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I. INTRODUCTION

The Laser Interferometer Space Antenna j (LISA) consists of three spacecraft in orbit about the sun. The orbits are

chosen such that the three spacecraft are always at (roughly) the vertices of a equilateral triangle with 5 million kilometer

leg lengths. Even though the distances between the three spacecraft are 5 million kilometers, the expected phase shifts

between any two beams, due to a gravitational wave, only correspond to a distance change of about 10 pico meters,
which is about 10s waves for a laser wavelength of 1064 nm.

To obtain the best signal-to-noise ratio, noise sources such as changes in the apparent distances due to pointing jitter

must be controlled carefully. This is the main reason for determining the far-field phase patterns of a LISA type

telescope. Because of torque on the LISA spacecraft and other disturbances, continuous adjustments to the pointing

of the telescopes are required. These pointing adjustments will be a "jitter" source. If the transmitted wave is perfectly

spherical then rotations (jitter) about its geometric center will not produce any effect at the receiving spacecraft.

However, if the outgoing wave is not perfectly spherical, then pointing jitter will produce a phase variation at the

receiving spacecraft.

The following sections describe the "brute force" computational approach used to determine the scalar wave front as
a function of exit pupil (Zernike) aberrations and to show the results (mostly graphically) of the computations. This

approach is straightforward and produces believable phase variations to sub-pico meter accuracy over distances on the

order of 5 million kilometers. As such this analyzes the far field phase sensitivity to exit pupil aberations.

2. DIFFRACTION INTEGRAL

The (scalar) far field is described by 2

. s,
A(X,Y,Z).eit .e =f f e(x,y,z)Y S dxdy

where (X,Y,Z) are the far field variables that lie on a sphere of radius, R, of 5 million kilometers and centered on the

center of the exit pupil as shown in the figure below. The integration is over the exit pupil and Z, is the exit pupil

aberration. The quantity of interest is 0, the deviation of the phase from a spherical wave. Determining qb is not a new

quest. Nijboer's 19473 paper derives a formula for _ in terms of Bessel functions for given aberrations. However the

problem with just using the formula is that complex variations in the amplitude and phase are difficult to handle. A

straightforward nmr_rical integration of the above integral is easy to implement and creates a general purpose capability
that can handle central obscurations and "spiders" and non-uniform pupil functions E(x,y,z). It should be noted that

the speed of today's computers makes this approach very attractive.

The numerical approximation of the diffraction integral, in this case, requires the addition of very large numbers, s,

measured in millions of kilometers and very small numbers, Z_, measured in fractions of a wavelength. This mismatch



cannotbehandledby"doubleprecision"(eightbyte)computerarithmetic.However,aneasysolutionis tosimplyuse
quadrupleprecision(16byte)availableonDigitalAlphacomputersandsupportedbytheirFORTRANcompilers.This
"quad"precisiondistinguishesbetween5millionkilometersand5millionkilometersplusonepicometer,easily.With
quadprecisionthe"machineepsilon"isabout9.6.10.35

R

Exit pupil and far field sphere



3. NO ABERRATIONS

As a check on the numerical integration procedure, the next two plots show the far field intensity and phase out to
the second dark ring for the case of an aberration-free uniformly illuminated unobstructed 30 cm exit pupil. As can
be seen, the intensity, on the 5 million kilometer sphere, is the Airy diffraction pattern and the phase, in radians,

shows the appropriate, n, discontinuity at the zero intensity points.

real* 16 intensity - aberration free case

3o

Ar--L V_

/

intensity

real* 16 phase aberration free case

10 20 30

JII 11111

40

phase



4. DEFOCUS AND ASTIGMATISM

If we introduce a 1/10 _. rms wave front aberration in the exit pupil and perform exactly the same numerical integration,

we get the following results for the intensity and phase distributions on the 5 million kilometer sphere.
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5. REDUCED FIELD OF VIEW

The field of view in the above plots is out to the second Airy dark ring. The above plots are presented primarily to show

the reader the "large" scale phase variations. However, in order to maximize the signal and avoid phase discontinuities

the central portion, out to the 95% of peak intensity, points are of particular interest. The first dark ring subtends an

angle of 4.3-10 .6 radians and the 95% points subtend an angle of 0.53"10 .6 radians. The plots below show only the

behavior of the phase, on the 5 million kilometer sphere, within this smaller field of view. The spatial extent is from

-2.64 to +2.64 kilometers for both x and y, and the vertical axis is the phase in radians, he pupil aberrations are 1/10
_, rms of the indicated Zernike functions for ZA to Zl5 (in the CODE-V TM numbering scheme). Both the pupil

aberration and the far-field phase distribution are shown to emphasis the similarities.
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6. ANALYTIC EXPRESSIONS

Fitting Zernike polynomials to these far field phase variations (on a suitable circle) produces the following (to a
suitable approximation) analytic expressions, where X and Y are the far field distances measured (in kilometers)
from -2.64 to +2.64 kilometers. (When using the formula use x=X/2.64 and y=Y/2.64, the scaled to a unit circle

coordinates.) The phase (in radians) variation, for a given 1/10 _, rms Zernike aberration on the 5 million kilometer

sphere, is then given by the following formula along with the names of the exit pupil aberrations.

p,xy,;

: 134  7 10312 yx 
P6(x,y)

1
P7(x,y) :--- 1.34--

1
P8( x, y) '-- - 1.34 --

1
P9(x,y) :--- 1.34--

Astigmatism 1_ order 0°

Defocus

Astigmatism 1_' order 0°

Trifoil 0 °

Coma X

Coma Y



Pl0(x,y) --- 1.34--
1 Trifoil 30 °

Pll(x,y)---1.28 _1 - 3.35"10-4"I'xf3 (-It2 '2+2"y 2) Tetrafoil 0°

P12(x,y) :=-1.34_ 1 - 2.1.10- 3.[- ,f6 (- x2 + y2)
Astigmatism 2_ order 0°

Pl3(x,y) :---1.16 _1 - 7.25.10-4.I,_ .( 1_- 2.x 2 + 2.y 2) Spherical

P14(x,y) ::-1.34_ 1 - 1.23.10- 3. (2. _6 .y.xt\

/
Astigmatism 2_ order 45 °

Pl5(x,y) :=-1.34_ 1 - 1.19.10-5.[-4.,_.y.x .(- x2 t y2)
Tetrafoil 22.5 °

7. GAUSSIAN BEAM, CENTRAL OBSCURATION, AND SUPPORTING STRUTS

The above results all assumed a uniformly illuminated exit pupil with no obscuration. This is a good starting point,

however the real telescope may have obscurations and a Gaussian beam profile, in which case the exit pupil will appear

as the following plots (with 1/10 _ defocus added for better visualization). The diameter of the pupil is 254 mm.
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The diameter of the central obscuration is 24 mm and the strut thickness is 10 mm.

For the unaberrated beam there is no phase variation on the 5 million kilometer sphere within the central peak as seen
in the earlier plot. Now, adding only the obscurations and Gaussian beam profile but leaving the exit pupil phase "flat"
(constant) does produce a variation in far field as is shown in the plot below.
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The phase in this plot exhibits an asymmetry. This is due to the fact that there are only three struts with two of them

on one side and only one on the other side (loosely speaking). This is what breaks the symmetry, he phase variation

is very small, but present. As can be seen the predominant effect of the struts is to introduce tilt. An analytic expression

for this curve (obtained by fitting Zernike polynomials within a appropriate circle) is



1,, y+,37,0,sy/3x y21
Phase(x, y) =

#2.64 _ t _ )"

Where, as before, x and y are the far-field distances measured (in kilometers) from -2.64 to +2.64 kilometers (hence the

factor in the denominator) and the phase variation, on the 5 million kilometer sphere, is in radians

8. CONCLUSION

As optical systems grow in size, and LISA is a example of a particularly long optical system, it is reassuring that

analyzing them can still be performed with slightly modified existing analysis tools. All of the ray tracing was

performed with QRAYPKS, a FORTRAN ray trace code written by the author. The code was modified to perform
REAL* 16 arithmetic, hence the leading "Q". A large portion of the analysis shown here only requires quadruple

precision for the numerical sum that approximates the diffraction integral. It is possible to approach the problem

analytically. However, "brute force" ray tracing has a distinct advantage in that the only question that arises is "did we
fire enough rays?" For example, I would be hard pressed to generate the above "phase variation due to struts" plot using

an analytical approach. But numerically it is straightforward. We have also shown some of the large scale (out to the

second Airy dark ring) phase behavior and some of the phase behaviour right around the central peak. All of the plots

and analysis not requiring quad precision were performed using MATHCAD TM-
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