Goddard Space
Flight Center
National Aeronautics and
Space Administration

Component Technologies (cont.)

- Exploration of detector technologies and components and materials
required to support them
- Participate in RFI's and AO's when possible
- Development of assessment methods
- New technology development in fiber lasers
http://spaceflightnow.com/news/n0008/26fiberoptics/

VCSEL on CVD Diamond

Laser Repairable Chip on Board

NASA GSFC/Swales Aerospace
Technology Validation Assurance Team
Dr. Michele Gates, Dr. Henning Leidecker, Harry Shaw
NASA Goddard Space Flight Center
Jeannette Plante, Norm Helmold, Clay Eveland, Melanie Ott,
Norma Lee Todd, Dr. Mark Fan
Swales Aerospace

Reliability Goals \& Realities

Board Type	Part Number	Manufacturer	Function
6 U Processors	CR6400053NBC	OR Industrial Computers	Compac PCI Pentium Board
6U Processors	CTM6	OR Industrial Computers	I/O Transition Module
6U Processors	ZT5510C4R3P3S1M3	Ziatech	CPCI Processor Board
3U Processors	CPCI-3603 (103095)	Force	POWERCORE/CPCI Processor board
3U Processors	CPCI-3740 (104912)	Force	POWERCORE/CPCI Processor board (233 MHz)
Memory	104949	Force	POWERCORE/CPCI memory board
IP Carriers	CPCI-200-FP	SBS Greenspring	6 U IP Carrier Board
IP Carriers	CPCI-IPC	Alphi Technology	3U IP Carrier board
IP Carriers	CPCI-SIP	Alphi Technology	3U IP Carrier board
Analog Input	IP-320	Acromag	Analog Input
Analog Output	IP-220-16	Alphi Technology	16 channel Analog Output
Digital I/O	IP-UNIDIG-E-48	SBS Greenspring	DIGITAL I/O
Digital I/O	IP-UNIDIG-HV-8I160	SBS Greenspring	DIGITAL I/O
Digital I/O	IP-UNIDIG-D	SBS Greenspring	DIGITAL I/O
Digital I/O	IP-OPTO DRIVER	SBS Greenspring	DIGITAL I/O Optical Driver
Digital I/O	IP-445	Acromag	32 Channel, bus isolated Digital Output
Digital I/O	IP-440-1	Acromag	32 Channel, bus isolated Digital I/O $+/-4$ to $+/-18 \mathrm{Vdc}$
Serial I/O	SCC-04B	Alphi Technology	Quad RS422 serial interface
Serial I/O	IP-Serial	SBS Greenspring	Serial I/O
Serial I/O	MP-Serial	SBS Greenspring	Synch/Asynch Data Com
Thermistor IF	IP-Thermistor	SBS Greenspring	Thermistor card

"we cannot guarantee that the components on these boards will have been manufactured in the same lot code or even in the same process technology......"
"...mounting details and electrical connections can be furnished at an appropriate charge."
"Consecutive serial numbers ... can be supplied for a 10% price adder per unit plus a 16 week
lead time..."

Visual Inspection
Need to carefully inspect traces and solder joints for
evidence of the lack of quality control

Characterization
 Characterization

- Jumper wires not glued down, no insulation
- Hardware covered by different design revisions
- Heat damage (possibly from rework)

ar

- Solvent/cleaner residue
 Solvent/cleaner residue

eceived" units to withstand the intended
nderstand the engineering challenges
Thermal Mechanical
Electrical
Radiation Testing

- Destructive and non-destructive testing
- Environment Assessment \& Total Dose expected
- Mission/application specific test procedures
- Proton Testing - SEE \& Cumulative Dose
proton environment as high fluence tested board.
Board-level Testing Issues
Flight board, low fluence - confidence that devices on flight board respond similarly to

Probably hitting nearby devices on each side
Thermal Characterization
- Determine the heat producing parts through specifications, through testing with
thermocouples or by using IR imaging.
- Use thermal models to identify sufficiency of existing thermal paths. Identify
the system's thermal "ground"
- Identify the need for diffusion, conduction and convection mechanisms when
designing thermal management solutions.
Solutions may include, copper heat straps,
CVD diamond, fluid embedding IR Imaging Approach
- Understand emmisivity relationships (mapping, software)
- Controlled ambient environment
- Board by board survey for thermal couple placement
- Monitor currents
- Configuration Imaging
- Feed back data for modeling

THER	$A L$	MARGIN	$S P A N$	ED				
Board	Part ID	Part \#	Manufacturer	Description	Max Operating Temp (${ }^{\circ} \mathrm{C}$)	Thermocouple Data for Flight Configuration (${ }^{\circ} \mathrm{C}$)	Thermal Margin At $22.5^{\circ} \mathrm{C}$ Ambient	Assumed Thermal Margin At $60^{\circ} \mathrm{C}$ Ambient (${ }^{\circ} \mathrm{C}$)
Processor, Front	G	MPC970	Motorola	PLL Clock Driver	70	61.44	8.56	-28.94
UniDig-D	U31	SP485	Sipex	Lo Pwr Half Duplex RS-485 Xciever	70	59.53	10.47	-27.03
UniDig-D	U23	SP485	Sipex	Lo Pwr Half Duplex RS-485 Xciever	70	56.75	13.25	-24.25
UniDig-D	U20	SP485	Sipex	Lo Pwr Half Duplex RS-485 Xciever	70	54.82	15.18	-22.32
UniDig-D	U27	SP485	Sipex	Lo Pwr Half Duplex RS-485 Xciever	70	52.4	17.6	-19.9
SCC-04BH	U12	SN75174	π	Quad Diff Line Driver	70	50.19	19.81	-17.69
320 Module	U6	PGA203KP	Burr Brown	Instrumentation Amp	70	48.98	21.02	-16.48
320 Module	U10	74ALS990	TI	D-type Transpar. Read Ltch	70	48.97	21.03	-16.47
320 Module	U9	74ALS990	11	D-type Transpar. Read Ltch	70	48.42	21.58	-15.92
220-16 Module	U1	DAC4813AP	Burr Brown	Quad 12 Bit D/A Converter	85	60.82	24.18	-13.32
220-16 Module	U2	DAC4813AP	Burr Brown	Quad 12 Bit D/A Converter	85	60.56	24.44	-13.06
220-16 Module	U4	DAC4813AP	Burr Brown	Quad 12 Bit D/A Converter	85	60.18	24.82	-12.68
Processor, Front	AD	XPC603PRX166LE	Motorola	PowerPC 603e uProcessor	85	59.08	25.92	-11.58
220-16 Module	U3	DAC4813AP	Burr Brown	Quad 12 Bit D/A Converter	85	57.68	27.32	-10.18
Processor, Back	S	PLDE 2032-135L	Could not identity	Could not identify	N/Avail	54.46	Not Available	Not Available
320 Module	U12	5025-538A	Could not identify	Could not identify	N/Avail	53.96	Not Available	Not Available
Processor, Back	1	PLDE 1016-125LT	Could not identify	Could not identify	N/Avail	53.6	Not Available	Not Available
Processor, Back	B	PLDE 2032-135L	Could not identify	Could not identify	N/Avail	53.37	Not Available	Not Available
220-16 Module	U6	5024-512A	Could not identify	Could not identify	N/Avail	51.59	Not Available	Not Available
320 Module	U11	5025-537A	Could not identify	Could not identify	N/Avail	51.5	Not Available	Not Available
6 U Carrier	U1	PLXPC19060	Could not identify	Could not identify	N/Avail	51.29	Not Available	Not Available
Processor, Front	W	82371	Could not identify	Could not identify	N/Avail	50.3	Not Available	Not Available

Shock and Vibration - Know your launch vehicle's qualification level requirements

- Consider the placement of the parts and the clamping mechanisms
6u vs 3U footprint
mezzanine cards
large pin-out flat-packs
connectors - Characterize a "martyr" board for displacement \quad and resonant frequencies \quad - Ruggedize the boards with stiffeners, staking, \quad bolted down mezzanine cards, board edge clamping, etc.

> Sources can be the connectors, plastic packages, cleaner residues, cabling
> Re-evaluate the standard outgassing requirement's applicability for the project
Configuration testing can be done using SP-R-0022
Electrical
Functionality and Power Consumption - Application driven
Progress with Spartan 250 Boards
Procurement - Finished
Characterization - still need to review contamination issues
Ruggedization - tiger team coming to a solution for hot parts. Modeling of

solution in progress.
Methodology Plan in Draft: http://misspiggy.gsfc.nasa.gov/tva/cots/insertplan.htm
IR imaging/low speed wind tunnel
in progress for predicting
thermal behaviors in vacuum
Looking at the use of CVD
diamond for remediation

-Each assembly must be considered an individual
-Testing must be performed to limits defined by the
application
-Worst case operational modes must be defined by the
application software
-COTS Assemblies must be considered a Part

- Much more work must be done to understand how to
measure thermal and mechanical behavior at the
assembly level
-COTS buys schedule, not necessarily reduced cost

Dr. James Howard, Jackson and Tull Bruce Meinhold, Jackson and Tull
Harry Shaw

sea and ond
ice using LASER altimeter.
Three year mission with five year expendables.
311-INST-001 Level 2

Latchup immune components desired.
No destructive single event effects.

- Advanced JPL design of a COTS GPS Receiver
for spaceflight.
- JPL controlled and directed assembly processes.
- Spectrum Astro performed the majority of
assembly operations for ICESat Receivers.
- JPL restricted part "upgrades" to exact form, fit,
and function equivalent only.

-

Screen and qualify remaining commercial part lots

- Passive device screening and qualification test plans
(including sample sizes) were based on nearest
applicable military specifications. Screening included
burn-in or conditioning as applicable.
- Screening and technology characterization test flows
for Plastic Encapsulated Microcircuits (PEM) were
based on MIL-PRF-38535 and GSFC PEM Guidelines.
Screening included 100\% CSAM; 250 hour HAST for
technology characterization.

Of the 155 total EEE part types, 119 required screening.

rror.
ipment

Test facility
parts availability problems prevented fourteen (14) part
types from receiving any testing.

- ASIC, RF devices (filters, mixers, dividers, hybrid amplifiers), resistor networks.

No lot failed a final electrical PDA limit of 5\%
(Class S requirement).
- For PEM devices, majority of fallout (which was low)
occurred at initial electrical and visual/mechanical.
Time/temperature regression was not followed.
- JPL concern regarding overstress of PEM devices.
- Lack of vendor support made determination of upper
operational temperature limit difficult.
- Compliant burn-in times, with reduced burn-in
temperatures, were very large.
Part Issues

- Filters found to use low melting point $(+183 \mathrm{C})$ solder in their
construction.
- SAI informed of the low temperature solder and advised to use
appropriate assembly processes.
- Hybrid Phase Splitter
- Capacitive elements showed cracking indicative of thermal
overstress
$\quad \begin{aligned} & \text { - Capacitor specialist review determined no further degradation } \\ & \text { was expected. }\end{aligned}$
- Due to lack of up-to-date BOM, many lots which failed
DPA were designed out of flight system.

Part issues

品

Summary

wed 100%
\%
were discarded.
sıİed
qualuated with 32 rejects
No lots failed
characterization due to manufacturing/reliability defect.
- Low voltage ceramic capacitors which failed DPA for
dielectric thickness passed Humidity Steady State Low
Voltage (HSSLV) sample testing.

On-orbit environment is benign (very few temperature cycles
during mission life $(\sim 3),+0^{\circ} \mathrm{C}-+33^{\circ} \mathrm{C}$ worst case).
To date, flight receiver testing has precipitated only one part
-

failure.

- To date, both flight receivers have seen one thermal vac cycle and multiple temperature cycles without failure.
To date, each flight receiver has operated failure free for
thousands of hours.

UOIIPNI!S นUӘJIn - Resource limitations make it difficult to fully participate in
reviews and updates to military specifications such as
MIL-S-19500 and MIL-PRF-38535
- NASA still participates where possible on DSCC audits
and JEDEC coordination meetings
- Additional resources from the NEPAG are expected to
help
- Regardless of NASA/DoD action QPL/QML sources of
supply are expected to continue to diminish, especially for
microcircuits and semiconductors

New NASA Code Q Initiative in Parts
- New NASA Code Q Initiative in Parts
Engineering
- Improving parts management to address new
COTS environment
- Greater Coordination of Parts Engineering issues
between NASA Centers
- Automating procurement related tasks to
maximize application of engineers to engineering
problems

Impact
 0
 COT

- Competing with all other flight projects and
commercial industry for limited stocks
- Project turn-around times cannot absorb
retrofitting to replace bad parts
- Obsolescence can impact designs
- No time for qualification
- More diverse technologies than previously
available through the QPL system

- Focus turns to procurement/delivery issues
- Reliability margins are reduced as a
replacement for some qualification testing
- "Heritage data" is pursued as a way around
qualification testing
- Box level testing is pursued - the use of
COTS boards is pursued.

- ex. N+ +

