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Abstract

The accurate determination of the Mars pole vector derived from Pathfinder

and Viking Lander radio data (Folkner et al., 1997), together with the VSOP87

representation of planetary orbits (Bretagnon and Francou, 1988), have been

applied to a new evaluation of the right ascension of the "fictitious mean sun"

(FMS) at Mars. With Atj2000 the elapsed time in days from the J2000 epoch

(J.D.2451545.0_), OtFM S = 270°.3863 + 0.52403840(°/d)°Atj2o0o

- 4 x 10 -13 (°/d2)oAt2j2000 represents a best least-squares quadratic fit of the FMS,

including aberration, to each instance of :he four equinox and solstice passages

for each of 134 Mars orbits spanning the calendar years 1874-2127. The

implied tropical orbit period for Mars, 686.9726 d, closely agrees with the recent

evaluations by Suran (1997) and Allison (1997). Together with the Pathfinder

radio determination of the Mars sidereal rotation, the derived FMS rate

corresponds to a mean solar day (or "sol") of 1.027491251 d. The new FMS

determination would serve to define the Mean Solar Time at Mars to the nearest

tenth-second, according to historical conventions originally established for

terrestrial time keeping, once the Mars prime meridian defined by the crater

Airy-0 is navigated to the same accuracy. For convenient reference to current

epochs, 2000 Jan 06 00:00 UTC (= MJD 51549.000 UTc) corresponds to a

coincidence of O_FM S and the rotation angle of the crater Airy-0 measured with

respect to the Mars equinox (i.e. "mean solar midnight" on the planet's prime

meridian), to within the current uncertainty of several seconds in the locational

definition of the planet's cartographic grid. As a further result of the analysis,

the consistently derived Mars obliquity of date is e = 25°.192

+ 3.45 x 10-7(°/d)*Atj2000 . An improved analytic recipe for the calculation of the

solar areocentric longitude (L s) of Mars to an accuracy of 0°.01 is also provided,

accounting for the primary perturbations of Earth, Jupiter, and Venus, which

may in turn be applied to an efficient evaluation of Mars local true solar time

(LTST) to within the uncertainty of the inertial position of the Mars prime

meridian. For specific applications to the data archives for landed Mars

spacecraft, simple conversion formulae are given for the determination of the

Viking "Local Lander Time" and the Pathfinder "Local True Solar Time" in

terms of the terrestrial calendar date and UTC.



3

Introduction

Mars, more than any other planet in the Solar System, exhibits a pronounced

and pervasive response to both its diurnal and seasonal modulation of

temperature, wind, and surface pressure, with attendant variations in water

vapor, atmospheric opacity, boundary layer, ground frost, and polar caps. The

radiative cooling time of the Mars atmosphere is more than an order of

magnitude shorter than that for the Earth and the eccent.dcity of the Mars orbit is

over five times larger. The fast radiative cooling time and the approximate

alignment of the Mars northern winter solstice with the planet's perihelion imply

an exaggerated response to solar forcing. The hourly and seasonal timing of the

apparent solar position on the planet is therefore a critical issue for Mars

geophysical/climate studies, as attested by various reports of lander spacecraft

data in reference to both the areocentric solar longitude and the "local lander

time" (e.g. Colburn et al., 1989) or the "true local solar time" (e.g. Golombek et

al., 1997). Yet the only generally accessible sources of precise if still provisional

definitions of Martian time coordinates appear to be a NASA technical

memorandum (Kaplan, 1988) and a single short paper in the refereed literature

(Allison, 1997). The consideration of more accurate definitions of Mars solar

time keeping commends a recollection of the original establishment of terrestrial

chronological standards.

From 1925 until 1959, Greenwich Mean Time was defined as 12 hours + the

Greenwich hour angle of a point on the Earth's equator whose right ascension,

measured from the mean equinox of date, was

R S = 18h38m45s.836 + 86 40184s.542 TIg00 + 0s.0929 TI9O02,

with T1900 the number of Julian centuries of 36525 days elapsed since the epoch

of Greenwich mean noon on 1900 January 0.5. The assumed expression for R s

was that given by Simon Newcomb (1895) for the right ascension (including

aberration) of the "Fictitious Mean Sun" (FMS), an idealized fiducial reference

intended to match as closely as possible the uniform motion of the apparent mean

solar longitude. Following the realization of the Earth's variable rotation with

its lunar-tidal despinning, a distinction was made between Ephemeris Time (ET),
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for which Newcomb's T was interpreted as the independent variable TE of the

Earth's (tropical) orbital revolution, and Universal Time (UT), with a variably

advancing T U now evaluated in practice by a variety of methods including optical

transit observations of stars, lunar laser ranging, and Very Long Baseline

Interferometry of cosmic radio sources.

Beginning in 1955, atomic clocks became available in several countries and

since 1971 the accepted international time standard has been Temps Atomique

International (TAI), with Terrestrial Time (TT), the successor to ET, now given

as TT = ET = TAI + 32.18 s. (The difference ET - TAI = 32.18 s corresponds to

the evaluated departure AT of Ephemeris Time from Universal Time on 1958

January 0.) Although the Fictitious Mean Sun has consequently been abandoned

for precision time-keeping, Newcomb's mean solar coordinate formulas served

not only the original calibration of the 24hour day, but also the original

definition of both the J1900 ephemeris epoch and the ephemeris second.

Although the System International (SI) second is now defined as 9,192,631,770

periods of the hyperfine transition of the ground state of cesium-133, this

standard was originally calibrated by Markowitz et al. (1958) to match the

astronomically determined value of the ephemeris second, itself established in

reference to Newcomb's mean solar coordinate formulas as "la fraction

1/31556925.9747 de l'ann6e tropique pour 1900 janvier 0 _ 12 heures de temps

des ephemerides" (Comit6 International de Poids et Mesures, 1957). A further

account of the development of modern timekeeping standards and their ongoing

reform in accommodation of general relativistic effects is given by Seidelmann

and Fukushima (1992).

Although there are as yet no internationally accepted Martian time standards,

it may be supposed that these will eventually be referenced to some appropriately

accurate determination of the planet's mean solar coordinates. Provisional

determinations of the FMS at Mars, as recorded in internal office memoranda at

the Jet Propulsion Laboratory (e.g. Blume, 1986; Lee, 1995), have been applied

to the definition of local solar time for Mars spacecraft operations and data

archival. These have been based on fits to computational ephemerides over
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short-term intervals comparable to their intended use for specific flight missions,

however, and are not available in the open literature. A 33yr cycle of -0°.002

perturbations in the Mars orbital longitude by Venus, for example, suggests that

a precise and temporarily extensive calibration of the FMS should be fitted to at

least several tens of orbits. Allison (1997) presented an independent estimate of

the FMS at Mars as fitted to 120 orbits, but to a precision of only 0°.01,

corresponding to a definition of the mean solar time to within 2.4 sec.

It should be acknowledged that any adopted synchronization of "mean solar

time" is largely a matter of convenience. As noted by Woolard and Clemence

(1966), "a measure of mean solar time which would depart too far from the

average of the apparent solar measure would be inconvenient, and if too

discordant would fail to serve practical purposes satisfactorily, but still would not

be logically erroneous..." Given the reported -0°.03 discrepancy between the

USGS cartographic and "inertial" Mars longitudes (cf. Golombek, 1997), the

quest for much further precision in the evaluated FMS may seem "academic."

Perhaps in the not too distant future, Martian Coordinate Time will be

established by synchronization to a landed atomic clock or an ultra-stable

rubidium oscillator. But while the calibration of Mars/solar coordinates to the

implied milliarc second accuracy of Newcomb's FMS formula may never be

necessary, it seemsappropriate to apply the available data for the Mars orbit and

rotation to an assessmentof the planet's FMS to the attempted (0°.001) precision

of the IAU definition of the Mars prime meridian (Davies et al., 1996). The new

determination by Folkner et al. (1997) of the Mars pole vector from Pathfinder

and Viking lander radio tracking data now makes possible a new calibration of

the Fictitious Mean Sun at Mars over century intervals to a precision of better

than 0°.001, as appropriate to a split (0.2) second definition of a mean solar time

analogous to terrestrial conventions. The analysis provides an accurate evaluation

of the tropical year and mean solar day at Mars, as well as a new calibration of

the Mars obliquity of date. The new FMS calibration also serves the ready

evaluation of a simple series representation of the areocentric solar longitude and

related solar illumination quantities to an accuracy better than 0°.01.
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Planetocentric Solar Coordinates

Figure 1 illustrates the definition of various planetocentic solar coordinates

in application to seasonal/hourly timing. The standard index for planetary

seasons is the planetocentric orbital longitude of the Sun L s, measured eastward

along the planet's orbital plane from its vernal equinox (the instantaneous

ascending node defined by the intersection of the planet's orbit and equator). For

the Earth, LS is just the ecliptic longitude of the Sun. For Mars, L s is commonly

referred to as the areocentric longitude of the Sun. Hourly solar timing must

account for the true solar right ascension ctS while seasonal climate variations are

largely controlled by the planetocentric solar declination 15s. As the indicated

legs of the right spherical triangle with hypotenuse LS, these are given as

ots - tan-l(cose.tanLs) and 15s =- sin-l(sine.sinLs), where e is the obliquity (the

inclination of the planet's orbit to its equator).

Celestial

Sphere

/
North _ole

\
True
Solar
Meridian

N.Suntmer
Solstice

( Ls = 90')

V.E.
N.Ulinter (Ls=0') E0T -O_m,- aS
Solstice ne = TST- MST

( LS = 270')

Figure 1. Planetocentric solar coordinates, the Fictitious Mean Sun (FMS), the

Equation of Time (EOT) and their relation to the true and mean orbit anomalies.
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The difference between the right ascension with respect to the planet's vernal

equinox of a given planetary longitude, and the evaluated right ascension of the

true Sun constitutes the measure of "solar time." According to conventional

usage, the solar hour angle or true solar time (TST) on the planet, as referred to

some longitude or meridian with a right ascension Vrn, is just

(V m - Cts)X(24h/360 °) + 12 h, with the 12 hour offset added for the placement of

local (12:00:00) "noon" at the instant when the Sun transits the overhead

meridian. While V m depends only on the (nearly uniform) planetary rotation

and some fiducial cartographic reference such as the "prime meridian," t_S

advances unevenly, both as a result of the planet's eccentric orbit and the

obliquity of its rotational plane.

Mean solar time (MST) is established by a mathematical formula prescribing

the uniform advance of an imaginary point on the celestial equator known as the

Fictitious Mean Sun (FMS). As established for terrestrial time-keeping, the FMS

is defined so that its angular displacment along the equator from the vernal

equinox (V.E.) is matched as closely as possible to the angular displacement with

respect to the V.E. (including aberration) of a dynamical mean sun (DMS)

moving uniformly along the orbital plane. (cf. Woolard and Clemence, 1966;

Roy, 1982; Green, 1985.)

The position of the DMS along its orbit as measured with respect to the

perihelion is just the classical mean anomaly M --- (L - t_), where L is the mean

longitude and t_ the longitude of perihelion. As evaluated at a time t after some

reference epoch t0, M may be defined as

M - [(to- tp) + (t- to)] nanom, (1)

where tp - to- M(t0)/nanom is the indicated time of perihelion passage for the

mean-fitted orbit, with nanom the mean rate of the motion corresponding to the

anomalistic period "¢anom= 360°/nanom .

The difference (v - M) between the true anamoly v measuring the true solar

position along the orbital plane and the mean anomaly is the equation of center.

Then as shown in Fig. 1, the position of the dynamical mean sun with respect to

the V.E. as measured along its orbit is just the difference between the areocentric
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solar longitude and the equation of center. And the FMS is by construction

displaced from the V.E. along the equator by essentially the same amount. [As

discussed by Woolard and Clemence (1966), there is actually a very small

divergence between CtFMS and the mean solar longitude (of the DMS) owing to a

difference between the secular variations of the general precession in right

ascension and longitude as well as an acceleration of the apparent planetocentric

motion of the Sun. The resulting discrepancy for Earth-solar coordinates is only

about 2 seconds in 1000 years, however, and the same effects for areocentric

solar coordinates will be entirely neglected here.] A practical definition of the

Fictitious Mean Sun (tXFMS)may therefore be given as

0_FMS - L s - (v - M). (2)

Since v - M at the instant tp coincident with the perihelion passage, the right

ascension of the Fictitious Mean Sun at that point is just the areocentric solar

longitude at perihelion. At other times t, or after some interval (t - t0) from the

epoch to ,

CZFMs = Ls(t p) + [(t o - tp) + (t- t0)] ntrop, (3)

where ntrop is the rate of the apparent "tropical" mean motion of the Sun

corresponding to a tropical period 'l:trop = 360°/ntrop. To the extent that it

appropriately serves the accuracy of a particular fit to the Fictitious Mean Sun as

calculated from the orbital ephemerides and a specification of the planet's polar

precession, the slow variation of the tropical rate itself can be represented as in

Newcomb's terrestrial formula by an expanded polynomial time series, with

tXFMS = O_FMS(tO) + ntrop(t- to) + (d ntrop/dt)o(t - to)2 + .... , where tXFMS(t O) -

Ls(t p) + (to- tp)ntrop.

As the form of (3) suggests, a rudimentary calibration of the FMS can be

established by a fit to the evaluated areocentric solar longitude at successive

perihelia over some number of planetary orbits. This was essentially the method

adopted by Blume (1986) on behalf of the Mars Observer project, taking a linear

fit to Ls(t p) as calculated by the JPL ephemerides for the epochs of the Mars

perihelion in the years 1990, 1992, and 1994. A similar method was adopted by
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Lee (1995) for the Mars Surveyor Project, fitting the FMS rate (or tropical mean

motion) to successive passagesof the Mars vernal equinox for the years 1996,

1998, 2000, and 2002, then calibrating the FMS angle at a particular epoch by its

consistent evaluation for an average of the areocentric longitude at the successive

Mars perihelia in 1996, 1998, and 2000. These approaches to the FMS

determination have the advantage of avoiding any explicit reliance on the

classical mean orbital elements, and reflect a small but significant difference

between ntrop and nanomas apparent even over a small number of orbits. Aside

from the limits of these fits to their assumed short temporal intervals and their

apparent neglect of aberration, however, these approaches do not in principle

take the most accurate account of a very small variation for the seasonal

repetition of different values of the L s, as evaluated below.

Alternatively, CtFMS can be fitted to its definition by (2) from an ephemeris

calculation of the time of L s for different seasons and over several orbits,

together with the corresponding evaluation of the equation of center. By a

classical result of celestial mechanics for the two-body Kepler motion, (v - M)

may be efficiently evaluated by a Fourier-Bessel series for the mean anomaly and

the orbital eccentricity e. By a truncation to sixth order in e, for example, of the

results given by Taft (1985):

(v-M)=(2e-le3+9_66e5)sinM+(_4e2-11e4+ 17 er) sin2M+24 192

(1-1@2e3- 43 e5) sin3M+(19._6 e4- 43 e6) sin4M+63 480

1097 e5) sin5M + ( 1223 e6) sin6M + O(e7). (4)
960 " 960

Given an accurate determination of both tXFMS and M as a function of time, (2)

and (4) also provide a moderately accurate recipe for Ls, excluding the N-body

perturbations by other solar system objects on the planet's Kepler motion about

the Sun, as considered in succeeding sections of this paper.

The difference (tXFMs - aS) = -[(v - M) + (t_ s - LS) ] is the Equation o/

Time (EOT), also representing the difference between the true solar time (TST)

and the mean solar time (MST). The difference between the true solar right
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ascension and the planetocentric solar longitude (o_S - LS), referred to by Smart

(1962) as the reduction to the equator, can be evaluated by the rapidly

converging series
OO

O_S- LS = _1

-_ (-tan 2-¢,- sin 2Ls + _ tan 4--¢,-sin 4Ls
2 2

_L (_tan2_.__2)2n. sin(2nLs)n

- _ tan6"g-2 sin 6Ls). (5)

Given L S, this affords an accurate and efficient evaluation of o_S, and therefore

with (4) the EOT, without the need to test for the proper quadrant of the inverse

tangent in the spherical trigonometric definition of the true solar right ascension

(and the tangent infinites at Ls = 90 and 270°). For a non-vanishing obliquity,

o_S < L S between each equinox and the succeeding solstice, while a S > L S

between each solstice and the succeeding equinox.

For some purposes it is also useful to develop a representation for the true

anomaly in terms of the seasonal index. Upon the elimination of tXFM S and M

between (1), (2) and (3),

where

v = L S - [Lsv(t O) + nsv(t- to)],

LSp(to) = Ls(tp) + (tO - tp)nsp

(6)

(7)

= O_FMS(tO) - M(to)

is the areocentric solar longitude at perihelion as adjusted to the epoch to in

proportion to

nsp = (ntrop - nanom) (8)

representing the slow rate of advance of the perihelion with respect to the

equinox, as a result of the planet's polar precession. Owing to the small value of

nsp (roughly 2 x 10-5°/d for Mars), v -- L s -Lsp(t 0) for short-term intervals

about to , as often assumed for the evaluation of the time of season by the solution

of Kepler's equation (e.g. Atkinson and Gwynne, 1992; Badescu, 1998).

An accurate, closed-form representation of the time of season L s can,

however, be derived from the development of the orbital element equations

presented here. First solving (2) and (3) for the elapsed time post-perihelion by
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the elimination between them of tXFMS, t = tp + [L s - Ls(tp) - (v - M)]ntrop.

Then the equation of center as it appears in this expression can be evaluated by its

second-order expansion in terms of the true anomaly as (v - M) =

2e sinv - (3eZ/4)sin2v (cf. Taft, 1985). Then by (6), sinv =

sin[L s - Lsp - nsp(t- to)] -- sin[L s - Lsp ] + [nsp(t- to)],cos[L s - Lsp ], and

similarly sin2v = sin[2(L s - LSp)] + [2nsp(t - to)].cos[2(L s - Lsp)]. And with

L s --->L s + k,360 ° and (t - to) --->k.'Ctrop for the kth orbit post to,

t= tp + {Ls-Ls(tp)- 2e sin(Ls-Lsp) + 4_e2sin2(L-Lsp)} _-9-12°360

_] (9)
+ k"l;trop { 1 + [2e cos(L s- L s p) - + e 2 cos2(L s- L s p)] nsp 360 ° ,

Although the "tropical year" is often loosely referred to as the average

interval from equinox-to-equinox, "i;trop is more precisely understood to be

defined by the formula for the geometric mean longitude of the Sun (cf. p.95 of

the Explanatory Suplement to the Astronomical Ephemeris, 1961 or p.157 of

Soma and Aoki, 1990). The small variation of the exact mean repetition interval

for the seasons is recognized, for example, by the four separate formulas given

on p.166 of Meeus (1991) for the occurrence of the equinoxes and solstices on

the Earth. The last term in (9), multiplied by k, represents an approximate

specification of the average interval between successive passages of any season L s

for any planet in terms of its Lsp and other orbit parameters. On the Earth, for

example, where e -- 0.0167, Lsp --- 283 °, nsp = 4.7 x 10--5 °/d, and by Newcomb's

formula the tropical year is currently 'l;trop =

(86400/86401.85)x365.25 -- 365.2422 d, the average period between successive

occurrences of the vernal equinox (L s = 0 °) is more nearly

[1 + (2e nsp'i;trop/360 °) cos(Lsp)]'l;trop -- 365.2423 d, while the period for the

northern winter solstice is [1 + (2e nsp'l;trop/360 °) cos(270 ° - Lsp)]'l;trop --

365.2428 d. (More precisely, the formulas given by Meeus for the Earth's four

seasons imply a mean repetition interval of 365.242374 d for the March equinox

in the current epoch and 365.242740 d for the December solstice.)

Also of critical importance to both planetary climate studies and the design

of spacecraft power systems is the true solar distance. This may be efficiently
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evaluated in terms of the mean anomaly as

inclination and _ the longitude of the orbital

i -- 1°.85 and R is everywhere less than

L s - Lsp - nsp(t- to),

r/a = 1 + !2e2 - (e - 8_e3) cosM- (1 e2 - 1 e4) cos2M

_ ..3__8e3 cos3M - _3e4 cos4M + O(e5). (10)

The heliocentric orbital longitude of a planet is measured from the Earth

equinox along the ecliptic to the node and then along the orbit as v + I_, where 1_

is the longitude of perihelion. The ecliptic longitude differs from the orbital

longitude by a small quantity, known as the "reduction to the ecliptic,"

approximately given as R = -(tan2i/2).sin[2(v + 1_ - f_)], where i is the orbital

ascending node. (For Mars,

0°.015.) Then with v =

leelip = L S + [t_o - LSp(to)] +(nm - nsp)(t- to)

- (tanZi/2)'sin[2(Ls - LSp + t_o - _o)], (11)

where _0 denotes the longitude of perihelion evaluated at t = to and n_ - dnt_/dt

its time-linear rate of change. Specific applications of this formula or

comparisons with an accurate computational ephermeris must take account of the

intended frame of reference for the ecliptic and equinox as this affects the secular

rates for 1_ and f2. The Astronomical Almanac (1985-2000), for example,

tabulates the heliocentric positions of the planets in reference to the mean

equinox and ecliptic of date, as convenient for Earth-based obsrvations, while the

Multiyear Interactive Computer Almanac (U.S. Naval Observatory, 1998)

calculates heliocentric positions in reference to the ecliptic and equinox of

J2000.0, as might be preferred for spaceflight mission analysis. For the Earth,

(11) reduces to leclip = L s - 180 °.
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The Pathfinder Pole Vector

The starting point for the new calculation of the Mars solar seasons is the

planet's pole vector. Table 1 provides a comparison of the IAU definition

(Davies et al., 1996), as adopted by the Astronomical Almanac, with the new

results of Folkner et al. (1997), based on a combination of Pathfinder and Viking

Lander radio tracking data. ot0 and 50 denote the right ascension and declination

of the Mars pole on the celestial sphere with respect to the J2000 equinox and

ecliptic, while o_1 and 51 (in the notation of the Astronomical Almanac) denote

the transformation of these coordinates to their reference with respect to the

mean equinox and ecliptic of date, which we have calculated by standard

reduction methods (e.g. Meeus, 1991; Hohenkerk et al., 1992) using the Earth

precession constants given by Simon et al. (1994). The derived time-linear

formulas for ct 1 and 51 corresponding to the IAU definition are in perfect

agreement with the numbers given each year in the Astronomical Almanac

(1985-2000, p.E87), to within the tabulated accuracy. _'i and _l denote the

corresponding ecliptic longitude and latitude, again with repect to the mean

equinox and ecliptic of date. The (centennial) time-linear forms for these

correspond to their first-order evaluated series expansions about the J2000

epoch. Since the results vary from the exactly evaluated coordinates, as

transformed from the tabulated expressions for o_o and 5 o, by as much as 0°.0003

Table 1. Time-linear coordinate representations of the Mars pole vector, for
T - (JD - 2451545)/36525, the time in Julian centuries post-J2000.

Evaluated r.a. and

dec, J2000 Eqnx

IAU (Davies et aI., 1996)

oto = 317°.681 _ 0°.108T

5 o = 52°.886- 0°.061T

Pathfinder (Folkner et al., 1997)

o_0 - 317°.68143 - 0°.1061T

50 = 52°.88650 - 0°.0609 T

r.a. and dec for

Mean Eqnx of Date

Ecliptic lon-lat

Mean Eqnx of Date

tx 1 = 317°.681 + 0°.678 T

61 = 52°.886 + 0°.351 T

_'1 = 352".906 + 1°.173T

_1 - 63°.282- 0°.004T

tx 1 - 317o.68143 + 0°.6798T

51 - 52°.88650 + 0°.3508T

_'l = 352°.9076 + 1°.1747T

I]1= 63°.2820 - 0°.0046 T
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for _1 and 0°.00004 for _1 for T = _1 (Julian century), it seems sensible to round

these as given to the nearest ten thousoundth degree. Our derived forms for

_'1 and _1 corresponding to the IAU Mars pole vector agree, however, to within

0°.0005 of their evaluations by Meeus (1991). Although the difference of the

new pole vector, as determined from Pathfinder radio tracking, from the IAU

definition is small, it turns out to be significant for the discrimination of the

Fictitious Mean Sun (or L s) to the nearest 0°.001, as immediately apparent from

a comparison of the corresponding ecliptic longitudes. At the same time, the

more than factor-ten improvement in the accuracy of the Mars pole vector from

the recent analysis by Folkner et al. (1997) assures the feasibility of a new

evaluation of the Mars FMS to within 0°.001.

Calculation of Mars Solar Seasons

We have evaulated the Fictitious Mean Sun at Mars as a least-squares fit to

an ab initio calculation of the equinox and solstice seasons (L s = 0, 90, 180, and

270 ° ) for each of 134 Mars orbits, based on the Pathfinder pole vector, and

including solar aberration. For this purpose, the Mars heliocentric coordinates,

as referred to the ecliptic and mean equinox of date, were calculated from two

different truncations of the high-precision VSOP87 representation of planetary

orbits, as given in conveniently coded tabulations by Bretagnon and Simon

(1986) and Meeus (1991). According to the specified accuracy for truncated

representations of the VSOP87 theory, as described by Bretagnon and Francou

(1988), the first of these yields the Mars heliocentric longitude to within 0°.0025,

while the second, employing a larger number of terms, yields a maximum error

of 0°.001. Both are therefore entirely adequate to the derivation of fitted mean

quantities to within a thousandth degree. (Our evaluated fits to the Martian FMS

for different intervals and with the inclusion of quadratic time dependence

suggest that any higher precision would be critically contingenet upon the

adopted integration span and assumed polynomial form.) VSOP87 appears to be

the most sophisticated and accurate planetary theory for which the long-term

orbital mean elements, as needed for the adopted fitting method, have been
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precisely calculated and published, along with a systematic evaluation of the

primary perturbations of the other planets (Simon et al., 1994). These elements

have been adjusted to the numerical DE200 ephemeris developed at the Jet

Propulsion Laboratory (Standish et al., 1992), as also used by the Astronomical

Almanac (1985-1999). Although the more recent DE403 numerical integration

is now available, incorporating newer data for the asteroids, the differences are

insignificant at the 0°.001 level. (A comparison of the osculating elements for

DE200 and DEA03 at 20year intervals between 1799 and 2100, as kindly supplied

by Myles Standish, reveals no discrepancies larger than 0°.0001.) Our coded

representations of the truncated series were thoroughly tested not only against the

examples provided with their published tabulations, but also by extensive

comparison with the U.S. Naval Observatory Astronomical Almanac and the

associated Multiyear Interactive Computer Almanac (1998).

As intended for the calibration of the Fictitious Mean Sun at Mars, no

allowance was made for the light-time appropriate for viewing from the Earth.

The aberration of the Sun as seen at Mars must, however, be taken in account for

the most precise reckoning of the apparent solar illumination there. In terms of

the heliocentric coordinates 1 and b, the aberrated longitude and latitude were

calculated as lab = 1 - 0°.00697/r and bab = b - 0°.000225 cos(1 - f2)/r, where r is

the heliocentric distance of Mars in A.U., also computed from the VSOP87

ephemerides, and f_ the longitude of the ascending node of the Mars orbit, again

referred to the ecliptic and mean equinox of date. Then as in the method

outlined on pages 271-276 of Meeus (1991), we coded a computation of the

planetocentric solar declination at Mars as 6 S -=

sin-l[-sin_l sinbab - cosl31 coSbab COS(_,] - lab)]. It may be noted that L s cannot

be precisely and infallibly calculated from these results as L s - sin-l(sin_is/sine),

using a mean element representation for the Mars obliquity e, since as a result of

small planetary perturbations the argument of the indicated inverse sine function

occasionally exceeds unity, wherever the maximum _is for a particular orbit

exceeds Emean. Instead, the instance of each vernal and autumnal equinox was

identified with the passage of _s through 0 °, and the solstices with its
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corresponding maxima and minima. The implied minimax search through the

evaluated declinations can be accurately accomplished for a hundred orbits in

only a few hours with a standard desktop computer.

The Modified Julian Date (MJD - JD - 2400000.5) for each Mars equinox

and solstice passage as calculated with the Pathfinder pole vector over 135 orbits

for the years 1874-2127 are tabulated in the appendix, along with the dates for

each perihelion passage. Although they serve as the basis for our fitted

evaluation of the Fictitious Mean Sun it should be emphasized that the given

seasonal dates have been calculated from the truncated VSOP87 ephemeris

without any reliance upon mean orbital elements, except for the very weak

dependence of the aberration correction on the longitude of the ascending node.

Planetary Perturbations and the Meaning of "Mean'"

Since 1984, the numerical integration of the equations of motion for the

N-body interactions of the numerous separately tracked solar system objects has

replaced the former calculation of ephemerides from planetary theories of

perturbed mean elements, as tabulated in The Astronomical Almanac. As

remarked by Seidelmarm and Fukushima (1992), "a geometric mean longitude of

the Sun does not exist for modern ephemerides based on a numerical

integration." Mean element representations for the heliocentric motion of the

Earth and other planets continue to serve several important applications,

however, including observational scheduling, telescope pointing, and spaceflight

mission planning.

It should be recognized that no "mean" quantity such as the orbital mean

anomaly or the FMS has any precise meaning apart from a specification of its

assumed fitting interval, functional formulation, and reference epoch. As a

practical matter, it seems appropriate wherever possible to estimate the desired

mean quantity over a fitting interval no smaller than the temporal span of its

intended application. If one or more short-term oscillations are apparent, it may

be desirable to extend the fit at least as far as their complete cycles of variation.

For some purposes, however, it may also be desirable to restrict the span of the
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fit to sufficiently short intervals such that the long-term nonlinear variation of

the derived mean quantity represents only a small or negligible correction to its

otherwise uniform rate of change.

Simon et al. (1994) of the Bureau de Longitudes present a high precision

tabulation of the classical mean orbital elements of the planets as defined for a

span of +6000 yr, including the third, fourth, and fifth order time dependence of

the longitudes, referenced both to the fixed mean dynamical equinox and ecliptic

of J2000 and to the mean dynamical equinox and ecliptic of date. Their listed

classical elements for the fixed J2000 equinox and ecliptic of Mars are the same

as those previously reported by Kieffer et aL (1992), as attributed there to the

work of Bretagnon. The included short trigonometric series representation by

Simon et aL (1994) of the primary perturbations of the Mars orbital longitude by

the other planets provides a useful context for the considered definition of the

appropriate limits to a determination of the planet's FMS. Figure 2 shows a plot

of the indicated perturbations over three different time spans: +10, +100, and

+ 1000 Julian years.

The long period (1748yr) inequality in longitude associated with the mutual

interaction of Mars, Earth, and Jupiter, as separately plotted for comparison with

the short-term perturbations, can be approximated by its quadratic expansion

about J2000 as LPI -- 0°.0130 + 4.7 x 10-8(°/d)Atj2ooo - 5.47 x 10-13(°/d2)At2j20oo,

where Atj20o o = JD Tr - 2451545.0 represents the elapsed time in days post-J2000.

This quadratic fit to the long period inequality, as shown by the dashed curve in

Fig.2, is accurate to within 0°.0001 over +125 yr. The expression given by

Simon et aI. for the Mars mean anomaly over +6000yr, as rounded to

comparable precision, is = 19°.3728 + 0.52402068(°/d) Atj2oo o +

1.32 x 10-13(°/d2)At2j20o o. Then as added to the quadratic approximation to the

long period inequality, M - 19°.3858 + 0.52402073(°/d) Atj20o o

- 4.2 x 10-13(°/d2)At2j2o0 o represents an appropriately fitted estimate to the mean

anomaly of Mars for applications within +100 yr of the current epoch.
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Figure 2. Mars perturbations in longitude, as evaluated for the short trigonometric series specified
by Simon et al. (1994), the top panel for +10yr, the middle panel for +100yr, and the bottom

panel for +1000yr. The ordinates of each plot are labeled in degrees longitude. The rapidly

varying curves correspond to the superposition of seven separate perturbation terms with periods

between 1 and 33years plus a long-term inequality associated with the mutual interaction of Mars,
Earth, and Jupiter. The long-period (1748yr) variation in longitude is also separately plotted as the

apparent smooth curve, with its quadratic fit represented by the dashed curve in the bottom panel.
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For comparison, the Mars mean anomaly given by Van Flandern and

Pulkkinen (1979) for +300 yr, as translated from radians to degrees, is

19°.3882 + 0.52402078(°/d) Atj2000, within 0°.002 of the value inferred from the

augmentation of the elements given by Simon et al. by the long period

perturbation. Standish et aI., present a table of the classical Keplerian elements

for all nine planets in the form of the semi-major axis a, eccentricity e,

inclination i, longitude of ascending node f2, longitude of perihelion _, and the

mean longitude L. Their values for the Mars L and I_ would imply M = L - _ =

19°.41248 + 0°.524021165(°/d)Atj200o . Nearly 0°.04 ahead of the value derived

from Simon et al. (1994), the disparity would appear to reflect a difference in

the adopted fitting formulation of this representation to a Kepler orbit. (The

difference represents an approximately 0°.02 larger value for the longitudes of

both the perihelion and the ascending node with respect to the J2000 equinox and

ecliptic.) It is, however, reassuring to note that the implied angular distance

L - f2 along the Mars orbit between the ascending node and perihelion as given

by Standish et al. is in agreement to within 0°.00013 of that for the mean

elements given by Simon et al. (1994).

As a direct evaluation and check of an appropriate calibration of the Mars

mean anomaly in application to our fit of the FMS over +126 yr, we have also

performed an original quadratic fit of M to our calculated dates of the perihelion

passage from the truncated VSOP87 representations of the orbit. The result as

inferred from the shorter truncation by Bretagnon and Simon (1986) is

M = 19°.3843 + 0°.52402075Atj20o0 - 5.7 x 10-13At2j2ooo, as compared with

M = 19°.3870 + 0°.52402075Atj20oo - 5.4 x 10-13At2j2oo 0 from the more

accurate representation presented by Meeus (1991), again based on the full

theory developed by the Bureau des Longitudes. These are each within 0°.002 of

the long period augmentation of the elements given by Simon et al. (1994).

It is worth noting at this point that the expression (4) implies that an error

or deviation in the mean anomaly AM would result in a maximum difference for

the evaluated equation of center (v - M) of ~ 2e sin(M+AM) < 2eoAM = 0.2AM

for Mars, with e = 0.0934. An uncertainty or deviation for M no larger than
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0°.005, for example, therefore implies an error everywhere less than 0°.001.

Since the fitted quadratic variation in M amounts to less than 0°.001 over the

current bicentennial era (spanning the years 1900-2100), the time-linear

truncation of the Mars mean anomaly expression should contribute no practical

error ever larger than about 0.2.AM -- 0°.0002 for the evaluated equation of

center (4).

Table 2 specifies our adopted numerical representation of the mean orbital

elements of Mars. Aside from our specially fitted value for M, as appropriate to

its intended application over the contemporary two century interval, the other

elements are taken directly from Simon et al. (1994), as simplified by their

time-linear truncation and rounded specification to -1 part in 106 (as for an

angular precision of ~ 1 arcsec or 0°.0004) over +_200yr.

Table 2. Adopted representation of Mars mean orbital elements. The longitude of the ascending

node of the Mars orbit f_ is measured along the ecliptic from the Earth's vernal equinox, while the

longitude of perihelion _ is measured along two different planes, from the Earth' s vernal equinox

along the ecliptic to the orbital ascending node, and then from this node along the orbit. _, fi, and

i are each referenced here with respect to the fixed equinox and ecliptic of J2000.

Element Symbol Numerical Representation (J2000)

Semi-major axis a 1.52368 A.U.

(Mean solar dist)

Eccentricity e 0.09340 + 2.477 x 10 -9 d-lAtj20o0

Mean anomaly M 19°.3870 + 0.52402075 °d-lAtj200o

Longitude of f_

ascending node

Longitude of

perihelion

t5

49°.5581 - 8.077 x 10 -.6 °d-IAtj20oo

336°.0602 + 1.215 x 10- 5 °d-lAtj2000

Inclination i 1°.8497 - 2.23 x 10 -7 °d -1 Atj2000
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The Fitted Mars FMS and Related Parameters

Using e and M as given in Table 2 for the evaluation of the equation of

center (4), and the instant of L S = 0, 90, 180, and 270 ° evaluted as described

above from two different high-precision trucations of the VSOP87 theory for

each of 134 Mars orbits centered about J2000, we have constructed a quadratic

fit to the Fictitious Mean Sun angle defined by equation (2). The result,

C_FMs = 270°.3863 + 0.52403840 °d-lAtj20o0 - 4 x 10--13 °d-2At2j2oo 0 (12)

is very nearly the same to the indicated pecision as calculated for both

representations of the VSOP87 planetary ephemeris (but with a slightly faster

rate variation of -5 x 10 -13 °d-1 for the more truncated version). It is also of

some interest that the derived fit by this method is only weakly sensitive to the

considered small variations among different formulations of the Mars mean

anomaly. Replacing the mean anomaly formula in Table 2 with that implied by

the Keplerian elements of Standish et al. (1992), for example, as for

AM = 0°.0255 + 0.00000041°d-lAtj2000, the difference in the fitted FMS angle is

only -0°.0004 - 8 x 10-9 °d-lAtj2000 - 3 x 10-14 °d-2At2j200 o. Small (-0°.03)

variations among different formulations of the Mars mean anomaly therefore

have an essentially insignificant effect on the derived FMS at the thousandth

degree level over +125yr. The newly determined Mars pole vector by Folkner

et al. (1997) is, however, of signficance to the evaluated FMS angle, yielding a

value approximately 0°.0013 smaller than for the current IAU definition, but of

very nearly the same rate of advance, as presented by Allison (1997). [As a

matter of historical interest, a repetition of the FMS fit using the pole vector of

Lowell and Crommellin (1905), as adopted by the Astronomical Ephemeris prior

to 1968, yields an angle over 3 ° smaller but with the comparable rate of

approximately 0.524040°/d.] The included quadratic term for the new result,

while of negligible importance to many applications, is slightly larger than that in

Newcomb's definition of the Fictitious Mean Sun for the Earth and represents a

larger contribution to an evaluation of L s with (4) than the quadratic dependence

of M, approaching 0°.001 over centennnial intervals.
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As recognized by Jean Meeus (1964), the Mars tropical orbit period is

shortened with respect to the sidereal revolution by an amount directly related to

the planet's precession rate. And a quite accurate (if largely uncredited) value of

the Mars tropical orbit period was noted by R.H. Norton in 1967, as reported in

the Mars Scientific Model (JPL-D-606-1) compiled by Michaux and Newburn

(1972). Sur_in (1997) recovered a similarly accurate estimate of the Mars

tropical year as 686.972577778 d, deriving this from the planet's sidereal orbit

period and the modeled polar precession rate of Hilton (1991). Although

specified to an unrealistic precision, this evaluation is consistent to the nearest

ten-thousandth day with the determination of the FMS rate in this study.

An approximate but direct corroboration of the angular placement of the

new FMS calibration is afforded by the new determination of the planet's

precessional "node angle" from the combined analysis of Pathfinder and Viking

lander radio tracking. As analyzed by Folkner et al. (1997), the angle specifying

the position and precession of the Mars equinox as measured along the planet's

mean orbital plane for the 1980 epoch from the J2000 ecliptic is IltJ2000

= 35°.43777 (at JD2451545) with dgt/dt = -7".576/yr = -5.762 x 10-6°/d. As

projected back to 1980 Jan 1.0 (JD 2444239.5), this implies gr1980 = 35°.47986,

within 0°.0002 of the value previously given by Yoder and Standish (1997) for

the same date (near the midpoint of the Viking lander data record). Now the

angular displacement of the dynamical mean sun from the planet's vernal equinox

corresponds to the sum of the argument of the perihelion (_ - _) and the orbital

mean anomaly, minus the precessional node angle. As adjusted by a mean solar

aberration constant k = 0°.0042 for Mars, the evaluated angle for the right

ascension of the Fictitious Mean Sun at the 1980 epoch is O_FMS(1980) =

M1980 + (_ - _)1980 - _1980 - k = 42°.0226, using the mean elements given in

Table 2. And as projected to J2000 (JD2451545), with ntropAtj2000 =

3828°.3625 _ 228°.3625 (reset by subtraction of 10x360°), _FMS(J2000) ----)

270°.385. This direct estimate is in fair agreement with the fitted calibration of

eqn. (12), but suffers from a somewhat sensitive dependence upon the adopted

mean orbital elements. (The sensitivity of this method to the mean element
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representation could presumably be eliminated by reference to a sufficiently

accurate orientation of the adopted mean orbit planes, essentially equivalent to

the high-precision definition of the planet's pole vector with respect to the fixed

J2000 Earth equinox and ecliptic.)

The new FMS evaluation presented here implies a Mars tropical orbit period

_trop = 360°/ntrop = 686.97256 d and by (7) and (8), Lsp = 250°.9993, with nsp =

1.765 x 10-5°d -1. Other specific estimates of either the Mars tropical orbit

period or the corresponding FMS rate, as distinct from the rates for the planet's

sidereal and anomalistic motions, are curiously difficult to find in the accessibly

published literature. Similarly, tabulations of Mars astrometric constants have

rarely included an accurate evaluation of Lsp, with a value of 248 °, as adopted

by Levine et al. (1977), still appearing in recent application studies (e.g. Franqois

et aI., 1990; Atkinson and Gwynne, 1992; Badescu, 1998), though this appears to

derive from the much older pole vector estimate of Lowell. Harvey (1982),

however, presented a moderately accurate estimate of Lsp for the planets (with

-109°.0 for Mars), as inferred from the osculating elements for the start of 1981,

refering to this angle (which he designated by 0) as the longitude of perihelion

converted to "its value in each planet's natural coordinate system."

Table 3 presents a selected outline of various Mars FMS/tropical orbit

period evaluations, summarizing the history of different fitting methods and

available data. The JPL definitions of the FMS appear to have excluded solar

aberration and have been calibrated in application to specific Mars flight

projects. Of the different studies listed, only the present work has had the benefit

of the new Pathfinder pole vector, as evaluated by Folkner et al. (1997).
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Table 3. A selected history of areocentric mean solar coordinate evaluations. Although some

authors have prefered to retain the full precision of their arithmetic, the angular results as given

here are rounded to the nearest ten-thousandth degree, with the corresponding epochs and

evaluated estimate of the implied tropical year rounded to the nearest hundred-thousandth day.

Author(s) FMS formula [Implied]

(XFMS(J2OOO)

Tropical

Orbit Period

Norton (1967)

in Michaux and

Newburn (1972)

Beerer (1985)

in Kaplan

(1988)

Blume (1986)

-21318°.217 + 0.524041°dq(t-to)

for tO= JD2449200.5

250°.9882 + 0.5240427 °d-I (t - t0)

for to = JD2448760.08620

[270 ° .397]

[270°.4019]

668.59216 sol

[- 686.9726 d]

686.969 d

686.9669 d

Lee (1995) 188 °.3690 + 0.5240429 °d-I (t - t0)

for t o = JD2450701.5

[270°.3992] 686.9667 d

Allison (1997) 270°.39 + 0.5240384°dq(t-to)

_r t o = JD2451545.0

2700.39 686.9725 d

Suran (1997) 686.97258 d

Allison and

McEwen

(This work)

270°.3863 + 0.52403840 °dq(t-to)

- 4 x 10-13 °d-2(t-to)2

for to - JD2451545.0

270°.3863 686.97256 d
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specification of the planet's mean solar day.
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required for the most accurate

In the course of one solar (tropical)

orbit, a planet completes one less solar rotation than the total number of sidereal

rotations, so that the mean solar day or "sol" (dsol) relates to the sidereal day

(dsi d) as 'l;trop/dsol - 'l;trop/dsid - 1. Equivalently,

d_id (13)
ds°l - 1 - dsid/_trop

Unfortunately, Sur_in made a small error in his estimate of the Mars solar

day as dsi d + dsid2/'lTtrop = 1.027488966 d, really an imperfect approximation to

dsid(1 - dsid/'l;trop) -1. With dsid = 360°/(350°.89198521/d) = 1.02595674787 d, as

determined by Folkner et al. (1997), the correct value for dso 1 = 1.02749125 d

implies a Mars tropical year of 668.5921 Mars solar days or "sols."

Our calculation of the maximum solar declination for each orbit also affords

an evaluated fit to the current Mars mean obliquity of date as 13 =

25°.1919 + 0°.0126 T, where again T is measured in Julian centures post-J2000.

This implies that in 1980 (at T = -0.2), E(1980) --- 25°.1894, in good agreement

with the value of 25°.189417 established by Folkner et al. (1997) for their

analysis of the Mars precession constants, taking as a reference a fixed 1980 Mars

mean orbit and equinox. (The inferred centennial rate for the mean obliquity of

date should not be confused with the dl_/dt -- 1 mas/yr reported in their paper,

which as they note is consistent to within observational limits with a vanishing

value for a fixed orbital reference plane.) The derived centennnial rate is in fair

agreement with the pre-Viking value of dE/dt = 0°.01220 + 0°.00006 T given by

Sturms (1980), as reported in Michaux and Newburn (1972).

Table 4 presents a summary of the derived and related Mars orbital/

rotational parameters, including for comparison the corresponding values for the

Earth. There is as yet some uncertainty in the precise location of the Mars prime

meridian, as apparent in the ongoing revision of its (angle W) definition by

Davies et al. (1994, 1999) and the indicated value for V m - 180 ° + _, measured

as in Michael (1979) and Folkner et al. (1997) with respect to the planet's

equinox, represents a compromise between extreme values in various reports.
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Table 4. Solar orbital/rotational parameters for Mars and Earth.

Parameter Symbol Mars Earth

Mean solar distance a 1.52368 A.U.
1.49598 x 108 km

1.00000 A.U.
2.27939 x 108 km

Orbital eccentricity e 0.09340

+ 0.000090 T

0.01671

- 0.000042 T

Perihelion Date tp
(mean element)

Planetocentric Orbital Lon Lsp
of Perihelion adj to J2000

Rate of perihelion advance nsp
with respect to equinox

Anomalistic Orbit Period

Sidereal Orbit Period Tsid

Tropical Orbit Period 'l;trop

Sidereal Day dsi d

Solar Day dso 1

Obliquity of Eqtr
to Orbit

Prime Meridian

Hour-Angle wrt

Planet's Vern Eqnx

E

V m

1999 Nov 25 (12 h)
= JD 2451508.0

250°.999

1.765 x 10-5°d -1

= 0.64467°/cy

686.9957 d

1.880892J_ianYr

668.6146 sol

686.9798 d

1.880848J_ianYr

668.5992 sol

686.9726 d
1.880828JmianYr

668.5921 sol

24h37m22.663 s

= 1.025956748 d

24h39m35.244 s

= 1.027491251 d

25°.1919

+0°.0126 T

313°.5 (_+0%15!?)+

350°.8919851Atj2000

2000 Jan 4 (Oh)

=JD2451547.5

282°.932

4.695 x 10-S°d -I

= 1.715°/cy

365.2596 d

1.000026JY r

365.2564 d

1.000018JY r

365.2422 d
0.999979JY r

23h56m04.09054 s

= 0.997269566 d

24h00m00 s

= 1.00000000 d

23°.4393

-0°.0130 T

100°.460 +

360°.9856474 Atj2000
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By a numerical evaluation of (9) with the parameters specified in Table 4,

the Modified Julian Date of season L S within the n th orbit of Mars since the

epoch 1874.0 may be estimated for any subsequent date as

MJD(n,L s) = 51507.5 + 1.90826 (L s - 251 °) - 20.42 sin(L s - 251 °)

+ 0.72 sin[2(L s - 251°)] + {686.9726 + 0.0043 cos(L s - 251 °)

- 0.0003 cos[2(L s - 251°)] } IntegerPart[n - 66]. (14)

The last term in the brackets multiplying the orbit index n-66 indicates the

variation in the average repetition interval for a Mars season L s, as plotted in

Figure 3. It may be readily verified that the indicated variation for the repetition

of the equinoxes and solstices is consistent with the repetition of seasonal dates

listed in the appendix. A computer-encoded rendition of this equation, looped

through Ls = 0, 90, 180, and 270 ° and n = 0, 1, 2, ..., 134, efficiently recovers

the dates derived from the VSOP87 representation, as tabulated in the appendix,

to within a maximum error of 0.1 d.

days

686.976

686.975

686.974

686.973

686.972

686.971

686.970

686.969

686.968

0 90 180 270 0

I i I I i I i I I I I I I

0 90 180 270 0

Ls deg

668.596

668.595

668.594

668.593

668.592 sols

668.591

668.590

668.589

668.588

Figure 3. Variation of the Mars solar seasonal year, shown as the mean interval

in days and sols for the repetition of a given Ls. The dashed horizontal line

represents the average tropical year, 686.9726 d or 668.5922 s°l, corresponding

to the interval for the repetition of the Fictitious Mean Sun angle.
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Mars Solar Timing Algorithms

The following algorithm, including the primary peruturbations of Jupiter,

Earth, and Venus, affords a quick calculation of Mars solar coordinates. As

referenced to the elapsed time in days from the J2000 epoch (2000 Jan 1.5 yr)

with

Atj2o0 o - (JD Tr - 2451545.0) (15)

(where JD is the Julian Date in Terrestrial Time, offset from Universal

Coordinated Time as prescribed below), the mean anomaly, Fictitious Mean Sun

angle, and the sum of the angular perturbations in longitude are given as

M = 19°.3870 + 0°.52402075Atj20o0 (16)

O_FMs = 270°.3863 + 0°.52403840Atj2o00 - 4 x 10-13At2j2oo o (17)

7

PBS = ]_ A i cos[0°.985626Atj20oo/'l:i + _ i] (18)
i=l

where A i, I: i, and _i denote the amplitude, period, and phase of the planetary

perturabions given in Table 5. Then the areocentric solar longitude and equation

Table 5. Primary short-term perturbations for the areocentric solar longitude, represented in the

form Ai cos[(360°/365.25)Atj2000/xi + _i], as approximated by a moderate-precision transforma-

tion of the associated sine and cosine terms given by Simon etal. (1994) and plotted in Fig.2. The

right-most column identifies the planetary commensurability responsible for each perturbation, in

terms of the indicated differences of integral multiples of mean motion rates for Jupiter (_.j), Mars

(_'M), Earth (_'E), and Venus (_'v)"

i A i (deg) x i (Jyr) _)i (deg) Planetary

Commensurability

1 0.0071 2.2353 49.409 (_'M - _,j)-I

2 0.0057 2.7543 168.173 (_M - 2_J) -1

3 0.0039 1.1177 191.837 (2_, M - 2_,j) -1

4 0.0037 15.7866 21.736 (2_, M - _,E) -1

5 0.0021 2.1354 15.704 (_E- _'M) -1

6 0.0020 2.4694 95.528 (2_, E - 3_,M)-I

7 0.0018 32.8493 49.095 (_'V - 3_'M)-I
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of time are given as

and

Ls = _FMS + (10°'691 + 3° x 10-7Atj2000) sinM + 0°.623 sin2M

+ 0°.050 sin3M + 0°.005 sin4M + 0°.0005 sin5M + PBS

EOT = 2°.861 sin 2L s - 0°.071 sin 4L s + 0°.002 sin 6L s

- {(10°.691 + 3°x 10-7Atj2ooo) sinM + 0°.623 sin2M

+ 0°.050 sin3M+ 0°.005 sin4M + 0°.0005 sin5M + PBS }.

(19)

(20)

The given EOT expression is of a similar form to that presented by Yallop and

Hohenkerk (1992) for the Earth-Solar ephemeris. Although the apparent

redundancy of (19) and (20) can be avoided with an appropriate encoding of

substituted variables, the given form for the EOT assures a result in the plus or

minus small angle range for any multiple 360 ° addition/subtraction to L s. For

most purposes, however, it is convenient to reset the areocentric longitude to

within the 0 - 360 ° range, as for example

L s --) FractionalPart[1 + FractionalPart[ Ls ]]360 °
360 °-

(21)

The Mean Solar Time on the Mars prime meridian, given as

(V m - _FMS)X(24h/360 °) + 12 h, may be evaluated as

MST = 24 h x FractionalPart[ JD - 2451549.5 + 44796.0 - k],
1.02749125

with k ~ 0.0006 + 0.0004 an as yet imprecisely determined

adjustment accounting for the true position of crater Airy-0.

(22)

As defined, consistent with the terrestrial convention for Mean Solar Time,

JD2451549.5 (2000 Jan06 00:00) corresponds to a near coincidence of the

terrestrial Greenwich mean solar midnight and the Martian mean solar (prime

meridian) midnight. The addition of the integer number 44796 assures a positive

result for the indicated fractional part in (21) for any date since JD2405522

(1873 Dec29.5). More significantly, the interval between these dates,

(2451549.5 -2405522.0) d = 46027.5 d - 44796.002sol, represents not only a
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near half-day/sol commensurability, but also a very near orbit-period

commensurability of JY 2000.012 - JY 1873.996 = 126.016 JY = 67.0005 Mars

tropical revolutions (approximately 59 synodic periods).

The Local True Solar Time is then given as

LTST = MST- Aw(24hr/360 °) + EOT.(hr/15 °) (23)

where A w denotes the west longitude (measured westward from

meridian according to the planetary cartographic convention in

0-360°). Each hour-angle can be reset to 0-24 hr as, for example,

the prime

the range

LTST ---) FractionalPart[1 + FractionalPart[ LTST ]] 24hr,
24

(24)

and then converted as desired from fractional hours to minutes (and seconds).

The Mars heliocentric distance and ecliptic longitude are numerically given

from eqns.(10) and (11) as

r/a = 1.5236(1.00436 - 0.09309 cosM

- 0.00436 cos2M - 0.00031 cos3M)A.U. (25)
and

l_oc_p_- Ls + 85°.061 - 0°.015 sin(2L s + 71 °) - 5°.5 x lO-6Atj2ooo (26)

For the most precise calculation of the solar hour-angle, the Julian Date (JD)

and the elapsed time htj2000 as defined by (15) for the given timing formulae

should be referred to Terrestrial (Dynamical) Time (TT), or Ephemeris Time

(ET) as used prior to 1984, measured in continuous even increments of SI

seconds, currently defined with reference to atomic clocks (with

TT = TAI + 32.184sec). An approximate conversion of Universal (Coordinated)

Time (UTC) or the former Greenwich Mean Time (GMT) to Terrestrial Time

may be prescribed as

TT = UTC + 64.184 sec + 95secT + 35sec T2, (27)
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where T - (JD - 2451545)/36525 = (Jyr - 2000)/100 is the elapsed time in Julian

centuries from J2000. This is accurate to within 5 sec for the years 1950-2000,

and to within 11 sec for the two-century interval 1800-2000. Although a precise

UTC conversion cannot be predicted several years in advance, the formula agrees

to within 1.4 sec of extrapolated values for the years 1997-2003, spanning the

operation of the Mars Pathfinder, Global Surveyor, and Climate Orbiter

missions, and is exact for J2000, at T = 0. (UTC is itself stepped by 1 sec

increments, wherever needed at the end of June and/or December, to bring civil

time keeping to within 0.9s of the exact measure of the Earth's rotation, as

announced every six months by the Central Bureau of the International Earth

Rotation Service at the Paris Observatory.)

Omitting the perturbations (taking PBS = 0), the given L s formula (19), as

derived from Eqns.(1), (2), and (4), yields a result with a maximum error of

0°.03, comparable to the sum of the tabulated perturbation amplitudes. The

errors in L S, as calculated by the given series expansion both with and without

the primary perturbation corrections, are shown Figure 5, as evaluated by

comparison with the more accurate VSOP87 ephemeris. As the lower panel

suggests, approximately 95% of the values calculated with the inclusion of the

seven-term perturbation correction for the equinox and solstice dates given in

Table A 1 are within 0°.005 of the accurately computed values. The accuracy of

the Ls algorithm is therefore comparable to its tabulation in the Astronomical

Almanac, which differs, however in its assumption of the older IAU pole vector

and the inclusion of a light-time correction. (The calculation of L s to within a

maximum error of 0°.001 would require some 70 perturbation terms!)

Since the error in the calculated EOT (expressed in degrees) as derived by

the series method is comparable to that for the Ls, the 0°.01 precision of the

given seven-term perturbation corrections, if included, would enable the

evaluation of the LTST to within 2.4 s. Even without the perturbation

corrections, the estimated maximum error of 0°.03 for the short'series

representation of the elliptic motion over +125yr would imply an astrometric

contribution to the LTST error never larger than 8 s.
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Ls error in deg excluding perturbations
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Figure 4. Errors in the Mars Ls (in deg) for each equinox and solstice over +126yr of J2000, as

evaluted by the series expression (19) in comparison with the more exact calculation with the

truncated VSOP87 representation, itself accurate to within 0°.001. The upper plot shows the

errors excluding the perturbation corrections. The lower plot shows the reduced errors including

the perturbations for the the 7-term cosine series with the amplitudes, phases, and periods given in
Table 3, for which the maximum difference is 0°.0075.
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Lander Solar Timing

According to Colburn et al. (1989), the Viking "Local Lander Time" or

LLT was defined so that the Sun would cross the nadir meridian at midnight on

the first sol after touch-down, but otherwise took no account of the subsequent

progression of the Equation of Time (EOT). Viking LLT was therefore a

variant of mean solar time, offset by approximately-2.88 and-14.69 hr from

the MST on the Mars prime meridian for Viking Landers 1 and 2, respectively.

(cf. Allison, 1997.) Viking Lander "Sol numbers" were essentially reckoned

from a zero starting point at each of the local true solar midnights immediately

prior to their touchdowns. Time tags for the Mars Pathfinder lander were

referenced with respect to the local true solar time, with elapsed sols again

reckoned from the local true solar midnight preceeding its landing, but

designated with a starting number "1" rather than zero. Table 6 gives the exact

times for the Viking and Mars Pathfinder landings, along with estimated epochs

for the immediately prior local mean midnights, as usefully referenced for the

calculation of their mission sol number and local solar time.

Table 6. Mars lander chronological epochs. Times for the Viking lander touchdowns are from

Snyder (1977). The time for the Mars Pathfinder landing is from Golombek et aI. (1997). Note

that the Julian Dates are given here in Universal Coordinated Time (UTC).

Touchdown Datefrime Local Mean Midnight Epoch

tMZ (Ref'd prior to TD)

Viking

Lander 1

Viking

Lander 2

Mars

Pathfinder

1976 Jul 20 11:53:06 UTC

= JD 2442979.99521 UTC

1976 Sep 03 22:37:50 UTC

= JD 2443025.44294 UTC

1997 Jul 04 16:56:55 UTC

= JD 2450634.20619 UTC

VL1 Sol 0.0 =

JD 2442979.319 UTC

VL2 Sol 0.0 =

JD 2443025.034 UTC

MPF (Mean) Sol 1.0 =

JD 2450634.10048 UTC



The Viking 1 "sol number", for example, is readily evaluated as

VL 1 Sol No. = IntegerPart[(JD trrc - 2442979.319)/1.02749125],

34

(28)

and with an appropriately specified decimal fraction for the Julian Date

corresponding to a particular terrestrial calendar date and time, the VL1 "Local

Lander Time" (in hours) can be efficiently estimated as

VL1 LLT = 24h x FractionalPart[(JD trrc - 2442979.319)/1.02749125]. (29)

A decimal Mars Pathfinder "sol date", as referenced to the local true solar

time, may be calculated as

MPF TSD = (JDtrrc - 2450634.10048)/1.02749125 + EOT/360 ° + 1, (30)

with EOT evaluated by eqn.

converted as indicated from degrees to the appropriate decimal sol fraction.

Pathfinder Local True Solar Time is then readily computed as

(20) for the exact time of interest and then

The

MPF LTST = 24h x FractionalPart[MPF TSD]. (31)

The evaluated decimal hour angle for the landers may be converted to hours

minutes and seconds, consistent with the spacecraft data records generated for

these missions at the Jet Propulsion Laboratory (e.g. Golombek, 1997).

Discussion

The new calibration of the Fictitious Mean Sun at Mars presented here, as

specified to 0°.0001, would serve to define a Martian "Mean Solar Time" (MST)

consistent with the historical conventions established for terrestrial chronology to

within (0°.0001/360°)x86400 s = 0.024 s on a 24h clock, once the position of the

planet's prime meridian is navigated to the same precision. Of course the local

true solar time (LTST), as might be preferred for the timing of scientific

observations and the motorized tracking of solar power arrays on Mars, can be

evaluated independently of an FMS or MST, given the local longitude and an

accurate determination of the true solar right ascension. With the slow sol-to-sol

variation of the equation of time, at most some 40s (cf. Allison, 1997),
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conceiveably both human and machine activities on Mars could be reckoned with

respect to the variably advancing LTST, or a globally synchronized TST (e.g. an

"Airy True Solar Time" on the prime meridian).

Even if the use of MST on Mars were to be entirely abandoned, however, it

seems unlikely that the Permanent Read-Only-Memory (PROM) of every

instrument timer and clock on the planet would in this case be equipped with a

complete numerical solar-system ephemeris for the calculation of the true solar

right ascension and LTST at each instant. It would be relatively easy, however,

to encode the PROM of any digital clock with a solar timing algorithm of the

simple form presented here, as calibrated with respect to the FMS formula. The

estimated -3 sec accuracy of the given expression for the equation of time (-8 sec

excluding the planetary perturbations) would appropriately serve the long-term

stability of many quartz clocks (e.g. typically a few seconds per month).

Measurements by lander radio tracking of a very small seasonal modulation

of the Mars rotation (~ 2 milli-arcsec for its angular measure), as attributed to

the sublimation of the polar caps, have been modeled using the orbital mean

anomaly as the dependent variable (Yoder and Standish, 1997; Folkner et al.,

1998). tXFM s or some redefined angle advancing at the FMS rate is likely to be a

more appropriate dependent variable, however, for the measured or modeled

Mars surface pressure, condensed CO 2, water vapor distribution, or any other

climatological field governed by the solar season. The accurately referenced

FMS rate provides the most accurate representation of the solar seasonal year on

Mars and, together with the planetary rotation with respect to the Mars equinox,

the most accurate determination of the length of the mean solar day.

The desirability of some coherent system for the chronological reckoning of

Mars solar days, logically extending the repeated sequential numbering post-

touchdown for each landed spacecraft mission, is already apparent. Gangale

(1997), Hartmann (1997), Suran (1997), and others have already gone so far as

to propose various Mars calendar systems, inevitably involving the consideration

of various social conventions as to the organization of week days and the peculiar

matter of month names. For scientific purposes, however, including the
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maintenance of climatological records and spaceflight mission planning, it seems

desirable to adopt some extended sol-number system for Mars analogous to the

Julian Date chronology. Such a "Consecutive Mars Day" system was actually

proposed by Norton (in 1967, reported in the JPL document prepared by

Michaux and Newburn, 1972), as referred to a "Mars Year 1000" coincident

with the Mariner 4 flyby, and calibrated with respect to the older Mars pole

vector based on the early work by Lowell.

For historical utility with respect to the Earth-based atmospheric, visual

mapping, and polar-cap observations of Mars (e.g. Zurek and Martin, 1993), a

sequential count of sol-numbers might appropriately be started prior to the 1877

perihelic opposition. Although the initial epoch for such a system can be

regarded as largely arbitrary, it might be of some computational facility to select

as a convenient starting point a near coincidence of Earth-Mars mean solar

midnights as defined for each of their cartographic prime meridians. Two such

near-alignments are built into the mean solar timing expression given by

eqn.(21). As extended in an obvious way for the representation of a "Mars Sol-

Date" (MSD) and referring this to the Modified Julian Date

(MJD = JD - 2400000.5),

MSD = (MID - 51549.0)/1.02749125 + 44796.0 - k, (32)

where again k is a small (-0.001 s°l) timing adjustment to the inertial position of

the crater Airy-0 defining the Mars prime meridian. The interval between the

implied MSD 0.0 = MJD 05521.5 (1873 Dec 29.5) and MSD 44796.0

MJD 51549.0 (2000 Jan 6.0) represents both a half-day/sol commensurability and

an orbit-period commensurability of 126 JY -- 67 Mars tropical orbits. As may

be readily verified with eqns. (15)-(19), MSD 0 also corresponds to a Mars Ls

--- 277°.1, nearly the same as the Earth Ls (277°.9) at the same epoch, and by

eqn.(26) the corresponding Mars ecliptic longitude is 2 ° 27'. The Mean Solar

Time for any subsequent Mars Sol-Date is just 24 h x FractionalPart[MSD]. With

an appropriate choice of coordinates, Mars seasonal/solar timing is therefore

readily calculated with a simple set of formulae.
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Appendix: Mars Season and Perihelion Dates

The accompanying table lists the Modified Julian Date for each instance of

the vernal equinox, northern summer solstice, autumnal equinox, and northern

winter solstice, along with the perihelion passage for each of 135 orbits of Mars

spanning the years 1874-2127. These were calculated from the truncated

VSOP87 representation tabulated by Meeus (1991), also using the new Mars pole

vector derived from Pathfinder radio tracking data by Folknec et al. (1997) for

the evaluation of the seasonal passages. The Modified Julian Date, equivalent to

the Julian Date minus 2400000.5, affords the advantage of a shorter 5-digit

representation of the day number as compared with the 7-digit string of a Julian

Day number and has been recommended by the International Astronomical

Union (1998) for use where it is convenient to employ a day beginning at

midnight (rather than Greenwich noon). Conversions to/from the MJD or JD

and a given date in the terrestrial calendar may be determined from any of

several established algorithms (e.g. Van Flandern and Pulkkinen, 1979; Hatcher,

1984), with 2000 Jan 1.0 - MJD 51544.0.

The tabulated seasonal dates may be compared with those given by Meeus

(1995), as calculated with the older IAU Mars pole vector, and including an

adjustment for the Earth-Mars light-travel time. Although the seasonal passages

have been tabulated to the nearest thousandth day, the 0°.001 accuracy of the

truncated VSOP87 representation (Meeus, 1991) used for their evaluation may

admit to errors occasionally as large as ±0.002d. Perihelion dates have been

rounded to the nearest hundredth day, consistent with an estimated 5 times larger

(-0°.005) maximum error for their angular placement.

The tabulated Mars revolution number corresponds to a count of successive

orbits (of 1.88083 Julian Years) post-1874.0. The adopted orbital epoch

precedes the first observation of a Mars regional dust storm during the perihelic

opposition of 1877 (cf Zurek and Martin, 1993)within the indicated "Rev 1", as

well as the hand-drawn maps of the same era beating the first antecedents for the

modern cartographic nomenclature (cf. Glasstone, 1968). By the same

reckoning, J2000 occurs approximately 6 days prior to the start of Rev 67.



41

Table A1. Mars equinox, solstice, and perihelion dates.

Revs

post-

1874.0

Julian Year

Interval

Modified Julian Date (MJD = JD - 2400000.5) for Mars

Vernal N.Summer Autunmal N.Winter Peri-

Equinox Solstice Equinox Solstice helion

o 1874-1875 5668.690 5867.478 6050.555 6197.109 6165.88

1 1875-1877 6355.680 6554.453 6737.532 6884.078 6852.73

2 1877-1879 7042.670 7241.422 7424.526 7571.060 7539.80

3 1879-1881 7729.641 7928.391 8111.472 8258.049 8226.86

4 1881-1883 8416.619 8615.380 8798.441 8944.979 8913.61

5 1883-1885 9103.578 9302.345 9485.453 9631.969 9600.75

6 1885-1887 9790.520 9989.291 10172.415 10318.974 10287.89

7 1887-1889 10477.503 10676.246 10859.356 1 1005.929 10974.73

8 1889-1890 1 1164.490 1 1363.218 1 1546.338 1 1692.879 1 1661.66

9 1890-1892 11851.446 12050.195 12233.321 12379.887 12348.85

10 1892-1894 1 2538.414 12737.176 12920.290 13066.853 13035.67

11 1894-1896 13225.407 1 3424.152 13607.299 1 3753.824 13722.69

12 1896-1898 1 3912.353 14111.104 14294.273 14440.832 14409.88

13 1898-1900 14599.323 14798.058 14981.214 15127.803 15096.80

14 1900-1902 15286.315 1 5485.026 15668.185 15814.749 15783.63

15 1902-1904 1 5973.284 16171.997 16355.167 1 6501.737 16470.78

16 1904-1905 1 6660.246 1 6858.973 17042.112 1 7188.701 17157.66

17 1905-1907 17347.225 17545.969 17729.121 17875.653 17844.55

18 1907-1909 1 8034.173 1 8232.933 1 8416.143 1 8562.688 1 8531.81

19 1909-1911 1 8721.147 1 8919.882 19103.091 19249.687 19218.85

20 1911-1913 19408.152 19606.848 19790.042 19936.629 19905.64

21 1913-1915 20095.129 20293.822 20477.027 2 0623.597 2 0592.70

22 1915-1917 2 0782.081 20980.790 2 1163.978 2 1310.583 2 1279.73

23 1917-1919 2 1469.058 2 1667.775 2 1850.956 2 1997.519 2 1966.51

24 1919-1921 2 2156.017 2 2354.735 2 2537.965 2 2684.513 2 2653.68

25

26

27

28

29

I921-1922

1922-1924

1924-1926

1926-1928

1928-1930

2 2842.963 2 3041.686 2 3224.924 2 3371.513 2 3340.80

2 3529.946 2 3728.655 2 3911.887 24058.485 2 4027.67

2 4216.936 24415.623 2 4598.881 2 4745.458 2 4714.65

2 4903.911 2 5102.590 2 5285.838 2 5432.453 2 5401.78

2 5590.883 2 5789.575 2 5972.792 2 6119.388 2 6088.54
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30
31
32
33
34

35
36
37
38
39

40
41
42
43
44

45
46
47
48
49

5O
51
52
53
54

55
56
57
58
59

60
61
62
63
64

1930-1932
1932-1934
1934-1936
1936-1937
1937-1939

1939-1941
1941-1943
1943-1945
1945-1947
1947-1949

1949-1951
1951-1952
1952-1954
1954-1956
1956-1958

1958-1960

1960-1962

1962-1964

1964-1966

1966-1968

1968-1969

1969-1971

1971-1973

1973-1975

1975-1977

1977-1979

1979-1981

1981-1983

1983-1984

1984-1986

1986-1988

1988-1990

1990-1992

1992-1994

1994-1996

2 6277.851

2 6964.791

2 7651.767

2 8338.761

2 9025.727

2 9712.689

3 0399.689

3 1086.641

3 1773.600

3 2460.591

3 3147.566

3 3834.524

3 4521.504

3 5208.456

3 5895.414

3 6582.415

3 7269.398

3 7956.351

3 8643.323

3 9330.293

4 0017.237

4 0704.215

4 1391.209

4 2078.191

4 2765.159

4 3452.135

4 4139.076

4 4826.043

4 5513.039

4 6200.011

4 6886.965

4 7573.959

4 8260.920

4 8947.868

4 9634.854

2 6476.649

2 7163.498

2 7850.452

2 8537.424

2 9224.405

2 9911.387

3 0598.372

3 1285.328

3 1972.280

3 2659.244

3 3346.212

3 4033.180

3 4720.174

3 5407.144

3 6094.088

3 6781.048

3 7468.021

3 8154.988

3 8841.971

3 9528.942

4 0215.896

4 0902.864

4 1589.836

4 2276.808

4 2963.788

4 3650.770

4 4337.719

4 5024.668

4 5711.634

4 6398.614

4 7085.591

4 7772.575

4 8459.533

4 9146.482

4 9833.442

2 6659.807

2 7346.783

2 8033..722

2 8720.696

2 9407.687

30094.654

3 0781.659

3 1468.648

3 2155.592

3 2842.553

3 3529.538

3 4216.482

3 4903.471

3 5590.500

3 6277.459

3 6964.400

3 7651.382

3 8338.343

3 9025.306

3 9712.319

4 0399.290

4 1086.248

4 1773.242

4 2460.216

4 3147.160

4 3834.170

4 4521.159

4 5208.097

4 5895.058

4 6582.050

4 7269.018

4 7956.009

4 8643.008

4 9329.956

5 0016.907

2 6806.362

2 7493.375

2 8180.343

2 8867.287

2 9554.288

3 0241.272

3 0928.229

3 1615.237

3 2302.219

3 2989.166

3 3676.143

3 4363.122

3 5050.060

3 5737.080

36424.091

3 7111.039

3 7797.994

3 8484.989

3 9171.928

3 9858.909

4 0545.917

4 1232.895

4 1919.863

4 2606.860

4 3293.810

4 3980.768

4 4667.783

4 5354.763

4 6041.703

4 6728.688

4 7415.685

4 8102.632

4 8789.632

4 9476.625

5 0163.575

2 6775.59

2 7462.78

2 8149.69

2 8836.53

2 9523.71

3 0210.60

3 0897.52

3 1584.72

3 2271.72

3 2958.53

3 3645.64

3 4332.62

3 5019.43

3 5706.65

3 6393.76

3 7080.58

3 7767.55

3 8454.67

3 9141.44

3 9828.52

4 0515.68

4 1202.59

4 1889.49

4 2576.66

4 3263.48

4 3950.43

4 4637.65

4 5324.63

4 6011.43

4 6698.56

4 7385.55

4 8072.39

4 8759.59

4 9446.65

5 0133.47
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65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99

1996-1998
1998-2000
2000-2001
2001-2003
2003-2005

2005-2007
2007-2009
2009-2011
2011-2013
2013-2015

2015-2016
2016-2018
2018-2020
2020-2022
2022-2024

2024-2026
2026-2028
2028-2030
2030-2031
2031-2033

2033-2035
2035-2037
2037-2039
2039-2041
2041-2043

2043-2045
2045-2047
2047-2048
2048-2050
2050-2052

2052-2054
2054-2056
2056-2058
2058-2060
2060-2062

5 0321.836
5 1008.795
5 1695.773
5 2382.737
5 3069.686

5 3756.684
54443.676
5 5130.635
5 5817.601
5 6504.580

5 7191.524
5 7878.490
5 8565.481
5 9252.467
5 9939.430

6 0626.407
6 1313.354
6 2000.309
6 2687.304
6 3374.285

6 4061.239
6 4748.227
6 5435.203
6 6122.148
6 6809.131

6 7496.121
6 8183.082
6 8870.052
6 9557.024
7 0243.964

70930.952
7 1617.948
7 2304.911
7 2991.869
7 3678.851

50520.413
5 1207.382
5 1894.376
52581.358
53268.306

53955.264
54642.236
55329.204
56016.182
56703.159

57390.111
5 8077.073
58764.042
59451.011
60137.983

60824.969
6 1511.924
62198.873
62885.838
63572.820

6 4259.801
6 4946.785
6 5633.752
6 6320.702
6 7007.659

6 7694.629
6 8381.596
6 9068.581
6 9755.568
70442.515

7 1129.467
7 1816.435
7 2503.405
7 3190.377
7 3877.362

50703.893
5 1390.848
52077.819
52764.856
5 3451.834

54138.774
54825.750
55512.721
56199.670
5 6886.679

57573.661
5 8260.613
5 8947.600
59634.581
60321.519

6 1008.513
6 1695.515
62382.461
6 3069.414
6 3756.409

64443.388
6 5130.369
6 5817.377
6 6504.335
6 7191.279

6 7878.259
6 8565.224
6 9252.178
6 9939.209
7 0626.202

7 1313.137
7 7200.101
7 2687.080
7 3374.025
74061.025

5 0850.540
5 1537.531
5 2224.466
5 2911.471
5 3598.497

5 4285.458
5 4972.406
5 5659.403
5 6346.353
5 7033.314

5 7720.323
5 8407.306
5 9094.272
5 9781.261
60468.226

6 1155.167
6 1842.176
6 2529.169
6 3216.112
6 3903.083

6 4590.096
6 5277.045
6 5964.037
6 6651.040
6 7337.998

6 8024.952
6 8711.945
6 9398.886
70085.868
7 0772.900

7 1459.872
7 2146.812
7 2833.799
7 3520.764
7 4207.710

5 0820.48
5 1507.56
5 2194.32
5 2881.46
5 3568.65

54255.52
54942.41
5 5629.58
5 6316.38
5 7003.35

57690.55
5 8377.53
5 9064.38
5 9751.54
60438.45

6 1125.30
6 1812.51
62499.55
6 3186.34
6 3873.39

6 4560.49
6 5247.28
6 5934.43
6 6621.56
6 7308.41

6 7995.33
6 8682.47
6 9369.25
70056.30
7 0743.53

7 1430.47
7 2117.30
7 2804.45
7 3491.33
7 4178.20



100
101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

2062-2063

2063-2065

2065-2067

2O67-2069

2069-2071

2071-2073

2073-2075

2075-2077

2077-2079

2079-2080

2080-2082

2082-2084

2084-2086

2086-2088

2088-2090

2090-2092

2092-2094

2094-2095

2095-2097

2097-2099

2099-2101

2101-2103

2103-2105

2105-2107

2107-2109

2109-2110

2110-2112

2112-2114

2114-2116

2116-2118

2118-2120

2120-2122

2122-2124

2124-2126

2126-2127

7 4365.799

7 5052.757

7 5739.747

76426.742

7 7113.709

7 7800.688

7 8487.646

7 9174.594

7 9861.583

8 0548.570

8 1235.524

8 1922.500

8 2609.486

8 3296.427

8 3983.399

8 4670.390

8 5357.354

8 6044.317

8 6731.295

8 7418.239

8 8105.221

8 8792.223

8 9479.197

9 0166.153

9 0853.135

9 1540.092

9 2227.041

9 2914.027

9 3601.024

9 4287.992

9 4974.963

9 5661.928

9 6348.866

9 7035.845

9 7722.837

7 4564.320

7 5251.281

7 5938.252

7 6625.222

7 7312.193

7 7999.183

7 8686.146

7 9373.094

80060.053

8 0747.030

8 1434.009

8 2120.987

8 2807.959

8 3494.908

8 4181.861

8 4868.829

8 5555.799

8 6242.777

8 6929.772

8 7616.727

8 8303.678

8 8990.646

8 9677.621

9 0364.590

9 1051.578

9 1738.539

9 2425.496

9 3112A65

9 3799.432

94486.400

9 5173.385

9 5860.354

9 6547.301

9 7234.255

9 7921.228

7 4748.023

7 5434.980

7 6121.962

7 6808.951

77495.895

7 8182.873

7 8869.884

7 9556.840

8 0243.785

80930.772

8 1617.756

8 2304.722

8 2991.729

8 3678.697

8 4365.637

8 5052.610

8 5739.588

86426.536

8 7113.556

8 7800.570

8 8487.510

8 9174.466

8 9861.451

9 0548.400

9 1235.385

9 1922.393

9 2609.353

9 3296.324

9 3983.311

9 4670.263

9 5357.222

96044.237

9 6731.206

9 7418.146

9 8105.125

7 4894.717

7 5581.712

7 6268.684

7 6955.667

7 7642.650

7 8329.583

79016.582

7 9703.585

80390.535

8 1077A91

8 1764.505

82451.461

8 3138.435

8 3825.440

8 4512.406

8 5199.352

8 5886.342

8 6573.299

8 7260.264

8 7947.300

8 8634.290

8 9321.231

90008.206

90695.188

9 1382.126

9 2069.125

9 2756.128

93443.101

9 4130.072

9 4817.062

9 5503.994

9 6190.974

9 6877.984

9 7564.947

9 8251.894

7 4865.41

7 5552.45

7 6239.30

7 6926.39

7 7613.41

7 8300.18

7 8987.35

7 9674.45

8 0361.28

8 1048.24

8 1735.41

8 2422.21

8 3109.27

8 3796.44

84483.35

8 5170.20

8 5857.35

8 6544.20

8 7231.15

8 7918.40

8 8605.41

8 9292.21

8 9979.29

90666.28

9 1353.08

9 2040.26

9 2727.36

93414.23

9 4101.23

9 4788.34

9 5475.09

9 6162.18

9 6849.35

9 7536.24

9 8223.11
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