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Abstract

An adaptive buddy check algorithm is presented that adjusts toler-

ances for outlier observations based on the variability of surrounding data.

The algorithm derives from a statistical hypothesis test combined with

maximum-likelihood covariance estimation. Its stability is shown to de-

pend on the initial identification of outtiers by a simple background check.

The adaptive feature ensures that the final quality control decisions are

not very sensitive to prescribed statistics of first-guess and observation

errors, nor on other approximations introduced into the algorithm.

The implementation of the algorithm in a global atmospheric data

assimilation is described. Its performance is contrasted with that of a

non-adaptive buddy check, for the surface analysis of an extreme storm

that took place in Europe on 27 December 1999. The adaptive algorithm

allowed the inclusion of many important observations that differed greatly

from the first guess and that would have been excluded on the basis of

prescribed statistics. The analysis of the storm development was much

improved as a result of these additional observations.



1 Introduction

This article describes a new algorithm for statistical quality control of observa-
tions for use in data assimilation. The method is based on the so-called buddy

check, which assumes that the observables are spatially coherent, so that nearby

measurements (buddies) should tend to confirm each other. If an outlier ob-

servation cannot be supported by its buddies, then it may well be corrupt, in
which case it must be discarded. On the other hand, that outlier may contain

genuine information about an unexpected event, in which case it should be used.

Choosing one or the other of these two opposites can have a large impact on

the assimilated product. The main feature of our new buddy check algorithm

is that the rejection limits for outlier observations are adapted to the actual

variability of surrounding data. This results in relatively tolerant acceptance

criteria ill synoptically active situations, and in more stringent criteria when

conditions are quiet.

It is intuitively clear that some notion of reasonable differences among nearby
observations is required in order to distinguish good data from bad. Such dif-
ferences are due to the natural small-scale variability of the observables and

to the inherent uncertainties of the measurement process. It is also clear that

quality control is not a deterministic problem, in the sense that it is not gen-
erally possible to know with certainty whether an'observation is good or bad.

The performance of a quality test therefore must be measured in terms of prob-

abilities. Ideally we would like a test for which the probability of failing a

good observation is bounded by some small fraction (the significance level of
the test), while the probability of failing a bad observation (the power of the

test) is maximal. This is a classic problem in the theory of statistical hypothesis

testing (Lehmann 1997), which, however, can be solved only if the probability

distributions of both good and bad observations are known.

In a cycling data assimilation system, a short-term model forecast valid at or
near the time of the observations is available as a first guess or background

estimate for the observables. This can serve as prior information in a Bayesian

formulation of the buddy check (Lorenc and Hammon 1988), In that case the

probability distribution of the model forecast errors must be specified in addition
to that of the observation errors. The probabilistic formulation of quality control

is now well established in atmospheric data assimilation (Dharssi et al. 1992;

Ingleby and Lorenc 1993). Variants of the buddy check have been implemented
operationally in sequential statistical analysis schemes (Lorenc 1981, Woollen

1991) and more recently in the framework of variational assimilation (Andersson
and J_rvinen 1999). The buddy check is usually preceeded by various sanity

checks and other preliminary quality control procedures (e.g. Gandin 1988).

The main problem with the application of statistical quality control to atmo-

spheric observations is the requirement for locally accurate information about



forecastandobservationerrors.Errorcovariancemodelsusedin currentop-
erationaldataassimilationsystemsdonotaccuratelydescribethedependence
of errorson theflow. A qualitycontrol algorithm that relies on time- and

space-averaged statistics tends to enforce those very statistics, simply by re-

jecting observations whenever the local variability is larger than usual. This
can happen, for example, during the onset of an extreme weather event, when

the forecast is poor and the error variances are underestimated. Any available

observations are particularly important under those circumstances, so that the

challenge is to design an effective, but not excessive, quality control algorithm

that performs well in rapidly changing flow situations.

The outline of this paper is as follows. In Section 2 we present the derivation of

an adaptive and iterative buddy check algorithm. Given an initial classification
of the observations as either suspect or not, the buddy check can be regarded

as a statistical test of the hypothesis that the observed discrepancies among the

data are reasonable in view of their presumed probability distributions. The

test can be made adaptive by re-estimating the required error statistics on the

fly, using local non-suspect observations only. We prove that the algorithm
is stable, in the sense that the adaptive tolerances are bounded if the initial

identification of suspects is based on a simple background check. We then

illustrate the performance of the algorithm, and the function of the adaptive

feature in particular, by means of a simple contrived example.

In Section 3 we describe the implementation of the adaptive buddy check in the

Goddard Earth Observing System Data Assimilation System (GEOS DAS). A

background check, based on prescribed error statistics for the global analysis

system, is used to define the initial set of suspects for the buddy check, but does

not itself reject any observations. We briefly discuss the practical use of the

background check in monitoring the validity of the prescribed error statistics.
We then examine in detail the performance of the GEOS DAS quality control

for the analysis of a severe storm that took place in Europe on 27 December
1999. The development of this storm was well observed but poorly analyzed

by several operational centers. We show that the GEOS DAS quality control
allowed many observations into the analysis that would have been excluded by

a non-adaptive statistical algorithm. We also show that the final quality control

decisions were largely insensitive to the prescribed error statistics.

2 The adaptive buddy check

Let the vector w ° denote a subset of the observations which are subject to

quality control. We will be flexible with regard to the specific composition of

this subset, although we have in mind a mix of observations of different types,
located within a limited spatial region. In any case, the starting point for the



buddycheckisapreliminaryclassificationofallelementsofw° as either suspect
or not. The observations that are not suspect are buddies. Observations may

be flagged as suspect simply because they are outliers, or for any other reason.

The buddy check tests the extent to which suspect observations are supported

by their buddies. This is done by first predicting the values of the suspect
data from the buddies, and then to test whether the discrepancy between the

predictions and the actual observed values is reasonable or not.

The test can be formulated conveniently in terms of differences between the ob-

servations and some background estimate, which, in a cycling data assimilation

system, is usually a short-term model forecast w;. The observed-minus-forecast

residual vector v is then defined by

v = w °-h(wl), (1)

where h is the observation operator associated with w °. In general, this operator
involves nonlinear forward models relating observables (e.g., radiances) to model

variables (e.g., temperatures). For direct observations of forecast model state

variables h is simply an interpolation from model grid points to observation
locations. The residual v is often referred to as the innovation, because it

represents that part of the observational information which is not contained in
the forecast)

The initial partitioning of all observations as either suspect or not is impor-
tant, because only non-suspect observations are used in the prediction step of

a buddy check. If some, but not all, suspect observations pass the check, then

the partitioning should be updated accordingly and the buddy check should be

repeated. This leads to an iterative procedure that ternfinates when no addi-

tional observations pass the test. The remaining suspect observations are then

considered in gross error. We first describe a single iteration of the algorithm.

2.1 The optimal buddy check

The buddy check can be regarded as a statistical test of the assumption that

all observations are devoid of gross errors. We introduce the null hypothesis

v ~ H (o, s), (2)

or, in words, that all residuals are jointly normally distributed with zero mean
and known covariance S. We will later make allowance for the fact that this

represents an idealization, even under the best of circumstances. For now we

1This usage is imprecise and somewhat wishful in the context of data assimilation:
observed-minus-forecast residuals are innovations only when the assimilation is optimal. See,
for example, Anderson and Moore (1979, Section 5.3) for a correct definition of innovations.



assumethatrejectionof thenullhypothesisimpliesthatsomeofthedatamust
becontaminated.

Wepartitiontheresidualvectorv as

v_-[y1,
where x contains the residuals associated with suspect observations, and y those

associated with buddies. We then define corresponding blocks of the residual

covariance,

1s= s j (4)

Under the null hypothesis, the conditional distribution of x given y is multi-

variate normal,

xty ._ .IV"(x*, S*), (5)

with

x* -- SzySyly, (6)
-I T

S* = S_ - S_S_ S_, (7)

(Jazwinski 1970, Theorem 2.13). Each of these quantities is well-defined when S

is positive definite. In particular, x* = x*(y) is the optimal estimate of x based

on y (Jazwinski 1970, Theorem 5.3), and the matrix S* is the error covariance

of this estimate. The main computation involved in (6) is the solution of the

linear system Syz = y. Computation of (7) requires n additional solves of this
system, where n = dim x is the number of suspect observations.

With (5-7) in hand, we can apply rigorous statistical tests to the ,lull hypothesis.

The general idea is to compute the probability p that the suspect observations

are consistent with the null hypothesis. If p is smaller than some prescribed

threshold 5, we reject the hypothesis and conclude that it is likely that at least

some of the data contain gross errors. The value of 5 is called the significance
level of the test. 2

To be precise, (5-7) imply that the scalar quantity

= !(x-x*)r(s*)-l(x -x*) (s)
n

2The significance level bounds the probability that the null hypothesis is falsely rejected,

i.e. the probability of failing a good observation. Its value does not imply the probability of

gross error, and it is therefore misleading to state that the null hypothesis may be rejected

with confidence 1-(i. See von Storch and Zwiers (1998, Chapter 4) for a lucid discussion of

this and other subtleties associated with statistical hypothesis testing.



has a chi-squared distribution with n degrees of freedom (e.g., Tarantola 1987,

Section 4.3.6). It follows that for any r > 0,

,)
T"

v = p (_, > T2) = 1-P(_, T), (0)

where P(a, x) is the incomplete gamma function defined by

'ffP(a, x) - r(a) e-tta-Xdt" (10)

Figure 1 shows the probability p (X_ > r2) as a function of the number of suspect
observations n, and of the tolerance parameter r. The latter must be specified

by the user. For example, we read from the figure that if n = 16 and the value

of X_ is 62 = 36, then we can reject the null hypothesis at the 1% significance
level.
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Figure 1: Chi-squared probabilities as a function of the number of suspect

observations n, and of the tolerance parameter r.

Once we conclude that one or more of the suspect data are likely to contain

gross errors, we still need a procedure for marking individual observations for

rejection. A simple approach is to consider the marginal distribution of each
suspect residual element xi in x. All marginal distributions of a normal distri-

bution are themselves normal (Jazwinski 1970, Theorem 2.12), which, together

with (5-7) implies

x,ly " * * (11)~ 3,' (xi, S.),

with x_, Si*i the appropriate elements in x*, S*, respectively. It follows that

- > r "2 = e-t2/2dt. (12)



For example, when r = 3 we have p < 0.01, which means that any observation

for which Ixi - x_l > 3_ can be rejected at the 1% significance level. Equa-
tion 12 corresponds to (9) with n = 1, so that these probabilities are also shown

in Fig. 1.

In practice, the testing procedures and criteria for rejection should be designed

to depend on the nature of the observations. For example, if x corresponds

to a simultaneous rawinsonde temperature and moisture report, then we might

choose to reject both measurements if together they fail the chi-squared test.

Similarly, if a height profile obtained from satellite data fails the test, then

that profile should be rejected in its entirety. The advantage of simultaneously

applying a single test to multiple data is that error correlations among the

suspect residuals themselves can be properly taken into account. These and

other possibilities are a matter of strategy and of practical viability, depending,

for example, on available information about error covariances.

2.2 Adaptive tolerances

The procedure outlined so far presumes that rejection of the null hypothesis
implies a strong likelihood of gross errors in the observations. A test of the

null hypothesis, however, can also fail because of bad information about error

characteristics. Clearly (2) is an idealization even in the absence of gross errors.

For the buddy check to be effective, it must be reasonably robust with respect

to any prescribed statistical parameters.

The specification of the covariance matrix S in particular strongly influences the

buddy check results. For example, (12) shows that the tolerance for a univariate

test is proportional to the error variance Si*, which, by (7), depends on S. This

means that the leniency of the optimal buddy check depends on the variability
of the observed-minus-forecast residuals: the buddy check will less readily reject

outlier observations if the deviations are expected to be large. This behavior

is clearly desirable, but it crucially depends on the ability to specify" locally
accurate covariances for the data residuals.

We can show from (1) (e.g. Dee 1995) that the covariance matrix S of the

residual vector v is

S _ R+HP/H T, (13)

where R is the observation error covariance, H is the linearized observation

operator defined by

0h w=,,,_ (14)H=_w



andPI is theforecasterrorcovariance.Equation(13)wouldbeexactif fore-
cast and observation errors were statistically independent and if the observation

operator were linear. In practice, error covariances in operational data assim-

ilation systems are difficult to estimate and may be accurate in a space- and

time-average sense only.

The prescription of S inherited from the global analysis system therefore repre-

sents, at best, a reasonable first guess of the residual covariance matrix based

on time- and space-averaged statistics. The buddy check, however, is inherently

local in nature, and we should therefore attempt to make adjustments to the

tolerances. We can do so by introducing a parameter a to rescale the prescribed

covariances. Replacing the the null hypothesis (2) by

v ..0 ,_" (0, a2S), (15)

the maximum-likelihood estimate of a based on the (non-suspect) data residuals

y is given by

c_2 = lyTS_-'y, (16)
m

where m = dim y is the number of buddies (Dee 1995, Section 4). This com-

putation is practically cost-free, by virtue of (6). Equation (7) shows that to
rescale the residual eovariance S is equivalent to rescaling the conditional co-

variance S*. This in turn has the effect of modifying the tolerance for the buddy

check in (12), replacing r by c_v.

A uniform rescaling of the residual covariances as in (15) is reasonable only

if the observations are associated with a limited region in space. To alleviate

this restriction one could generalize (15) by introducing additional parameters

(Dee 1995), but this would complicate the algorithm. A practical implemen-

tation must therefore include a strategy for subdividing the observations into

suitable subsets, such that an adaptive buddy check with uniform rescaling can

be applied to each subset separately.

Adapting tolerances on the fly based on current observations requires some care,

to ensure that the algorithm remains stable. Equation (16) implies

(yTy)/m (yTy)/m
< a 2 < . (17)

._m_x(sy) .%,.(s_)'

where £min(Sv) and Am_,(S_) denote the smallest and largest eigenvalues of

Sy, respectively. Thus, the inclusion in y of a few extreme outliers can cause
excessive amplification of the residual covariances, resulting in a buddy check

which is unable to detect gross errors. This can be prevented by making sure
that all non-suspect residuals are initially bounded, as in

y_ < T_S_,, for i = 1,...,m, (18)



whererb is a prescribed tolerance parameter. This represents a simple back-

ground check, strictly based on prescribed statistics. We then have

., (trace S_)/m (19)
a 2 < rg Amin(S_) '

which gives an upper bound for the rescaling parameter that depends on the

prescribed covariances only. Note that Ami,, can be estimated based on (13);
for example, in case of independent observations with prescribed error standard

deviation a °, we have 0 < (a°) 2 < Ami,_.

The variance of the meuximum-likelihood estimate a given by (16) is propor-

tional to rn -1 for sufficiently large number of buddies m (Dee 1995, Section 4).

However, the estimate is not meaningflll when the number of buddies m is very

small. To account for this situation, we can introduce a smoothing parameter
m* > 0 and use instead

a2 = yTSyly- nt- m* (20)

re+m*

This has the effect of reverting to the prescribed covariance S when m << m*.

2.3 Summary of the algorithm

The following algorithm implements a simple background check, followed by an
iterative, adaptive buddy check, applied to a subset v of observed-minus-forecast

residuals with prescribed covariance S. The background check serves to define

the initial set x (°) of suspects, as well as to bound the non-suspect residuals

used for the buddy check. Upon completion, any residuals that remain in x (k)

are considered in gross error.

x (°) = {vi e v such that l<l > _bv/gS}

for k=l,2 ....

y = {vi E v such that vi _- x (k-l)}

x* = SxyS_ly
--1 T

S* = S_ - S.vS v S_

a2 = yTS_-ly + m*
dim y + m*

x (k) = {xi E x (k-ll such that lxi - x_] > ar_}

if dimx {k) = dimx (k-l) or dimx (kl = 0 then stop

(A.0)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

end



Sinceeachiterationresultsin adecreasein thenumberof suspectsby at least
one,thealgorithmisguaranteedto convergeinat mostn = dim x (°) iterations.

In practice, convergence is much faster. The user must specify the tolerance

parameters 7-b,v and the relaxation parameter m _. We usually take _'b=2 for the

background check; equation (12) then predicts that roughly 4.5% of all residuals
should be initially marked as suspect. For the buddy check tolerances we take

7- = 3, corresponding to a significance level of about 0.3%. With rn* = 0 the

algorithm fully adjusts the tolerances for the buddy check during each iteration,
based on the current set of non-suspects. Setting m* >> m effectively turns off

the adaptive feature in the algorithm, which then completely relies on prescribed
covariances.

2.4 A simple illustration

Our experiment simulates a one-dimensional domain with 32 equally spaced

observation locations, labeled i = 1,2,...,32. The analysis system operates

under the null hypothesis

v ~_(o,s), (22)

with

Sij={1½, fori=j,e -0"2(i-j)2 , otherwise.
(23)

This simple model represents residuals with a spatially uncorrelated observation

error component and a correlated forecast error component; see Dee and da Silva
1999.

The actual residuals, however, are distributed according to

v ,-, 2/" (b, a2S),

with

(24)

_J (25)
bj = 2 sin _-_,

= 2. (26)

Here b represents a bias in the residual, and a is a noise amplification factor.

Both b and a are unknown to the algorithm. This type of situation can easily

arise at a time when forecast errors are spatially coherent and larger than usual

in some region. The challenge for a buddy check is then to recognize that the

data do not contain any gross errors, even though many of the residuals may be

much larger than expected.

10
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Figure 2: Illustration of the performance of the iterated buddy check with pre-
scribed tolerances, for the contrived example described in the text. The solid

curves in the top panel show the actual expected range for the residuals. The
dashed curves indicate the tolerances used by the algorithm, which are based

on prescribed statistics.

Figure 2 illustrates what happens when the non-adaptive algorithm (m* :>:>m) is

applied. The circles in the top panel mark a single realization of (24) produced
with a random number generator. The solid curves indicate the actual uncondi-

tional expected range bj 4- va for the vast majority (about 99.770) of residuals.
The dashed horizontal lines show the unconditional range 9 4- T anticipated bv

the analysis system; all residuals that are outside this range (indicated by solid

circles in the figure) are initially considered suspect.

The center panel of Fig. 2 summarizes the situation at the end of the first it-

eration of the algorithm. For each suspect residual xi, an asterisk marks its

conditional expectation x_ given all non-suspect data. The vertical bars repre-

sent the conditional range x_ + r E. Notice that this range is always slightly
smaller than the unconditional range--more so when there are buddies nearby.
Three residuals are found to lie within the conditional range, and are there-

fore no longer considered suspect. After updating the set of buddies, a second

iteration of the algorithm does not change the status of any of the remaining
suspects. The algorithm then terminates. All observations marked by solid

circles in the bottom panel of Fig. 2 end up failing the buddy check.

Figure 3 summarizes the performance of the adaptive algorithm (m* = 0), for

the same set of residuals and using the same prescribed covariance information.

The second panel shows that, already after the first iteration, more of the sus-

11



Suspect (solid) and non-suspect (open) data residuals
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Figure 3: As Fig. 2, but for the adaptive buddy check. The tolerances (indicated

by the dashed curves) expand during the iterations to accommodate the actual

variability of the data.

pect residuals lie within the conditional range. The reason is that the algorithm

senses that the prescribed bounds are too conservative, based on the variability

of the initial non-suspects. The dashed horizontal lines now indicate the ad-

justed range 0 ± a_-, which has expanded slightly. Subsequent iterations allow

the remaining suspect residuals to be confirmed by the growing set of buddies.

The bottom panel of the figure shows that, in fact, all residuals end up passing

the buddy check. Note that any residual lying outside the final adapted range

(indicated by the dashed lines in the bottom panel) would have been rejected.

A critical safety feature in the adaptive algorithm is that all tolerance adjust-

ments are based on non-suspect data only. Therefore, any outlier observations

that are not supported by their neighbors will be rejected if they are initially

flagged as suspect. This condition on the initial partitioning is guaranteed by

the first step of the algorithm, which is a simple background check based on

prescribed statistics only. hi Lhe pathological case when all residuals fail the

background check the algorithm will reject them all. This situation can occur

in practice when an extreme event is observed by a small number of isolated
observations.

12



3 Implementation in GEOS DAS

The GEOS DAS Version 3 produces global atmospheric data sets at 6-hourly

intervals on a 1° x 1° latitude-longitude grid and on 48 vertical levels. The core

of the system consists of an atmospheric GCM (Takacs and Suarez 1996), a

physical-space statistical analysis system (PSAS) (Cohn et al. 1998), the sta-

tistical quality control (SQC) described here, and various interface functions.

Apart from conventional observations, the system accepts geopotential heights

retrieved from TIROS operational vertical sounder (TOVS) data, cloud-drift

wind retrievals, and SSM/I surface winds and total precipitable water. The

final, assimilated data products are obtained from the analyzed fields by means

of the incremental analysis update (IAU) procedure (Bloom et al. 1996).

The SQC is invoked just prior to computing the global analysis, and therefore

represents the final line of defense against the inclusion of bad data. All obser-

vations have passed various sanity checks and other preliminary quality control

procedures by the time they are presented to the SQC. Some may be marked sus-

pect for various reasons. Input for the SQC consists of observed-minus-forecast

residuals and a preliminary estimate of their variances, derived from prescribed

error statistics for the global analysis system. Observation error standard devia-

tions for most GEOS DAS data types were estimated using maximum-likelihood

techniques (Dee and da Silva 1999; Dee et al. 1999). Forecast error standard

deviations currently used in GEOS DAS are global, spatially variable estimates

based on monthly statistics of rawinsonde and TOVS observed-minus-forecast

height residuals (DAO 1996).

3.1 The background check

The SQC first performs a simple background check of all observations against the

6-hour forecast, as in (A.0). This test does not actually reject any observations,

but marks as suspect all residuals vi for which

2 T2[(a°) 2 + (a/)21. (27)v i _>

Here Tb is a tolerance parameter and o Iai,a i are prescribed observation and

forecast error standard deviations, respectively, appropriate for the observation

type and location.

The rate at which the background check flags data provides a useful consistency

check on the prescribed statistics. Equation (12) predicts that normal, indepen-

dently distributed residuals should fail the background check at an average rate
of about 4.5% when rb = 2, which is the value currently used in GEOS DAS.

Actual rates will vary even with correctly specified statistics, because residuals

are neither normal nor independently distributed. Consistently large deviations

13



Source Type Datacount Backgroundcheck Buddycheck

Rawinsondes (z) 466903 6.07 1.25
(u,v) 822 632 6.34 1.90

(q) 197 582 6.83 1.15

TOVS (z) 6 271 375 2.93 0.61

Aircraft (u, v) 638 136 8.18 1.67

Pilot balloons (u, v) 147 172 5.56 2.02

Cloud drift (u, v) 1 061 248 4.03 1.07

Surface stations (Psi) 790 857 9.41 1.22

Ships (Pst) 131 520 4.78 0.88

(u, v) 238 186 5.85 2.77

Buoys (Pst) 203 705 5.38 1.60

(u, v) 186 278 5.10 1.84

SSM/I (u, v) 4 638 572 0.27 0.04

Table 1: Summary of GEOS DAS Statistical Quality Control monitoring for

January 2000. Background and buddy check rates are in percents.

from the predicted rate suggest a problem with either the prescribed error stan-

dard deviations or with other assumptions about errors incorporated into the

analysis system. Intermittently large deviations may indicate transitional prob-
lems with the DAS, such as an exceptionally poor forecast or a breakdown of

the observing system. Background check results should be monitored for each

observing system and data type, broken down by region and vertical level.

Table 1 summarizes the SQC monitoring for GEOS DAS during January 2000.

The symbols z,u,v,q, and Pst in the second column stand for the analyzed

quantities geopotential height, zonal wind, meridional wind, water vapor mixing
ratio, and sea-level pressure, respectively. The first numeric column shows the

number of scalar observations presented to the SQC for each data type (counting

each wind vector report as 2 observations). The second numeric column shows

the background check rates, in percent. The final column contains the rejection

rates for the buddy check, which we discuss in the next section.

None of the actual background check rates shown in Table 1 exactly match the

ideal rate. Sea-level pressure data from surface stations are flagged at a higher
rate because the distribution of residuals for that data type is slightly peaked,

with thick tails relative to the normal distribution. The tails primarily result

from the use of (extrapolated) sea-level pressure data over topography. The low

14



rateforTOVSheightretrievalsappearstobeduetoanearlierremovalofoutliers
duringtheretrievalprocess.It mayalsoresultfroma statisticaldependence
betweenretrievalerrorsandforecasterrors,aswellasunderestimationby the
analysissystemof stratosphericforecasterrors.Tileexceedinglylowratefor
SSM/Iwindsindicatesthattheprescribedobservationerrorstandarddeviations
for thisdatatypearetoohighandneedto beadjusted.

3.2 The buddy check

Followingthebackgroundcheck,theSQCappliesabuddycheckto decidethe
finalstatusof all observations.Eachsuspectresidualis testedagainstnearby
non-suspectresiduals,usinganalgorithmessentiallyasdescribedin Section2.
Windvectordataareexcludedwheneitherof the components fail the buddy

check. Similarly, an entire TOVS height profile is excluded if any single height

residual from that profile fails the buddy check. The final column in Table 1

shows the average rejection rates for each of the GEOS DAS data types during

January 2000.

We introduced several approximations in the current implementation of the

algorithm in tile SQC. The main simplification is that the buddy check is uni--

variate, ill the sense that only data of the same type (but possibly from different

instruments) are used to test each suspect observation. In a multivariate check,

confirmation of an extremely low sea-level pressure observation, for example,

might be found in nearby cyclonic wind observations. Furthermore, the local

analysis performed in each buddy check uses a single iteration of the successive

corrections method (Daley 1991, Chapter 3) rather than a statistical interpola-

tion. It would be more elegant to call the analysis component of the DAS to

solve (A.2) in each instance, but that is currently not practical.

In its current configuration, the computational cost of the SQC represents about
6% of the total cost of a global analysis. The main portion of this is expended

during the first iteration of the buddy check, which is applied to all observa-

tions that are initially flagged as suspect. The majority (typically 85-90%) are

reaccepted after the first iteration. The cost can be significantly reduced, if nec-

essary, by increasing the tolerance parameter for the background check, which

would result in a smaller pool of initial suspects. Our current choice Tb = 2 is

conservative and could probably be increased without changing the final result

of the buddy check after convergence. The total number of iterations of the

buddy check needed for convergence is typically between 3 and 6.

In spite of the approximations, the buddy check as implemented in the SQC

retains the main features of the algorithm described in Section 2: it is based on

a local analysis of nearby data which is both adaptive and iterative. In analogy

with the simple contrived example presented in Section 2.4, we illustrate the
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performanceof theSQCusingthefollowingcasestudy.

3.3 Storm of 27 December 1999

Two severe storms hit Europe in succession at 06 UTC on 26 December 1999
and at 18 UTC on 27 December 1999, causing significant damage and a great

deal of media attention. Both storms were poorly predicted by many weather

services, in spite of the fact that they were well observed by a variety of ob-

serving systems. Preliminary indications are that the forecast problems were

largely due to inadequate data assimilation procedures, since many models were

able to predict the storms several days ahead but lost track of them in sub-

sequent short-range forecasts (P. Und_n, pers. comm.; see also the Official

SRNWP/EUCOS Report on the December i999 Storms, available on the in-

ternet at http ://srnwp. sma. ch/workshops/FinalReport, html). Because of

background errorcovariancespecificationsthat are inappropriatefor extreme

situations,the availableobservationswere interpretedincorrectly,and, insome

cases,were excluded from the analysisaltogether.At M4teo Francethe medium-

range forecastsofthe storms were reasonablygood, but a largenumber ofcrucial

surfaceobservationswere not assimilatedwhen the second storm hit the coast.

These observationswere excluded by a simple statisticalbackground check be-

cause the model first-guessbecame very poor (J.-N.Th_paut, pers. comm.).

To illustrate this problem, we show in Figure 4 the result of an experiment with

GEOS DAS in which the adaptive feature of the buddy check is switched off. The

three panels in the figure show the development of the second storm in a sequence
of sea-level pressure analyses. Each panel contains the locations of all available

pressure observations that took place within a 6-hour window centered at the

analysis time (some locations correspond to multiple observations). The color

green indicates that the observations at that location passed the background

check, yellow means that at least one observation failed the background check

but subsequently passed the buddy check, and red means that at least one

observation failed the buddy check and therefore did not enter the analysis. Not

shown are the variety of near-surface wind observations that were analyzed as

well, originating fi'om ships, buoys, and SSM/I retrievals. Both the background

check and the buddy check in this case are strictly based on prescribed statistics.

At 12 UTC and at 18 UTC the background check flagged a large number of

observations, at a rate much higher than usual because of the poor 6-hour
forecast. A fair number of these ultimately did pass the buddy check, but the

most crucial observations in the vicinity of the depression were rejected. The

analysis at 12 UTC shows a weak low of 989.3 hPa located over the Celtic Sea.
The actual low is further to the south-west, in the vicinity of 8W, 48N, where an

entire cluster of observations was rejected by the buddy check. The lowest three

in this cluster averaged 974.2 hPa, which is about 17 hPa below the analyzed
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Figure 4: Successive GEOS surface analyses showing the development of the

27 December 1999 storm, oblc_ned when using a buddy check whose

tolerances are based on prescribed statistics. Red disks mark the

locations of sea-level pressure observations that were rejected by the

buddy check, yellow disks correspond to observations that failed the

background check but subsequently passed the buddy check, and green

disks correspond to those that passed the background check.



minimum. At 18 UTC the depression over France is too weak by about 10 hPa;

the analyzed low there is 978.8 hPa, while the three lowest observations at that

time averaged only 968.8 hPa.

Figure 5 shows the GEOS DAS analyses obtained by using the adaptive buddy
check. Almost all of the observations that were flagged by the background check

were ultimately allowed into the analysis. The definition of the storm is now
much better. The analyzed low at the height of the storm is 973.6 hPa, which

is 5.2 hPa deeper as a result of the additional observations. The first-guess low

was 980.2 hPa, about 4.5 hPa deeper due to the improved initial conditions at

12 UTC. Although the model still has difficulty capturing the storm in its full

strength, the inclusion of the available observations in this case clearly improves
the assimilation.

We now take a close look at the observations that failed the buddy check. The

single rejected observation at 12 UTC, located near the center of the depression,

is a ship report of 879.8 hPa, which is clearly in error. On the other hand, for

the 18 UTC analysis a report of 971.3 hPa from a surface station on the French

coast was rejected, even though it was probably accurate. Three successive

reports were issued from that station, valid at 17 UTC (971.3 hPa), 18 UTC

(976.8 hPa), and 19 UTC (982.8 hPa). These values are consistent with a rapid
inland movement of the storm. The first report was rejected by the buddy check

because it differed greatly from the first-guess value of 983.6 hPa and could not

be confirmed by surrounding observations (including the two later reports from

the same station).

For similar reasons, seven sea-level pressure ship reports were excluded from

the 6 UTC analysis, all of which were probably accurate. These observations,
whose locations are marked by the four red disks in the top panel of Figure 5, all

took place toward the end of the 6-hour analysis window and showed a drop in

sea-level pressure of about 10hPa compared to reports just a few hours earlier.
In addition, there were some late wind reports from nearby buoys (not shown)

that indicated a change to easterly winds associated with a developing cyclonic
circulation. A multivariate buddy check might have been able to take advantage

of this information. If these data had been included in the analysis, the model

would perhaps have been able to detect the developing depression at an earlier

stage.

The underlying problem here is that it is not possible to accurately represent

rapidly moving storm systems when all observations within a 6-hour time win-

dow are treated as if they occurred simultaneously. This is clearly a shortcoming

of the assimilation system. Work is well underway to reduce the length of the

analysis window in GEOS DAS.

The most important practical advantage of the adaptive buddy check is that

the final quality control decisions are robust with respect to the prescribed
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forecast and observation error statistics. To demonstrate this we changed the

tolerance parameter for the background check, which has the effect of modi_'ing

the initial pool of suspects. The case just discussed uses r_ = 2, which results

in 57 suspects at 6 UTC, 153 at 12 UTC, and 186 at 18 UTC. We repeated

the quality control with rb = 3, which reduced the number of initial suspects to

10, 84, and 111, respectively. However, the final result of the buddy check was

unchanged for all observations.

4 Conclusion

We have presented an adaptive buddy check algorithm that locally adjusts the

tolerances for outlier observations, on the basis of the variability of the prevailing

flow. This adaptive feature ensures that the final quality control decisions de-

pend primarily on the surrounding observations and only weakly on prescribed

error statistics. This is an important practical advantage, since the error statis-
tics tend to be least accurate in situations that are difficult to forecast, which

is precisely when quality control decisions have their largest impact. Prescribed
statistics must still be used for the initial identification of outlier observations

in order to ensure the stability of the adaptive algorithm.

We illustrated the performance of the algorithm using two analogous examples.
The first of these used contrived observations, drawn from an error distribution

which is very different from that initially presumed. The second example was a

realistic case study based on the GEOS DAS analysis of an extreme storm event.
In both examples we first applied an iterative buddy check with fixed tolerances

based on prescribed error statistics, which led to the exclusion of many impor-

tant observations. We then applied the adaptive algorithm, which was able to

adjust the tolerances and bring in the great majority of the observations. Fm

the GEOS DAS case study we showed that the analysis of the storm was greatly

improved as a result.

The performance of the adaptive buddy check has been monitored since late
1998 in successive versions of the GEOS DAS, both in terms of data comets and

in individual case studies. We consistently find that the final quality control

decisions are not very sensitive to the various approximations that have been
introduced in the implementation of the algorithm. The main sensitivity, which

is to the prescribed statistics, has been largely removed by making the buddy

check adaptive. Strict adherence to the statistical theory is clearly less impor-
tant in this instance than a practical implementation that takes account of the

largest uncertainties in the problem at hand.
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