
Managing Distributed Systems with Smart Subscriptions

Robert E. Filmn Diana D. Lee

Research Institute for Advanced Computer Science
NASA Ames Research Center

Mail Stop 269-1
Moffett Field. California 94305

rfilman@arc.nasa.gov

Abstract

Caelum Research Corporation
NASA Ames Research Center

Mail Stop 269-!
Moffett Field, California 94305

ddlee @arc.nasa.gov

We describe an ,event-based, publish-and-subscribe mechanism based on using "smart subscriptions" to
recognize weakly-structured events. We present a hierarchy of subscription languages (propositional,
predicate, temporal and agent) and algorithms for efficiently recognizing event matches. This mechanism
has been applied to the management of distributed applications.

Introduction

This work arose in the context of developing a framework (the Object Infrastructure Framework, or OI1=)to
simplify creating distributed applications. That project developed technology to endow distributed systems
with better reliability, security, quality of service and manageability. OIF extended the standard "proce-
dure-calr' mechanisms of distributed object technology (e.g:, CORBA, Java RMI) to include discrete
wrapping injectors on the communication paths between components. By injecting the behavior for error
recovery, redundancy, security checks, intrusion recognition, priority queue management, and so forth, OIF
made substantial progress in separating and simplifying the first three classes of requirements: reliability,
security and quality of service [5].

However, much of manageability -- fault diagnosis, intrusion detection, performance analysis and
accounting [14] -- proved resistant to a pure injector approach. Injectors provided a locus for recognizing
managability events, but not a mechanism or architecture for reporting them. This suggested extending OIF
with an event mechanism. Critical issues in the design of that mechanism were: (I) defining what makes an
event interesting and (2) declaring to whom should an interesting event be reported.

We eschewed direct connections between event consumers and producers. Such an architecture is
brittle, requiring too much knowledge of the structure of a system in too many places--changes in the or-
ganization of event producers need to be reflected in every event consumer. Direct connection can also im-
pede critical activities of the producers to perform the event management, which might be as trivial as
bookkeeping.

A solution to these problems is to position an intermediary between producers and consumers, an
event channel. Producers funnel their events to the event channel. Consumers describe to the event channel

which events interest them. The event channel is responsible for forwarding the appropriate events to the
interested consumers. This notion of event channel also goes under the rubric "Publish and Subscribe."
Event consumers subscribe to the (interesting) events published by event producers.

Here we consider how to code event channels so that exactly the right events are delivered to the ap-
propriate consumers. We seek expressiveness without overwhelming communication cost. This is accom-
plished by directing only interesting events only to interested parties. Communidation costs far more than
processing, so it is better to expend effort checking that the communication is desired than to communicate
volumes of uninteresting data. Of course, local processing isn't quite free, either. We are thus addressing
two issues: (I) what subscription languages allow consumers to precisely express interesting events, and
(2) which algorithms allow event channels to organize the subscription space so as to efficiently recognize
events matching subscriptions,

Architecture

The two relevant interfaces for this discussion are event consumers and event channels. A consumer is an

object to which one can publish an event (encoded as a string). A consumer is entitled to do whatever it
wants with an event. The simplest consumer might just print the event on a debugging screen, write the

". Maflagin _ Dislriht,lCd Sysl,ams 0_07100

event to a log file, or update a database with some salient facet of the event. Any object can be an event

producer by composing a string that is a good event representation and invoking publish on some con-
sumer. The interface event channel extends consumer with a subscribe method. Subscribe takes

(I) a reference to a consumer,

(2) a description, in some subscription language, of the set of events interesting to that consumer,

(3) a description of what about the existing event and environment is to be reported to the consumer
(that is, the structure of an event to publish to the consumer), and

(4) optional signature information (discussed below) that can be used to optimize subscription algo-
rithms.

Subscribe returns a ticket for managing the subscription. Using that ticket, the subscriber can modify or

cancel a subscription. Event channels also include a method for obtaining the closure of the set of sub-
scriber interests--that is, a subscription that describes the union of all the channel's subscriptions.

Event channels, being consumers, also have a publish method. The implementation of publish in an

event channel considers the new event in light of the existing subscriptions (and, perhaps, past events) and
publishes that event (or some derivative of the event) to every consumer whose subscription matches the
event.

[n 0|]:, event producers can use not only the local arguments of their calls but also information from

the thread's environment in deciding if a particular event is worthy of publication. 0[]: arranges to have the
salient elements of this environment copied as part of the annotations of ordinary calls [5].]:or example, a

process could tag a particular call with some special symbol and recognize processes created as conse-
quences of that call as retaining that symbol in their environment.

In OIF, every virtual address space has one globally (within that address space) well-known event
channel. Any application or injector that has an event to report can publish to that event channel. Any con-
sumer that wishes to receive events can subscribe to its local event channel. Event channels on different

virtual machines can subscribe to each other. In this way, the publish and subscribe mechanism becomes
distributed, while the most appropriate local decisions are made about whether to distribute an event.

How do the various virtual machines become aware of each other? OIF offered two different mecha-

nisms. The first was to make the application was responsible for setting up the event channel network and

arranging appropriate subscriptions among the nodes of that network. We are currently exploring the aher-
native, where information about the event channel structure is distributed by the framework as part of
communications. This has an interesting "event horizon" event--knowledge of channels interested in the

effects of an action would travel as fast as that action and its consequences.

Events

Event systems usually support one of two different kind of events. Most event systems define strongly-
typed record-like event classes, where the class structure is globally known. In such a model, the manipula-
tor of an event knows exactly which fields it has. Often the subscription language consists of merely de-
scribing interest in all records of a given class or subclass. This has the advantage of giving the programmer

a reliable set of information on which to build--if I have an event of type t, I know it has fields x, y, and z.
It has disadvantage of requiring too much commonly shared information, both in space and time. We do not

want to demand that every event channel have knowledge of all kinds of events or even to posit the exis-
tence of an event definition repository. We expect the event structure to change, both as temporary event
types are created to answer the questions of debugging and as new event types are created as part of the
system evolution.

OIF takes the opposite tack. In OIF, events are property sets (name-value pairs), without system re-

strictions (or promises) as to the existence of any particular name-value pair in any particular event. OIF
provides a marshaling mechanism for converting event structures to strings for transmission, and an unmar-

shaling mechanism for reinflating them back to the property-value pairs. Thus, the string event representa-
tion:

"userid: Fred; time: 12:40:18; type: error; message: read unhappy maknarn"

would translate into an event object with four properties (userid, time, type and message) with the corre-
sponding (string) values. The interpreter is responsible for doing data conversion for numeric operators.

There arc specific notations for strings that represent remote object references and values that are them-
selves events.

--7=

_ Managing Di_,trihult.-JSyslcms 0_07/(X)

For debugging and system evolution, the property approach allows us to introduce new event fields

into a running system. [n terms of subscription languages, reference to the fields of events is straightfor-
wardly uniform. This has the further virtue that no common understanding of event structure definitions is

required across the distributed system. [t has the corresponding disadvantage that we lack compile-time

checks that structures will have properties not explicitly demanded in subscriptions.

Subscription languages

A goal of this work was to minimize uninteresting communications. Broadly, this suggests a richly expres-
sive subscription language, where a subscriber can precisely describe which events are of interest. How-

ever, the richer the subscription language the more effort is involved both at coding time in creating the
subscription interpreter and at run time in deciding if a particular subscription is satisfied by a given set of

events. In O[F, we created a series of subscription languages of increasing expressiveness. I In O[F, we

have four subscription languages: propositional, predicate, temporal and agent.

The propositional language deals solely in the existence of properties of events. A subscriber can express
interest in A, B, and C, and any event that mentioned (as properties at the top-level) A, B and/or C matches.

The predicate language provides a way to refer to the values fields of events (and subfields of contained

events), constants, and values from the environment; and to combine these values with relation_ (e.g., "less
than") and propositional connectives (e.g., "or," and "not") to form a logical well-formed formula. Using a
Cambridge-prefix syntax, a subscription matching error or warning events for user Joe would be:

(and (or (= type 'error)
(= type 'warning))

(= user 'Joe))

The temporal language loosens the prior restriction to single events. The propositional and predicate lan-

guages reference a single event at a time and, as a default, forward that event to the consumer. The tempo-
ral language allows for expression of relations among several events. Thus, one can talk about the existence
of events E 1, E2, and E3, such that E 1 has occurred before E2, which occurred before E3, and which share

a common user. We use JESS [6], a RETE-based forward chaining, rule-based expert-system shell for our
temporal matchin engine. In the temporal language, preceding subscription is

(event (time ?tl) (userid ?ul))
(event (time ?t2) (userid ?u2))
(event (time ?t3) (userid ?u3))

(test (< ?tl ?t2 ?t3))
(test (eq ?ul ?u2 ?u3))

To deal with the finiteness of memory, we guarantee only that the most recent n events will be available for

matching and that new subscriptions might recognize old events.

The agent language carries the implication of the Cambridge-prefix form to its logical extension. Subscrip-
tions are themselves programs, invoked by event occurrences and able to examine the local event reposi-
tory. This is thus a mechanism for distributing agents throughout a system. Since we have not yet imple-

mented an agent language, we have little to say about them except to note their existence at the top of the
language hierarchy and their straightforward implementation with any of the standard Lisp-like interpreters.

In operational terms, the subscription of a subscribe method expects a string. The event channel
parses this string with respect to the particular language. In our implementations, we used Cambridge prefix
form as the grammatical substrate of the various subscription languages, as it .is the simplest-to-parse recur-
sire language.

In this we are reminded of the hierarchies of automata, formal language grammars, and logics, where suc-

cessively elements extend the expressibility of simpler mechanisms, often at the cost of greater complex
computability. In practice, in both formal language theory and OIF, these structures are not always strictly
hierarchical.

.°

Managing Dismhuted Syslcnls 0_07/00

Event channel algorithms

We developed several algorithms to improve the efficiency of recognizing matching subscriptions: sig.

memo, l_ttice, compile and Rete. (We have implemented all but the fourth.)

Sig, memo and lattice rely on recognizing the signature of subscriptions. The signature of a subscrip-

lion, $(s) is set of event properties demanded by the subscription s. For example _,_("(and (or (= type 'error)

(= type 'warning)) (= user "Joe))") is {type, user}. We call the properties mentioned in an event, e, the

fields of the event, ,_(e). Both $ and _ can be represented with bit-vectors for fast subset comparisons.

Sig. Given event e, for each subscription, s, Sig checks that $(s) c F(e) before evaluating s. Sig is a quick

way of excluding certainly uninteresting events. Sig is appropriate for applications that generate a variety
of different events and use computationally complex subscriptions.

Memo. For each unique set $, Memo keeps a cache of those subscriptions for which $(s) c $. When an-

other event with fields $ arrives, Memo only needs to examine the subscriptions in the cache. On subscrip-
tion updates, Metro can either examine the power set of the signature of the changed subscription, updating

the corresponding memo values, or (in practice) clear the memo table. Memo is useful for situations where

the subscription set changes slowly and events with the same fields occur repeatedly.

Lattice extends Memo with a notion of subsumption. That is, if _x) ¢ $(y) and $(x) ¢: _e), then $(y) ¢:

e,c(e), and y could not match e. In general, the signatures of subscriptions form a lattice with respect to sub-

set. The lattice algorithm constructs the (sparse) lattice as a data structure. The lattice algorithm works by
"flattening" the lattice to a single path. Lattice handles subscription change more easily than Memo, and is

most appropriate is when there is a lot of subsumption in the subscription structures.

Compile. Each subscription can be viewed programmaticaily: if the subscription condition is met, then
perform the forwarding action. Compile treats the entire subscription set as a program by (1) sequencing

the subscriptions, and (2) performing arbitrary compiler optimizations on the resulting program. In particu-
lar, elements such as common sub-expressions can be moved forward so as to be computed only once, tests

such as (> x 3) can be placed so as to shadow (> x 7), and subsumptions can be realized by moving sub-
sumed rules into the then-parts of more general subscriptions. Compile is most appropriate for a relatively
static subscription set that contains a large number of common sub-expressions.

Rete. The first four algorithms deal with matching a single event to a single subscription. The temporal
language matches multiple events to a subscription. In our implementation, we used the less implementa-
tion of Rete [7] for pattern matching.

Which is best? The optimal subscription channel algorithm is a function of the expected distribution of
events and subscriptions. Some algorithms take advantage of an expected variety in the published events,

while others do better on related or repeated event types. Similarly, the amount of effort expended when a
new subscription is received can be worthwhile only given a particular frequency of subscription changes.

Applications

We have implemented the event channel mechanism described here in the OfF distributed computing
framework, and applied it in a demonstration application [8]. That application implements a simulation of

a distributed, competitive network management application. It uses injectors to achieve quality of service
(i.e., real-time performance), manageability and security. It used the event mechanism to dynamically drive
"inspector" user interfaces. The event mechanism also proved critical in debugging the application, particu-

larly as the injector mechanism could be set to generate events on every remote invocation. Events could
then be selectively scanned to get a trace of interprocess calls, and this trace could be transparently directed

to both visible graphic user interfaces and textual logs.
In general, in OfF one can arbitrarily and dynamically modify the injectors of proxies or set the de-

fault behavior of a set of proxies to include a particular injector. By making an injector that generates trace

events and applying that injector appropriately, the event mechanism can be made to track the patterns of
interprocess calls in the system.

Related work

Event models, In the taxonomy of the Framework for Event-Based Software [2], OfF's event mechanism

uses point-to-point, application-to-application communication. Modules have no explicit specification of

• Mar)a_ing Di,,l)ihulcd S)._,lelns {)7%t07/00

their interfaces. It supports dynamic system modification and allows tully abstract naming. Our publishers
are Barrett's informers; our consumers, listeners; and our event channels, routers. The subscription mecha-

nism effectively serves to do message transformation. We posit no delivery constraints beyond the underly-
ing distributed object framework. The local event channel on each virtual machine serves as a group. Ro-

senblum and Wolf [I I] describe a seven-model framework for event observation and notification. Within

that framework, our publishers are the invoker objects and subscribers are the objects of interest. Events are

the explicitly generated by invoicing the send event action, naming is implicit in the naming of event fields
(the property-based model), observation is by explicit subscription, information is by the action of a sub-

scription, pattern abstraction and filtering is by the pattern part of the subscription language, and the parti-
tioning arises naturally from the set of subscriptions made. We have no explicit time model, notification is

by distributed object technology calls, and the resources for sorting through subscriptions are provided by
the sender and the intermediary event channels.

Event implementations. Bates [3] argues for using a rule-based publish and subscribe system to debug
heterogeneous, distributed systems. Primitive events are defined and source code is annotated so that the

executing program generates event instances. Bates also usesa rule-based engine for complex event detec-
tion, fairly similar to Rete, though independently discovered.

The Elvin project is a publish-subscribe service that delivers notifications on the basis on the event's
content [12]. It has an event subscription language that allows subscribers to place some constraints over

the notifications, flexible definition of events that allow developers to define events as required, dynamic
definition of event types, and allows the creation of new events based on old events. Elvin also introduces

the idea of quenching that "allows event producers to receive information about what consumers are ex-
pecting of them so that they need only generate events that are in demand." In contrast to Elvin, which has
a single centralized event channel, OlF's event channels are distributed.

The Ariadne Debugger in TAU stores an execution history graph of events and allows the subscriber

to specify patterns using a simple subscription language that is capable expressing temporal relations
among several events but unable to express other simple prepositional or complex relations among events

[13]. To "compensate" for where the language lacks, Ariadne "provides a scalable, spread-sheet like inter-
face for exploring match trees."

The CEDMOS project architecture is composed of event-producers and event-consumers that are
connected through event-transformers. "The event transformers convert streams of incoming events into

different streams of events, which are ...of interest to the event-consumers" [1]. To facilitate the event

transformers, a graphical tool facilitates the definition of complex event from simple events.
Brant and Kristensen apply events to web-based notification. Their architecture includes the notions

of annotated lists, a well-worked-out datatype mechanism and a good implementation of filtering [4]. In-

termetrics [10] describes a design for applying events to doing debugging of distributed, components.
Luckham and Frasca apply event patterns, causal histories, filtering and aggregation to provide higher lev-
els of abstractions for managing distributed systems [9].

Summary and discussion

We have discussed the publish and subscribe mechanism in the Object Infrastructure Framework. This

mechanism has proved to be a powerful tool in debugging and managing distributed systems, supporting
functions such as fault diagnosis, intrusion detection, performance analysis, and accounting. Key elements
of this work are the ability to inject event generators into existing components existence within a frame-

work that provides a continuing environmental context, the use of unstructured events, rich subscription
languages, and selectable and efficient algorithms for subscription resolution. Topics for further work in-

clude (!) subscription-forwarding mechanisms that do not require tree-like branching, (2) security mecha-
nisms for subscriptions and event channeling (including the ability of an event generator to limit who could

notice his events), (3) quantifying the actual performance of different event-channel algorithms in realistic
cases, (4) implementing agent subscription languages, and (5) implementing subscription compilation.

The ideas expressed in this paper have emerged from the work of the MCC Object Infrastructure Project,

where Dr. Filman was on assignment from Lockheed Martin Corporation and have been further developed
at NASA Ames. We thank Stu Barrett, David Filman and Ted Linden for discussions on this subject and

Cecilia Aragon, David Korsmeyer, and Tarang Patel for their input on drafts of this paper.

:=.F

5

• Managing Di._tnfluted Sy_lcms O_O'//(X)

References

I. Baker, D., Cassandra, A., Rashid, M. CEDMOS: Complex Event Detection and Monitoring System.

Microelectronics and Computer Technology Corporation, 1998.

2. Barrett, D. J., Clarke, L. A., Tart, P. L., and Wise, A. L. An Event-Based Software Integration Frame-

work. A CM Transactions on Softwa)'e Engineering and Methodology 5, 4 (October 1996) 378--421.

3. Bates, P. C. Debugging Heterogeneous Distributed Systems Using Event-Based Models of Behavior.
ACM Transactions on Computer Systems 13, ! (February 1995), 1-31.

4. Bran&, S. and Kristensen, A. Web Push as an Internet Notification Service, W3C Workshop on Push

Technology, (Boston, Massachusetts, September 1997), http://keryxsoft.hpl.hp.com/doclins.html.

5. Filman, R. E., Barrett, S., Lee, D. D., and Linden, T. Inserting Ilities by Controlling Communications.

To appear in CACM. http:llic-www.arc.nasa.govlicldarwinloiflleolfilmanltexVoifloif-cacm-final.pdf

6. Friedman-HiU, E. J. Jess, The Java Expert System Shell. DANS98-8206 Distributed Computing Sys-
tems Sandia National Labs.,. Livermore, CA, (September 1998), http://herzberg.ca.sandia.gov/jess

7. Forgy, C. L. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artifi-
ciallnteUigence 19, 1 (1982) 17-37.

8. Lee, D. and Filman, R. Verification of Compositional Software Architectures. Workshop on Composi-

tional Software Architectures, Monterey, California, lanuary 1998.
http :llwww.objs.com/workshopslws980 l/papers/papetO96.doc.

9. Luckham, D. C. and Frasca, B. Complex Event Processing in Distributed Systems. Stanford University

Technical Report CSL-TR-98-754 (March 1998), ftp:l/pavg.stanford.edulpub/ceplfabline.ps.Z

10. Ress, J. Interrnetrics' Owatch Debugging Technology for Distributed, Component-Based Systems.
OMG-DARPA-MCC Workshop on Compositional Software Architectures (Monterey. California,

January 1997). http:llwww.objs.comlworkshopslws98011paperslpaperO58.html.

1 I. Rosenblum, D. S., and Wolf, A. L. A Design Framework for Internet-Scale Event Observation and

Notification. Proceedings of the Sixth European Software Engineering Conference/ACM SIGSOFT
Fifth Symposium on the Foundations of Software Engineering (September 1997), 344-360.

12. Segall, B. and Arnold, D. Elvin has left the building: A publish/subscribe notification service With

quenching. Proceedings ofA UUG97 (Brisbane, Queensland, Australia, September 1997).

13. Shende, S., Cuny, J., Hansen, L., Kundu, J., McLaughry, S., and Wolf, O. Event and State-Based De-
bugging in TAU: A Prototype. Proceedings of SPDT'96: SIGMETRICS Symposium on Parallel and

Distributed Tools (Philadelphia, May 1996), 21-30.

14. Stallings, W. SNMP, SNMP-2, and CMIP: The Practical Guide to Network-Management Standards.

Reading MA: Addison-Wesley 1993

6

• - r

