Technical Report Series on the
Boreal Ecosystem-Atmosphere Study (BOREAS)

Forrest G. Hall and David E. Knapp, Editors

Volume 18

BOREAS HYD-1 Under-Canopy
Precipitation Data

Richard H. Cuenca
Shaun F. Kelly
David E. Stangel
Oregon State University

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

July 2000
BOREAS HYD-1 Under-Canopy Precipitation Data
Richard H. Cuenca, Shaun F. Kelly, David Stangel

Summary

Under-canopy precipitation measurements were made by the BOREAS HYD-1 science team in 1994, 1995, and 1996 at various flux tower sites in the NSA and SSA. In 1994, these data were collected at the NSA-OJP, NSA-YJP, SSA-OJP, and SSA-YJP sites. Starting in 1995 and ending in 1997, data were collected at the NSA-OBS, NSA-OJP, NSA-YJP, and SSA-OA. These data were collected to support HYD-01 research by measuring the amount of water that falls through the canopy and is intercepted by the ground or moss. These data coincide with volumetric soil moisture measurements made by HYD-01. The data are stored in tabular ASCII files.

Table of Contents

1) Data Set Overview
2) Investigator(s)
3) Theory of Measurements
4) Equipment
5) Data Acquisition Methods
6) Observations
7) Data Description
8) Data Organization
9) Data Manipulations
10) Errors
11) Notes
12) Application of the Data Set
13) Future Modifications and Plans
14) Software
15) Data Access
16) Output Products and Availability
17) References
18) Glossary of Terms
19) List of Acronyms
20) Document Information

1. Data Set Overview

1.1 Data Set Identification

BOREAS HYD-01 Under-Canopy Precipitation Data

1.2 Data Set Introduction

Under-canopy precipitation measurements were made by the BOREal Ecosystem-Atmosphere Study (BOREAS) Hydrology(HYD)-01 team in 1994, 1995, and 1996 at various flux tower sites in the Northern Study Area (NSA) and the Southern Study Area (SSA). In 1994, these data were collected at the NSA-Old Jack Pine (OJP), NSA-Young Jack Pine (YJP), SSA-OJP, and SSA-YJP sites. Starting in 1995 and ending in 1997, data were collected at the NSA-Old Black Spruce (OBS), NSA-OJP, NSA-YJP, and SSA-Old Aspen (OA) sites.
1.3 Objective/Purpose
The objective of this study was to measure under-canopy precipitation at the flux towers where soil moisture was being measured.

1.4 Summary of Parameters
Under-canopy precipitation.

1.5 Discussion
Under-canopy precipitation was used to close the local hydrologic balance in the vicinity of the soil profiles. By placing an under-canopy rain gauge device in the vicinity of each soil moisture profile, ideally, the volumetric soil moisture increase in the profile should equal the applied precipitation measured by the rain gauge. This provides an important check for the soil moisture measurements. Additionally, the under-canopy precipitation can be used to estimate canopy interception by comparing to gauges mounted above the canopy on the towers.

1.6 Related Data Sets
- BOREAS HYD-01 Volumetric Soil Moisture Data
- BOREAS HYD-01 Soil Hydraulic Properties
- BOREAS HYD-06 Moss/Humus Moisture Data
- BOREAS HYD-06 Ground Measurements of Soil Moisture
- BOREAS HYD-06 Aircraft Gamma Ray Soil Moisture Data

2. Investigator(s)

2.1 Investigator(s) Name and Title
Richard H. Cuenca, Professor
Department of Bioresource Engineering
Oregon State University

2.2 Title of Investigation
Coupled Atmosphere-Forest Canopy-Soil Profile Monitoring and Simulation

2.3 Contact Information
Contact 1:
Richard H. Cuenca, Professor
Department of Bioresource Engineering
Oregon State University
116 Gilmore Hall
Corvallis, OR 97331
(541) 737-6307
(541) 737-2082 (fax)
cuencarh@pandora.bre.orst.edu
Contact 2:
For questions regarding 1995, 1996, and 1997 data collection:

Shaun F. Kelly, Research Assistant
Department of Bioresource Engineering
Oregon State University
116 Gilmore Hall
Corvallis, OR 97331
(541) 737-6314
(541) 737-2082 (fax)
kellys@engr.orst.edu

Contact 3:
For questions regarding 1994 data collection:

David Stangel
Department of Bioresource Engineering
Gilmore Hall
Oregon State University
Corvallis, OR 97331-3906
(503) 737-6314
(503) 737-2082 (fax)
stangel@pandora.bre.orst.edu

Contact 4:
David Knapp
Raytheon ITSS
NASA GSFC
Code 923
Greenbelt, MD 20771
(301) 286-1424
(301) 286-0239 (fax)
David.Knapp@gsfc.nasa.gov

3. Theory of Measurements

These measurements of under-canopy precipitation were made to determine the amount of precipitation that hit the soil, below a forested canopy. These measurements are useful in determining the amount of water that went into the soil, increasing the volumetric soil moisture.

4. Equipment

4.1 Sensor/Instrument Description

4.1.1 Collection Environment
The wedge-shaped rain gauge is inserted into a bracket that is supplied with the gauge. The bracket is mounted on a short wood stake that has been driven into the ground a few inches. To read the gauge, water levels are recorded within the gauge with the highest accuracy possible for the corresponding water level. After each reading, the gauge is removed from the bracket and emptied of its contents.

Tipping bucket rain gauges were mounted on a 0.5-in.-diameter metal pipe (3 ft long) inserted into
the ground. The tipping bucket was secured to the pipe using hose clamps at a height of 0.5 m (from funnel lip). The tipping bucket was leveled and debris cleaned from the screen during site visits. Under-canopy rain gauges were located in the vicinity of soil moisture measurement profiles.

4.1.2 Source/Platform
The rain gauge is mounted on a wooden stake.

4.1.3 Source/Platform Mission Objectives
The wooden stake is used to hold the rain gauge.

4.1.4 Key Variables
Under-canopy precipitation.

4.1.5 Principles of Operation

Rain Gauge
The wedge-shaped rain gauge is mounted on a stake at ground level. It can measure up to 150 cm of water, and the accuracy decreases as more water accumulates in the gauge. Measurement line density varies from +/- 0.1 cm at the bottom to +/- 2.5 cm at the top.

The tipping bucket rain gauge is a smaller adaptation of the standard Weather Bureau tipping bucket rain gauge. It measures precipitation at rates up to 2 in. per hour with an accuracy of +/-1%. Output is a switch closure for each bucket tip. A tip occurs with each 0.1 mm of precipitation.

In 1994, the rain gauges were read every other day during the Intensive Field Campaigns (IFCs) corresponding to a neutron probe water content measurement. All water contents are for the time interval between the date of the measurement and the last recorded precipitation event. The rain gauges were located at the OJP and YJP sites in both the NSA and the SSA. The rain gauges were installed less than 2 feet from the neutron probe access tubes. In general terms, the gauges were located between 50 and 150 meters in a northeasterly direction out from the flux tower.

4.1.6 Sensor/Instrument Measurement Geometry
Not applicable.

4.1.7 Manufacturer of Sensor/Instrument

Wedge-shaped Rain Gauges:

Tru-Check
Edwards Mfg. Co
Box 166
Albert Lea, MN 56007
(507) 373-8206

Tipping Bucket Rain Gauges:

Texas Electronics
P.O. Box 7225, Inwood-Station
Dallas, TX 75209
(214) 631-2490
4.2 Calibration

4.2.1 Specifications

Wedge-shaped Rain Gauges: None given.

TE525 Tipping Bucket Rain Gauge
- Range of Indication: Infinite, in increments of 0.1 mm
- Accuracy: 1.0% at 2 inch/hr or less
- Signal Output: Momentary switch closure approximately 135 ms
- Environmental Limits:
 - Temperature: 0 to 50 °C
 - Humidity: 0 - 100%
- Physical Data:
 - Diameter: 6.25 in. overall
 - Height: 12 in.
 - Weight: 2.5 lbs.
- Receiving Orifice: Gold anodized spun aluminum knife-edge collector ring and funnel assembly
 - Ring Diameter: 9.664 in.
 - Resolution: 0.1 mm
 - Calibration: 16.00 fluid oz. (100 bucket tips)
 - Mounting: Side bracket with clamps mounted to pole
 - Material: Aluminum
 - Cable: 2-conductor standard shielded cable

4.2.1.1 Tolerance
None given.

4.2.2 Frequency of Calibration
The wedge rain gauge was not field calibrated.

TE525 Tipping Bucket Rain Gauge

Calibration/Cleaning Frequency:
- Sensor is factory calibrated and does not require field calibration.
- Debris filters, funnel orifices, and bucket reservoirs were cleaned during site inspections.

4.2.3 Other Calibration Information
None.

5. Data Acquisition Methods

The data were acquired by reading the wedge-shaped rain gauges (1994) on a regular basis, when soil moisture was measured. After the 1994 data collection, the data were read from the tipping bucket rain gauges.
6. Observations

6.1 Data Notes
Some clogging occurred during the measurement periods at long-term measurement sites, which allowed water to pool in the funnel.

6.2 Field Notes
None.

7. Data Description

7.1 Spatial Characteristics

7.1.1 Spatial Coverage
Multiple in situ measurements were made in the vicinity of the flux towers for each respective site. In 1994, these data were collected at the OJP and YJP sites in the NSA and SSA. After 1994, they were collected at the OBS, OJP, and YJP sites in the NSA and at the OA in the SSA. The North American Datum of 1983 (NAD83) coordinates of the sites are:

<table>
<thead>
<tr>
<th>SITE</th>
<th>LONGITUDE</th>
<th>LATITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSA-OJP</td>
<td>98.62396° W</td>
<td>55.92842° N</td>
</tr>
<tr>
<td>NSA-YJP</td>
<td>98.28706° W</td>
<td>55.89575° N</td>
</tr>
<tr>
<td>NSA-OBS</td>
<td>98.48139° W</td>
<td>55.88007° N</td>
</tr>
<tr>
<td>SSA-OA</td>
<td>106.19779° W</td>
<td>53.62890° N</td>
</tr>
<tr>
<td>SSA-OJP</td>
<td>104.69203° W</td>
<td>53.91634° N</td>
</tr>
<tr>
<td>SSA-YJP</td>
<td>104.64529° W</td>
<td>53.87581° N</td>
</tr>
</tbody>
</table>

7.1.2 Spatial Coverage Map
The following maps were provided showing the sites where measurements were made in 1996.

7.1.3 Spatial Resolution
These data represent point measurements at the designated sites.

7.1.4 Projection
Not applicable.

7.1.5 Grid Description
Not applicable.
7.2 Temporal Characteristics

7.2.1 Temporal Coverage
The periods over which data were collected at each site varied. The overall period of data collection was from 23-May-1994 to 24-Jun-1997.

7.2.2 Temporal Coverage Map

<table>
<thead>
<tr>
<th>Site</th>
<th>1994 Data Collection</th>
<th></th>
<th>1995 to 1997 Data Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Start</td>
<td>End</td>
<td>Start</td>
</tr>
</tbody>
</table>

7.2.3 Temporal Resolution
In 1994, the measurements were made every other day during the field campaigns, corresponding to soil moisture measurements. After 1994, with the automated equipment in place, measurements were taken every hour while precipitation events were occurring.

7.3 Data Characteristics

7.3.1 Parameter/Variable
The parameters contained in the data files on the CD-ROM are:

1994 Data Column Name

SITE_NAME
SUB_SITE
DATE_OBS
TIME_OBS
TUBE_ROD_ID
PRECIP_UNDER_CANOPY
CRIFCN_CODE
REVISION_DATE
1995 to 1997 Data Column Name

SITE_NAME
SUB_SITE
DATE_OBS
TIME_OBS
PRECIP_UNDER_CANOPY_1
PRECIP_UNDER_CANOPY_2
MEAN_PRECIP_UNDER_CANOPY
CRTFCN_CODE
REVISION_DATE

7.3.2 Variable Description/Definition

The descriptions of the parameters contained in the data files on the CD-ROM are:

1994 Data Column Name Description

SITE_NAME
The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.

SUB_SITE
The identifier assigned to the sub-site by BOREAS, in the format GGGGG-III, where GGGGG is the group associated with the sub-site instrument, e.g. HYD06 or STAFF, and IIIII is the identifier for sub-site, often this will refer to an instrument.

DATE_OBS
The date on which the data were collected.

TIME_OBS
The Greenwich Mean Time (GMT) when the data were collected.

TUBE_ROD_ID
The identifier for the Tube or Rod at which the data was collected.

PRECIP_UNDER_CANOPY
The under-canopy precipitation.

CRTFCN_CODE
The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-?? (CPI but questionable).

REVISION_DATE
The most recent date when the information in the referenced database table record was revised.

1995 to 1997 Data Column Name Description

SITE_NAME
The identifier assigned to the site by BOREAS, in the format SSS-TTT-CCCCC, where SSS identifies the portion of the study area: NSA, SSA, REG, TRN, and TTT identifies the cover type for the site, 999 if unknown, and CCCCC is the identifier for site, exactly what it means will vary with site type.

SUB_SITE
The identifier assigned to the sub-site by BOREAS, in the format GGGGG-IIIII, where GGGGG is
DATE_OBS
The date on which the data were collected.
TIME_OBS
The Greenwich Mean Time (GMT) when the data were collected.
PRECIP_UNDER_CANOPY_1
The under-canopy precipitation measured at gauge 1.
PRECIP_UNDER_CANOPY_2
The under-canopy precipitation measured at gauge 2.
MEAN_PRECIP_UNDER_CANOPY
The mean under-canopy precipitation.
CRTFCN_CODE
The BOREAS certification level of the data. Examples are CPI (Checked by PI), CGR (Certified by Group), PRE (Preliminary), and CPI-??? (CPI but questionable).
REVISION_DATE
The most recent date when the information in the referenced data base table record was revised.

7.3.3 Unit of Measurement
The measurement units for the parameters contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>1994 Data Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>TUBE_ROD_ID</td>
<td>[unitless]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1995 to 1997 Data Column Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[none]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[none]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[DD-MON-YY]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[HHMM GMT]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY_1</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY_2</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>MEAN_PRECIP_UNDER_CANOPY</td>
<td>[millimeters]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[none]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[DD-MON-YY]</td>
</tr>
</tbody>
</table>
7.3.4 Data Source

The sources of the parameter values contained in the data files on the CD-ROM are:

<table>
<thead>
<tr>
<th>1994 Data Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>TUBE_ROD_ID</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1995 to 1997 Data Column Name</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY_1</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY_2</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>MEAN_PRECIP_UNDER_CANOPY</td>
<td>[Supplied by Investigator]</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>[Assigned by BORIS]</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>[Assigned by BORIS]</td>
</tr>
</tbody>
</table>

7.3.5 Data Range

The following table gives information about the parameter values found in the data files on the CD-ROM.

1994 Data

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Data Limit</th>
<th>Detect Not Collctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-OJP-FLXTR</td>
<td>SSA-YJP-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>HYD01-UCP01</td>
<td>HYD01-UCP07</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>23-MAY-94</td>
<td>15-SEP-94</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>0</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TUBE_ROD_ID</td>
<td>1</td>
<td>7</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>PRECIP_UNDER_CANOPY</td>
<td>-9999</td>
<td>130</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>CRTFCN_CODE</td>
<td>CPI</td>
<td>CPI</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>REVISION_DATE</td>
<td>05-MAY-95</td>
<td>05-MAY-95</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

1995 to 1997 Data

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Minimum Data Value</th>
<th>Maximum Data Value</th>
<th>Missng Data Value</th>
<th>Unrel Data Value</th>
<th>Below Data Limit</th>
<th>Detect Not Collctd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITE_NAME</td>
<td>NSA-OBS-FLXTR</td>
<td>SSA-9OA-FLXTR</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>SUB_SITE</td>
<td>HYD01-UCP01</td>
<td>HYD01-UCP08</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>DATE_OBS</td>
<td>14-JUL-95</td>
<td>24-JUN-97</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>TIME_OBS</td>
<td>0</td>
<td>2300</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Minimum Data Value -- The minimum value found in the column.
Maximum Data Value -- The maximum value found in the column.
Missing Data Value -- The value that indicates missing data. This is used to indicate that an attempt was made to determine the parameter value, but the attempt was unsuccessful.
Unrel Data Value -- The value that indicates unreliable data. This is used to indicate an attempt was made to determine the parameter value, but the value was deemed to be unreliable by the analysis personnel.
Below Detect Limit -- The value that indicates parameter values below the instruments detection limits. This is used to indicate that an attempt was made to determine the parameter value, but the analysis personnel determined that the parameter value was below the detection limit of the instrumentation.
Data Not Collected -- This value indicates that no attempt was made to determine the parameter value. This usually indicates that BORIS combined several similar but not identical data sets into the same data base table but this particular science team did not measure that parameter.

Blank -- Indicates that blank spaces are used to denote that type of value.
N/A -- Indicates that the value is not applicable to the respective column.
None -- Indicates that no values of that sort were found in the column.

7.4 Sample Data Record
The following are wrapped versions of data records from a sample data file on the CD-ROM.

1994 Data

SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, TUBE_ROD_ID, PRECIP_UNDER_CANOPY, CRTFCN_CODE, REVISION_DATE
'NSA-OJP-FLXTR', 'HYD01-UCP02', 15-JUN-94, 0, '2', 21.5, 'CPI', 05-MAY-95
'NSA-OJP-FLXTR', 'HYD01-UCP02', 20-JUL-94, 0, '2', 10.0, 'CPI', 05-MAY-95

1995 to 1997 Data

SITE_NAME, SUB_SITE, DATE_OBS, TIME_OBS, PRECIP_UNDER_CANOPY_1, PRECIP_UNDER_CANOPY_2, MEAN_PRECIP_UNDER_CANOPY, CRTFCN_CODE, REVISION_DATE
'NSA-OJP-FLXTR', 'HYD01-UCP02', 20-JUN-96, 300, .2, .3, .15, 'CPI', 30-OCT-98
'NSA-OJP-FLXTR', 'HYD01-UCP07', 29-JUN-96, 500, .1, .3, .45, 'CPI', 30-OCT-98
8. Data Organization

8.1 Data Granularity
The smallest amount of data that can be ordered from this data set is the data for a given month at a given site.

8.2 Data Format(s)
The Compact Disk-Read-Only Memory (CD-ROM) files contain American Standard Code for Information Interchange (ASCII) numerical and character fields of varying length separated by commas. The character fields are enclosed with single apostrophe marks. There are no spaces between the fields.

Each data file on the CD-ROM has four header lines of Hyper-Text Markup Language (HTML) code at the top. When viewed with a Web browser, this code displays header information (data set title, location, date, acknowledgments, etc.) and a series of HTML links to associated data files and related data sets. Line 5 of each data file is a list of the column names, and line 6 and following lines contain the actual data.

9. Data Manipulations

9.1 Formulae

9.1.1 Derivation Techniques and Algorithms
The amount of precipitation is read directly from the wedge-shaped gauge. For the tipping bucket gauges, the amount of precipitation is determined from the number of tips (see Section 4.2.1).

9.2 Data Processing Sequence

9.2.1 Processing Steps
The BOREAS Information System (BORIS) staff processed the data by:
- Reviewing the initial data files and loading them online for BOREAS team access.
- Designing relational data base tables to inventory and store the data.
- Loading the data into the relational data base tables.
- Working with the HYD-01 team to document the data set.
- Extracting the standardized data into logical files.

9.2.2 Processing Changes
None.

9.3 Calculations

9.3.1 Special Corrections/Adjustments
None given.

9.3.2 Calculated Variables
None given.

9.4 Graphs and Plots
None given.
10. Errors

10.1 Sources of Error

Wedge Rain Gauge

The device is so simple that errors were reduced to leaves falling in the gauges or a gauge being tipped over. The high frequency of data collection ensured that evaporation from the gauges was a minor factor in the readings. The only major limitation is simply the accuracy in which one can read the level of water within the gauge.

Tipping Bucket Rain Gauge

Unattended automated tipping bucket devices did not function in the winter during freezing conditions. Spring and fall readings may indicate collected snow and subsequent melting in the funnel.

10.2 Quality Assessment

10.2.1 Data Validation by Source

None given.

10.2.2 Confidence Level/Accuracy Judgment

Unattended tipping bucket rain gauges used from 1995-97 were periodically cleaned, yet they almost all invariably included debris that collected in the screen, and some were completely clogged. For this reason, at most sites a minimum of two gauges was installed. Rarely were both gauges clogged. Questionable data may be noted when large differences exist between gauges.

10.2.3 Measurement Error for Parameters

None given.

10.2.4 Additional Quality Assessments

None given.

10.2.5 Data Verification by Data Center

The data that were received from HYD-01 were loaded into the relational data base and checked to make sure that no errors were introduced in loading the data.

11. Notes

11.1 Limitations of the Data

None given.

11.2 Known Problems with the Data

None given.

11.3 Usage Guidance

None given.

11.4 Other Relevant Information

None given.
12. Application of the Data Set

This data set can be used with the volumetric soil moisture data to determine how soil moisture changes with time during rain events and during dry periods. These under-canopy precipitation data indicate how much precipitation falls on the soil. These data can be used in various kinds of hydrological and ecological models.

13. Future Modifications and Plans

None given.

14. Software

14.1 Software Description

None given.

14.2 Software Access

None given.

15. Data Access

The under-canopy precipitation data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

15.1 Contact Information

For BOREAS data and documentation please contact:

ORNL DAAC User Services
Oak Ridge National Laboratory
P.O. Box 2008 MS-6407
Oak Ridge, TN 37831-6407
Phone: (423) 241-3952
Fax: (423) 574-4665
E-mail: ornldaac@ornl.gov or ornl@eos.nasa.gov

15.2 Data Center Identification

Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) for Biogeochemical Dynamics http://www-eosdis.oml.gov/ [Internet Link].

15.3 Procedures for Obtaining Data

Users may obtain data directly through the ORNL DAAC online search and order system [http://www-eosdis.oml.gov/] and the anonymous FTP site [ftp://www-eosdis.oml.gov/data/] or by contacting User Services by electronic mail, telephone, fax, letter, or personal visit using the contact information in Section 15.1.
15.4 Data Center Status/Plans
The ORNL DAAC is the primary source for BOREAS field measurement, image, GIS, and hardcopy data products. The BOREAS CD-ROM and data referenced or listed in inventories on the CD-ROM are available from the ORNL DAAC.

16. Output Products and Availability

16.1 Tape Products
None.

16.2 Film Products
None.

16.3 Other Products
These data are available on the BOREAS CD-ROM series.

17. References

17.1 Platform/Sensor/Instrument/Data Processing Documentation
None given.

17.2 Journal Articles and Study Reports

17.3 Archive/DBMS Usage Documentation
None.

18. Glossary of Terms
None.

19. List of Acronyms

- ASCII - American Standard Code for Information Interchange
- BOREAS - BOREal Ecosystem-Atmosphere Study
- BORIS - BOREAS Information System
- CD-ROM - Compact Disk - Read Only Memory
- DAAC - Distributed Active Archive Center
- EOS - Earth Observing System
- EOSDIS - EOS Data and Information System
- GIS - Geographic Information System
- GMT - Greenwich Mean Time
- GSFC - Goddard Space Flight Center
- HTML - HyperText Markup Language
- HYD - Hydrology
- IFC - Intensive Field Campaign
- NASA - National Aeronautics and Space Administration
- NSA - Northern Study Area
- OA - Old Aspen
- OBS - Old Black Spruce
- OJP - Old Jack Pine
- ORNL - Oak Ridge National Laboratory
- PANP - Prince Albert National Park
- SSA - Southern Study Area
- TE - Terrestrial Ecology
- URL - Uniform Resource Locator
- YA - Young Aspen
- YJP - Young Jack Pine

20. Document Information

20.1 Document Revision Dates
Written: 23-Apr-1997
Last Updated: 20-Aug-1999

20.2 Document Review Dates
Science Review: 24-Nov-1998

20.3 Document ID

Page 16
20.4 Citation

Please contact Dr. Richard Cuenca before publishing results based on this data set. Also, please include citations of relevant papers in Section 17.2.

If using data from the BOREAS CD-ROM series, also reference the data as:

Also, cite the BOREAS CD-ROM set as:

20.5 Document Curator

20.6 Document URL
Under-canopy precipitation measurements were made by the BOREAS HYD-1 science team in 1994, 1995, and 1996 at various flux tower sites in the NSA and SSA. In 1994, these data were collected at the NSA-OJP, NSA-YJP, SSA-OJP, and SSA-YJP sites. Starting in 1995 and ending in 1997, data were collected at the NSA-OBS, NSA-OJP, NSA-YJP, and SSA-OA. These data were collected to support HYD-01 research by measuring the amount of water that falls through the canopy and is intercepted by the ground or moss. These data coincide with volumetric soil moisture measurements made by HYD-01. The data are stored in tabular ASCII files.