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I. INTRODUCTION

Writing autonomous software is complex, requiring the

coordination of functionally and technologically diverse
software modules [Bonasso et al. 9"/] [Currie & Tate 91]

[Firby 89] [Georgeff & Lanskey 89] [McDermott 92]

[Musliner et al. 93] [Simmons 92]. System and mission

engineers must rely on specialists familiar with the

different software modules to translate requirements into
application software. Also, each module often encodes the

same requirement in different forms. The results are high

costs and reduced reliability due to the difficulty of

tracking discrepancies in these encodings. In this paper we

describe a unified approach to planning and execution that

we believe provides a unified representational and

computational framework for an autonomous agent. We
identify the four main components whose interplay

provides the basis for the agent's autonomous behavior: the

domain model, the plan database, the plan running module,

and the planner modules. This representational and

problem solving approach can be applied at all levels of the

architecture of a complex agent, such as Remote Agent. In
the rest of the paper we briefly describe the Remote Agent

architecture. The new agent architecture proposed here

aims at achieving the full Remote Agent functionality. We

then give the fundamental ideas behind the new agent

architecture and point out some implication of the structure
of the architecture, mainly in the area of reactivity and
interaction between reactive and deliberative decision

making. We conclude with related work and current status.

transition the system to a specified state for a specified

period of time. We define robust as the ability to overcome

obstacles encountered due to uncertainty in the

environment or system that would normally prevent the

achievement of a goal. Finally, ILk was designed so that

operational constraints could be explicitly represented in
models. RA would use these models to make sure that these

constraints are not violated regardless of the commanded

goals.
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[I. LAYERED AGENTARCHITECTURES:REMOTEAGENT

The Remote Agent (RA) was developed at the NASA Ames,

Research Center and at the Jet Propulsion Laboratory as an

autonomous control system capable of long-term, high-

level, closed-loop commanding of spacecraft and other

complex systems. RA was demonstrated by running on-
board the Deep Space I (DSI) spacecraft and controlling

its operations for a total of two days in May 1999 [Bernard

et al 981. Unlike traditional spacecraft command

sequencers, RA was designed to be goal-achieving and

robust. We define goal-achieving as the ability to
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Figure 1: Remote Agent layered architecture

The RA architecture achieved these specifications by

integrating a constraint-based planner/scheduler (PS)

[Jonsson et al. 00], a model-based truth maintenance

system with diagnosis and recovery capabilities called MIR
[Williams & Nayak 961, and a reactive executive called

EXEC layer [Pellet al. 991, into a layered architecture

shown in figure I. Each layer uses a different modeling



language and a different way to specify problem-solving
control.

At the highest level is PS, which uses a high-level

declarative modeling language (HSTS DDL) to define the

state machines and the temporal constraints needed to

create valid plans. In order to reduce the search time to

create a valid plan. developers limit the possible actions PS

considers to the highest level possible without sacrificing

the needed expressiveness. For the DSI RA, which shared

a 20 Mhz CPU with the System Software, the response

time between a plan request and the plan from PS was
between I-4 hours.

The Executive (EXEC) comprises the second. It uses a

reactive, executive language ESL, an extension of
LISP[Gat 96]. ESL defines how to execute the actions

used by PS. This requires specification of how to achieve

the success states associated with each action using low-
level commands to System Software. The system is

procedurally described at level of abstraction higher than

that of low-level commands in order to enhance reactivity.

On DSI, EXEC was required to respond to any event it
handles within 4 seconds in the worst case.

EXEC relies on MI (Mode Identification) to do state

estimation and to notify EXEC when a state it is watching
changes. In order to do this, MI must model the system at

a lower level than EXEC. For example, MI may need to
model interactions between several sensors in order to
determine whether the state of a thruster is ON or OFF.

Because MI is in the control loop between EXEC and the

System Software, it is important that MI be responsive. It
achieves this be limiting its low-level modeling to a

qualitative, declarative language. MR (Mode Recovery) is

used to determine the least costly path from the state MI

estimates the system is in to the one EXEC specifies it

should be in according to the plan without passing through
states EXEC marked as invalid. For DSI, the maximum

response time for MR was 5 seconds.

Using different problem solving modules with different

representationlanguages at each level had a direct

advantage.In largepartthe modules constitutingRA were

based on technology already available.For DSI itwas

thereforepossibleto concentrateon the stillvery hard

problem of weaving thesemodules intoa single,coherent

agent. Also, one may argue that the representationand

problem solvingcapabilityof each module could be tuned

to maximize performance at that level. However, this

heterogeneousapproach made itdifficulttovalidateallthe

models and proceduresateach leveland toinsurethatthey
did notconflict.

III. A UNn_ED ARctdrmcrup.E

Analysisof RA's functionalityhas shown thatitshouldbe

possibleto providea single,unifiedframework thatcan

then be used to provide functionality at each of RA's levels
of abstraction.

In the new framework, the fundamental unit _f execution is

a token, a time interval during which the agent is executing
a procedure. A procedure has the following general form:

P(il, i.,..... i, ") _h. o: ..... o,,,; s)

Each i, represents _)ne of the n input arguments (n >= 0),

while o i is one of the m return values (m>= 0). A procedure

always returns a status value s whose main function is to

signal an exception due to anomalous execution conditions

of P. Normally, a procedure returns a value for all of its oj
return values and the value nominal for s at the same time

of the last returned oj. To execute a procedure the value of
all input arguments i, must be known. If so, P can be called
and the time of invocation of P is the token start time. The

procedure continues execution until it returns, either in a

nominal or exceptional state. This time corresponds to the
token end time.

Figure 2 gives an overview of the basic components of the

new architecture. The agent executes tokens only after they

have appeared in a plan maintained in a central constraint
database [Jonsson & Frank 99]. The database is

partitioned in a series of parallel timelines, each

representing the evolution over time of a dynamic property

of a subsystem. To be considered for execution, a token

must lay on an appropriate timeline. Sequences of tokens

on a timeline will be executed sequentially and in parallel
with token on other timelines.
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Figure 2: Unified Agent Architecture

Therefore, each timeline can be seen as a thread of

execution that calls procedures according to the tokens in

the plan.

At any point in time, the constraints in the plan describe the

possible ways in which future tokens can be executed. Each

token parameter (input argument, return value, start and

end times) has an associated variable. For example, there is
a variable for a token start and one for its end, and a

variable for each input and output parameters. All
variables can be connected by explicit constraints. For

example, the start and end time variables of each token are



related by an explicit duration constraint. The constraint

network implicitly restricts the possible value of each

argument. Ass(x:iated with the constraint database are

constraint propagation services that, by imposing

appropriate levels of consistency (e.g., arc consistency or
path consistency), restrict the range of variables to

appropriate sets of values (possibly a singleton). For
example, consider a simple case with two timelines, one

representing the actions of a robot and the other

representing the state of the robot's on-board battery. The
plan may contain a robot action

recharge ([10, 20] "-) ,'nominal)

This takes as input the level of charge of the battery and is
expected to return in a nominal state. The fact that the

input argument has an associated [10, 20] range means that

the actual value of the input battery state of charge must be

between 10 and 20 units for the procedure to be legally

executed in the plan. The exact value of the input

parameter could be obtained by executing a token

read_state_of charge(--) soc) on the battery state of charge

timeline. Such a token could be present in the plan and
constrained to execute before the recharge token. The

communication of the state of charge between the two

procedures can be obtained by a co-designation constraint

between the output of read_state_of_charge and the input
of recharge.

There are two possible sources of plan database
constraints. The first source is an external user who

communicates goals to the agents as (partial) networks of

tokens. The second is the agent's model of the domain. For
example, the domain model could contain the constraint

that before recharging the battery, it is necessary to
read_state_of_charge from the battery. If this is the case,

then recharging will not be executable unless such model

constraint is satisfied in the plan at the time of execution.

Procedures can be executed only if the value of their
parameters is consistent with the plan database constraints.

This does not necessarily mean that constraints coming
from all tokens in the plan must be completely consistent.
It is possible to allow model constraints to be unsatisfied or

for constraints to be inconsistent. The only consistency
requirement is local and pertains to the token that is

currently being executed or about to be executed.

Therefore, the agent can tolerate plan database

inconsistencies as long as their effect does not impact the
procedures currently in execution. This could be obtained

similar to classic repair-based scheduling methods, by

relaxing some constraint in the plan and attempt to satisfy
it later. The agent should also have a reasonable belief that

there will be a way to fix the inconsistency before the
tokens involved are considered for execution. However the

latter is not a strong requirement of the agent architecture

since usually it is possible to degrade performance by
rejecting lower priority goals.

The core execution component of the agent is the plan
runner. The plan runner is very simple so that it can be

extremely efficient. Its only responsibility is to terminate

the execution of a token and start the execution of the next

on the timeline. This process requires checking two
conditions: (I) consistency of token parameters with the

plan constraints; and (2) support for the token according tc
the domain model.

Checking plan constraints is done locally when the

executing token terminates. Checking is local and translates
into verifying that the actual procedure return values and

the token end time fall within the set of possible values
identified by the plan. If so, then the domain of the variable

associated with the return value is restricted to the actual

return value and constraint propagation in the plan database
automatically communicates the effect of this value to the

the unexecuted part of the plan. Similarly, the actual end

time for a token is propagated to the rest of the plan.

Checking model support for a token is done before starting
its execution. A new token must start when the token that

immediately precedes it on the timeline ends. Before

invoking the token procedure, the plan runner checks

whether the procedure is indeed supported by the model in
the plan. This means that there must be a set of constraints

in the plan that correspond to a set of requirements

necessary for the token execution according to the domain
model. If this is the case, the plan runner checks whether

the procedure can be called. This requires all of its input
variables to be bound to a single value. If so, the plan

runner calls the token procedure with the input variable
found in the plan.

It can be that one of the two conditions above may not be

satisfied. This can happen if the output returned by a

procedure does not match the set of possible return values

anticipated in the plan, or if some constraints required by

the model are missing in the plan. For example, the plan
runner may be on the verge of executing a recharge token

but the plan may not have an explicit constraint connecting

recharge with a specific past read_state_of_charge token.
In this case the plan runner interrupts execution and signals

an appropriate exception. In the recharge token case, the

exception will signal that there is a "model flaw" in the
plan database that needs to be fixed. Within a fixed amount

of time, the execution latency [Muscettola 98], the plan
runner is expected to receive a notification that the flaw has

been fixed and complete the initiation of the new

procedure. If this does not happen, then the agent will have
irrecoverably failed and some low-level fault protection
behavior will take over control.

Resolution of the execution time exceptions is the

responsibility of the third component the architecture, the

planner. Actually, the architecture allows for the use of I

set of planning modules, potentially using different internal

logic to work with different scopes. All of these

satisfy the same input/output behavior: given an initial plan

database, a planner generates a new plan database that



satisfiessomegiven plan quality criterion [Jonsson 001. For

example, the plan quality criterion may require that all

tokens present in the initial plan database be present in the

final plan and be fully causally supported. This may require

removing inconsistencies present in the initial state by

rescheduling tokens, and generating new tokens and

constraints according to the requirements of the domain

model. A planner can be invoked in a reactive or proactive
fashion. The first case occurs after an execution time

exception, the second when the agent anticipates potential

problems in the future and asks the planner to intervene.

We will discuss later how this can be accomplished. Here

we want to point out that there is no limitation on how

small a planning problem could be, provided that the

generated plan resolves the plan flaw that caused the

invocation of the planner in the first place. For example,
consider our example of an unsupported recharge token.

The plan database may contain a previously executed token

that invoked read_state_of_charge. On the basis of the

domain model it may be determined that the result of that

procedure invocation is still viable as an input to recharge.

Therefore, the planner may simply create the temporal

constraint and the parameter co-designation constraint from
read_state_of_charge to recharge. Subsequent constraint

propagation will propagate a unique value for the input

parameter of recharge. The plan quality criterion may now

allow the planner to stop and signal the resolution of the

flaw. The plan runner can now resume execution and call

recharge.

[V. IMPLICATIONS ()F THE NEW ARCHITE('FURE

A. Centrality of the model

The proposed architecture is strongly based on a single,

core domain mcxlel. The plan database always checks the

consistency with the domain model. For example, the only

procedure invocations that a planner can lay on a timeline

are those whose type has been associated with the timeline

in the model. Also, the plan runner refuses to execute a

token inconsistent with the plan or not fully supporting

domain model requirements. Reliance on an explicit model

provides a strong basis for the formal validation of the
overall agent behavior in a specific domain. The model can

be acquired incrementally, one requirement at a time during

system design and engineering. The model is the place
where constraints and desired behaviors for fault protection

can be gathered. Using the model as a single locus of this

information and using a modeling approach that makes this

information directly usable by automatic reasoning systems

(e.g., the planners) has significant advantages with respect

to the current practices to complex system design and

implementation (e.g., spacecraft flight software). In the
traditional approaches there is always a significant gap

between specifications (in natural language or other semi-

formal format) and implementations (a language in some

low-level implementation language such as C).

B. Reactivity

One important aspect of practical agent architectures is the

amount of time needed by the agent to decide what to do

next in a way consistent with its predictions of how the

world will evolve and with its goal. This architecture allows

tuning of this time by providing support for reactive
decisions at two different levels. At the lowest level,

reactivity is obtained by propagating procedure return

values in the plan constraint database as soon as they
become available. Short response times here depend on the

characteristics of the constraint propagation algorithms and

on the size of the plan. For certain classes of constraints,

plan constraint networks can be compiled to allow
extremely fast propagation.[Tsamardinos et al. 98].

At a higher level, reactivity depends on a planner

responding to an execution time exception. Here short

response times depend on limiting the scope of the

planning problem. Under certain circumstances selecting
the next action may require significant effort. This is what

is typically addressed by "generative planning", where

there is a significant gap between the current state and the

goals. However, more generally the amount of effort spent

in planning depends on the overall level of quality (e.g.,
make sure that your next action will guarantee achievement

of all future goals with minimal resource usage), on how

much information is available before planning, and on the
uncertainty on the return value of procedures during

execution. In several cases the model may force the choice

of the next action (e.g., turn on the heater if the room



temperature is too low) but the int'ormation needed to make

the decision may not be available ahead of time (e.g., while

the agent is keeping the room temperature in range, it does

not know how future temperature will change and,

therefl)re, whether it will next have to turn on the heater or

the cooler). In this case it may be sufficient to just
determine the next token on a timeline and make sure that

it satisfies all the model requirements. This planning

problem can be solved in a very short period of time. Later
we will discuss how more expensive, generative planning

can be integrated in the agent's behavior.

C. Time-bounded response

One of the critical parameters in this agent framework the

execution latency, i.e., the time needed by the plan runner
to terminate execution of a token and start execution of the

next on a timeline. At first this would appear to severely

restrict the amount of intelligence that an agent can bring to

bear when reacting to faults. A closer look, however, this

requirement simply states that a subsystem (timeline) can
remain without commanding for a maximum amount of

time equal to the latency. This requirement is practically

equivalent to establishing a minimum sampling rate in a
traditional control system. Reacting intelligently may be

obtained by providing the planner with a number of pre-

compiled alternative solutions (scripts). When invoked the

planner could quickly select a script by matching its plan
database with the script applicability conditions. Then, the

planner could download the first token in the script and

immediately signal the plan flaw resolution so that the plan
runner can resume. Subsequently the planner can complete

download of further tokens in the script.

In some situations this scripting approach may not be fast

enough to respond within the latency. In this case we will

need to rely on appropriate system design to provide a
"standby state", i.e., a safe state that can be maintained for

a long enough period of time for the planner to address the

original plan flaw. Once the planner solves the problem, the

system can exit the standby state and continue nominal
execution. Note that both the standby state, the planner

behavior and the procedure to exit from standby will need

to be loaded into the plan database. In other words, standby

is a concept that is modeled at the same level as other

requirements in the domain model. It is the decision to go
into standby that the planner will take within the latency,

with the intent of gaining enough time be more deliberate

in taking the next steps.

D. Modeling the control system

In both previous sections we have mentioned the possibility

of a planner taking longer than the latency to modify the

plan database. However no special architectural support is

given for this deliberative activity. This is because we
follow the approach of explicitly including in the domain

model the requirements on the behavior of the controller
itself, besides that of the controlled system. In order for the

agent to call the planner ahead of the time in which the plan

flaw will appear in execution, the domain model must
include a model of the planner itself, i.e., a timeline that

could accommodate for token whose execution explicit

invokes the planner. The model may then include the

constraint requirements under which "planned" planner
invocation can be achieved [Pell 971. For example the

model could provide an evaluation of the time needed by

the planner to produce a solution, and a requirement that

planning not be done while other CPU intensive activities
are scheduled. The planner can then be called proactively

provided that the previous invocation of the planner has

already left in the plan the token that will call the planner

again in the future. In summary, rather than making a hard-
wired, architectural assumption on the relation between

reactive and deliberative agent behaviors, our architecture

allows to explicitly "program" the interaction policy in the

model, allowing for a much wider and adjustable range of

possibilities.
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