect on static strength is less than
4.5% Furthermore, he states that the cause of scale
effects is not size but other factors such as poor quality
tooling, differences in environmental exposure, etc. A
similar conclusion was reached by O'Brien 3_who
claims that the effect of scaling is not because of size,
but because different damage sequence occurs in two
different sizes. In a private commum_on byL.B.
Greszczuk_ of McDonnell Douglas Space Systems Co.,
he stated, quote "If the small and big parts are made by
the same process, there is not size effect neither on
stiffness nor on mength." He further explained that the
tests performed at his company on specimens with
twelve to one ratio in thickness 0ammates), reveal that
the effect on stiffness is nonexistent, while the effect on

strength is less than 4%. The _ used were

3



carefully manufactured by the same process and they
had the same filament volume fraction and porosity.

The objective of most papers in Ref. 32 is to

study the size effect on fracture of ice, concrete and
notched composite beams. In these papers, the
conclusion is that size does affect fracture and crack

propagation.

One particular paper in Ref. 32, that by Daniel
and Hsiao 39, dealt with the thickness effect on

compressive strength of unnotched laminates. It is an
experimental study that used various sizes and layups
and it concluded that the size effect is extremely small.

Further evidence that size has negligible effect on

stiffness is provided by the tests performed by
Jackson *) on graphite/epoxy beams at NASA Langley.
The scale varied from one-sixth to full and she

employed unidirectional and quasi-isotropic layups.

Clearly, thegnone can at this junction say with
confidence that size effect on stiffness is negligibly
small and that more work on strength needs to be done

in order to explain the reasons for the conflicting
conclusions (if there is an effect, what causes it).

In view of the above, the authors embarked

into a research program on structural similitude based
on the following premises: (a) both model and

prototype are governed by the same field equations
(equilibrium, kinematic relations and constitutive
equations, subject to boundary conditions), (b) the only

set of equations that may be affected by size are the
constitutive relations. It has already been concluded

though that stiffness is not affected by size and
therefore one is safe to use the same constitutive

relations for model and prototype up to but not in the
vicimty of strength limits, (c) damage accumulation for
both model and prototype is minimal. On this basis one

can use similitude theory and obtain the similarity
conditions.

Theor_ of Similitude

Similitude theory is concerned with

establishing necessary and sufficient conditions of
similarity between two phenomena. Establishing
similarity between systems helps to predict the behavior
of a system from the results of investigating other

systems which have already been investigated or can be
investigated more easily than the original system.
Similitude among systems means similarity in behavior

in some specific aspects. In other words, knowing how
a given system responds to a specific input, the

response of all similar systems to similar input can be

predicted.

The behaviorofa physicalsystemdepends on

many parameters,i.e.geometry, materialbehavior,

dynamic response and energy characteristics of the
system. The nature of any system can be modeled
mathematically in terms of its variables and parameters.

A prototype and its scale model are two different

systems with similar but not necessarily identical
parameters. The necessary and sufficient conditions of
similitude between prototype and its scale model

require that the mathematical model of the scale model
can be transformed to that of the prototype by a bi-

unique mapping or vice versa (Szucs_2). It means, ff

vectors Xp and X, are the characteristic vectors of the
prototype and model, then we can find a transformation
matrix A such that:

Y_ = AX. or X. =A -tY_ (1)

The elements of vector X are all the parameters and

variables of the system. A diagonal form of the
transformation mat_ A is the simplest form of

transformation. The diagonalelements of the matrix

are the scale factors of the pertinent elements of the
characteristic vector X

A ___

Xxl O ... 0

0 Xx2 "'" O

: : "'. i

0 0 .. Xxn

, (2)

where L_ = xc/xn denotes the scale factor of xi. In
general the transformation matrix is not diagonal.

In establishingsimilarityconditionsbetween

themodel and prototypetwo procedurescan be used,

dimensional analysis and directuse of governing

equations. The similarity conditionscan be established

eitherdirectlyfrom thefieldequationsofthesystemor,

if it is a new phenomenon and the mathematical model
of the system is not available, through dimensional
analysis. In the second case, all of the variables and

parameters, which affect the behavior of the system,
must be known. By using dimensional analysis, an

incomplete form of the characteristic equation of the
system can be formulated. This equation is in terms of

nondimensioual products of variables and parameters of
the system. The_., similarity conditions can be
established on the basis of this equation.



In our studies, we consider only direct use of

the governing equations procedure. This method is
more convenient than dimensional analysis, since the

resulting similarity conditions are more specific. When
governing equations of the system are used for
establishing similarity conditions, the relationships

among variables are forced by the governing equations

of the system.

The field equations of a system with proper

boundary and initial conditions characterize the
behavior of the system in terms of its variables and

parameters. If the field equations of the scale model

and its prototype are invariant under transformation A

and A j, then the two systems are completely similar.

This transformation defines the scaling laws (similarity
conditions) among all parameters, structural geometry
and cause and response of the two systems. Examples

of the direct use of governing equations is offered
below.

Bending of Laminated Beam-Plates

Consider a laminated beamplate of length a
and width b and simply supported at both ends. We
desire to find the maximum deflection of this

beamplate. The beamplate is subjected to a transverse
line load. By assuming that the displacement functions

are independent of y, or u--u(x), v-=0, w=w(x)
(cylindrical bending), from Ashton and Whitney 4_, the
governing differential equations and boundary
conditions are reduced to:

d4w qAll

dx 4 AIIDI1 -B_I

,(3)

d3u Blld4w

dx 3 AlldX 4

(4)

and the B.C.s at x=O, a are:

w = o (5)

du d2w
--=0

Nxx = All_-x -B11 dx 2

(6)

d2w
du _ D11

Mxx = Bll dx dx 2
=0

(7)

Equation (1) can be written as:

d4w
(A11D11 - B I)

dx--T = qA11

(8)

By applying similitude theory, the resulting similarity
conditions are:

or

_'AI! _'Dll _'w = _211 _w = _'All _,4 _,q

(9)

= _2
_'AII _'Dll _'w Bll

(10)

_'w )_Dll = _4_.q (11)

Similarly from Eqs. (5), (6) and (7) we have:

_.AII_LU_LX = _w_.BII , (12)

_.BII_.U_.X =_.w2LDll , (13)

The condition depicted by Eq. (13) can be obtained by

combining Eqs. (I0) and (12). So, Eqs. (10) through

(12) denote the necessary conditions for complete
similarity between the scale model and its prototype, as

far as deflectional response is eoncemed.

Note that the similarity conditions, Eqs. (10)-
(12) are three, while the number of geometric and
material parameters, cause parameter (load) and

response parameters (u and w) is much larger than
three. This means that there is freedom in designing
models for a given prototype. In addition, if, in
projecting the data of the model to predict the behavior

of the prototype, all three scaling laws are used, then we
have complete similarity. If only one (or two) scaling

laws are used, then we have partial similarity.

For this particular application, e._rimental
data was supplied by Professor Sierakowski : for tests

performed on beam plates. The total number of



laminatesusedis ten. InSimitses43, some beam plates

are considered as models and some as prototypes.
Similitude theory is used and the results are compared

to the test results of the prototypes (see Ref. 43 for
details). Partial similarity is used in the comparison.

In addition to the above, similitude theo_' is

employed in a case where experimental results do ztot
exist. In this case, the theoretical results of the mo_!el

are treated as test data, then a scaling law (par_
similarity) is used to predict the behavior of t?le

prototype and the predictions are compared to the
theoretical results of the prototype. If these tv.o

compare well, success has been achieved in desigm_g

the model and in using similitude theory.

Consider a cross-ply laminated E-Glass/El_:, <y
plate composed of 96 orthtropic layers (0190/0/...)_ as

the prototype. We desire to find the maxim=m
defleclion of the nrototv_ by extrapolating the
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pertinent values of a small scale model. The model has

the same stacking sequence as the prototype but with a

smaller number of layers. The prototype and its scale
model have the following characteristics:
Prototype (0(9010/...)96: a = 90 in. b = 100 in.

h = 0.858 in. N = 96,

model (0(90/0/...)t6: a = 5.0 m_ b = 6.139 in.

h = 0.143 in. N = 16,

scale factors: L, = 18 Lb = 16.29

Lh =6 Xr_= 6.

In designing the model, we assume that it is made of the

same material as the prototype and that ).q=3_,. By
employing only the similarity condition of Eq. (11)
(partial similarity), the results are plotted on Fig. 1. For
details, see ref. 23.

J

..... th.(p) ./__!
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Fig. 1. Theoretical and predicted maximum deflections of prototype (O°/90°/O°...)s_ when the model is

(O*/90°/O*..-h, [_'s,, = XE_, = _',,,, = 1; _, = 18; _'b = _'q = 16.92; _._ = XN = 6].
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Buckling and Vibrations of Plates Application to Shell Configurations

Consider a simply supported, rectangular,
symmetric, cross-ply laminated plate. The governing
differential equation for buckling and vibration analyses

is given by:

DI iW,xxxx+2D12w,xxyy +D22w,yyyy Nxw,xx

= PW,tt

(14)

For buckling alone the characteristic equation is:

2 2

 x  2 vli(m) 2o12( )
05)

( n'_4( a _2

For free vibrations the characteristic equation is

(16)

By applying similitude theory to Eq. (14), we obtain:

X4 2 2 Xtm _ Z'mXn

Xp_-2 =_DII X'-_-a -;LDI2 XaXb2---_=xD22 -xb

(17)

which yield the following scaling laws:

_Dll _L4

2 2
_D12 gmkn

_'L- _'D22 Xt (18)

XFq2X_

['22 = b4°2 P (19)

x 4 E22 h3

For details and results, see Refs. [25], [2611
and I441.

Complete similarity and partial similarity were
applied to laminated cylindrical shell
(_oil_gurations. 24"27"28 Detailscan be found in these
references,but some basic equations and steps are

presented, herein, for completeness. The buckling

equation for a symmetric, laminated, cross-ply (Bii =
Dr6 = D26 = At, = A26 = 0), cylindrical shell (Ref. 45) is

given by:

(2T12T13T23 - TI IT223- T22T?3 )
T33 4

(T11T22 - T?2)

= __xxrl 2 _ _yy_2

(20)

where _=_x/L, _=5/R,

TII =AIIrl 2 + A66_, 2

T12 = (A12 + A66)_n

T22 =A22 _2 +A66_2

T23 = A22
R -

T33 = Dllrl4 + 2D12_2vl 2 + D22_ 4 + A2------_2
R 2

and

DI2 =DI2 +2D66

The lowest eigenvalue corresponds to the buckling

load, and minimization with respect to integer values of
m and n yields the critical load.

Equation (20) represents the buckling response
of both prototype and its models. Applying similitude

theory to the preceding equalion, Eq. (20) yields the
following scaling laws for symmetric, cross-ply,
laminated cylinders:

(22)



(23)

(24)

(25)

3.W =3.t _'Dll (26)

2 2
3.u/=_'Dl2 3..q 3._ (27)

_.qj = _.D22 _._ (28)

(29)

3.2
AI2

_'W = (30)
3.All3._

where

W = -Nxxrl2, - _yy_2, or- (pR/2)(112 + 2_2),

and A12 = AI2 +A66,

DI2 =D12 +2D66.

The nine scaling laws, Eqs. (22)-(30) are the
necessary scaling laws for cross-ply laminated

cylindrical shells for axial compression, lateral
pressure, and hydrostatic pressure. The conditions that
represent structural geometries and mode shapes, Eqs.
(22)-(25) are the necessary scaling laws for symmetric

cross-ply laminated cylinders regardless of the

destabilizingload.

As is apparent, the scaling laws are arranged in
the form of different scale factors for each load case

(_). It should be pointed out that the presented form of
arranging the scaling laws is not unique. However,
previous experience of establishing scaling laws 2s

strongly recomn_nds this type of representation.

8

Scaling L,3ws for Lateral Pressure Load

For the case of a cylinder subjected to lateral

pressure p, Nyy = pR and Bqs. (26)-(30) assume the

following form:

3.4
= "_rl 3.2

3.Kyy 3.1 L

(31)

3.D12 ),.2 3.2
_.Kyy = 3.Dl---_

(32)

(33)

_'Kyy =
A12

(34)

(35)

AI2, and DI2,

3.Xi =Xip /Xi m

where Kyy =-NyyL 2/_2Dll,

have already been defined, and

denotes the scale factor of parameter xL

Parenthetical remarks: For the case of lateral

pressure qJ=-Nyy_ 2 . Therefore,

=_'Nyy3.1" Similarly, from the definition of

Kyy (Kyy =NyyL 2/x2Dll), one can write

3.Kyy 2/3.DI1 .=-_._yy_. Use of these two

expressions in Eq. (26) yields Eq. (31). In a similar
manner one can derive F.qs. (32)-(35).

Equations (31)-(35) are the necessary scaling
laws for symmetric, cross-ply, laminated cylinders

subjected to uniform lateral pressure.

The interested reader is referred to Refs. 24

and 27 for results with primarily partial similarity with



distortionin number of plies, stacking sequence and

cylinder length, radius and thickness. Distortion here
means that prototype and model have different

parameters (as mentioned above).

Discussion

.

.

It has been demonstrated through the studies

reported herein, that structural similitude is a powerful
tool in minimizing the need for full scale and large 7.

component testing of structural systems. Future work
should include the study of systems that exhibit

imperfection sensitivity, extension to sandwich 8.
configurations and validation of the process through an
experimental program for laminated plates and shells as

well as beam plates, plates and shells of sandwich
construction. 9.

Through this review, the authors have
demonstrated a procedure that can be used in designing 10.

small scale and easily testable models to predict the

behavior of large prototypes through the use of scaling
laws. These laws are based on the premise that both
model and prototype are governed by the same field 11.
equationsand that the systems behave in a linearly

elastic manner and they are frec of damage

(dclamin_ons, fiber breaks, matrix microcracking, 12.

etc.). This last premise guaranteesthat no sizeeffects

are presenL
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