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Abstract

For scattering calculations involving nonspherical particles such as ice crystals,
we show that the transverse wave condition is not applicable to the refracted
electromagnetic wave in the context of geometric optics when absorption is involved.
Either the TM wave condition (i.e., where the magnetic field of the refracted wave is
transverse with respect to the wave direction) or the TE wave condition (i.e., where the
electric field is transverse with respect to the propagating direction of the wave) may be
assumed for the refracted wave in an absorbing medium to locally satisfy the
electromagnetic boundary condition in the ray tracing calculation. The wave mode
assumed for the refracted wave affects both the reflection and refraction coefficients. As
a result, a nonunique solution for these coefficients is derived from the electromagnetic
boundary condition. In this study we have identified the appropriate solution for the
Fresnel reflection/refraction coefficients in light scattering calculation based on the ray
tracing technique. We present the 3 X2 refraction or transmission matrix that completely
accounts for the inhomogeneity of the refracted wave in an absorbing medium. Using the
Fresnel coefficients for an absorbing medium, we derive an asymptotic solution in an
analytical format for the scattering properties of a general polyhedral particle. Numerical
results are presented for hexagonal plates and columns with both preferred and random
orientations. The asymptotic theory can produce reasonable accuracy in the phase
function calculations in the infrared window region (wavelengths near 10 pm) if the
particle size (in diameter) is on the order of 40 um or larger. However, since strong
absorption is assumed in the computation of the single-scattering albedo in the

asymptotic theory, the single scattering albedo does not change with variation of the



particle size. As a result, the asymptotic theory can lead to substantial errors in the
computation of single-scattering albedo for small and moderate particle sizes. However,
from comparison of the asymptotic results with the FDTD solution, it is expected that a
convergence between the FDTD results and the asymptotic theory results can be reached
when the particle size approaches 200 um. We show that the phase function at side-
scattering and backscattering angles is insensitive to particle shape if the random
orientation condition is assumed. However, if preferred orientations are assumed for
particles, the phase function has a strong dependence on scattering azimuthal angle. The
single-scattering albedo also shows very strong dependence on the inclination angle of

incident radiation with respect to the rotating axis for the preferred particle orientations.



1. Introduction

The optical properties of dielectric particles such as aerosols and ice crystals in
the atmosphere are fundamental to a number of disciplines including atmospheric
radiation transfer and air-borne or satellite-borne remote sensing applications. In a recent
book’, Mishchenko et al. have comprehensively reviewed various methods that have been
developed to solve the scattering and absorption properties of particles for a variety of
geometric morphologies and electromagnetic characteristics of the scatterers. Accurate
numerical methods such as the discrete dipole approximation (DDA) method>? and the
finite-difference time domain (FDTD) technique*” are applicable in practice only to size
parameters smaller than 20 because the computational requirements increase quickly with
size parameter. Although analytical solutions are available for some particle shapes such
as spheres® and spheroids”?, the corresponding numerical computations are usually very
challenging. For example, the computation of the optical properties of spheroids based on
an analytical solution in terms of a series of special functions may not be stable when the
size parameter is larger than approximately 30-40. It is worth noting that the recent
developments on the T-matrix method”'® allow the exact solution for the optical
properties of spheroids and finite circular cylinders for size parameters up to 200"'. There
is no single method to solve for the optical properties of nonspherical particles across the
entire size parameter spectrum.

It is common to use the ray-tracing technique'*" for nonspherical particles that
have sizes much larger than the incident wavelength. Previous applications of the ray-
tracing technique have been focused mainly on scattering computations for the visible

and near-infrared wavelengths for which the imaginary part of the refractive index is



small. For these weakly absorptive spectra, the conventional Snell’s law and Fresnel
formulae can be used to account for the ray reflection and refraction at particle surface.
However, the optical properties of large dielectric particles at wavelengths with strong
absorption are fundamental to many practical applications. For example, the scattering
and absorption properties of ice crystals at infrared wavelengths are required in the
retrieval of cirrus clouds using satellite radiance data such as that from the Advanced
Very High Resolution Radiometer (AVHRR)'® and Moderate Resolution Imaging
Spectroradiometer (MODIS)'” imagers. Under cirrus cloudy condition, interpretation of
the High resolution Interferometer Sounder (HIS)'® hyperspectrum in the atmospheric
window region (8-12 pm) also requires the optical properties of ice crystals.

When ray optics is applied to the infrared spectrum in regions of strong
absorption, the refracted wave inside the particle is inhomogeneous in the sense that the
planes of constant phase and constant amplitude are not parallel”®. Current applications of
the ray tracing technique assume that planes of constant phase and constant amplitude are
parallel. The inhomogeneity associated with the reflected wave substantially complicates
the behaviors of rays at particle surface and inside the medium. Stratton'’ and Born and
Wolf®® have discussed this inhomogeneity and its effect on the Fresnel reflection
coefficients associated with complex refractive index. In particular, Stratton'® (section
9.9) has solved the problem of the reflection of a plane electromagnetic wave by a
conducting surface. Recently, Zhang aﬁd Xu?' and Yang and Liou® addressed the effect
of the inhomogeneous wave on ray-tracing calculation. Zhang and Xu®' have expressed
the Fresnel coefficients without an explicit use of complex refractive index. However,

they did not account for the effect of the inhomogeneity on wave attenuation that is the



most important physical process involved in the ray propagation within an absorbing
medium. Yang and Liou® have discussed the impact of the inhomogeneous effect on ray
propagation by introducing an effective refractive index, but they employed the high-
frequency approximation® in the calculation of reflection and refraction coefficients.
Since the effect of inhomogeneity on ray tracing calculation has not been solved
completely, it is necessary to further study this problem. The intent of this study is to
develop an analytical asymptotic method that comprehensively accounts for the
inhomogeneity effect when deriving the optical properties (such as the single-scattering
albedo and phase function) of strongly absorbing particles with sizes much greater than
the incident wavelength.

To compute the optical properties of dielectric particles with strong absorption we
first derive the reflection and refraction coefficients for the electric field in terms of an
apparent refractive index without using the high-frequency approximation. The reflection
and refraction coefficients incorporate the inhomogeneous effect on the direction of ray
propagation and the Fresnel coefficients. Subsequently, we derive the asymptotic solution
expressed in an analytical form for large particles with strong absorption. In Section 2 we
discuss the various wave modes of an inhomogeneous wave refracted into a particle when
absorption is involved. We show that the electric or magnetic field may not be
perpendicular to the direction of ray propagation because of the effect of strong
absorption. The Fresnel coefficients are reformulated, in particular, the transmission
coefficient for the component of the refracted field that is parallel to ray propagation. In
Section 3, we present the analytical solution for the optical properties of large polyhedral

particles with strong absorption. The solution is derived on the basis of the



electromagnetic relationship between the near field and far field. In Section 3, we also
present numerical results of the asymptotic solution for hexagonal ice crystals. Finally,

conclusions of this study are given in Section 4.

2. Physical Basis for Ray Tracing in Absorptive Case

In this section, it is shown that the transverse wave condition cannot be applied to
both the electric and magnetic fields associated with a ray refracted into an absorbing
medium. In addition, we show the wave mode subject to an electric boundary condition is
not unique in the context of geometric optics when absorption is involved. The behavior
of the refracted wave not only affects the Fresnel refraction coefficients but also the
Fresnel reflection coefficients. In the following discussion, it is shown that there are four
combinations possible for the reflection/refraction coefficients that depend on wave
modes. While each combination of the reflection and refraction coefficients is a
mathematically rational solution, only one set of coefficients should be used in the ray
tracing solution. The choice of the proper wave mode for the refracted wave in ray
tracing calculation is made through the comparison of the geometric optics solution to the
analytical Mie result for the scattering properties of a very large (size parameter on the
order of 1000) sphere with strong absorption.

Let us consider the application of the geometric optics method to solve for the
scattering properties of a particle that is large and absorptive. In this case, the rays that
are refracted into the particle are largely absorbed. Thus, we need only consider the first
order reflected/refracted rays because of the small amount of energy carried by the rays

that undergo internal reflections. To examine the first order reflection/refraction



characteristics and the corresponding polarization features of the electric field, we begin
with the phase variation for the field associated with a complex refractive index. Let three
unit vectors, é,, €, and ¢, indicate the propagating directions for the incident, reflected,
and refracted rays. To systematically present this study, it is necessary to recapitulate

some results obtained by Yang and Liou®. Following these authors, the fields associated

with these rays can be written as follows:

E(F)= E, exp(iké, - F), (1a)
E(7)=E, expliké, -7), (1b)
E,(F) = E,, exp[ik(N,é, +iN,h) 7], (1c)

where E, ,, E, ,, and E, , are the amplitude vectors for the fields; k =2n/A in which A

1,0
is the wavelength in vacuum; 7 is a unit vector that is normal to particle surface and
points into the particle. The two parameters N, and N, in Eq.(1c) are given by

N =2"""m?—m? +sin*{, +[(m? —m? —sin’{,)’ +4m *m>]'*}, and (1d)

N, =22 (m? —m? —sin’ ) +[(m> —m? —sin’{,)* +4m*m?]"?}, (le)
in which m_ and m, are the real and imaginary part of the refractive index, and ; is the
incident angle given by {, =sin™'[1—(é, - 7)*]"?. Note that N, (denoted as N; in Ref. 22)
is not presented in the previous study. Physically, N_ is the parameter that determines the
phase and N, is the parameter that determines the absorption. This will be illustrated in
the following discussion.

From Eqs.(1a)-(1c) and the continuity of wave phase at the medium interface, it
follows that Snell’s law for an absorbing medium can be mathematically expressed in the

form of



e =e,+2(e -n)n, (2a)

é,=¢é,/N, +(cos, —cos{,/N)n, (2b)
where the refractive angle is given by {, =sin"'[sin({,)/ N,]. Equation (2a) means that
the incident and reflected rays are spatially symmetric about the direction normal to
particle surface at the incident point, which is the standard Snell’s law for reflection
direction. However, Eq. (2b) indicates that the refracted direction is not determined by
m, but by N,. For this reason, N, is referred to as the real part of apparent refractive
index, which depends on the incident qonﬁguration and the dielectric constant of the
medium for the determination of the ‘(.Iirerction and phase for refracted wave. The
attenuation of the refracted field due to the absorption depends on the path of
observation. If the path is along 7, the attenuation is determined by N,, as is evident
from Eq.(1c). However, if we trace the refracted wave along the direction of the refracted
ray, i.e., along position vector 7 = /¢, in which / is the penetration depth of the ray, the
electric field is given by

E,(1,) = Ey, exp[—kN,, (71 - &)l]exp(ikN,]). (3)
Obviously, the factor N, (n-¢,) is the imaginary part of the apparent refractive index that
govemns the attenuation of the electric field associated with the rays. We denote this
factor as N,. Thus, for a ray impinging on an absorbing medium, the apparent refractive
index in the complex format is (N, +iN;). It can be proven that

N;=N,(n-¢)=N,cosl, =m,m;/N,. 4)

Figure 1 shows the real and imaginary parts of the inherent and apparent

refractive index of ice at infrared wavelengths 11 and 12 pm for which substantial

absorption exists. The optical properties of ice at these two wavelengths are important



for many applications in satellite remote sensing'’. Note that for ice particles,
wavelengths near 11 um are in the Christiansen band where absorption dominates the
extinction”. The inherent refractive index is determined uniquely by the dielectric
characteristics of the medium, i.e., permittivity, which does not depend on the incident
configuration of a ray. As is shown in Fig.1, the real part of the apparent refractive index
increases with the increase of incident angle whereas the imaginary part of the refractive
index decreases with the increase of the incident angle. Obviously, in terms of wave
attenuation per unit length along propagating direction of a ray, the particle is less
absorptive at a large incident angle. For incident angles larger than 10°, the
inhomogeneous effect due to strong absorption cannot be ignored.

It can be shown that various wave modes may satisfy the electromagnetic

boundary condition associated with the reflection and refraction at the interface of two
media, one of which is strongly absorptive. First, let ﬁ be a unit vector perpendicular to
the incident plane. The unit vectors that are parallel to the incident plane and

perpendicular to ray propagation directions for the incident, reflected, and refracted

waves are given by

>

0, =¢xp, & =¢&xp,and &, =¢ xP. ()

It should be pointed out that ﬁd constitute right-handed coordinate systems. The

i,r,téi,r,t
incident and reflected waves are within non-absorbing medium. As a result of the
homogeneous wave properties of the incident and reflected rays, transverse wave
condition can be imposed on both electric and magnetic fields for these rays (hereafter,

referred to as TEM mode). Thus, the corresponding amplitude vectors of the electric

fields can be decomposed in the form of

10



E,=E,,8,+E,, (6a)

io,o

E,=E,,0,+E,B. (6b)

The Maxwell equations in time-independent form are given by
E(#) =V x H(#) (~ike), (7a)
H(F) =V X EF)/ ik, (7b)
where € is permittivity given by €= (m, +im,)*. We have chosen the time harmonic

factor as exp(ikct) in which ¢ is the speed of light in vacuum. If this factor is selected as

exp(—ikct), the sign of the imaginary part of refractive index is negative'**

. Using
Eq.(7b), we can obtain the amplitude vectors of magnetic fields associated with the

incident and reflected rays as follows:

H, =¢éx(E, +E0BB)

io,0 i

io ﬁa i, aﬁ (8a)
H,=8X(E,.0, +E,B)=E, 40, -E,p. (8b)
For the refractive wave in an absorbing medium, a transverse wave condition on both the
electric and magnetic fields cannot be imposed because of the inhomogeneity effect, that
is, the TEM wave mode is not valid in this case.

In the following discussion, we first examine the reflecting characteristics of an
absorbing medium for various wave modes. To derive the reflection coefficient, the
electric field may be assumed to be transverse with respect to the propagating direction of
the ray (hereafter, this mode is referred to as TE mode) so that the refracted electric field

can be expressed in the form of

E,=E, 0, +E, BB 9)

11



From Egs. (1c), (4), (7b), and (9) and the relationship of 7 =cos{é, —sin{,a, the
refracted magnetic field in TE mode can be obtained as follows:

B,(7)=(Né +iN,A)X(E, .0, +E, )

0,0
= (N, +iN)E, 48, — (N, +iN)E, B +iN,sin{, E, 4¢,. (10)
From Eq.(10), it is evident that the refracted magnetic field has a nonzero component
along the unit vector ¢, (ray direction) when N, is not zero, i.e., when absorption is
involved. At the interface of two media, the electromagnetic boundary condition requires

that the tangential components of electric and magnetic fields are continuous. Thus, we

have the following relationships:

E.st Em,ﬂ = Em.B’ (11a)
E,gcost, — E, g cosl, = [(N, +iN,)cos{, +iN,sin’  JE, ,, (11b)
Eio,a +Ero,a =(Nr +iN;')Eto,a’ (llC)

Eio,u COSC:’ - Ero,a COSC:‘ = COSC,E,

o (11d)
The preceding equations may be solved to obtain the reflection coefficients for the two

polarization configurations:

_cos{, —[(N, +iN,)cos{, +iN,sin’ ,]

R, =E ./E .=
TEL T Prop ! Tio T 05T +[(N, +iN )cosC, +iN, sin’ {,]
_cos{, —(N,cosC, +iN,)) (12a)
cos{, +(N, cos§, +iN,)’
Rrgys = Erg! By = et iN)00SS, = cost, (12b)

8 " (N, +iN,)cos, +cos{,

12



Similarly, if we assume that the magnetic field of the refracted wave is transverse with
respect to the ray direction (hereafter, this mode is referred to as TM mode), the
reflection coefficients are then given by:

_(N_+iN,)cos{, —ecos,
™A (N, +iN,)cos{, +ecos(,’

and (13a)

_ecos{, —(N_cos{, +iN,)
M gcos, — (N, cosl, +iN,)’

(13b)

Therefore, considering the two wave modes and two polarization configurations, four

combinations are possible for the reflection coefficients: (R, ,, Ry, ), (R R ))s
(Riz >Ry 1), and (Rp, ,, Ry ). Each of these four combinations is a mathematically

rational solution derived from the electromagnetic boundary condition when an
absorptive medium is involved. However, only one among the four solutions should be
computationally correct in the ray tracing calculation regarding the process of scattering
of electromagnetic wave by a dielectric particle with absorption. It should be pointed out
that the Maxwell equations subject to appropriate boundary conditions always have a
unique solution, as is in the case of Mie theory. The explanation for the multiple solutions
for the reflection coefficients is that electromagnetic boundary condition is locally
imposed in the context of geometric optics, which allows the treatment of the
inhomogeneous refracted wave as a refracted ray, thereby providing the basis for a ray-
tracing procedure. Accordingly, we are looking for the pair of reflection coefficients that
provide the best numerical agreement with the exact solution in scattering computation.
To identify the computationally correct pair of reflection coefficients among the
preceding four combinations, we consider the scattering geometry in Fig. 2 for a strongly

absorptive sphere with a size much larger than incident wavelength. In this case, the
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“scattered field is composed primarily of the contributions from diffraction and external
reflection. The incident energy associated with the area element ds on the projected area
is scattered in angular element sin6d8d¢ in which 0 is scattering angle. The scattered

intensity at a distance r that is far away from the particle is given by

=g REL & | |RFd"
r |sm 9d0d<p| 4r

(14)

where a is the radius of the sphere; I, and I, are incident and scattered intensity,
respectively; R is reflection coefficient without a specification of wave mode and
polarization configuration. To derive Eq.(14), we have used two relationships given by
ds = a’ cos{,sin{,d{ ,d¢ and 6 =m—2{,. On the other hand, according to the definition

of scattering phase function denoted by P, one may define the following relationship:

L= 4;;2 PI, (15)

where o, is the scattering cross section. Therefore, after the two polarization

configurations are accounted for, the contribution of the external reflection to phase
function may be obtained from comparison of Eqs.(14) and (15):

2 2 2
Pr(e) = (| R// | + | R_L I )na

N =

s

1(R, P +|RP)
2 0-0.

(16)

where Q, and Q, are the extinction efficiency and absorption efficiency, respectively.
The value of Q, is 2 since the particle is very large whereas Q, is determined by the ratio

of refracted energy to the incident energy associated with the projected area. Note that the

14
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divergence factor introduced by van de Hulst” is absent in Eq.(16) because the rays that
transmit through the sphere are ignored here.

An improved diffraction formulation has been given by Yang and Liou®® that,
unlike the conventional method that is limited to scattering angle smaller than 90°, can be
applied the entire scattering angular region. When the improved method is applied to the

diffraction by a sphere, the scattering amplitude matrix® is given by

(Sz S3)= (ka)? 2J,(kasin®) (cose(l+cose) 0 ] a7

Sy 5 4 kasin© 0 1+ cosH

where J, is the Bessel function of the first kind. The phase function that includes the
contribution from diffraction and external reflection can be obtained from Eqgs.(16) and
(17) as follows:

2 R 2 R 2
}(1+eos26)(1+cose)2+l(| y IR )
2 Qe_Qa

P(6) = (ka)* )[2Jl(kasin6)

8(Q,-Q,)L kasin® - (18)
In addition to the phase function, the polarization configuration should be used to identify
the correct combination of reflection coefficients. When the incident radiation is
unpolarized, the polarization feature of scattered radiation can be specified by the degree
of linear polarization (DLP). When scattered radiation is composed of diffraction and
external reflection, the DLP associated with the phase function in Eq.(18) may be given

as follows:

1{(8)- I;(8) + I,(8) - [;(8)

DLP(8) = [F(0)+ I°(8) + I,(8) + I(0)

_ (ka)*[27;(kasin®)/ kasinB] (1 + cos®)*(1 - cos’ 8) + 4( R, [* = | R, [*)
(ka)?[2; (kasin®)/ kasin®] (1 + cos8)* (1 + cos? 0) + 4(| R, [* +| R, [)

(19)
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IY and I (I’ and I)) are the scattered intensity associated with diffraction and external

reflection, respectively, for the case that the electric field is polarized along a direction
that is perpendicular (parallel) to the scattering plane.

Figure 3 shows the phase function and DLP computed from Mie theory and the
geometric optics method at a wavelength of 12 um. The Mie computational code
developed by Wiscombe? is used in this study. Since the size parameter is extremely
large (x=1047.2), the scattered energy at a large scattering angle (approximately 20° in
this case) is primarily from the reflection of incident rays. Through comparison of the
geometric optics solution to the Mie results, we can identify the correct reflection

coefficient pair. Evidently, the reflection coefficient pair (Ry, ,, Rz ) produces a phase

function and DLP consistent with the Mie solution at large scattering angels where the
external reflection dominates. Since the Mie solution for DLP is positive for the entire
scattering domain, the reflection of incident wave with vertical polarizatioh configuration
is much larger than the reflection for the case when the polarization is parallel to
scattering plane. For this reason, if we incorrectly apply the reflection coefficient Ry,
for the incident wave polarized perpendicularly with respect to scattering plane,
substantial errors can be produced for both phase function and DLP, as is evident from
Fig.3.

Figure 4 is similar to Fig.3, except that the wavelength is 11 pm and the real part
of the refractive index is close to unity (see Fig. 1). It can been seen that the phase
function values at large scattering angles at 11 pm are much smaller than the
corresponding results at 12 pm since external reflection is weaker for the former

wavelength. However, the correctness of reflection coefficients used in the computation

16



is also critical to the phase function and DLP even in the optically tenuous case. As a
matter of fact, the errors associated when the wrong wave mode is assumed for the
refracted wave are even more pronounced for the results shown in Fig.4 than for those
shown in Fig.3. From these results, it is clear that the correct wave mode must be used
for the refracted wave in the derivation of the reflection coefficients regardiess of the
magnitude of the real part of refractive index whenever the particle is strongly absorptive.

The comparison of the ray-tracing method to Mie theory for the phase function of
spheres has been presented by Liou and Hansen® for a polydispersive case having an
assumed particle size distribution. For a monodispersive case (a system composed of
particles having a single size and shape), the comparison study has been presented by
Macke et al.” for spheroids and finite circular cylinders at a near infrared wavelength,
which shows that the applicable size parameter for the geometric optics method is
approximately 60. In addition, these authors pointed out that the size parameter required
for a convergence of the exact solution and the geometric optics solution is larger for
spheres than for nonspherical particles.

The results of this study suggest that the geometric optics method can be applied
to much smaller size parameters when strong absorption is involved. Figure 5 shows the
phase function computed from Eq.(18) in comparison with the Mie solutions. Evidently,
when the size parameter is larger than approximately 30, the geometric optics solution
can be used to approximate the exact solution. For size parameters larger than 50, the
geometric optics solution essentially converges to the exact solution in the side and

backscattering directions.
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From the preceding discussions associated Figs. 3, 4 and 5, it is clear that TM and
TE modes should be applied to the components of electric field that are parallel and
perpendicular to the incident plane, respectively. By using this combination of wave
modes, it is straightforward to derive the refracted wave on the basis of electromagnetic

boundary conditions. Through application of the (TM,,TE, ) wave mode to the refracted

wave, we can obtain the refracted electric field as follows:

Er,o = Er,o,a&t + Ez,o,BB + Et,o,'yér! . (20&)
E) (T 0,
io, 0
E,l={0 T, ( o ] (20b)
io,B
ov) \I 0
where
- 2(N, +iN,)cos{; , (200)
gcos{; + (N, cosl, +iN,)
7, = 2c08C, (20d)
cos, + (N, cos{, +iN,)
i2N, sin{, cos(; (20¢)

v gcos{; + (N, cos{, +iN,)
Note that in Egs.(20a)-(20¢) the dependence of these parameters on the wave mode is not
specified explicitly. It should be pointed out that the transmission matrix in the
conventional ray-tracing scheme is a 2 x2 matrix. When absorption is involved, the
transmission matrix becomes a 3 X 2 matrix. When absorption of the medium is absent,

T, is reduced to zero because N, is zero and Eqgs.(20a)-(20e) are reduced to the

conventional Fresnel refraction coefficients.
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3. Asymptotic Solution for Scattering and Absorption Properties of Large
Polyhedral Particles with Strong Absorption

A. Physical Basis for Asymptotic Solution

In the previous section, it is shown that the conventional geometric optics
approach in terms of the superposition of diffraction and external reflection can well
approximate the Mie solution for the spherical particle case when the size parameter is
large and the particle is absorptive. Since the variation in the surface normal direction is
continuous for a sphere, a continuous distribution of the externally reflected energy is
obtained. However, this is not true if the particle geometry is a polyhedron such as a
hexagonal plate or column, which is the basic geometric structure of ice crystals in cirrus
clouds. In the numerical solution, there is a physically incorrect discontinuous
distribution of scattéred energy for any specific orientation of the particle.

For example, consider the scattering of radiation by a hexagonal ice column when
the incident radiation is perpendicular to the c-axis of the particle and parallel to a line
that connects two symmetric apexes of particle cross section. If the rays refracted into the

particle are ignored due to absorption, the phase function can be written as follows:

P®.,0.)= 3k’La sin[(kL/2)sin6, cosws]sin[(ﬁka/Z)sinGS sinQ,] 2
T 8mo, | (kL/2)sin®,cosp,  (+/3ka/2)sin@,sin g,
- (1 +cos?8,)(1 +cosB,)* + ‘/i"‘”‘ [8(@, —m/2)+8(¢, +1/2)]
S
5(8; — 2m/ 3)](| Rt iig,=nss [ +] Rrp i t=nss '2)’ (21a)
O, = «/gaL(Z— [ RTM,[f,§i=1t/6 |2 l RTE,L,Q:n/s |2) (21b)

where L and a are the length and semi-width of hexagonal columns and 8(x) is the Dirac

delta function. To avoid any possible confusion, in Eqs.(21a) and (21b) we use 6, and ¢,
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to indicate the scattering angle and the azimuthal angle of the scattering plane. Here the
plane of ¢, =0° is the plane that contains incident direction and the c-axis of the

particle. On the right side of Eq.(21a), the first term represents the contribution from
diffraction and the second term represents the contribution of external reflection.
Obviously, the second term is nonzero only at two angles as is expressed by the delta
functions. This singularity is inherent in the conventional geometric optics method. The
delta-reflection involved in Eq.(21) originates with the same physical mechanism of the
forward delta-transmission that has been well explained by Takano and Liou' and
Mishchenko and Macke™. It should be pointed out that the singularity in Eq.(21b) could
be overcome numerically in the ray-tracing calculation if the particles are randomly
oriented in space. The average intensity is given by the scattered energy divided by the
corresponding solid angle elements. The discontinuity may be avoided given proper
resolution for the solid angle elements with sufficient orientations of the particles, i.e.,
with sufficiently random orientation.

To circumvent this particular disadvantage of the conventional method for a
specific orientation, we apply the geometric optics method to solve for the internal field
inside the particle following Yang and Liou’'. The scattered far-field, extinction and

absorption cross sections are given by

EF)= k‘i"‘—i(r"k’)(e ~V[[[EF) -7 EF Nyexp(-iki 7)d*r,  (22a)

G, =Im %(e -D[[JEFEF) |, (22b)
O s = #ei [[JE@)-E)dr. (22¢)

20



The integrals involved in preceding equations may be calculated using the ray-by-ray
integration (RBRI) algorithm®'. From the RBRI calculation and Egs. (22a)-(22c), the

amplitude scattering matrix and extinction and absorption cross sections are given by:

A SNCAY:

(Sz(es) S3(e) kz(e-l) (: @, 6, B o -e 0 T

S4(és) Sl(e) N +lN 1KBS &'p BSB Bs'és T (|;
Y

surface

[‘;0‘ ‘E BJexp[ ik(, - 8.)- 7 1{1 — exp[—kN I(7 Y] explik(N, — &, - & JI(F)]}d* ,(234a)

o, = i? Re[S,(6) +S,(8)], (23b)

chosC_,,N LEHI TP+ T - exp[-2kNI(F)1}d’7, (23¢)

particle surface

~

where [, is a unit vector perpendicular to scattering plane; e, is along scattering

direction; &, =¢é, X ﬁs; Q, =é % ﬁs; and /(7") is the ray penetration depth with the

incident point at 7'. The other variables involved are defined in the previous discussion.

If the absorbing particle is large, it is expected that exp[-AN./(#')] — 0. In this case,

analytical expressions may be derived for the integration involved in Eqgs. (23a) and (23c¢)
if the surface of the particle is locally flat such as in the case of polyhedral geometry.

For a given flat face of the particle surface, Fresnel reflection does not vary with
the location at the face because the incident angles are the same for all the points on this

face. Thus, the following matrix is independent of the position of a point on a flat surface:

'§2 ‘§3 _ COSC:' &s' ‘ &sﬁ
'§4 §1 j N, +iN;~¢-¢ Bs'dx B,-B

Q)

[o}]
o>
A
hm) m)
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Therefore, the integral in Eq.(23a) should actually be evaluated only with respect to the
phase variation over the local flat faces of the particle. For evaluation purposes, the
surface of a polyhedral particle can be divided into a number of area elements shaped as
parallelograms and triangles. For a parallelogram or a triangular face, the position vector
of a point on this face is expressed by

} { 7 +E&r +mr, for parallelogram (25)

r = . 2

7 +E(1-n)% +n&7% for triangle

where 7, is the position vector of the apex of the geometric shape, and 7 and 7 constitutes
the neighboring two sides of the shape. The vector £ €[0,1] and m€[0,1]. From

Egs.(24) and (25), the integration of phase variation over a parallelogram area element

yields

D, = J-J expfik(é, —e,)- Fj}dz‘r‘j

Jace j
1 pl
=| Fj,l X ’3,2 ] J‘ JexP[ik(éi - é:) ’ (7}-,0 + ﬂf,-,l + :2)]dnd§
040

=| ’_'},1 X ’_},2 | exP[ik(éi - és) . (’_”;',o + 7},1 /2+ ’7,',2 /2)]

sin[k(é, —¢&,)-7,, /2] sin[k(é, - €))7, /2]
k(é,-¢e) 7 /2 ke -¢) 7, /2

, (26a)

Similarly, if the phase variation is integrated over a triangular area, it follows that
D, = J.J-exp{ik(é,. -é)-F}d’r,
Jace |

Sin[k(é, — &,) ., /2]
k(& —8)T,/2

I CICRIAR/M

i, i2 ) .y n A - N
P k(e - é) (F,-7,)

{exp[ik(é,- =) 7,/2]
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in[k(6,— 6 )7 /2
—explik(é,—,) -7, /2] Smk[( é(e'_ - ‘;{)F 'f*/‘z ]}. (26b)

The scattering matrix that includes the contribution from all the faces can be written as

5) SE)) KBE-1) s o0 [8E@) §E) 27
= h(e.-n)D.| . I s
(&(és) sm@aj 4n Z @) ’[S4(é,) 56)) .

where (e, -7;) is a step function that indicates whether the face is illuminated by

incident radiation:

15 Ry e 1, for é-n,>0 -
©-n)= 0, for é,:n,<0° (28)

Once the amplitude scattering matrix is given, the calculation of phase function is
straightforward on the basis of the definition presented by van de Hulst*. It should be
pointed out that a special form of Eq.(27) have been given for hexagonal particle without
an incorporation of the inhomogeneity effect of the refracted wave on the transmission
matrix®’. The result presented in this study is more general and can be applied to any
polyhedron with strong absorption.

Since the multiple scattering calculation is based on the solution of the radiative
transfer equation, the most important parameter of concern is the single-scattering albedo
rather than extinction or absorption cross section. In particular, in remote sensing
applications, a pre-described optical thickness is usually used in the calculation of look-
up tables for the microphysical or optical properties of cloud particles. For this reason, in
the present calculation we focus on the phase function and single-scattering albedo. The

later parameter is defined as

= Oext ~ Oabs , (29)

Gext
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where the extinction and absorption cross sections, G,,, and G, can be calculated from

Egs. (23b) and (23c).

B. Numerical Results for Hexagonal Ice Plates and Columns

As an application for the asymptotic solution for light scattering by a strongly
absorptive particle, we present numerical results for ice crystals composed of hexagonal
plates and solid columns. A hexagonal shape is selected here because this shape has been
studied extensively for inference of cloud optical thickness and particle size in remote
sensing applications (e.g., Minnis et al.’”2, Baum et al.”’, Han et al.**).

Fig.6 shows the comparison of the phase function computed by the FDTD method
and the asymptotic theory (Eq. 27) for hexagonal ice crystals of two sizes: 2a/L= 25um
/25um and 40pm/40um, where L and a are the length and semi-width of the hexagonal
crystal. A random orientation condition is assumed for ice crystals in both the asymptotic
and the FDTD calculations. It can be seen from Fig. 6 that the asymptotic solution more
closely approximates the FDTD results for the larger particle size of 40/40 pm. While
one might infer that the asymptotic theory can be applied to hexagonal ice crystals with
sizes larger than approximately 40um in the infrared window region, the convergence
between FDTD and asymptotic theory will, in fact, depend on magnitude of absorption.
For large particles at IR wavelengths, the FDTD calculation is computationally
expensive. Thus, the asymptotic theory provides an efficient way to estimate the phase
function of large particle with strong absorption. This advantage of the asymptotic theory
in the calculation of phase function may be useful in practice. For example, the
parameterization of cloud longwave radiative properties requires the phase function

information though the use of either an asymmetry factor or a scaling factor”’, which can
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be provided by the asymptotic theory efficiently and accurately when the particle size is
larger than approximately 40 pm.

Figure 7 shows a comparison of the single-scattering albedo computed from the
FDTD and the asymptotic theory. In this diagram, the results computed for the equivalent
spheres are also shown. Following Mitchell et al.’, Fu et al.”’, and Grenfell and Warren®,

we define the radius of the equivalent sphere for a hexagonal particle as follows:

L3V _3 372
44 2-3/2a+L’

(30)
where V is the volume of nonspherical particles, and A4 is the projected area. Since strong
absorption is assumed in the computation of the single-scattering albedo in the
asymptotic theory, the result does not change with the variation of particle size. As a
result, the asymptotic theory can lead to substantial errors in single-scattering albedo
calculation for small and moderate particle sizes. However, from the trend of the FDTD
solution, it is expected that a convergence between the FDTD and asymptotic results can
be reached when the particle size is on the order of 200. Approaches developed by Fu et
al.’”, Michell*’, and Baran et al*® can be used to overcome the shortcomings of the
asymptotic theory in calculating single-scattering albedo. It should be pointed out that
these approaches cannot provide the information for the phase function. For this reason, a
combination of these approaches (for the computation of single-scattering albedo) with
the asymptotic theory (for the computation of phase function) may be more useful in
practice.

Figures 8 and 9 show the phase functions of randomly oriented ice columns and

plates in comparison with the phase function of equivalent spheres. At large scattering

angles, the phase function values are essentially the same for the spherical and
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nonspherical particles. The external reflection becomes insensitive to particle geometry
once the random orientation condition is assumed. However, for moderate particle sizes
(r,=26.7 um) , substantial differences may be noted for the phase function at scattering
angles in the 10°-60° region for the two particle shapes.

Figure 10 shows the variation of the single-scattering albedo of hexagonal ice
plates and columns that are randomly oriented in the infrared region between 8 pm and
16 um. Also shown are the real and imaginary parts of refractive index data compiled by
Warren*'. Evidently, the variational pattern of the single-scattering albedo follows that of
the real part of the refractive index. As we have mentioned, the real part of refractive
index has a value close to unity in the vicinity of 11 pm, and the corresponding imaginary
part is substantially large. Near 11 um, the extinction of incident radiation is dominated
by absorption, as is known as the Christiansen effect™. As a result, a minimum is noted in
the single-scattering albedo. From Fig.10, it can also be seen that the single-scattering
albedo for hexagonal particles is larger than for spheres. This feature has been noted in
the comparison of the FDTD solution with the equivalent spherical results that are shown
in Fig. 7.

It is a common practice to assume ice crystals are randomly oriented in space.
However, in the atmosphere specific orientations are preferred for large plates and
columns. For plates in an environment of a low Reynolds number, such as in a typical
midlatitude cirrus cloud, the ¢-axis (the hexagonal asymmetric axis) of the particle tends
to face vertically whereas the c-axis tends to be oriented horizontally. In other words, the
crystals tend to align themselves so as to reach a stable state in its falling process. At

visible wavelengths, the effect of preferred particle orientation on the phase function has
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been discussed by Takano and Liou* and Rockwitz*. As pointed out in Section 3.A, the
application of a conventional ray tracing technique will produce a discontinuity of the
scattered energy and consequently cannot produce a continuous phase function. This
shortcoming is avoided with the present analytical asymptotic theory. When preferred
orientations are assumed for ice crystals, the phase function depends not only on the
scattering angle but also on the scattering azimuthal angle, i.e., on which scattering plane
the scattered field is observed. Figure 11 shows the geometry for the scattering
configuration related to a plate oriented with its c-axis aligned vertically. The principal

plane (¢, = 0°) is defined as the plane that contains the incident direction and zenith

directions. The plane that is normal to the incident direction is denoted by the dotted
ellipse whereas an arbitrary scattering plane is denoted by the dashed ellipse in the
diagram. On a given scattering plane, the positive scattering angle is measured, with a
view along the incident direction, clockwise from the principal plane. For example, on
the principal plane the scattering angle is positive if it is measured from forward
scattering direction to the vertical zenith whereas the scattering angle is negative if it is
measured from forward scattering direction to nadir view.

Figure 12 shows the phase function for hexagonal plates having a preferred
orientation for four scattering azimuthal angles. Ice crystals are rotated randomly about
their c-axis. The strong forward peak caused by diffraction can been seen for the four
cases with different scattering azimuthal angles. For the case of @, = 0°, very strong
scattering peaks may be noted at scattering angle of 120° and 60° for incident zenith

angles of 30° and 60°, respectively. The scattering maxima at 120° and 60° correspond to

the specular reflection from the top faces of the plates. For ¢, = 0°, 30° and 60°,
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significant asymmetry in the phase function is observed in the scattering angle regions of
(0°, 180°) and (-0°, -180°). However, symmetry is observed for ¢, = 90°, as is expected.
For plates with a preferred orientation, there are a number of ripple structures in the phase
function that are caused by phase interference.

Figure 13 shows the phase function for ice columns with preferred orientations.
The columns, randomly rotating about the zenith direction, are horizontally oriented but
rotate randomly about their c-axis. The ripple structure noted in Fig. 12 for plates due to
the phase interference is largely smoothed out in the case of oriented columns because the
orientation of the particles in the column case is more random. Similarly to the case in

plates, the specular reflection feature is apparent in the case where @, = 0°.

Figure 14 shows the single-scattering albedo corresponding to the phase functions
in Figs. 12 and 13. Compared with the results for randomly oriented particles, the single
scattering for both oriented plates and columns are smaller if the incident zenith angle is
less than approximately than 60°. For plates, there is a pronounced peak in the single-
scattering albedo at the incident zenith of 70°. This is thought to be due to the external
reflection for the top face of the plate increasing with an increase of incident zenith angle.
However, when this angle approaches 90°, the projected area of the top face is essentially
zero and the external reflection from the side faces, along with diffraction, dominates the

scattered field.

4. Summary and Conclusions
An asymptotic solution in an analytical format is presented for the scattering
properties of a general polyhedral particle with strong absorption. For scattering

calculations involving nonspherical particles such as aerosols and ice crystals, we show
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that the transverse wave condition is not applicable to the refracted electromagnetic wave
when absorption is involved. In the geometric optics solution for wave propagation in an
absorbing dielectric medium, either the TM wave condition (i.e., where the magnetic
field of the refracted wave is transverse with respect to the wave direction) or the TE
wave condition (i.e., where the electric field is transverse with respect to the propagating
direction of the wave) may be assumed for the refracted wave to satisfy the
electromagnetic boundary condition. The wave mode assumed for the refracted wave
affects both the reflection and refraction coefficients. As a result, a nonunique solution
for these coefficients is derived from the electromagnetic boundary condition. Through
comparison of the asymptotic geometric optics solution to results determined from Mie
theory for absorbing spheres, it is shown that TM and TE wave modes should be applied
to two polarized components that are parallel and perpendicular to the incident plane,
respectively. In this study we have identified the appropriate solution for the Fresnel
reflection coefficients in the ray tracing calculation. We present the 3 x 2refraction or
transmission matrix that completely accounts for the inhomogeneity of the refracted wave
in an absorbing medium. Based on the Fresnel coefficients for an absorbing medium, we
derive the asymptotic solution in an analytical format for the scattering properties of a
general polyhedral particle. Numerical results are presented for hexagonal plates and
columns with both preferred and random orientation. The asymptotic theory produces
reasonable accuracy in the phase function calculations in the infrared window region
(wavelengths near 10 um) if the particle size is on the order of 40 pm in diameter or

larger.
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However, since strong absorption is assumed in the computation of the single-
scattering albedo in the asymptotic theory, the single scattering albedo does not change
with variation of the particle size. As a result, the asymptotic theory can lead to
substantial errors in the computation of single-scattering albedo for small and moderate
particle sizes. However, from comparison of results with the FDTD solution, it is
expected that a convergence between the FDTD results and the asymptotic theory results
can be reached when the particle size approaches 200 um.

For two infrared wavelengths at 11 and 12 um, we show that the phase function at
side-scattering and backscattering angles is insensitive to particle shape if the random
orientation is assumed. For preferred orientations, however, we show that the phase
functions for plates and columns are significantly different. Additionally, when a
preferred two-dimensional orientation condition is assumed, the phase function is
observed to have a strong dependence on scattering azimuthal angle. Moreover,
numerical results show that the single-scattering albedo has a very strong dependence on
the inclination angle of incident radiation with respect to the rotating axis for the

preferred particle orientations.

This research has been supported by a grant of NASA’s MODIS project and
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Figure Captions

Fig.1. Comparison of the inherent and apparent refractive indices forice at 11 and 12 pum.

Fig.2 Scattering geometry for a large sphere with strong absorption.

Fig.3 Phase function and the degree of linear polarization computed from geometric
optics in comparison with Mie solution at A=12 pm.

Fig.4 As the same as Fig.3 except that the wavelength is 11 um in Fig.4

Fig.5. Comparison of the phase functions computed from Mie theory and the geometric
optics method for three moderate sizes at wavelengths 11 and 12 um.

Fig.6 Comparison of phase function computed from the FDTD technique and the present
asymptotic theory for hexagonal ice crystals.

Fig.7 Comparison of the single-scattering albedo computed from the FDTD technique
and the present asymptotic theory for hexagonal ice crystals. Also shown are the
results computed for equivalent spheres.

Fig.8 Comparison of phase function of hexagonal columns with that of equivalent
spheres.

Fig.9 As for Fig.8, except for hexagonal plates.

Fig.10 The comparison of the single-scattering albedo values computed for hexagonal
ice crystals and equivalent spheres.

Fig.11 Incident and scattering geometry for an ice crystal with a preferred orientation.

Fig.12 Phase function computed for hexagonal plates with preferred orientations.

Fig.13 As for Fig.12 except for columns.

Fig.14. The single-scattering albedo for ice crystals that have preferred orientations in

comparison with the results for the randomly oriented case.
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