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What is attitude?

"Attitude’ means the orientation of a coordinate

frame fixed in the spacecraft body relative to a
reference coordinate trame.
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What do we observe?

* Angles or vectors to known references
Sun (Coarse sun sensor or digital sun sensor)
- Earth (horizon sensor or landmarks)
— Stars (star trackers or fine guidance sensors)
Magnetic field (triaxial magnetometers)
~ RF sources, like GPS (phase interferometry)
- Motion (inertial sensors




"I think you should be more
explicit here in step two."

Euler’s Theorem (1775)

o The general displacement
of a rigid body with one
point fixed is a rotation
about some axis

» r 1n reference frame,

b in body frame
* b=R(e, 9)r, where

R(e, ¢) = ee"+cos ¢p(/—ee") — sinp[ex].




Cross Product Matrix

* [ex] 1s the cross product matrix

[ex] = (_)}

L

* Defined so that [ex]v = exv

Rotation Matrix

The 33 rotation matrix R is

— orthogonal (transpose — inverse). and

- proper (determinant = +1)
Also called the direction cosine matrix (DCM)
Also called the attitude matrix. denoted by 4or D

Attitude kinematics equation  dA/ds = ~[ox]A,
where ® is the angular velocity or body rate vector

Specification of attitude requires three parameters




Euler Angles

e Parameterization as product of three rotations
R,(9, 6, y)=R(e,, ¥) R(e,, 0) R(e,. 9)
— Symmetric, jk=131,121,232,212,313,323
— Asymmetric, jk=123,132,231,213,312,321
— ‘Gimbal-lock’ singularity for some 6

e Generalized Euler Angles (Davenport, 1973)
— Three rotation axes are not coordinate axes
— Must have e, perpendicular to ¢, and ¢,

Other Parameterizations

« It is topologically impossible to have a global
nonsingular 3-dimensional parameterization

« Singular 3-dimensional parameterizations
— Rodrigues parameters, also known as Cayley
parameters or the Gibbs vector = etan(¢/2),

— Modified Rodrigues parameters, etan(¢/4)

 Nonsingular 4-dimensional parameterization
— Euler-Rodrigues parameters, or quaternion
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Olinde Rodrigues (1795-1850) ”

Son of a Jewish accountant in Bordeaux
Doctorate in math in 1816 from U. of Paris

- Rodrigues formula for Legendre polynomials
Banking and utopian socialism for 24 years

~ Important in introducing railroads to France
- Edited an anthology of workers™ poetry

Published his seminal paper on analysis of
rotations in Liouville’s Journal in 1840

Why Quaternions?

4-dimensional non-singular parameterization
a=[q, ¢4- ¢;]" “esin(¢/2), ¢, cos(¢/2)

— One constraint, |¢|> = 1
Rotation matrix, using half-angle formulas, is

R@) = (g7 =14l 1+ 2qq" - 24,[q x]
Simple product rule R(q)R(¢”) = Rq®q")
Quaternion kinematics dg/d =L @ ® q




ttitude Determination
Methods

 ‘Single Frame’ Methods
— Ad hoc methods
— TRIAD (Black, 1964)
— Optimal methods (Wahba’s problem, 1965)
* Filters
— Extended Kalman Filter (EKF)
— Hg, filter (Berman, Markley & Shaked, 1993)
— Predictive filter (Crassidis & Markley, 1997)
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Hubble Space Telescope (HST)

. » Launch Apnl 1990

{, T - Mass = 11000 kg

~ - ’ * Pointing = 0.007 arc seconds
' ’”&‘ !rt » Attitude sensors:

A l, — Fine Guidance Sensors
~ ‘-—g - Gyros

Y ~ — Star trackers
B f — Sun sensors
j Magnetom eters
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Solar, Anomalous, and

Magnetospheric Particle Explorer

¢ Launch July 1992

> * The first Small Explorer
P LN (SMEX) mission
&

\v_/é{,’: . Mass = 160 kg
o Pointing = 2°
Attitude sensors
— Sun Sensors (0.25°)

— Magnetometers




SAMPEX Science

Small Explorer Satelllte Fmds Radlatlon Belt
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Two Contrasting Missions

» Differences
— HST pointing six orders of magnitude finer
— HST more complex, uses more sensors

o Similarities
— Onboard attitude determination

— Programmable digital computer

—HST gyroless safemode uses the same sensor
information as SAMPEX




SAMPEX Attitude

Determination

* TRIAD i1s used tor attitude determination
— A “single frame’ method
— Measurements at one instant of time
* Measurements represented as (two) unit vectors
— Direction from the spacecraft to the Sun
— Direction of the Earth’s magnetic field
— Coordinates in reference and body frames
— Minimum number required for a solution

TRIAD (Black, 1964)

* Orthogonal triad of body frame unit vectors:
b, = spacecraft-to-Sun unit vector
b, = perpendicular to Sun and magnetic field
b; =b,xb,
* Corresponding triad of reference frame vectors
r,, I,, r; from ephemerides and field models

- A=[b b,b][r, r, r,]T=% b rT
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Wahba’s Problem (1965)

* Optimal estimate from » vector observations
* Find the proper orthogonal 4 that minimizes the
loss function, with positive weights a,.
L(4)=5Z a;|b,— Ar)?,
where {b.} are the body frame unit vectors, and
{r,} are the same vectors in the reference frame.
* Can write L(4) = X. a,— trace(4BT), where

B=X.abrT

1717171

Procrustes Problem

* Wahba’s problem is equivalent to the Procrustes
problem: to find the orthogonal matrix A4 that is
closest to B in the Frobenius norm, defined by

\M||*=%, M,*=trace(MM™)
* ll4-B||*= trace[(4 - B(A—B)"]
= trace(4AT)—2trace(4 BT) +trace(BBT)
* Since trace(44T)=trace(I)=3,
this is minimized by maximizing trace(4 B7)

Cxliody
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Davenport’s ¢ Method (1977)

* A =g QT+ 2qqT - 2¢,[q .
1S a homogeneous quadratic tunction of (¢, SO
L(A) = X, a,~ trace(4B™) = X, u, - ¢"Ky,
where K is a symmetric, traceless 4x4 matrix

whose elements are linear in the elements of B.

* The optimal quaternion 4o 18 the eigenvector of
K with the maximum eigenvalue Anecc:

Faster (but less robust)
Solutions of Wahba’s Problem

* Shuster’s QUaternion ESTimator (1978)
— Solve the equation det (A [ — K) =0 iteratively,

starting from A= X a = A+ I(4
— Then simple matrix algebra gives Dot

— Error covaniance is P=[ X, a,(/-b, b)),

nax opt)

if weights are inverse measurement variances.
* Mortari’s ESOQ (1996) and ESOQ2 (1997)
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My Algorithms for Solving

Wahba’s Problem
* Singular Value Decomposition Method (1987)
B = U diag([s,, s,. s;]) VT, then App = UVT
with U, V proper orthogonal and s, > s, > |s;].
P=U diag([(s,ts3) ~'.(syts)) (s, +sy) DUT
* Fast Optimal Attitude Matrix (FOAM, 1992)
Aoy = ' [(CHIBI2)B + A, adiB + BBTB),

w1th§ KAy detB and k=YA__2—||1B|?)
P={\(xI+BBT)

/Tmnfall Measuring

Mission (TRMM)

== + [aunch November 1997
' - Mass= 3500 kg (largest
.. % ever built at GSFC)
N - Pointing = 0.2°
- _* Attitude sensors:
1 — Static Earth sensor
— Gyros
— Sun sensors
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TRMM Attitude Determination

* Science mode uses Ry, (vaw, pitch, roll)
—Relative to an Earth-pointing reference
— Earth sensor gives pitch and roll directly
—yaw determined from gyro and sun sensors
— Gimbal lock would be at pitch = 90°

* Independent contingency mode

— Uses gyros, sun sensors, and magnetometer
— Quatemnion EKF




onll MNaza
icrowave Anisotropy Probe -

(MAP), a MIDEX

Launch November 2000
L2 orbit, 1.5 million km
behind the Earth

Mass = 830 kg
Pointing = 0.03°
Attitude sensors:

— Star trackers

— Gyros

— Sun sensors

/’ﬁcience
2.728 K + 200 uK

g




B 3 Months

#72 +———— 2 Minute Spin
1 Hour Precession ———»

6 Months

MAP Attitude Determmination

* largetattitude is Ry (), 1. 22.5°, @ 1)
relative to a Sun-pointing reference
Wy, 1 revolution/hour about Sun line

(4 - 0.5 revs/minute about spacecraft = axis

* Attitude determination is a quaternion EKF,
using gyro, star tracker, and sun sensor data
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Quaternion EKF

Straightforward “additive’ EKF has ¢ = ¢, +Aq
EKF uses error covariance P, , = E{(Ag)(Aq)"}
The normalization constramt is, to first order,
1=1g1 =1qegl* + 2(Aq) ¢ = 1+ 2(Aq) g
So (Aq)"q,,=0 to first order in the error.

* Thus P, q., = E{(Ag)(Aq)"} g = 0.

* The covariance is not positive definite.

* What to do?

s

,

.

Multiplicative Quaternion EKF

* q¢= ¢ ® q,,, with & and ¢, unit quaternions.

* Use a local nonsingular 3-dimensional
parameterization x of dq (e.g. the Gibbs vector).

* The multiplicative EKF filters x instead of ¢.
* P, ,=E{xx"} is nonsingular.
* After an update, g, is reset with x information.

* This method was invented in 1969 (SPARS), and
has been used in NASAdspacecraft since 1978

CorsE
e iy




Swift Gamma Ray Burst
Explorer, another MIDEX

¢ * Launch 2003

* Mass = 1300 kg
* Pointing = 3 arc seconds
* Attitude sensors:

— Star trackers

Ring Laser Gyros
-~ Sun sensors
— Magnetometer

Summary

Attitude requires 3 parameters. but there is no
global nonsingular 3-d parameterization

Onboard attitude determination is the norm.
using either ‘single frame’ or filtering methods

Several mathematical representations of attitude
are used, often on the same spacecraft:
quaternions are used in the EKF and QUEST

Attitude determination precision requirements
vary over at least six orders of magnitude




