
Ordering Unstructured Meshes for

Sparse Matrix Computations on Leading Parallel Systems

Leonid Oliker,: Xiaoye Li, t Gerd Heber, 2 and Rupak Biswas 3

LNERSC, MS 50F, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

2Cornell Theo_" Center. 638 Rhodes Hall, Cornell University, Ithaca, NY 14853

3MRJ Technology Solutions, MS T27A-1, NASA Ames Research Center, Moffett Field, CA 94035

1. Introduction

The ability of computers to solve hitherto intractable problems and simulate complex processes

using mathematical models makes them an indispensable part of modern science and engineering.

Computer simulations of large-scale realistic applications usually require solving a set of non-linear

partial differential equations (PDEs) over a finite region. For example, one thrust area in the DOE

Grand Challenge projects is to design future accelerators such as the Spallation Neutron Source

(SNS). Our colleagues at SLAC need to model complex RFQ cavities with large aspect ratios [5].

Unstructured grids are currently used to resolve the small features in a large computational domain;

dynamic mesh adaptation will be added in the future for additional efficiency. The PDEs for elec-

tromagnetics are discretized by the FEM method, which leads to a generalized eigenvalue problem

Kx = AMx, where K and M are the stiffness and mass matrices, and are very sparse. In a typical

cavity model, the number of degrees of freedom is about one million. For such large eigenproblems,

direct solution techniques quickly reach the memory limits. Instead, the most widely-used meth-

ods are Krylov subspace methods, such as Lanczos or Jacobi-Davidson. In all the Krylov-based

algorithms, sparse matrix-vector multiplication (SPMV) must be performed repeatedly. Therefore,

the efficiency of SPMV usually determines the eigensolver speed. SPMV is also one of the most

heavily used kernels in large-scale numerical simulations.

On uniprocessor machines, numerical solutions of such complex, real-life problems can easily

require several hours to days, a fact driving the development of increasingly powerful parallel (multi-

processor) supercomputers. The unstructured, dynamic nature of many systems worth simulating,

however, makes their efficient parallel implementation a daunting task. Furthermore, modern com-

puter architectures, based on deep memory hierarchies, show acceptable performance only if users

care about the [)roper distribntion and placement of their data Ill. Single-processor performance

crucially depends on the exploitation of locality, and parallel performance degrades significantly if

inadequate partitioning of data causes excessive communication and/or data migration. The tradi-

tional approach would be to use a powerful partitioning tool like METIS [4], and to post-process the

resulting partitions with an enumeration strategy for enhanced locality. Although, in that sense,

optimizations for partitioning and locality may be treated as separate problems, real applications

tend to show a rather intricate interplay of both.

In this paper, we focus on the efficiency of SPMV using various ordering/partitioning algo-

rithms. We examine different implementations using three leading programming paradigms and

architectures. Results on state-of-the-art parallel supercomputers show that ordering greatly [m-

[)roves performance, and that cache reuse can be more important tha_ reducing communication.

However, results from a nmltithreaded implementation on the Tera MTA indicate that ordering

and partitioning are not required on the MTA to obt_fin an efficient and scalable SPMV.

2. Partitioning and Linearization

Space-fillingcurveshavebee.ndemonstratedto beanelegantandunifiedlinearizationapproach
for certainproblemsin N-body and FEM simulations.Tile linearizationof a higher-dimensional
spatialstructure,i.e.its mappingontoaone-dimensionalstructure,isexploitedin twoways:First,
the "locality preserving"natureof theconstructionfits elegantlyinto a givenmemoryhierarchy,
and second,the partitioningof a contiguous linear object is trivial. For our experiments, we pur-

sued both strategies with some modifications. In the following, we briefly describe the two classes of

enumeration techniques which we used. In the future, we plan to integrate our ordering algorithms

into the eigensolver at SLAC and evaluate the overall performance gain.

2.1. Cuthill-McKee Algorithrn._ {CM)

The particular enumeration of the vertices in a FEM discretization controls, to a large extent,

the sparseness pattern of the resulting stiffness matrix. The bandwidth, or profile, of the matrix,

has a significant impact on the efficiency of linear systems and eigensolvers. Cuthill and McKee [2]

suggested a simple algorithm based on ideas from graph theory. Starting from a vertex of minimal

degree, levels of increasing "distance" from that vertex are first constructed. The enumeration is

then performed level-by-level with increasing vertex degree (within each level). Several variations of

this method have been suggested, the most popular being reverse Cuthill-McKee (RCM) where the

level construction is restarted from a vertex of minimal degree in the final level. In many cases, it

has been shown that RCM improves the profile of the resulting matrix. The class of CM algorithms

are fairly straightforward to implement and largely benefit by operating on a pure graph structure,

i.e. the underlying graph is not necessarily derived from a triangular mesh.

2.2. Self-Avoiding Walks (SAW)

These were proposed recently [3] as a mesh-based (as opposed to geometry-based) technique

with similar application areas as space-filling curves. A SAW over a triangular mesh is an enumera-

tion of the triangles such that two consecutive triangles (in the SAW) share an edge or a vertex, i.e.

there are no jumps in the SAW. It can be shown that walks with more specialized properties exist

over arbitrary unstructured meshes, and that there is an algorithm for their construction whose

complexity is linear in the number of triangles in the mesh. Furthermore, SAWs are amenable

to hierarchical coarsening and refinement, i.e. they have to be rebuilt only in regions where mesh

adaptation occurs, and can therefore be easily parallelized. SAW, unlike CM, is not a technique

designed specifically for vertex enumeration; thus, it cannot operate on the bare graph structure of

a triangular mesh. This implies a higher construction cost for SAWs, but several different vertex

enumerations can be derived from a given SAW.

3. Experimental Results

To perform a sparse matrix-vector multiply, y +-- Ax, we assume that the nonzeros of matrix A

are stored in a compressed sparse row format. The dense vector x is stored sequentially in memory

with unit stride. Various numberings of the mesh elements/vertices result in different nonzero

patterns of A, which in turn cause different patterns for accessing the entries of x. Moreover, on a

distributed-memory machine, they imply different amounts of communication.

Our experimental test mesh consists of a two-dimensiomfl Delaunay triangulation, generated by

Triangle [6]. The mesh is shaped like the letter "A", and contains 661,05,1 vertices and t,313,099

triangles. Tile mMerlying matrix w_s assembled by a._signing a random vMue to each (row, col-

umn) entry corresponding to the vertex endpoints (vt,,22) of the edges in tile mesh. This simulates

a stencil computation where each vertex needs to communicate with its nearest neighbors. The

final matrix is extremeiy sparse containing only 2,635,207 nonzeros. The number of floating point

operations required for a SPM\" is twice the number of nonzeros (5,270,414 for our test matrix).

3.1 Distributed- Memow Implementation

In our experiments, we use :he parallel SPMV routines in Aztec implemented using MPI. The

matrix A is partitioned into blocks of rows, with each block assigned to one processor. Two

routines are of particular interest: AZ_transform, which initializes the data structures and the

communication schedule, and AZ_mal;vec_mult, which performs the matrix-vector multiply. In

Table 1, we report the runtimes of these two routines on the 450 MHz Cray TaE at NERSC. The

original natural ordering (ORIG) is the slowest and clearly unacceptable on distributed-memory

machines. For hZ_tnal:vec_mul¢, the key kernel routine, RCM is slightly but consistently faster

than SAW, while METIS requires almost twice the RCM execution time. However, METIS, RCM,
and SAW, all demonstrate excellent sealability up to the 64 processors that were used for these

experiments. The pre_processing times in ,_Z_transform are more than an order of magnitude

larger than the corresponding times for AZanatvecamlt (except for ORIG where it is two to three

orders of magnitude larger).

hZ_ma_vec-mult

IIP IIORmI MrTISI RCM t SAW II ORIG

4 0.2281 0.0928 0.0457 0.0536 181.5561

8 0.1608 0.0464 0.0236 0.0290 207.5669

16 0.0798 0.0218 0.0120 0.0130 140.2694

32 0.0459 0.0104 0.0058 0.0065 21.0953
64 0.0269 0.0048 0.0029 0.0037 6.6822

METIS FtCM] SAW

0.5734 0.4186 0.4662

0.2956 0.2192 0.2661
0.1591 0.1217 0.1772

0.1324 0.1791 0.1244

0.1418 0.1581 0.1136

Table 1: Runtimes (in seconds) for different orderings on the Cray T3E.

To better understand the various partitioning/ordering algorithms, we have built a simple per-

formance model to predict the parallel runtime. First, using the T3E's hardware performance

monitor, we collected the average number of cache misses per processor. This is reported in Ta-

ble 2. SAW has the fewest number of cache misses. In comparison, RCM, METIS, and ORIG,

have between two and three times that number. Second, we gathered statistics on the average

comnmnication vohmm and the maximum number of messages per processor, both of which are

also shown in Table 2..METIS transfers the least amount of data, whereas RCM has the fewest

number of messages.

AvgCache Misses (10 _) AvgComm (64-bit words) Max Message Count

0.310 130 3

0.161 132 4

0.081 112 5

0.053 95 6

Table 2: Locality and communication statistics of hZ_matvecamlt.

In our model, we estimate r,he total parallel runtime as T = Tf + "/;n + Tc, where TI,T,n , and

:/_ are the estimated times to perform floating-point operations, to service tile cache misses, and

to communicate the x vector. Given that a floating-point operation requires 1/900 microseconds

and that each cache miss laten__T is 0.08 microseconds (both from product documentation), and

assuming that the MPI bandwidth and latency are 50 MB/second and 10 microseconds (both from

measurement), respectively, we can estimate the total runtime based on the information in Table 2.

We found a maximum deviation of 75% from the nmasured runtimes. The model showed that

servicing the cache misses was extremely expensive and required more than 95% of the total time

for METIS, RC.M, and SAW, and almost 80% for ORIG which has relatively more communication.

3.2 Shared-Memory Implementation

The shared-memory version of SPMV was implemented on the Origin2000, which is a SMP

cluster of nodes each containing two processors, some local memory, and 4 MB secondary cache

per processor. This parallel code was written using SGI's native pragma directives, which create

IRIX threads. Each processor is assigned an equal number of rows in the matrix. SPMV proceeds

in parallel without the need for any synchronization, since there are no concurrent writes. The two

basic implementation approaches described below were ta_ken.

The SHMEM strategy naively assumes that the Origin2000 is a flat shared-memory machine.

Arrays axe not explicitly distributed among the processors, and nonlocal data requests are handled

by the cache coherent hardware. Alternatively, the CC-NUMA strategy addresses the underlying

distributed-memory nature of the machine by performing an initial data distribution. Sections of

the sparse matrix are appropriately mapped onto the memories of their corresponding processors

using the default "first touch" data distribution policy of the Origin2000. The computational

kernels of both the SHMEM and CC-NUMA implementations are identical and were simpler to

implement than the MPI version. Table 3 shows the runtime of SPMV using both approaches with

the ORIG, RCM, and SAW orderings of the mesh.

SHMEM CC-NUMA

P oPac; I RCM I SAW oPaCl RCM I saw

1 0.3481 _ 0.253710.2505II0.3414! 0.2470 0.2437

2 0.1996 I 0.1502 I 0.1470 II 0.1892 0.1520 0.0910
4 0.1666 I 0.1376 [0.1343 II 0.1913 0.0250 0.0280
8 0.1688 I 0.1106 I 0.1042 II 0.0882 0.0035 0.0059

16 0.1997 I 0.1836 I 0.2062 II 0.0601 0.0016 0.0054

32 0.4829 I 0.4528 I 0.3590 II 0.0543 0.0058 0.0058

64 0.9471 I 0.9314 I 0.8913 II 0.0647 0.0149 0.0076

Table 3: Runtimes (in seconds) for different orderings running in SHMEM and CC-NUMA modes

on the SGI Origin2000.

As expected, the CC-NUMA implementation shows significant performance gain over SHMEM.

Within the CC-NUMA approach, RCM and SAW dramatically reduce tim runtimes as compaa'ed

to ORIG, indicating that an ordering algorithm is necessary to achieve good performance on dis-

tributed shaxed-rnemory systems. There is little difference in pas'allel performance between RCM

and SAW because both reduce _he number of secondary cache misses and the non-local memory

refe.rences of the processors. However, there is a slowdown in performance when using more than

I6 processors. This is due to the increased surface-to-volume ratio of the mesh partitions, which

cause the overhead of cache coherence and false sharing to gTOW with the. mmlbers of processors.

3.3 Multithreaded ImpleTnentatioT_

Tile Tera MTA is a supercomputer recently installed at SDSC. The MTA has a r,_dically different

architecture than current high-performance computer systems. Each processor has support for I28

hardware streams, where each stream includes a program counter and a set of 32 registers. One

program thread can be assigned to each stream. The processor switches among the active streams

at every clock tick, while executing a pipelined instruction. The uniform shared memory of the

MTA is flat, and physically distributed across hundreds of banks. Rather than using data caches

to hide latency, the MT,-k processors use multithreading to tolerate latency. Once a code has been

written in the multithreaded model, no additional work is required to run it on multiple processors.

The multithreaded implementation of the SPMV was trivial, requiring only MTA compiler di-

rectives. Load balancing is implicitly handled by the operating system which dynamically assigns

rows to threads. Special synchronization constructs were not required since there are no possible

race conditions in the multithreaded SPMV. Using 60 streams per processor, the SPMV runtimes

on 1, 2, 4, and 7 processors were 0.0812, 0.0406, 0.0203, and 0.0117 seconds, respectively. For this

multithreaded implementation, no special ordering is required to achieve parallel performance and

scalability. Results indicate that there is enough instruction level parallelism in SPMV to tolerate

the relatively high overhead of memory access. However, MTA runtimes will generally be slower

than traditional cache-based systems for load balanced applications with substantial cache reuse.

4. Work in Progress

In this paper, we examined different ordering strategies for SPMV, using three leading pro-

gramming paradigms and architectures. We plan to port the distributed-memory implementation

of SPMV onto the newly installed RS/6000 SP machine at NERSC. In addition, we will exam-

ine the effects of partitioning the sparse matrix using METIS, and subsequently performing RCM

or SAW orderings on each subdomain. Combining both schemes should minimize interprocessor

communication and significantly improve data locality. Future research will focus on evaluating
the effectiveness of the parallel Jacobi-Davidson eigensolver, when various orderings are applied to

the underlying sparse matrix. A multithreaded version of the Jacobi-Davidson algorithm will be

implemented on the Tera MTA. We also intend to extend the SAW algorithm to three-dimensional

meshes and modify it to efficiently address adaptively refined meshes in a parallel environment.

References

[1] D.A. Burgess and M.B. Giles, "Renumbering unstructured grids to improve the performance of

codes on hierarchical memory machines," Advances in Engineering Software, 28 (1997) 189-201.

[2] E. Cuthill and J. McKee, "Reducing the bandwidth of sparse symmetric matrices," Proc. ACM

National ConfeT_nce, New York, 1969, 157-172.

[3] G. Heber, R. Biswas, and G.R. Gao, "Self-Avoiding Walks over Adaptive Unstructured Grids,"

Parallel and Distributed Processing, Springer-Verlag, LNCS 1586 (1999) 968-977.

[4] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme for partitioning irregular

graphs," SIAM Journal on Scientific Computing, 20 (1998) 359-392.

[5] Z. Li, B. McCandless, Y. Sun, M. Wolf, and K. Ko, "Omega3P: A parallel eigensolver for the

DOE Grasld Challenge," PTvc. Particle Accelerator ConfeTvnce, New York, /999.

[6] .J.R. Shewchuk, "Triangle: Engineering a 2D quality mesh generator aal¢t Delaunay triangu-

lator," Applied Computational GeometT_j: Towards Geometric Engineering, Springer-Verlag,

LNCS [l,i8 (1996) 203-222.

