Advanced Engine Health Management
Applications of the SSME Real-Time Vibration Monitoring System

AIAA 2000-3622
36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference
July 19, 2000

Tony R. Fiorucci
NASA Marshall Space Flight Center
• What is the Real-Time Vibration Monitoring System (RTVMS)?

 - RTVMS is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC).

 - Delivers sample rates as high as 51,200 samples/second per channel.

 - Performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format.
• Why is RTVMS important?

 – *Real-time* FFT processing yields *real-time* vibration spectral data.

• Advanced engine health assessment is achieved by utilizing the vibration spectra to provide:

 – accurate sensor validation
 – enhanced engine vibration redlines

• Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures - a first in rocket engine health assessment.

 – High sample rates provide for enhanced time and frequency resolution over a broader frequency spectra.
- Vibration spectral signatures utilized by the RTVMS -

Synchronous (N) >
(unbalance)

Sub-harmonic Resonance Responses

< 2X Synchronous (2N)
(rubbing)
RTVMS spectra yields both frequency and amplitude trends.

RTVMS Data Surrounding 130 Second Event during test 901-853
- Time 128-140 seconds -
Pump-End Power Spectral Density Showing Subsynchronous

Pump-End Synchronous Vibration Levels

HPFTP/AT Unit 6–4 Incident

First Stage Turbine Blade Array
• Operational History - Ground Testing

- RTVMS has been deployed at the Stennis Space Center since October 1996

- RTVMS has actively monitored over 150 SSME static hot-fires.

- The system monitors 3 separate engine vibration redlines
 • 2 high pressure fuel turbopump (HPFTP) vibration redlines
 • 1 high-pressure oxygen turbopump (HPOTP) vibration redline.

- The RTVMS installed at SSC provides:
 • data acquisition at 20,480 samples/second for 32 channels
 • real-time vibration redline amplitude trackings and power spectral densities (PSD's)
 • automatic engine test termination in 100 milliseconds (50 millisecond resolution)
RTVMS Real-Time Tracking Display
SSME Test 902-770

Marshall Space Flight Center

HPFPRAD 129 SYNC

HPFPRAD 125 SYNC

FASCOHPPRAD 231 SYNC

HPFPRAD 141 SYNC

FASCOHPPRAD 225 SYNC

HPFPRAD 225 SYNC

FASCOHPPRAD 219 SYNC

HPFPRAD 225 SYNC
Operational History - Flight

- A sub-scale version of RTVMS flew aboard STS-96 as part of the HTD-2 flight experiment.

- During the flight, the RTVMS module:

 - acquired data from 8 vibration measurements (one flight engine) at 10,240 samples/second
 - processed the digital data real-time
 - actively located and monitored the synchronous vibration responses for the HPOTP and HPFTP for flight duration
 - provided real-time discrete frequency and amplitude trackings of both high pressure turbopumps

- The RTVMS flight experiment proved the concept of high-speed vibration data acquisition and real-time processing in a flight environment.
HTD-2 SSME RTVMS

- Components
 - (1) Ruggedized high-speed data acquisition (A/D) board
 - (1) Ruggedized digital signal processing (DSP) board
 - MSFC turbopump signature tracking algorithm
 - (8) Existing SSME vibration measurements consisting of:
 - (3 ea) High-Pressure Fuel Turbopump (HPFTP) and High-Pressure Oxidizer Turbopump (HPOTP) accelerometers
 - (1 ea) Gimbal Bearing and Oxidizer Preburner (OPB) accelerometers

- Technology
 - Engine vibration health monitoring

- Benefit
 - Mitigation of engine catastrophic failures
 - Real-time high-speed digital acquisition and processing
 - Reduced post-flight processing

- Range
 - 266 G peak-to-peak

- Data Availability
 - T-10 seconds to MECO + 15 seconds
HTD-2 SSME RTVMS Results

• Successful acquisition of accelerometer data at 10,240 samples/second per channel
 – Data was written to on-board flash storage.

• All digitally acquired data was accurately processed, real-time, by the DSP board.
 – Produced real-time frequency spectra.
 – Discrete frequency responses were available for in-flight monitoring and analysis.

• The MSFC algorithm examined the frequency spectra real-time during engine operation for the synchronous frequency response.
 – Synchronous is the primary indicator of SSME turbopump rotordynamic health.
 – The algorithm accurately located synchronous for both high-pressure pumps.
 – Synchronous was monitored real-time throughout engine operation.
 – All synchronous frequency and amplitude tracking results were written to on-board flash storage.
RTVMS HPOTP Power Spectral Densities
STS-96 SSME Position 3

**Note: The synchronous response is labeled as “1N”.

Marshall Space Flight Center

12
HTD-2 RTVMS HPOTP Tracking Results
STS-96 SSME Position 3

RTVMS HPOTP Synchronous (Speed) Frequency Tracking

RTVMS HPOTP Synchronous Amplitude Trackings

- PBP RAD 40
- PBP RAD 151
- PBP RAD 130
HTD-2 RTVMS HPFTP Tracking Results
STS-96 SSME Position 3

Note: The synchronous response is labeled as “1N”.
HTD-2 RTVMS HPFTP Tracking Results
STS-96 SSME Position 3

RTVMS HPFTP Synchronous (Speed) Frequency Tracking

RTVMS HPFTP Synchronous Amplitude Trackings
• RTVMS and the Advanced Health Management System (AHMS)

 – RTVMS is the basis for the SSME AHMS Shuttle Safety Upgrade Program

• AHMS Phase I is a modified SSME Controller which will incorporate the RTVMS synchronous vibration redline methodology.

• AHMS Phase II is the Health Management Computer (HMC) which will incorporate the full RTVMS analysis package module.

 – MSFC/TD63 has also developed sensor validation software which will reside on RTVMS on AHMS Phase I and II
AHMS RTVMS Synchronous Redline Logic Example

- Example is from test 901-853 which was a turbine failure of HPFTP/AT 8306

- Synchronous frequency amplitude levels violate threshold limit indicating possible hardware failure

- Sensor validation logic reviews factors and determines sensors are valid

- RTVMS synchronous logic issues signal for engine shutdown
HMC RTVMS Advanced Analysis Methodology

- The six turbopump accelerometers that will be processed and analyzed real-time contain numerous spectral responses pertinent to pump health

- Analysis of the frequency spectra can be performed out to 10,000 Hz

- Current analysis plans for the HMC RTVMS include:

 - tracking and redline monitoring of synchronous vibration response (N)
 - primary indicator of pump health (mass unbalance indicator)

 - tracking and analysis of synchronous harmonics
 - 2N and 3N (primary indicators of internal rotor rubbing)
 - 4N/8N (HPOTP) and 6N (HPFTP) (blade wake responses from pump impellers)

- detection of sub-harmonic resonance (forced vibration response such as bearing deadband interaction) and limit-cycle whirl (rotor instability) responses
• HMC RTVMS Advanced Analysis Methodology

 - Future analysis upgrades will include:

 • determination and tracking of bearing related frequencies (Cage, Ball Spin, Inner Race and Outer Race) to determine the health of the bearings

 • cavitation detection and active signature phase correlation algorithms

 • nonlinear algorithms to distinguish differences between rotating and non-rotating related turbopump phenomena

 • active unknown anomaly identification and monitoring
• Conclusions

- RTVMS delivers the capability to detect and mitigate potential catastrophic SSME turbomachinery failures through real-time extraction of discrete vibration frequency components.

- The AHMS HMC with the RTVMS, Linear Engine Model (LEM), and Optical Plume Anomaly Detector (OPAD) subsystems provides an advanced, reliable health management capability for the SSME.