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Abstract

For scatteringcalculationsinvolving nonsphericalparticlessuchasice crystals,

we show that the transversewave condition is not applicable to the refracted

electromagneticwave in the contextof geometricopticswhenabsorptionis involved.

Either the TM wavecondition(i.e., wherethe magneticfield of therefractedwave is

transversewith respectto thewavedirection)or theTE wavecondition(i.e.,wherethe

electricfield is transversewith respectto thepropagatingdirectionof thewave)maybe

assumedfor the refracted wave in an absorbing medium to locally satisfy the

electromagneticboundarycondition in the ray tracing calculation.The wave mode

assumedfor therefractedwaveaffectsboththereflectionandrefractioncoefficients.As

a result,a nonuniquesolutionfor these coefficients is derived from the electromagnetic

boundary condition. In this study we have identified the appropriate solution for the

Fresnel reflection/refraction coefficients in light scattering calculation based on the ray

tracing technique. We present the 3 × 2 refraction or transmission matrix that completely

accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the

Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an

analytical format for the scattering properties of a general polyhedral particle. Numerical

results are presented for hexagonal plates and columns with both preferred and random

orientations. The asymptotic theory can produce reasonable accuracy in the phase

function calculations in the infrared window region (wavelengths near 10 jam) if the

particle size (in diameter) is on the order of 40 gm or larger. However, since strong

absorption is assumed in the computation of the single-scattering albedo in the

asymptotic theory, the single scattering albedo does not change with variation of the
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particle size. As a result, the asymptotic theory can lead to substantial errors in the

computation of single-scattering albedo for small and moderate particle sizes. However,

from comparison of the asymptotic results with the FDTD solution, it is expected that a

convergence between the FDTD results and the asymptotic theory results can be reached

when the particle size approaches 200 _tm. We show that the phase function at side-

scattering and backscattering angles is insensitive to particle shape if the random

orientation condition is assumed. However, if preferred orientations are assumed for

particles, the phase function has a strong dependence on scattering azimuthal angle. The

single-scattering albedo also shows very strong dependence on the inclination angle of

incident radiation with respect to the rotating axis for the preferred particle orientations.



1. Introduction

The optical properties of dielectric particles such as aerosols and ice crystals in

the atmosphere are fundamental to a number of disciplines including atmospheric

radiation transfer and air-borne or satellite-borne remote sensing applications. In a recent

book _, Mishchenko et al. have comprehensively reviewed various methods that have been

developed to solve the scattering and absorption properties of particles for a variety of

geometric morphologies and electromagnetic characteristics of the scatterers. Accurate

numerical methods such as the discrete dipole approximation (DDA) method 2'3 and the

finite-difference time domain (FDTD) technique 4'5 are applicable in practice only to size

parameters smaller than 20 because the computational requirements increase quickly with

size parameter. Although analytical solutions are available for some particle shapes such

as spheres 6 and spheroids 7'8, the corresponding numerical computations are usually very

challenging. For example, the computation of the optical properties of spheroids based on

an analytical solution in terms of a series of special functions may not be stable when the

size parameter is larger than approximately 30-40. It is worth noting that the recent

developments on the T-matrix method 9'_° allow the exact solution for the optical

properties of spheroids and finite circular cylinders for size parameters up to 200 H. There

is no single method to solve for the optical properties of nonspherical particles across the

entire size parameter spectrum.

It is common to use the ray-tracing technique 1__5for nonspherical particles that

have sizes much larger than the incident wavelength. Previous applications of the ray-

tracing technique have been focused mainly on scattering computations for the visible

and near-infrared wavelengths for which the imaginary part of the refractive index is
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small. For theseweakly absorptivespectra,the conventionalSnell's law and Fresnel

formulaecanbeusedto accountfor therayreflectionandrefractionatparticlesurface.

However,the optical properties of large dielectric particles at wavelengths with strong

absorption are fundamental to many practical applications. For example, the scattering

and absorption properties of ice crystals at infrared wavelengths are required in the

retrieval of cirrus clouds using satellite radiance data such as that from the Advanced

Very High Resolution Radiometer (AVHRR) _6 and Moderate Resolution Imaging

Spectroradiometer (MODIS) 17 imagers. Under cirrus cloudy condition, interpretation of

the High resolution Interferometer Sounder (HIS) 'g hyperspectrum in the atmospheric

window region (8-1 2 _tm) also requires the optical properties of ice crystals.

When ray optics is applied to the infrared spectrum in regions of strong

absorption, the refracted wave inside the particle is inhomogeneous in the sense that the

planes of constant phase and constant amplitude are not parallel 19.Current applications of

the ray tracing technique assume that planes of constant phase and constant amplitude are

parallel. The inhomogeneity associated with the reflected wave substantially complicates

the behaviors of rays at particle surface and inside the medium. Stratton 19and Born and

Wolf 2° have discussed this inhomogeneity and its effect on the Fresnel reflection

coefficients associated with complex refractive index. In particular, Stratton _9 (section

9.9) has solved the problem of the reflection of a plane electromagnetic wave by a

conducting surface. Recently, Zhang and Xu 21 and Yang and Liou 22addressed the effect

of the inhomogeneous wave on ray-tracing calculation. Zhang and Xu 2_have expressed

the Fresnel coefficients without an explicit use of complex refractive index. However,

they did not account for the effect of the inhomogeneity on wave attenuation that is the



most importantphysicalprocessinvolved in the ray propagation within an absorbing

medium. Yang and Liou n have discussed the impact of the inhomogeneous effect on ray

propagation by introducing an effective refractive index, but they employed the high-

frequency approximation 2° in the calculation of reflection and refraction coefficients.

Since the effect of inhomogeneity on ray tracing calculation has not been solved

completely, it is necessary to further study this problem. The intent of this study is to

develop an analytical asymptotic method that comprehensively accounts for the

inhomogeneity effect when deriving the optical properties (such as the single-scattering

albedo and phase function) of strongly absorbing particles with sizes much greater than

the incident wavelength.

To compute the optical properties of dielectric particles with strong absorption we

first derive the reflection and refraction coefficients for the electric field in terms of an

apparent refractive index without using the high-frequency approximation. The reflection

and refraction coefficients incorporate the inhomogeneous effect on the direction of ray

propagation and the Fresnel coefficients. Subsequently, we derive the asymptotic solution

expressed in an analytical form for large particles with strong absorption. In Section 2 we

discuss the various wave modes of an inhomogeneous wave refracted into a particle when

absorption is involved. We show that the electric or magnetic field may not be

perpendicular to the direction of ray propagation because of the effect of strong

absorption. The Fresnel coefficients are reformulated, in particular, the transmission

coefficient for the component of the refracted field that is parallel to ray propagation. In

Section 3, we present the analytical solution for the optical properties of large polyhedral

particles with strong absorption. The solution is derived on the basis of the



electromagneticrelationshipbetweenthe near field and far field. In Section 3, we also

present numerical results of the asymptotic solution for hexagonal ice crystals. Finally,

conclusions of this study are given in Section 4.

2. Physical Basis for Ray Tracing in Absorptive Case

In this section, it is shown that the transverse wave condition cannot be applied to

both the electric and magnetic fields associated with a ray refracted into an absorbing

medium. In addition, we show the wave mode subject to an electric boundary condition is

not unique in the context of geometric optics when absorption is involved. The behavior

of the refracted wave not only affects the Fresnel refraction coefficients but also the

Fresnel reflection coefficients. In the following discussion, it is shown that there are four

combinations possible for the reflection/refraction coefficients that depend on wave

modes. While each combination of the reflection and refraction coefficients is a

mathematically rational solution, only one set of coefficients should be used in the ray

tracing solution. The choice of the proper wave mode for the refracted wave in ray

tracing calculation is made through the comparison of the geometric optics solution to the

analytical Mie result for the scattering properties of a very large (size parameter on the

order of 1000) sphere with strong absorption.

Let us consider the application of the geometric optics method to solve for the

scattering properties of a particle that is large and absorptive. In this case, the rays that

are refracted into the particle are largely absorbed. Thus, we need only consider the first

order reflected/refracted rays because of the small amount of energy carried by the rays

that undergo internal reflections. To examine the first order reflection/refraction
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characteristicsandthecorrespondingpolarizationfeaturesof theelectricfield, we begin

with thephasevariationfor thefield associatedwith acomplexrefractiveindex.Let three

unit vectors,_/, er, and _,, indicate the propagating directions for the incident, reflected,

and refracted rays. To systematically present this study, it is necessary to recapitulate

some results obtained by Yang and Liou 22. Following these authors, the fields associated

with these rays can be written as follows:

/_,(_) = E,o exp(ikk, ._),

/_ (_) = E_o exp(ik_ •_),

F-'t(_) = E'to exp[ik(Nret + iNnh)" _],

(la)

(lb)

(lc)

where £'i,o, /_r,o, and Et,o are the amplitude vectors for the fields; k = 2n/_, in which _,

is the wavelength in vacuum; h is a unit vector that is normal to particle surface and

points into the particle. The two parameters N r and N, in Eq.(lc) are given by

N r = 2-1f2 {m/-m; 2 + sin2 _i +[(m_ 2 -m; 2 - sinZ _;) 2 +4mfm;2]ltz}, and (ld)

iV, = 2-L'2 {-(m/-mi 2 -sin2_i)+[(mr 2 -m, 2 - sin2 _i) 2 +4m,2m;2]112}, (le)

in which m r and m; are the real and imaginary part of the refractive index, and 4; is the

incident angle given by 4; = sin-_[ 1- (e;" n)2] 1/2. Note that AT.(denoted as N_ in Ref. 22)

is not presented in the previous study. Physically, N_ is the parameter that determines the

phase and N, is the parameter that determines the absorption. This will be illustrated in

the following discussion.

From Eqs.(1 a)-(1 c) and the continuity of wave phase at the medium interface, it

follows that Snell's law for an absorbing medium can be mathematically expressed in the

form of
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kr = _, + 2(_. h)h, (2a)

_, = _,/ N r + (cost, - cost, / Nr)h , (2b)

where the refractive angle is given by _t = sin-_[sin(_)/Nr] • Equation (2a) means that

the incident and reflected rays are spatially symmetric about the direction normal to

particle surface at the incident point, which is the standard Snell's law for reflection

direction. However, Eq. (2b) indicates that the refracted direction is not determined by

m r but by N r. For this reason, Nr is referred to as the real part of apparent refractive

index, which depends on the incident configuration and the dielectric constant of the

medium for the determination of the direction and phase for refracted wave. The

attenuation of the refracted field due to the absorption depends on the path of

observation. If the path is along h, the attenuation is determined by iV,, as is evident

from Eq.(1 c). However, if we trace the refracted wave along the direction of the refracted

ray, i.e., along position vector ? = l_, in which l is the penetration depth of the ray, the

electric field is given by

Et (let ) = Eto exp[-kNn (h' et )l] exp( ikNrl) " (3)

Obviously, the factor N,(h. _,) is the imaginary part of the apparent refractive index that

governs the attenuation of the electric field associated with the rays. We denote this

factor as N_. Thus, for a ray impinging on an absorbing medium, the apparent refractive

index in the complex format is (N r + iN/). It can be proven that

Ni = Nn(n" et) = Nn c°s_t = mrmi / Nr" (4)

Figure 1 shows the real and imaginary parts of the inherent and apparent

refractive index of ice at infrared wavelengths 11 and 12 I.tm for which substantial

absorption exists. The optical properties of ice at these two wavelengths are important
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for many applications in satellite remote sensing17.Note that for ice particles,

wavelengthsnear 11 _tmare in theChristiansenbandwhereabsorptiondominatesthe

extinction23.The inherent refractive index is determineduniquely by the dielectric

characteristicsof themedium,i.e., permittivity, which does not depend on the incident

configuration of a ray. As is shown in Fig. 1, the real part of the apparent refractive index

increases with the increase of incident angle whereas the imaginary part of the refractive

index decreases with the increase of the incident angle. Obviously, in terms of wave

attenuation per unit length along propagating direction of a ray, the particle is less

absorptive at a large incident angle. For incident angles larger than 10°, the

inhomogeneous effect due to strong absorption cannot be ignored.

It can be shown that various wave modes may satisfy the electromagnetic

boundary condition associated with the reflection and refraction at the interface of two

media, one of which is strongly absorptive. First, let _ be a unit vector perpendicular to

the incident plane. The unit vectors that are parallel to the incident plane and

perpendicular to ray propagation directions for the incident, reflected, and refracted

waves are given by

&,=_,x_, & =_rx_,and&,=_,x_. (5)

It should be pointed out that _&i.r.,_i.r.t constitute right-handed coordinate systems. The

incident and reflected waves are within non-absorbing medium. As a result of the

homogeneous wave properties of the incident and reflected rays, transverse wave

condition can be imposed on both electric and magnetic fields for these rays (hereafter,

referred to as TEM mode). Thus, the corresponding amplitude vectors of the electric

fields can be decomposed in the form of
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= + (6a)

Lo = E,o.oar+ (6b)

The Maxwell equations in time-independent form are given by

E,(_) = V x H(P)/(-ika), (7a)

f-I(F) = V x F,(F)/ ik, (7b)

where e is permittivity given by e = (mr + imi) 2. We have chosen the time harmonic

factor as exp(ikct) in which c is the speed of light in vacuum. If this factor is selected as

exp(-ikct), the sign of the imaginary part of refractive index is negative TM. Using

Eq.(7b), we can obtain the amplitude vectors of magnetic fields associated with the

incident and reflected rays as follows:

D,.° =_, x(E_os,& , + E_o._,_)= _o,l_&,- E,o,,_ , (8a)

_Iro =er X(Ero,_&r + Ero,_)= Ero,_&r-Ero,_" (8b)

For the refractive wave in an absorbing medium, a transverse wave condition on both the

electric and magnetic fields cannot be imposed because of the inhomogeneity effect, that

is, the TEM wave mode is not valid in this case.

In the following discussion, we first examine the reflecting characteristics of an

absorbing medium for various wave modes. To derive the reflection coefficient, the

electric field may be assumed to be transverse with respect to the propagating direction of

the ray (hereafter, this mode is referred to as TE mode) so that the refracted electric field

can be expressed in the form of

E,o = E,o._&, + E,o._. (9)
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From Eqs. (lc), (4), (7b), and (9) and the relationshipof h = cost,b,-sin_,_¢,, the

refracted magnetic field in TE mode can be obtained as follows:

fIto(?)=(Nret +iN,,h)x(E,o,,_&, + E,o,_)

= (N,. + iN,.)Eto,ffzt -(N,. + iN_)Eeo,,_ + iN,, sint,Eto._b e. (10)

From Eq.(10), it is evident that the refracted magnetic field has a nonzero component

along the unit vector el (ray direction) when N, is not zero, i.e., when absorption is

involved. At the interface of two media, the electromagnetic boundary condition requires

that the tangential components of electric and magnetic fields are continuous. Thus, we

have the following relationships:

_o,_ + E ._ = E,o,_, (11 a)

Eio,i_cost/- E o.t_cos_i = [(N r + iN,.) cos _, + iN,, sin 2 _,]E,o,_, (1 lb)

Eio,_ + E,,o.,_= (N,. +iN_)E,o,o ,, (1 lc)

Eio,o, cos_, - e,.o,o,cos_i = cos_tE, o,,_. (1 ld)

The preceding equations may be solved to obtain the reflection coefficients for the two

polarization configurations:

cos_i -[(N_ + iN,.) cos _, + iN, sin 2 _t]

RrE"L = E'_'f_ / Ei°'f_ = cost/+[(N_ +iN_)cos_, + iN, sin2 _,]

= cos_, - (N_ cost, + iN,,) (12a)
cos_i +(Nr cos_, +iN,,)'

= (N_ + iNi) cos_j - cos_t (12b)
RTE'/f =Er°'_/_°'_ (N,. +iN,.)cos_i +cos_,"
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Similarly, if weassumethatthemagneticfield of therefractedwaveis transversewith

respectto the ray direction (hereafter,this modeis referredto as TM mode), the

reflectioncoefficientsarethengivenby:

(N r + iN/) cos_i - Ecos_t '
RTM'± = (N r -I- iNi.)cos_/+ Ecos_t

and (13a)

ecos_i - (Nr cos_, + inn) (13b)
Rru'" = ecos_i - (N_ cos_t + iN,)"

Therefore, considering the two wave modes and two polarization configurations, four

combinations are possible for the reflection coefficients: (Rru.//,Rru,±), (Rr_,H,Rre,±),

(Rre,H,Rru,±), and (RrM.//, RrE,±). Each of these four combinations is a mathematically

rational solution derived from the electromagnetic boundary condition when an

absorptive medium is involved. However, only one among the four solutions should be

computationally correct in the ray tracing calculation regarding the process of scattering

of electromagnetic wave by a dielectric particle with absorption. It should be pointed out

that the Maxwell equations subject to appropriate boundary conditions always have a

unique solution, as is in the case of Mie theory. The explanation for the multiple solutions

for the reflection coefficients is that electromagnetic boundary condition is locally

imposed in the context of geometric optics, which allows the treatment of the

inhomogeneous refracted wave as a refracted ray, thereby providing the basis for a ray-

tracing procedure. Accordingly, we are looking for the pair of reflection coefficients that

provide the best numerical agreement with the exact solution in scattering computation.

To identify the computationally correct pair of reflection coefficients among the

preceding four combinations, we consider the scattering geometry in Fig. 2 for a strongly

absorptive sphere with a size much larger than incident wavelength. In this case, the
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scatteredfield is composedprimarily of the contributionsfrom diffraction andexternal

reflection. The incident energy associated with the area element ds on the projected area

is scattered in angular element sinOdOdq) in which 0 is scattering angle. The scattered

intensity at a distance r that is far away from the particle is given by

=iolRI 2 ' ds .: IRI z a 2 (14)
Is r 2 sin0d0d_0 I° 4r 2 '

where a is the radius of the sphere; I o and I, are incident and scattered intensity,

respectively; R is reflection coefficient without a specification of wave mode and

polarization configuration. To derive Eq.(14), we have used two relationships given by

ds = a 2 cos_i sin_fl_fl_0 and 0 = x- 2_. On the other hand, according to the definition

of scattering phase function denoted by P, one may define the following relationship:

a, Plo, (15)
I,- 4xr2

where cy, is the scattering cross section. Therefore, after the two polarization

configurations are accounted for, the contribution of the external reflection to phase

function may be obtained from comparison of Eqs.(14) and (15):

1 (I R//12 +IR± 12)lea 2
P"(O) =

2 _

= 1 (1 R,,/i: + l R± 12) (16)
2 p -oo '

where Q, and Qa are the extinction efficiency and absorption efficiency, respectively.

The value of Q_ is 2 since the particle is very large whereas Qa is determined by the ratio

of refracted energy to the incident energy associated with the projected area. Note that the
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divergence factor introduced by van de Hulst 25 is absent in Eq.(16) because the rays that

transmit through the sphere are ignored here.

An improved diffraction formulation has been given by Yang and Liou 26 that,

unlike the conventional method that is limited to scattering angle smaller than 90 ° , can be

applied the entire scattering angular region. When the improved method is applied to the

diffraction by a sphere, the scattering amplitude matrix 25is given by

( $2S4 S31=(ka)22Jl(kasinO)(c°sO(loC°SO)s1 4 /casin 0 1 + cos00)' (17)

where J_ is the Bessel function of the first kind. The phase function that includes the

contribution from diffraction and external reflection can be obtained from Eqs.(16) and

(17) as follows:

P(0)- (ka)2 V2Jl(kasinO)12(1 + cos2 0)(1 + COS0) 2 +

8(_-_?,,)L kasinO .J

1 (1R//12 +[R_L 12)
(18)

2 Qe-Oa

In addition to the phase function, the polarization configuration should be used to identify

the correct combination of reflection coefficients. When the incident radiation is

unpolarized, the polarization feature of scattered radiation can be specified by the degree

of linear polarization (DLP). When scattered radiation is composed of diffraction and

external reflection, the DLP associated with the phase function in Eq.(l 8) may be given

as follows:

+ ((o)- 1:7(o)
DLP(O)= Id(O)+ id(O)+

(ka)2[2Jl(kasin0)/kasin0]2(1 + cos0)2(1 - cos 2 0) + 4(1 R± 12-IR//12)

= (ka)2[2Jl(kasinO)/kasinO]2(1 + cos0)2(1 + cos 2 0) + 4(I/71 12+l R//[2)'
(19)
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I_ and I__ (I:_ and I/_) are the scattered intensity associated with diffraction and external

reflection, respectively, for the case that the electric field is polarized along a direction

that is perpendicular (parallel) to the scattering plane.

Figure 3 shows the phase function and DLP computed from Mie theory and the

geometric optics method at a wavelength of 12 _tm. The Mie computational code

developed by Wiscombe 27 is used in this study. Since the size parameter is extremely

large (Z = 1047.2), the scattered energy at a large scattering angle (approximately 20 ° in

this case) is primarily from the reflection of incident rays. Through comparison of the

geometric optics solution to the Mie results, we can identify the correct reflection

coefficient pair. Evidently, the reflection coefficient pair (RrM,,, RTe,l ) produces a phase

function and DLP consistent with the Mie solution at large scattering angels where the

external reflection dominates. Since the Mie solution for DLP is positive for the entire

scattering domain, the reflection of incident wave with vertical polarization configuration

is much larger than the reflection for the case when the polarization is parallel to

scattering plane. For this reason, if we incorrectly apply the reflection coefficient RrM,±

for the incident wave polarized perpendicularly with respect to scattering plane,

substantial errors can be produced for both phase function and DLP, as is evident from

Fig.3.

Figure 4 is similar to Fig.3, except that the wavelength is 11 _tm and the real part

of the refractive index is close to unity (see Fig. 1). It can been seen that the phase

function values at large scattering angles at 11 _tm are much smaller than the

corresponding results at 12 _tm since external reflection is weaker for the former

wavelength. However, the correctness of reflection coefficients used in the computation
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is alsocritical to the phasefunctionandDLP evenin theoptically tenuouscase.As a

matter of fact, the errorsassociatedwhen the wrong wave mode is assumedfor the

refractedwaveareevenmorepronouncedfor theresultsshownin Fig.4 thanfor those

shownin Fig.3. Fromtheseresults,it is clearthat thecorrectwavemodemustbeused

for therefractedwave in the derivationof the reflectioncoefficientsregardlessof the

magnitudeof therealpartof refractiveindexwhenevertheparticleis stronglyabsorptive.

Thecomparisonof theray-tracingmethodto Mie theoryfor thephasefunctionof

sphereshasbeenpresentedby Liou andHansen28 for a polydispersive case having an

assumed particle size distribution. For a monodispersive case (a system composed of

particles having a single size and shape), the comparison study has been presented by

Macke et al. 29 for spheroids and finite circular cylinders at a near infrared wavelength,

which shows that the applicable size parameter for the geometric optics method is

approximately 60. In addition, these authors pointed out that the size parameter required

for a convergence of the exact solution and the geometric optics solution is larger for

spheres than for nonspherical particles.

The results of this study suggest that the geometric optics method can be applied

to much smaller size parameters when strong absorption is involved. Figure 5 shows the

phase function computed from Eq.(18) in comparison with the Mie solutions. Evidently,

when the size parameter is larger than approximately 30, the geometric optics solution

can be used to approximate the exact solution. For size parameters larger than 50, the

geometric optics solution essentially converges to the exact solution in the side and

backscattering directions.
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FromtheprecedingdiscussionsassociatedFigs.3,4 and5,it isclearthatTM and

TE modesshouldbe appliedto the componentsof electric field that areparallel and

perpendicularto the incidentplane,respectively. By usingthis combinationof wave

modes,it is straightforwardto derivetherefractedwaveon thebasisof electromagnetic

boundaryconditions.Throughapplicationof the (TM//,TE±) wave mode to the refracted

wave, we can obtain the refracted electric field as follows:

E,,o = E,,o,_&, + E,,o,_ + E,,o,ve,, (20a)

where

Eto f_ =" io,Ct (20b)

2(N_ + iN/) cos_,. (20c)
=  cos;, + cos;, + iN.)'

2 cos _i (20d)
T_ = cos_, +(N_ cos_/+iN.)'

i2N n sin _t cos_i (20e)
T_ - £cos_i +(N r cos_, + iNn)"

Note that in Eqs.(20a)-(20e) the dependence of these parameters on the wave mode is not

specified explicitly. It should be pointed out that the transmission matrix in the

conventional ray-tracing scheme is a 2 × 2 matrix. When absorption is involved, the

transmission matrix becomes a 3 × 2 matrix. When absorption of the medium is absent,

Tr is reduced to zero because N, is zero and Eqs.(20a)-(20e) are reduced to the

conventional Fresnel refraction coefficients.
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3. Asymptotic Solution for Scattering and Absorption Properties of Large

Polyhedral Particles with Strong Absorption

A. Physical Basis for Asymptotic Solution

In the previous section, it is shown that the conventional geometric optics

approach in terms of the superposition of diffraction and external reflection can well

approximate the Mie solution for the spherical particle case when the size parameter is

large and the particle is absorptive. Since the variation in the surface normal direction is

continuous for a sphere, a continuous distribution of the externally reflected energy is

obtained. However, this is not true if the particle geometry is a polyhedron such as a

hexagonal plate or column, which is the basic geometric structure of ice crystals in cirrus

clouds. In the numerical solution, there is a physically incorrect discontinuous

distribution of scattered energy for any specific orientation of the particle.

For example, consider the scattering of radiation by a hexagonal ice column when

the incident radiation is perpendicular to the c-axis of the particle and parallel to a line

that connects two symmetric apexes of particle cross section. If the rays refracted into the

particle are ignored due to absorption, the phase function can be written as follows:

3k 2La Isin[(kL / 2) sin 0__s cos _ps] sin[(,qr3ka / 2)sin0 s sin ¢ps]_2
P(Os, ¢P+)

8++,++t CkL/2)sinO+cos + J

4_r,+aZ++.
• (l +cos2o+)(1+cosOs)2+__tot++ - ++/ 2)+ 8(,9s+ +/2)]

13s

5(0 s - 2_/3)](1RTM,//,;i=n/6 12+]RrE,.j_,;i=n/6 IX), (21a)

a+ = 43aL(2-t R771,i,]/,;i=_t/6I2 --I Rre,±,;,=,t/612) • (21b)

where L and a are the length and semi-width of hexagonal columns and 5(x) is the Dirac

delta function. To avoid any possible confusion, in Eqs.(2 1a) and (2 lb) we use 0 s and ¢Ps
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to indicate the scattering angle and the azimuthal angle of the scattering plane. Here the

plane of qos = 0 ° is the plane that contains incident direction and the c-axis of the

particle. On the fight side of Eq.(21a), the first term represents the contribution from

diffraction and the second term represents the contribution of external reflection.

Obviously, the second term is nonzero only at two angles as is expressed by the delta

functions. This singularity is inherent in the conventional geometric optics method. The

delta-reflection involved in Eq.(21) originates with the same physical mechanism of the

forward delta-transmission that has been well explained by Takano and Liou _2 and

Mishchenko and Macke 3°. It should be pointed out that the singularity in Eq.(21b) could

be overcome numerically in the ray-tracing calculation if the particles are randomly

oriented in space. The average intensity is given by the scattered energy divided by the

corresponding solid angle elements. The discontinuity may be avoided given proper

resolution for the solid angle elements with sufficient orientations of the particles, i.e.,

with sufficiently random orientation.

To circumvent this particular disadvantage of the conventional method for a

specific orientation, we apply the geometric optics method to solve for the internal field

inside the particle following Yang and Liou 3_. The scattered far-field, extinction and

absorption cross sections are given by

k 2 exp(/kr)
/_s (f) = (e- 1)_ {E(_' )- P[_.E'(_' )]}exp(-ikP._)d3? (22a)

4rcr
v

= Im[---_--k (E- 1)_f/_(_' )_'i (_')]d3r ' (22b)
aex' LIEil v

(Yabs = I _ Ei fff F-_(r' )" _i(_' )d3Y " (22c)

V
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The integralsinvolved in precedingequationsmaybe calculatedusing theray-by-ray

integration (RBRI) algorithm31.From the RBRI calculationand Eqs.(22a)-(22c),the

amplitudescatteringmatrixandextinctionandabsorptioncrosssectionsaregivenby:

s_(D:)s_(_,)/=;@_l) f ss.(o s.(_,)) 77
surface

.(_,'_o _i.'_flexp[_ik(,i_D,).,,]{ 1-L_.6o

1
flabs =

2

exp[-kNJ(F' )]exp[ ik( N, - _ . _, )1(_' )]}d27, (23a)

er=, = -_-_2_Re[S2 (D_)+ $2 (D,) ], (23b)

eos_,N,(lTo12+lr_l 2 +lTrl2){1-exp[-ZkNJ(?)]}d2?, (23c)

particle surface

where _s is a unit vector perpendicular to scattering plane; es is along scattering

direction; &s =_sx_s; &o =&,x[_s; and l(f') is the ray penetration depth with the

incident point at _'. The other variables involved are defined in the previous discussion.

If the absorbing particle is large, it is expected that exp[-kN,.I(? )] --->0. In this case,

analytical expressions may be derived for the integration involved in Eqs. (23a) and (23c)

if the surface of the particle is locally flat such as in the case of polyhedral geometry.

For a given flat face of the particle surface, Fresnel reflection does not vary with

the location at the face because the incident angles are the same for all the points on this

face. Thus, the following matrix is independent of the position of a point on a fiat surface:

)I°° } (24)

21



Therefore,the integralin Eq.(23a)shouldactuallybeevaluatedonly with respect to the

phase variation over the local flat faces of the particle. For evaluation purposes, the

surface of a polyhedral particle can be divided into a number of area elements shaped as

parallelograms and triangles. For a parallelogram or a triangular face, the position vector

of a point on this face is expressed by

[ _o+ _ + rig for parallelogram

= _L_o+ _(1 - lq)_ + rl_ for triangle'
(25)

where ?ois the position vector of the apex of the geometric shape, and _ and _ constitutes

the neighboring two sides of the shape. The vector _ _[0,1] and q _[0,1]. From

Eqs.(24) and (25), the integration of phase variation over a parallelogram area element

yields

D i = ffexp{ik(&i-&s)._.}d2_

face j

=1_,_ x_,2 I exp[ik(&i-&,)'(_,o + n_j + _,'_,2)]drla_

=1_,1 ×5-,2 I exp[ik(&i- &_)'(5,o +_,_/2 + _,2/2)]

sin[k(_ - _,). _,t/2] sin[k(_ - _). _,]/2]

k(k, - _)._j/2 k(_,- _). _.t/2 '

Similarly, if the phase variation is integrated over a triangular area, it follows that

/9,.= f f exp(ik(_,-_,l._}a2_

face j

=1_-,,x _,_I

(26a)

exp[ik(_;- _,). _,0] Iexp[ik(_ - _s)._,2/ 2]sin[k(_,- _). _,2/ 2]
l_(ei - es)"(rj,2- _,l)L _(ei- e$)"rj,2/2
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sin[k(_- es):_/2]l

-exp[ik(_,-_s)._.l/2 ] k(_i-_s)'_.t/2 j. (26b)

The scattering matrix that includes the contribution from all the faces can be written as

where h(_ i .h:) is a step function that indicates whether the face is illuminated by

incident radiation:

1, for _i.h/>0 (28)h(_,.hj)= 0, for _,.hj<O

Once the amplitude scattering matrix is given, the calculation of phase function is

straightforward on the basis of the definition presented by van de Hulst 2s. It should be

pointed out that a special form of Eq.(27) have been given for hexagonal particle without

an incorporation of the inhomogeneity effect of the refracted wave on the transmission

matrix 31. The result presented in this study is more general and can be applied to any

polyhedron with strong absorption.

Since the multiple scattering calculation is based on the solution of the radiative

transfer equation, the most important parameter of concern is the single-scattering albedo

rather than extinction or absorption cross section. In particular, in remote sensing

applications, a pre-described optical thickness is usually used in the calculation of look-

up tables for the microphysical or optical properties of cloud particles. For this reason, in

the present calculation we focus on the phase function and single-scattering albedo. The

later parameter is defined as

CO = t_ ext -- t_ abs , (29)
I_ ext
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wheretheextinctionandabsorptioncrosssections,6extand (Yabs can be calculated from

Eqs. (23b) and (23c).

B. Numerical Results for Hexagonal Ice Plates and Columns

As an application for the asymptotic solution for light scattering by a strongly

absorptive particle, we present numerical results for ice crystals composed of hexagonal

plates and solid columns. A hexagonal shape is selected here because this shape has been

studied extensively for inference of cloud optical thickness and particle size in remote

sensing applications (e.g., Minnis et al. n, Baum et al. 33, Han et al.34).

Fig.6 shows the comparison of the phase function computed by the FDTD method

and the asymptotic theory (Eq. 27) for hexagonal ice crystals of two sizes: 2a/L= 25_tm

/25p.m and 40_trn/40_tm, where L and a are the length and semi-width of the hexagonal

crystal. A random orientation condition is assumed for ice crystals in both the asymptotic

and the FDTD calculations. It can be seen from Fig. 6 that the asymptotic solution more

closely approximates the FDTD results for the larger particle size of 40/40 p.m. While

one might infer that the asymptotic theory can be applied to hexagonal ice crystals with

sizes larger than approximately 40_tm in the infrared window region, the convergence

between FDTD and asymptotic theory will, in fact, depend on magnitude of absorption.

For large particles at IR wavelengths, the FDTD calculation is computationally

expensive. Thus, the asymptotic theory provides an efficient way to estimate the phase

function of large particle with strong absorption. This advantage of the asymptotic theory

in the calculation of phase function may be useful in practice. For example, the

parameterization of cloud longwave radiative properties requires the phase function

information though the use of either an asymmetry factor or a scaling factor 35, which can
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beprovidedby the asymptotictheoryefficiently andaccuratelywhentheparticlesizeis

largerthanapproximately40_tm.

Figure 7 showsacomparisonof thesingle-scatteringalbedocomputedfrom the

FDTD andtheasymptotictheory.In thisdiagram,theresultscomputedfor theequivalent

spheresarealsoshown.FollowingMitchell et al. 36, Fu et al. 37, and Grenfell and Warren 39,

we define the radius of the equivalent sphere for a hexagonal particle as follows:

3 V 3 _/-3/2aL

re- 4 A 2 _v_ / 2a + L ' (30)

where Vis the volume of nonspherical particles, and A is the projected area. Since strong

absorption is assumed in the computation of the single-scattering albedo in the

asymptotic theory, the result does not change with the variation of particle size. As a

result, the asymptotic theory can lead to substantial errors in single-scattering albedo

calculation for small and moderate particle sizes. However, from the trend of the FDTD

solution, it is expected that a convergence between the FDTD and asymptotic results can

be reached when the particle size is on the order of 200. Approaches developed by Fu et

al. 37, Michel139, and Baran et al 4° can be used to overcome the shortcomings of the

asymptotic theory in calculating single-scattering albedo. It should be pointed out that

these approaches cannot provide the information for the phase function. For this reason, a

combination of these approaches (for the computation of single-scattering albedo) with

the asymptotic theory (for the computation of phase function) may be more useful in

practice.

Figures 8 and 9 show the phase functions of randomly oriented ice columns and

plates in comparison with the phase function of equivalent spheres. At large scattering

angles, the phase function values are essentially the same for the spherical and
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nonsphericalparticles.Theexternalreflectionbecomesinsensitiveto particlegeometry

oncetherandomorientationconditionis assumed.However,for moderateparticlesizes

(re=26.7gm), substantialdifferencesmaybenotedfor the phasefunctionat scattering

anglesin the 100-60° region for the two particle shapes.

Figure 10 shows the variation of the single-scattering albedo of hexagonal ice

plates and columns that are randomly oriented in the infrared region between 8 gm and

16 lam. Also shown are the real and imaginary parts of refractive index data compiled by

Warren 41. Evidently, the variational pattern of the single-scattering albedo follows that of

the real part of the refractive index. As we have mentioned, the real part of refractive

index has a value close to unity in the vicinity of 11 _tm, and the corresponding imaginary

part is substantially large. Near 11 gm, the extinction of incident radiation is dominated

by absorption, as is known as the Christiansen effect 23. As a result, a minimum is noted in

the single-scattering albedo. From Fig. 10, it can also be seen that the single-scattering

albedo for hexagonal particles is larger than for spheres. This feature has been noted in

the comparison of the FDTD solution with the equivalent spherical results that are shown

in Fig. 7.

It is a common practice to assume ice crystals are randomly oriented in space.

However, in the atmosphere specific orientations are preferred for large plates and

columns. For plates in an environment of a low Reynolds number, such as in a typical

midlatitude cirrus cloud, the a-axis (the hexagonal asymmetric axis) of the particle tends

to face vertically whereas the c-axis tends to be oriented horizontally. In other words, the

crystals tend to align themselves so as to reach a stable state in its falling process. At

visible wavelengths, the effect of preferred particle orientation on the phase function has
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beendiscussedby TakanoandLiou42andRockwitz 43. As pointed out in Section 3.A, the

application of a conventional ray tracing technique will produce a discontinuity of the

scattered energy and consequently cannot produce a continuous phase function. This

shortcoming is avoided with the present analytical asymptotic theory. When preferred

orientations are assumed for ice crystals, the phase function depends not only on the

scattering angle but also on the scattering azimuthal angle, i.e., on which scattering plane

the scattered field is observed. Figure 1 1 shows the geometry for the scattering

configuration related to a plate oriented with its c-axis aligned vertically. The principal

plane (_Ps = 0°) is defined as the plane that contains the incident direction and zenith

directions. The plane that is normal to the incident direction is denoted by the dotted

ellipse whereas an arbitrary scattering plane is denoted by the dashed ellipse in the

diagram. On a given scattering plane, the positive scattering angle is measured, with a

view along the incident direction, clockwise from the principal plane. For example, on

the principal plane the scattering angle is positive if it is measured from forward

scattering direction to the vertical zenith whereas the scattering angle is negative if it is

measured from forward scattering direction to nadir view.

Figure 12 shows the phase function for hexagonal plates having a preferred

orientation for four scattering azimuthal angles. Ice crystals are rotated randomly about

their c-axis. The strong forward peak caused by diffraction can been seen for the four

cases with different scattering azimuthal angles. For the case of tps = 0 °, very strong

scattering peaks may be noted at scattering angle of 120 ° and 60 ° for incident zenith

angles of 30 ° and 60 °, respectively. The scattering maxima at 120 ° and 60 ° correspond to

the specular reflection from the top faces of the plates. For q0s = 0 °, 30 ° and 60 °,
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significantasymmetryin thephasefunctionis observedin thescatteringangleregionsof

(0°, 180°) and(-0°, -180°). However, symmetry is observed for 9s = 90°, as is expected.

For plates with a preferred orientation, there are a number of ripple structures in the phase

function that are caused by phase interference.

Figure 13 shows the phase function for ice columns with preferred orientations.

The columns, randomly rotating about the zenith direction, are horizontally oriented but

rotate randomly about their c-axis. The ripple structure noted in Fig. 12 for plates due to

the phase interference is largely smoothed out in the case of oriented columns because the

orientation of the particles in the column case is more random. Similarly to the case in

plates, the specular reflection feature is apparent in the case where q_s = 0°.

Figure 14 shows the single-scattering albedo corresponding to the phase functions

in Figs. 12 and 13. Compared with the results for randomly oriented particles, the single

scattering for both oriented plates and columns are smaller if the incident zenith angle is

less than approximately than 60 °. For plates, there is a pronounced peak in the single-

scattering albedo at the incident zenith of 70 °. This is thought to be due to the external

reflection for the top face of the plate increasing with an increase of incident zenith angle.

However, when this angle approaches 90 ° , the projected area of the top face is essentially

zero and the extemal reflection from the side faces, along with diffraction, dominates the

scattered field.

4. Summary and Conclusions

An asymptotic solution in an analytical format is presented for the scattering

properties of a general polyhedral particle with strong absorption. For scattering

calculations involving nonspherical particles such as aerosols and ice crystals, we show
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thatthetransversewaveconditionis notapplicableto therefractedelectromagneticwave

whenabsorptionis involved.In thegeometricopticssolutionfor wavepropagationin an

absorbingdielectricmedium,eitherthe TM wavecondition (i.e., wherethemagnetic

field of the refractedwaveis transversewith respectto the wavedirection)or the TE

wavecondition(i.e.,wheretheelectricfield is transversewith respectto thepropagating

direction of the wave) may be assumedfor the refracted wave to satisfy the

electromagneticboundarycondition.The wave modeassumedfor the refractedwave

affectsboth thereflectionandrefractioncoefficients.As a result,a nonuniquesolution

for thesecoefficientsis derivedfrom theelectromagneticboundarycondition.Through

comparisonof theasymptoticgeometricopticssolutionto resultsdeterminedfrom Mie

theoryfor absorbingspheres,it is shownthatTM andTE wavemodesshouldbeapplied

to two polarizedcomponentsthat areparallelandperpendicularto the incidentplane,

respectively.In this studywe haveidentified the appropriatesolution for the Fresnel

reflection coefficientsin theray tracingcalculation.We presentthe 3×2refractionor

transmissionmatrix thatcompletelyaccountsfor theinhomogeneityof therefractedwave

in anabsorbingmedium.BasedontheFresnelcoefficientsfor anabsorbingmedium,we

derivethe asymptoticsolutionin ananalyticalformat for the scatteringpropertiesof a

generalpolyhedralparticle. Numericalresultsarepresentedfor hexagonalplatesand

columnswith bothpreferredandrandomorientation.The asymptotictheoryproduces

reasonableaccuracyin the phasefunction calculationsin the infraredwindow region

(wavelengthsnear 10 lam)if theparticle size is on the order of 40 _m in diameteror

larger.
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However,sincestrongabsorptionis assumedin thecomputationof the single-

scatteringalbedoin the asymptotictheory,the singlescatteringalbedodoesnot change

with variation of the particle size. As a result, the asymptotic theory can lead to

substantialerrorsin thecomputationof single-scatteringalbedofor smallandmoderate

particle sizes.However, from comparisonof results with the FDTD solution, it is

expectedthata convergencebetweentheFDTD resultsandtheasymptotictheoryresults

canbereachedwhentheparticlesizeapproaches200p.m.

Fortwo infraredwavelengthsat 11and12lam,weshowthatthephasefunctionat

side-scatteringandbackscatteringanglesis insensitiveto particle shapeif the random

orientationis assumed.For preferredorientations,however,we show that the phase

functions for plates and columns are significantly different. Additionally, when a

preferredtwo-dimensionalorientation condition is assumed,the phasefunction is

observedto have a strong dependenceon scattering azimuthal angle. Moreover,

numericalresultsshowthatthesingle-scatteringalbedohasaverystrongdependenceon

the inclination angleof incident radiation with respectto the rotating axis for the

preferredparticleorientations.

This researchhasbeensupportedby a grant of NASA's MODIS project and

partiallyby theOffice of Naval Research.
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Figure Captions

Fig.1.Comparisonof the inherent and apparent refractive indices for ice at 11 and 12 p.m.

Fig.2 Scattering geometry for a large sphere with strong absorption.

Fig.3 Phase function and the degree of linear polarization computed from geometric

optics in comparison with Mie solution at _,= 12 _tm.

Fig.4 As the same as Fig.3 except that the wavelength is 11 I.tm in Fig.4

Fig.5. Comparison of the phase functions computed from Mie theory and the geometric

optics method for three moderate sizes at wavelengths 11 and 12 pm.

Fig.6 Comparison of phase function computed from the FDTD technique and the present

asymptotic theory for hexagonal ice crystals.

Fig.7 Comparison of the single-scattering albedo computed from the FDTD technique

and the present asymptotic theory for hexagonal ice crystals. Also shown are the

results computed for equivalent spheres.

Fig.8 Comparison of phase function of hexagonal columns with that of equivalent

spheres.

Fig.9 As for Fig.8, except for hexagonal plates.

Fig. 10 The comparison of the single-scattering albedo values computed for hexagonal

ice crystals and equivalent spheres.

Fig. 11 Incident and scattering geometry for an ice crystal with a preferred orientation.

Fig. 12 Phase function computed for hexagonal plates with preferred orientations.

Fig. 13 As for Fig. 12 except for columns.

Fig.14. The single-scattering albedo for ice crystals that have preferred orientations in

comparison with the results for the randomly oriented case.
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