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Abstract.

Understanding the mechanisms that control the temperature of the polar lower
stratosphere during spring is key to understanding ozone loss in the Arctic polar
vortex. Spring ozone loss rates are directly tied to polar stratospheric temperatures by
the formation of polar stratospheric clouds, and the conversion of chlorine species to
reactive forms on these cloud particle surfaces. In this paper, we study those factors
that control temperatures in the polar lower stratosphere. We use NCEP/NCAR
reanalysis data covering the last two decades to investigate how planetary wave driving
of the stratosphere is connected to polar temperatures. In particular, we show that
planetary waves forced in the troposphere in mid- to late winter (January--February)
are principally responsible for the mean polar temperature during the March period.
These planetary waves are forced by both thermal and orographic processes in the
troposphere, and propagate into the stratosphere in the mid and high latitudes. Strong
mid-winter planetary wave forcing leads to a warmer Arctic lower stratosphere in early

spring, while weak mid-winter forcing leads to cooler Arctic temperatures.



1. Introduction

1.1. Background

The temperature of the polar lower stratosphere is mainly controlled by the
variation of the solar declination from the winter to spring solstices, and by the
distribution of radiatively active trace gases such as ozone, water, and carbon dioxide
[Shine, 1987]. However, during the winter, the Arctic lower stratosphere is considerably
warmer than would be expected from a pure radiative calculation [Fels, 1982]. This
temperature difference is due to waves which propagate up from the troposphere into
the stratosphere. where they dissipate. This wave dissipation causes a poleward and
downward circulation which acts to warm the polar region and drive it away from the
radiative equilibrium [Andrews et al., 1987]. In addition, these waves critically impact
concentrations of ozone in the stratosphere.

\

Brewer [1949] and Dobson [1956] first illustrated the long-term slow-rising circulation
in the tropics and the slow descent in the extratropics. Simple thermodyvnamics shows
that the polar descent via the Brewer-Dobson circulation acts to warm the polar
regions. Numerous two- and three-dimensional modeling studies have shown how this
circulation carries ozone from the photochemical production region in the tropical upper
stratosphere to the polar lower stratosphere, resulting in the steady accumulation of
ozone in the Northern Hemisphere polar lower stratosphere [e.g.. Chipperfield and Jones,
1999].

Early investigators saw large increases of total ozone and temperature following



major stratospheric warmings [e.g., London, 1963]. Our theoretical understanding of the
relationship of waves to the stratospheric mass circulation and temperature caught up
with observations when it was recognized that the transport circulation [Plumb, 1979)
was approximated by the residual circulation [Dunkerton, 1978]. The relationship of
the stratospheric circulations to the wave driving from the troposphere was solidified
by Haynes et al. [1991] with the development of the “downward control” principle,
which simply states that the circulation across an isentropic surface is controlled by
upward Rossby and gravity wave propagation which break at higher levels. Fusco and
Salby [1999] have used this concept to show that the interannual variation of northern
hemisphere midlatitude total ozone is coherent with upwelling planetary wave activity.

The discovery of the Antarctic ozone hole by Farman et al. [1985] and the
recognition of heterogeneous chemical processes as a principal cause of this ozone loss
highlighted the important role of polar temperatures. Low temperatures (< 195 K)
result in the formation of polar stratospheric clouds (PSCs). which lead to a release of
chlorine from reservoir species into reactive forms. The rising of the sun in the polar
spring period combined with these low temperatures results in large ozone losses via the
ClO-ClO and BrO-CIlO catalytic cycles [Anderson et al.. 1989].

Since the Arctic winter stratosphere is much warmer than the Antarctic winter
stratosphere. PSCs are much less prevalent in the Arctic [Poole and Pitts, 1994].
This results in smaller Arctic ozone losses than over Antarctica. However. during
the mid-1990s. spring Arctic ozone levels have been extremely low [Newman et

al., 1997 Fioletov et ol., 1997] and are due to both transport and chemical effects



[Chipperfield and Jones, 1999]. Coy et al. [1997] showed that the extremely low
ozone values of 1997 were accompanied by very low temperatures and extremely weak
planetary wave driving of the stratosphere. Zurek et al. [1996] have shown that the
mid-1990s (Upper Atmosphere Research Satellite period) is characterized by reductions
in the frequency of stratospheric warmings. Pawson and Naujokat [1997, 1999] have
shown that there has been an increase in the areal extent of these low temperatures,
especially in late winter. Waugh et al., [1999] showed that the Arctic vortex had much
later breakup dates in the 1990s as compared with earlier decades. These studies suggest
that the 1990s were characterized by a climatic period of weaker planetary wave driving
and lower temperatures.

In this paper we will tighten the connection between the polar lower stratospheric
spring temperature in carly March and the winter planetary wave driving. We will
derive a simple theoretical relationship between the wave driving and the temperature.
discuss the data used. and will demonstrate the quantitative relationship between the
wave driving and the temperature. We will present the correlation of a variety of

parameters to show the full impact of planetary wave driving of the stratosphere.

2. Theoretical formulation

The wave driving of the stratosphere is necessary for understanding the evolution
of the stratospheric temperatures, circulation, and the transport of trace gases such
as ozone. The transformed Eulerian mean (TEM) circulation provides a wave-mean

flow theoretical framework for the overall dynamics of the stratosphere (see Andrews



et al. [1987] for a basic description of the TEM). This TEM formulation can be used
to directly connect wave effects with the circulation and the temperature of the polar
lower stratosphere.
The zonal-mean thermodynamic equation can be simply expressed in the TEM

formulation as

— +w'S =Q, (1)
where w* is the vertical component of the residual circulation, 7 is the temperature,
Q is the heating, ¢ is time, the overbar refers to a zonal-mean quantity, and S is the
static stability (= 0T/0z + g/c,, where z is the pressure altitude, g is the gravitational
constant, and ¢, is the specifi heat at constant pressure).

The vertical residual circulation component is expressed in Eulerian terms as

1 0 {coso v'T'
wr=w —_ 9
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where w is the vertical component of the wind, a is the Earth's radius, ¢ is latitude, and
the prime indicates departures from the zonal mean. The meridional heat flux is given
by v'T". In this formulation of T*, we have neglected the vertical heat flux («’T7). since
it is tvpically quite small in the stratosphere, although it can be quite important for the
mesosphere via the heat flux associated with gravity waves.
We approximate the heating as Q = —a(T — T,,). a standard Newtonian cooling

approximation [Fels. 1982], where T, is the radiative cquilibrium temperature and o is
the damping rate. Newman and Rosenfield [1997] used temperature observations and a

diabatic heating model to show that this lincar relationship is extremely robust. and



!'is approximately 30 days in the lower stratosphere. Because the radiative

that a~
equilibrium varies slowly with time, the steady-state (0T /8t = 0) solution of (1) vields

YT
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where the subscript s denotes the steady-state solution value. This steady-state solution
shows that the temperature of the lower stratosphere is controlled by the radiative
equilibrium temperature and the strength of the residual circulation. A stronger
downward circulation produces warmer temperatures. while a weaker circulation leads
to colder temperatures closer to the radiative equilibrium. Further, weak thermal
damping amplifies the effect of the circulation. While this steady-state solution allows
us to examine the vear-to-vear variation of winter temperatures, it does not shed much
light on those factors that impact the polar lower stratospheric temperature during the
chemically critical period of late winter.

We can temporally integrate (1) to gain insight into the time-dependent solution.
We assume that both the radiative equilibrium temperature and the radiative damping
rate are both constant over the periods that we are considering (mid-winter). as will be
shown in section 5. We integrate (1) from a time prior to our period of interest (—¢.
early winter, for example) to the day of interest (¢t = 0. approximately early March).

_ — — 0 . R
T(0) = Tre + ¢ T(—t) — Ty — / ol Sdi. (4)

-t
The first term on the right hand side represents the radiative equilibrium temperature.
The second term on the right hand side represents the initial deviation from the radiative

temperature. This initial temperature deviation is exponentially damped with time.



For a typical damping time scale of 30 days, a temperature deviation will be reduced to
13% of it’s value within two months. Hence, early March temperatures would be only
weakly dependent on December temperatures. The third term is the weighted integral
of the vertical residual circulation. A strong @W* occuring in the November-December
period will also have limited direct impact on the March polar temperature due to the
damping effect. A strong warming in mid-February should have a large impact on early
March temperatures.

The steady-state solution to (1) is retrieved from (4) for constant w* and at >> 1.
However, the interannual variability of both March polar temperatures and @*, combined
with the relatively short damping times (@~! = 30 days), suggests that the steadv-state
assumption (3) is not valid. Hence, we must use the time-dependent solution (4) for
Interpreting these temperatures.

Understanding how @* is controlled by planetary waves is the key to connecting
the wave driving to polar temperatures. Haynes et al. [1991] originally showed how
the extratropical diabatic mass flow across a given isentropic surface may be regarded
as being controlled exclusively by the Eliassen-Palim (E-P) flux divergence (V - F)
distribution above that surface under steady-state conditions. Further, Haynes et al.
(1991] also show that the downward control principle is generally applicable for longer
period. larger scale waves in a time-dependent solution. Hence, the dissipation of
vertically propagating planetary waves is a principal forcing of the residual circulation
in the polar lower stratosphere.

This control of the residual circulation is mathematically shown via the steadyv-state



zonal-mean momentum equation in the TEM formulation. Following Haynes et al.
[1991],
1 d|(f> (V- -F
U= —— — — | dZ{,
apy cos @ ¢ [/ ( af ) Z} (5)
where f is the Coriolis parameter, py is the density
(= pse™*", where H is a mean scale height and p;, is the density at 1000 hPa),

the E-P flux vector (F) has components apgcos ¢ (—u't’, fv'T"/S), and
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Integration of (5) from a midlatitude reference latitude ¢, to the pole vields the polar

cap area-weighted average of w* as

e 1 x [(V-F 5 .
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where (), is the average of the quantity in angle brackets between o, and the pole (a

polar cap area-weighted average, not the global average) and {},, is the quantity in
brackets evaluated at ¢,. Substituting 6 into 7, choosing a ¢, where the first term is

small (approximately near 65°N), and integrating we get
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This equation shows that 7~ should be anticorrelated with the heat flux. Substituting
(8) into (4), we get
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Therefore, the polar mean temperature is directly correlated with the exponentially
weighted integral of the heat flux during the period that precedes the time of interest.

Another important aspect of the eddyv heat flux is that it is proportional to the
vertical group velocity of a planetary wave [Edmon et al., 1980]. The heat flux for a
particular wave is proportional to the square of the wave amplitude, and the vertical
and zonal wavenumbers. Since the heat flux is almost always positive [Newman and
Nash, 2000], the wave energy is always propagating vertically from the troposphere to
the stratosphere. Hence, we interchangeably refer to the heat flux as the wave driving
of the stratosphere.

The TEM formulation of the thermodynamic equation has been used to show
the connection between the circulation and the temperature of the lower stratosphere.
We find that the steady-state assumption for the lower stratospheric temperature is
generally not valid for the early March period because of the dependence of these March
polar temperatures on the highly variable January-February residual circulation. We
also find that it is both the direct effect of the diabatic heating. and the weighted impact
of the residual circulation that controls the polar lower stratospheric temperature.
Further, the temperature anomaly is related to the timing and strength of the residual
circulation, and the wave driving of the stratosphere controls the strength of the residual
circulation. We find that the heat flux (vertical component of the wave driving) is
anticorrelated with the polar vertical residual circulation.

Because of the sensitivity of ozone photochemistry to the temperature during March,

we have chosen to focus on the northern hemisphere winter period for understanding
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how the dynamics impacts the temperatures during March. Based on the radiative
damping time scale (30 days) we estimate that the period from mid-January to late

February is critical to understanding March lower stratospheric temperatures.

3. Data sources

We use two meteorological analyses in this paper. These are the National Centers
for Environmental Prediction’s (NCEP) Climate Prediction Center (CPC) stratospheric
analysis and the jointly produced NCEP/NCAR reanalysis. The NCEP/CPC analysis is
an operational product which is subject to data changes. In contrast, the NCEP/NCAR
reanalysis is a continuous, consistent assimilation system with analvses extending back
to 1958. Herein, we use data beginning in 1979 because of the problems associated with
analyses prior to incorporation of satellite data [Pawson and Fiorino, 1998; Santer et
al.. 1999].

The NCEP/NCAR reanalyvses use the NCEP spectral model with a T62 triangular
truncation and satellite temperature retrievals. This analysis system is consistently run
for all of the vears, such that changes in the archived meteorological fields are either
clue to changes in observational systems or due to real geophysical processes [Kalnay et
al.. 1996]. The data are available on pressure levels from 1000 to 10 hPa. and a 2.5°
longitude by 2.5° latitude horizontal grid.

The NCEP/CPC produces analyses based on the NCEP T126 GDAS model and
use an objective analysis of satellite and radiosonde data to extend the pressure levels

from 70 to 0.4 hPa [Gelman et al.. 1986: Nagatani ct al., 1988: Finger ct al.. 1993]. The
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horizontal grid is a 65 x 65 point stereographic projection which we interpolate to a grid
of 5° longitude by 2° latitude. At 100 hPa and below, these data are solely based on the
T126 GDAS product. Temperatures and geopotential heights are basic products of this
tropospheric-stratospheric hybrid system, while we produce consistent balanced winds
at all levels using the method described in Randel [1987] and Newman et al. [1988].
Newman and Nash [2000] showed that there are 30% peak-to-peak differences
between eddy heat fluxes derived from the variety of analyses produced by the various
meteorological centers. These differences occurred during the disturbed conditions of
the northern hemisphere winter. The large differences result from the differences in
stationary planetary waves in the temperature and meridional wind fields. In contrast,
planetary-scale transient waves showed excellent agreement amongst the five analyzed
data sets used in Newman and Nash [2000]. and this transient heat flux appears to have

a long-term downward trend.

4. The Eddy Heat Flux-Polar Temperature Connection

Using the theoretical considerations of Section 2. the polar lower stratospheric
temperature ought to respond to the time-integrated effects of the heat flux. We
calculate the wave energy propagating into the stratosphere, represented by /T in the
third term of (9), by averaging the NCEP/NCAR reanalysis total heat flux at 100 hPa
between 45°N and 75°N. The time scale of the integration in this term is 20-40 dayvs. as
determined by the thermal damping rate (a~") of Newman and Rosenfield [1997]. As a

simple test. Figure 1a shows this total heat flux over the period January 15 to February

Figure 1
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28 versus the March 1-15 zonal-mean temperature at 50 hPa between 60°N and 90°N,
for each year from 1979 to 2000. The figure shows a very strong correlation (r = 0.82)
between the March temperature and this late winter heat flux. The correlation between
temperature and heat flux for the simultaneous period (Figure 1b) is much poorer

(r = 0.25). The value of 0.82 means that we can account for 15.3 K of the 18.6 K
peak-to-peak interannual variation of the polar lower stratospheric temperature.

Assuming that the 22 vears are independent and that the residual errors are
normally distributed, the 0.82 correlation is significant at a confidence level greater than
99.9%. If we assume that there are possible errors in the calculated heat flux of up to
30% peak-to-peak [Newman and Nash, 2000] we can determine what effect this has on
the correlation by performing a Monte Carlo simulation. We added normally distributed
“noise” to the calculated heat flux with a scaling of 15% of the standard deviation of
this heat flux and performed 10.000 trials. We found a mean correlation value of 0.81
with 90% confidence limits of 0.78 and 0.84 and 99% confidence limits of 0.76 and 0.86.
Our correlation value of 0.82 is not statistically different from the mean of the Monte
Carlo simulation so we can conclude that the errors in the heat flux observations do not
significantly change the relationship we find.

We also performed exactly the same calculations using the NCEP/CPC data and
found correlations of 0.85 and 0.35, respectively. These values help to confirm that the
relationships we find are not based on the uniqueness within a particular data set. but
upon real processes in the atmosphere.

A similar correlation between the vortex breakup date and the heat flux was found



14

by Waugh et al., [1999]. They indicate a strong relationship between temperatures,
vortex persistence (breakup date). and heat flux (calculated over the prior two months).
However, they also found that the extremely low temperatures and late breakup dates
in the 1990s were not reflected in extremely low heat fluxes.

The relationship of the mid-latitude lower stratospheric eddy heat flux to the entire
temperature field has been determined using a 1-point correlation map. Instead of an
average polar temperature, the same 22-year heat flux time series used in Figure 1
is correlated with each latitude and pressure in the March 1-15 average zonal-mean
temperature fields for the 22 vears of 1979 to 2000. This eddy heat flux correlation
with the temperature field is shown in Plate 1a. Large positive correlations cover the
entire region from about 60°N to the pole, and from the tropopause up to 20 hPa. The
correlation has a maximum value greater than 0.8. We also note the strong negative
correlation near the tropical tropopause (r < —0.5). Correlations of 0.6 and 0.5 are
significant at the 99% and 98.3% confidence levels, respectivelv. Again. the CPC data
show a similar pattern to the NCEP/NCAR reanalyses.

In contrast, the correlation field between the heat flux averaged over the same
period as the temperatures (March 1-15) is weaker and has poorer spatial coherence
(not shown).

The strong correlations exhibited in Figure la and Plate la are in good agreement
with our theoretical considerations. We expect stronger wave driving of the stratosphere
to enhance the Brewer-Dohson circulation. The enhanced sinking motion in the polar

region will increase the temperature. while the concomitant rising motion in the
g I g
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tropics will lead to lower tropical temperatures. The poorer correlations seen in the
simultaneous period (Figure 1b) are also expected. The polar temperature is controlled
by the accumulation of stratospheric warming wave events over the prior 20-60 days,
and the slow radiative relaxation.

The heat flux time series and its interannual variation is dominated by planetary-
scale waves. We can partition the total heat flux variations shown in Figure 1 and used
in Plate 1a into the flux due to zonal harmonic waves 1-3 and the flux due to waves 4
and higher. Plate 1b displays the correlation of the heat flux for waves 1-3 with the
March 1-15 temperature field. A comparison of Plates 1a and 1b shows that restricting
the heat flux to only the planetaryv-scale waves leads to a slight improvement of the
correlation. A weak negative correlation is found with waves 4 and higher (not shown).

We can reverse our correlations and examine the relationship between the lower
stratospheric polar temperature and the heat flux patterns. From Figurc 1. we know
that the polar lower stratospheric temperature is strongly correlated with the heat
flux. The reverse of our correlations patterns shown in Plate 1 is the correlation of
the 50 hPa March 1-15 temperature 60°-90°N 22-vear time series with the 22 vears of
zonal-mean heat flux fields. This correlation pattern with the heat flux averaged over
the January 15 to February 28 period is shown for the total heat flux in Plate 2a and for
waves 1--3 in Plate 2b. The maximum correlation of the time series is found at about
65°N and 100 hPa. A significant correlation (r > 0.6) extends into the troposphere
down to approximately 400 hPa. The correlations are rather narrow, hut coherent over

deep lavers. As with the correlation of the waves 1-3 heat flux with the zonal-mean
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temperature field in Plate 1b, the correlation of the 60°-90°N temperature with the
zonal-mean planetary waves 1-3 is also slightly improved over the total heat flux.

The maximum correlation between the heat flux and the 50 hPa March 1-15
temperature 60°-90°N time series is found close to the peak of the heat flux. The white
lines superimposed on Plate 2b show the magnitude of the mean heat flux. At 100
hPa, the heat flux maximum is found at about 60°N, while the temperature-heat flux
correlation has it’s highest value at about 65°N. Generally, the peak of the correlation
is associated with the peak of the heat flux. The slight negative correlation at 100 hPa
and 35°N occurs in a region where there are weak mean heat flux values.

The 45-day period, January 15 to February 28, is arbitrarily chosen using a
radiative damping time scale of 20-40 days. However, the large correlations are fairly
insensitive to both the averaging period and latitude range of the heat flux. For the
latitudinal averaging region of 45°-75°N, the waves 1-3 heat flux correlation with the
temperature is largest for the averaging period of January 22-March 7 (r = 0.92). The
correlation can be slightly improved by also including a wider latitudinal averaging
band. Averaging from 5°-75°N for the January 22-March 7 period further improves the
correlation to r = 0.94. All of the correlations are extremely robust if the late January
and February periods are included with latitudinal bounds that at least cover the region
of the peak heat flux (50° -75°N).

In addition to simple time averaging for various periods. we have also exponentially
weighted the heat Huxes, consistent with the integration shown in the third term of

(9). Using only the heat flux at 100 hPa for waves 1 3 in the 45°- 73°N zone. we have,



weighted the heat flux for damping times ranging from a few davs to 100 days. The
optimal damping rate is 69 days, roughly consistent with our 43-day averaging period.
For a 5-day damping period, the correlation of the weighted heat flux is only 0.39, and
for a 30-day damping period the correlation is 0.87. There is only marginal improvement
as we increase the damping times from 30 to 69 days, with a decreasing correlation for
damping times greater than 69 days.

The strong correlation of the heat flux with the temperature field maximizes at
50 hPa (see Plate 1) and decreases to insignificance at 10 hPa. The altitude at which
there is a maximum correlation between the 100 hPa heat flux and the temperature is a
strong function of the damping rate. This effect is illustrated in Plate 3 by correlating
the heat flux averaged over a 97-day period (December 1 to March 7: Plate 3a), and
over a 16-day period (February 20 to March 7: Plate 3b). Plate 3 shows that the lower
stratosphere (near 100 hPa) is highly correlated for the longest averaging period, while
the middle stratosphere (near 20 hPa) is highly correlated for the shorter averaging
period. As was shown in (9), the correlation uses the heat flux and the damping rate
at the level of interest. Since. the heat flux at 100 hPa rapidly propagates upward, the
100 hPa heat flux is an excellent surrogate for the 20 hPa heat flux. Further, polar
temperatures tend to radiatively relax faster at the higher altitudes [Kiehl and Solomon,
1986: Shine. 1987: Newman and Rosenfield, 1997; Mlynczak et al.. 1999], hence, the level

of maximum correlation is determined by the eddy heat flux averaging period.
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5. Comparison between a “dynamics free” temperature and

the radiatively calculated temperature

The excellent correlation between the 100 hPa heat flux and the 50 hPa polar
temperature allows us to estimate the polar temperature in the absence of dynamics.
We make this estimate by least-squares fitting a linear relationship of the 100 hPa heat
flux to the 50 hPa polar temperature, and then calculating the intercept of this line.
We can fit a straight line to Figure la that has a constant coefficient of 199.8 K and a
slope coefficient of 0.92 K m~! s. The temperature of 199.8 K would be the March 1-15
temperature of the polar region in the absence of any dynamics (i.e., if the January 15
to February 28 heat flux at 100 hPa was equal to zero).

The heat flux relationship to temperature is very robust over the entire course of
the winter. Again, we have used a 55-day exponential weighting consistent with the
integration shown in the third term of (9) to calculate the linear relation between the
heat flux and the temperature at 80°-85°N for each day over the entire year. In this
case, the correlation is greater than 0.7 for the entire period from early December to
earlv April. Thus, the theoretical relationship between the heat flux and temperature
(9) is not only applicable to early March temperatures, but is true over the entire course
of the winter.

We can use the heat flux relationship to temperature to calenlate the polar
temperature in the absence of dynamics for the entire anmnal cycle. Figure 2 shows

the mean annual cyvele of the temperature (thick line) averaged over the 22-vear

Figure 2




19

period 1979--2000 in the latitude band 80°-85°N. The white line is the temperature

in the absence of dvnamics, calculated by linearly fitting the heat flux to temperature
relationship for each day, and then plotting this linear fit’s intercept. The grey
shading shows the 95% confidence interval as determined from a two-sided Student’s
t-distribution. While the heat flux relationship to temperature is quite poor in summer,
the small values of both the heat flux and temperature lead to small uncertainties in the
estimated temperature intercept. During mid-winter the “dynamics free” temperature
is much colder than the mean temperature.

The “dynamics free” temperature shown in Figure 2 can be compared to a radiation
model estimate of the temperature in the absence of dvnamics. The temperatures
were calculated by time integrating the radiative term forward with a seasonal cycle
and with @* set to zero in (1), using the GSFC radiative model [Rosenfield et al..
1994]. Because radiatively determined lower stratospheric temperatures are sensitive to
temperatures below the troposphere, tropospheric temperatures were specified using a
time varving climatology from the surface to a specified tropopause pressure. Two cases
were considered using specified tropopause pressures of 200 and 100 mb. The radiatively
determined temperatures for the two cases at 80°N are also shown in Figure 2 as the
upper (100 mb) and lower (200 mb) dashed lines. The “radiative equilibrium”™ is never
reached in this model integration because of the thermal inertia and the radiative time
scale. Agreement between the radiatively determined temperature (dashed lines) and
the “dyvnamics free” temperature estimate is reasonably good in mid-winter. Large

temperature discrepancies are apparent in the spring. summer, and fall. Based upon a
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30- to 60-day relaxation time scale, a 10 K temperature discrepancy would be accounted
for by an additional 0.15-0.3 K day~' heating. Such a small error is generally within

the uncertainty of the heating calculation. For example, the inclusion of NO, shortwave
heating could account for part of this discrepancy because of high NO, and continuous
sunlight of polar summer [Kiehl and Solomon, 1986]. However, the inclusion of longwave

cooling by N,O and CHy would lead to colder radiative temperatures.

6. Connection between the heat flux and the momentum and

potential vorticity fluxes

An increase of the wave driving of the stratosphere ought to be correlated with an
increase in the stratospheric momentum flux and a consequent increase in the potential
vorticity (PV) flux, where the PV flux is related to the Eliassen-Palm flux divergence
by "¢’ = (apycos0)™'V - F and ¢ is the potential vorticity [Andrews et al.. 1987). We
test this by correlating our 22-vear eddy heat flux time series with both the momentum
and potential vorticity flux fields for simultancous averaging periods. We use the same
periods for the correlation. since the wave propagation time scale of a few davs is
short compared to our radiative damping time scale of 1-2 months. Plate 4 displayvs
the correlation of the heat flux with the momentum flux (Plate 4a) and the potential
vorticity flux (Plate 4b). Planetary waves tend to propagate upward and equatorward
towards the higher index of refraction region in the tropics [Edmon et al.. 1980]. The

100 hPa heat flux correlation with the momentum flux is consistent with the maximumni



21

correlation at slightly higher altitude (30 hPa) and slightly equatorward (45°N) as a
result of this wave propagation.

As the waves propagate upward, thev deposit momentum and decelerate the mean
flow [Edmon et al., 1980]. The PV flux is the wave forcing term on the zonal-mean
momentum equation, where a strong negative PV flux acts to decelerate the zonal-mean
flow. This wave momentum deposition is reflected in the high degree of correlation of
the heat flux with the potential vorticity flux (Plate 4b). The PV flux is well correlated
over an extensive region centered on about the 30 hPa layer.

The PV flux acts to decelerate the polar night jet stream. Via the momentum
equation, we expect that a strong deceleration via the PV flux will produce a weaker jet
and colder polar temperatures. Again however, we expect that the PV flux will have a
time-lagged impact on the strength of the jet stream. We test this by correlating the
22-vear PV flux time series for the January 15-February 28 period with the zonal-mean
wind and temperature fields during March 1-15. The correlation with the wind field
(Plate 5a) is excellent. with the correlation extending over a tremendous vertical depth.
Strong wave forced decelerations at the 30 hPa level via the P\" flux (i.c.. large negative
values of the PV flux) lead to a weakened jet stream. This weakening of the flow field is
coherent from the middle stratosphere into the troposphere in the 50° 60°N region.

The correlation of the PV flux time series with the temperature fields (Plate 5b)
is also excellent. with a strong negative correlation poleward and below the PV flux
average region. This correlation pattern results from the residnal cirenlation. From

the TEM momentum equation, a strong PV flux induced deceleration is balanced
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by a poleward meridional residual circulation flow. Via our continuity equation, this
poleward flow produces a downward flow near the pole, which will act to raise the polar
temperature slightly below the PV flux level. Hence, the 50 hPa polar temperature is

strongly anti-correlated with the mid-latitude 30 hPa PV flux.

7. Summary

The interannual variability of March polar stratospheric temperatures is principally
related to the tropospheric to lower stratospheric eddy heat flux observed in the
two-month period prior to early March. The March temperature is weaklyv related
to the temporally simultaneous eddy heat flux. This Januarv-February eddy heat
flux correlation with the early March polar stratospheric temperature is caused by
the planetary waves 1-3 in the eddy heat flux. A strong planetarv wave eddy heat
flux in the 100-400 hPa and 45°-75°N region during Januarv-February results in a
warm March polar lower stratosphere, while a weak planetary wave eddy heat flux
results in a cold March polar lower stratosphere. Correlation of the Januarv-February
100 hPa eddy heat flux with the momentum flux shows a strong positive correlation
at mid-stratospheric altitudes with the simultaneous period in Januarv-February.
and weak correlations with the phase-lagged early March momentum flux. Similarly,
correlation of the January-February 100 hPa eddy heat flux with the potential vorticity
flux shows a generally negative correlation at mid-stratospheric altitudes with the
simultaneous period in January Febrnary, and weak correlations with the phase-lagged

early March momentum flux. Correlation of the Januaryv-Febrnary 30 hPa potential
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vorticity flux shows a strong positive relationship with zonal-mean wind and a strong
negative relationship with the temperature field. These results are both statistically
significant, and are extremely robust to averaging periods and latitude ranges. Given
the uncertainties in the heat flux estimates, the polar lower stratosphere temperature 1s
almost completely determined by the January-February 100 hPa heat flux.

This January-February heat flux correlation with the March lower stratospheric
temperature is easily understood from a simple theoretical framework based on linear
thermal damping. The momentum and heat flux are directly proportional to the
wave activity times the horizontal and vertical group velocities, respectively [Edmon
et al., 1980]. Hence, large values of the heat flux represent a strong upward flux of
planetary wave activity into the stratosphere. As these planetary waves move upward
into the stratosphere, they tend to be refracted towards the equator and deposit easterly
momentum [Karoly et al., 1982]. This process is shown in Figure 3. a schematic based on
data. The upward propagating planetary waves are associated with the strong heat flux
(Figure 3, point 1). These waves move upward and equatorward depositing their easterly
momentum (Fignre 3. point 2). The equatorward wave refraction is shown in Plate da by
the strong simultaneous correlation of the heat flux with the momentum flux above and
equatorward of the heat flux region. The deposition of easterly momentum is reflected in
Plate 4b by the strong negative correlation over a fairly broad region. This momentum

deposition is balanced by a northward residual circulation (Figure 3. point 3) which acts

to decelerate the jet stream. Plate Sa illustrates this deceleration with the correlation of

the potential vorticity flux with the wind. A strong wave-induced deceleration results

—_—

Figure 3
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in a weak March jet. This wave-induced meridional residual circulation causes rising
motion in the tropics, and sinking motion in the polar region (Figure 3, point 4). The
polar sinking motion warms the stratosphere. Plate 5b illustrates this warming with the
correlation of the potential vorticity flux with the temperature. A strong wave induced
deceleration results in a warm March polar region via stronger downward motion. The
warm temperatures are a result of the wave events, and are not observed simultaneously
with the wave event, but after the wave event. In the absence of mid-winter waves
propagating into the stratosphere, the wave forced jet deceleration is weak, resulting in

a stronger March polar night jet and a colder March polar lower stratosphere.

8. Conclusions

The temperature of the polar lower stratosphere during March is key to
understanding polar ozone losses. Very cold vears such as 1997 have led to large
chlorine-catalyzed ozone losses, while warmer vears have very little ozone loss. The
temperature of the early March polar lower stratosphere is principally driven by the
mid-winter strength and duration of planetary waves propagating into the stratosphere.
The cold polar stratospheric March periods during 1997 and 2000 were directly a
result of the weak January-February wave driving of the stratosphere. while the warm
polar stratospheric March periods during 1998 and 1999 were driven by the strong
January-February wave driving.

The fundamental driver for the polar lower stratospheric temperature is the basic

radiative state. This involves the solar angle via polar night and continnous summer
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daylight, and the concentrations of basic radiative gases such as CO,, H,O, and
ozone [Shine, 1987]. However, the winter temperature of the polar lower stratosphere
is much warmer than would be expected from purely radiative considerations [Fels,
1982]. This observational-based study shows that the difference between the calculated
pure radiatively driven polar temperature and actual observations is due to planetary
waves 1-3 driving the polar temperature away from radiative equilibrium.

In addition to the impact of the wave driving on temperatures, the wave driving
also impacts the advection of ozone via the residual circulation. Years with weak wave
driving have weaker residual circulations, and therefore less poleward and downward
transport of ozone. Hence, weakened wave driving has a double impact on ozone by
enhancing chemical loss via the cold temperatures and by lessening the resupply of
ozone into the polar region via the residual circulation. The effect of the residual
circulation interannual variability on polar ozone levels has been shown by Chipperfield
and Jones [1999). This interannual variability of the transport is directly related to the
stratospheric wave driving.

The wave driving of stratospheric temperatures may also impact the water vapor
concentrations in the stratosphere. As was shown in Plate 1, the wave driving is
anti-correlated with the mean tropical tropopause temperature. A weakening of the
wave driving would lead to warmer tropical tropopause temperatures. One of the
possible factors determining the water vapor concentration is the “freeze drving” of
air entering the stratosphere at the tropical tropopause [Dessler, 1998 and references

therein]. Predictions of weakened wave driving of the stratosphere by Shindell et ol.
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[1998] in a greenhouse climate may warm the tropical tropopause region, consequently
increasing the water vapor concentration in the stratosphere. Since polar stratospheric
cloud formation is dependent on the water vapor concentration, a stratospheric water
vapor increase will increase the occurrence of PSCs in the polar stratosphere. This
increased occurrence of PSCs will permit earlier and more extensive activation of
chlorine, with consequent greater ozone loss [Kirk-Davidoff et al., 1999]. Hence, from
our observations we can infer that the predicted reduction of the stratospheric wave

driving may increase water in the stratosphere with a consequent loss of polar ozone.
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Figure 1. Temperature (50 hPa, March 1-15, and 60°-90°N) plotted against the total

heat flux, v'T’, (100 hPa and 45°-75°N) for (a) January 15 to February 28 and (b) March

1-15. The individual years are as indicated.

Plate 1. Correlation of the 22 vears (1979-2000) of the a) total and b) waves 1-3
components of heat flux (100 hPa, January 15 to February 28, and 45°-75°N) with the
temperature fields (March 1-15). Superimposed is the tropopause (thick purple line) as
determined from the Brunt-Vaisalla frequency and a) the zonal-mean zonal wind and b)

the 22-year average of the heat flux from waves 1-3 (white lines).

Plate 2. As in Figure 2 but for the correlation of temperature (50 hPa, 60°-90°N, and

March 1-15) with the a) total and b) waves 1-3 components of heat flux fields (100 hPa
and Januarv 15 to February 28).

Plate 3. Correlation of the 22 vears (1979-2000) of the heat flux (waves 1-3, 100 hPa.
50°-80°N) averaged over a) December 1 to March 7 and b) February 20 to March 7 with
the temperature fields (March 1-15). Superimposed is the tropopause (thick purple line)
as determined from the Brunt-Vaisalla frequency and the 22-vear average of the heat flux
from waves 1-3 (white lines).

Plate 4. Correlation of the 22 vears (1979-2000) of the heat flux (100 hPa and 45°-
75°N) with a) the momentum flux and b) the potential vorticity flux fields. All quantities
are from January 15 to February 28, waves 1-3. Superimposed is the tropopanse (thick
purple line) as determined from the Brunt-Vaisalla frequency and the zonal-mean zonal

wind (white lines).
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Figure 2. Temperature (50 hPa and 80°-85°N) averaged for the 22-year period 1979-
2000 (thick solid line) and calculated radiatively using ozone, water, and CO, (dashed
line). The white line shows the estimated “dynamics free” temperature using the heat
flux relationship to temperature. The grey shading shows the 95% confidence limits on

the “dynamics free” temperature estimates.

Figure 3. Schematic illustration of planetary waves propagating into the stratosphere
(1), slowly bending towards the equator (2), depositing easterly momentum (3), and
inducing a residual circulation that causes uplift in the tropics and sinking in the polar
region (4). The short arrows illustrate the wave propagation while the thick line with
arrows shows the residual circulation. The thin solid lines show the wind speed, the
dotted line shows the tropopause, and the dashed lines show the potential vorticity flux

or wave-driven wind deceleration.

Plate 5. As in Figure 4 but for the correlation of the potential vorticity flux (30 hPa,
45° 75°N, January 15 to February 28. and waves 1 -3) with the March 1-15 a) zonal-mean

wind and b) temperature fields.
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