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Chapter 1

Introduction

1.1 Motivation

The Petri net formalism has proven its usefulness in modeling discrete-state systems that

move between states in discrete or continuous time and that may be characterized as se-

quential or concurrent, synchronous or asynchronous, deterministic or stochastic, or any

combination for that matter. Through higher levels of abstraction, a Petri net (PN) permits

a compact specification of the underlying mathematical model (usually a stochastic process)

that is amenable to computer analysis. But applying PN modeling to arbitrarily complex

systems requires the solution of difficult problems from a computational point of view.

A common problem is the computational complexity often required to solve stochas-

tic PN (SPN) models with realistic assumptions about the logical and timed behavior, as

opposed to simple behavior that restricts the applicability to toy models. SPNs are most

easily solved when firing delays of transitions are either exponentially or geometrically dis-

tributed. Then, the underlying stochastic process is a continuous-time Markov chain in the

former and a discrete-time Markov chain in the latter. Efficient solution techniques for such

Markov chains are well known. However, such modeling assumptions may be unrealistic for

many systems, leading to inaccurate results when adopted.

A more general approach is to allow the transition firing delays to have general dis-

tributions. In their full generality, such SPNs are classified as non-Markovian and specify

generalized semi-Markov processes. Unfortunately, in the absence of any restrictions the

study of such nets by analytical or numerical means is so computationally expensive that

simulation becomes the only practical means to a solution. With some conveniently-chosen

restrictions, however, the solution to the model can be made efficient in some cases while

still lending itself to useful applications. The investigation of efficient exact and approximate
solutions to such classes of non-Markovian PNs is the focus of our research.

Much of our research finds its foundation in the early work of Molloy [1], Bobbio and

Cumani [2], and Marsan et al. [3, 4]: Molloy introducing execution policies, the combination

of deterministic and discrete-time random behavior, and the expansion of phase-type firing

delays at the state-space level, and Bobbio, Marsan, et al. doing the same for continuous

time. Complete specifications of the semantics of a stochastic Petri net requires consideration

about how (and in what order) enabled transitions are selected to fire and what happens

to the remaining firing time of other enabled transitions when another transition fires. An



execution policy formally defines such semantics by specifying the policy used to select the

enabled transition that fires and the way memory is kept of the past history of the net [4].

In [1], Molloy provided a comprehensive overview of the SPN semantics and behavior as a

function of the execution policies. He also showed that when the probability distributions of

SPN transitions are discrete phase-type, an otherwise non-Markovian underlying process can

be transformed into a homogeneous discrete-time Markov chain defined over an expanded

state space. Particularly relevant to this work is that Molloy showed how transitions with

deterministic firing delays can be combined with geometric firing-delay transitions with the

restriction that the deterministic delays are equal to the basic step of the geometric distri-

butions. These ideas were brought up-to-date by Ciardo [5] while introducing the discrete

deterministic and stochastic PN (DDSPN) formalism that allows firing delays with discrete

phase-type distributions, all sharing a basic step, and having an underlying discrete-time

Markov chain. The notion of a "basic step" is important to our proposed research as well.

The basic step period, denoted by r, is defined as the sojourn time in each state of the

underlying discrete-time Markov chain.

In [3], Marsan and Chiola introduced the deterministic and stochastic PN (DSPN), and

marks the first time deterministic behavior was integrated with continuous-time random

behavior. Bobbio and Cumani in [2] showed how continuous-time, phase-type firing delays

can be expanded at the state-space level to form a continuous-time Markov chain. This was

discussed again by Marsan et al. in [4] while providing an extensive discussion of execution

policies for generally distributed firing delays.

1.2 Objective

Our research involves the formal development of a new class of non-Markovian SPNs based on

phase-type firing delays in both discrete and continuous time, present simultaneously in the

same model. We build upon the extended SPN formalism, one that includes constructs that

increase its modeling power, from a logical point of view, to that of a Turing machine as well

as features that provide modeling conveniences. Such modern extensions include inhibitor

arcs, transition priorities, transition-enabling guards, marking-dependent arc multiplicities,

and marking-dependent execution policies.

When possible, efficient and exact solution algorithms will be developed with certain

restrictions; otherwise, approximate solution algorithms will be investigated. In this way,

we anticipate that this new SPN formalism may also prove to be useful in many modeling

problems while still affording an efficient solution.

1.3 Organization and Assumptions

Relevant background material is provided in Chapter 2, which provides the foundation for our

chosen approach. Topics include discrete- and continuous-time Markov chains, semi-Markov

chains, semi-regenerative processes, generalized semi-Markov processes, characteristics spe-

cific to each, and known solution methods. These are the classes of underlying stochastic

processes for popular SPN formalisms used today, and the classification of these formalisms

is closely related to the stochastic process which they can specify. The generality and so-



lution complexity associatedwith thesestochasticprocessesdeterminethe modeling power
and efficiency,and therefore, the SPN's applicability and practical usefulness.Therefore,
by alsodiscussingthe complexity issuesgermaneto the solution methods, the background
chapter also servesto motivate the proposed approachtowards our objective: developing
a SPN formalism that lends itself to useful modeling applications and efficient numerical

analysis.

Chapter 3 provides an outline of the proposed research. Preliminary research results are

provided in Chapter 4, which includes the formalization of the new SPN class and analysis

theory, culminating into an exact, stationary solution algorithm. Time-dependent analysis

is shown to be difficult except for a special case, making a strong argument for approximate

solutions, which is planned for later. The chapter ends with a comparative analysis of

the new SPN formalism with other noteworthy extensions in terms of modeling power and

solution complexity. The preliminary results are followed by the plan towards completing

the research in Chapter 5.

1.4 Notation

For the definitions and methods that follow, we restrict ourselves to homogeneous (time

invariant) models, and we assume that a race execution policy is employed; that is, the

transition with the earliest firing time is selected to fire next. Nevertheless, a preselection

execution policy can be modeled by our formalism since a mechanism to resolve "contem-

porary" events is still required. We assume that transition firing events are atomic (no time

elapses) and always sequential even if the firing times are contemporary. From a modeling

perspective, contemporary firings still occur at the same time. It is only that we choose to

impose a sequential ordering policy so that new markings can be unambiguously determined.

As for timing, we may sometimes allow the probability distribution functions associated with

transition firings to be marking dependent.

Sets are denoted with calligraphic letters. Vectors and matrices (usually lower and

upper case letters, respectively) are denoted with bold text and the corresponding elements

are denoted with (usually subscripted) plain text. The notion of "state" for the models and

stochastic processes presented herein is actually a vector, dimensioned on the set of natural

numbers N and sometimes paired with supplementary information, also vectors dimensioned

on N or the set of real numbers 1R. But our model solutions take the form of probability

distribution vectors that either provide the state-occupancy probabilities at certain times

or at steady state, or provide cumulative probabilities of occupying states over intervals of

time. In either case, each (vector) state i E N _ must be mapped to some index i E N that

is associated with the state's lexicographic position in the solution vector p = [Pi] E lRISI

on the complete set of states 8, also known as the state space. When we refer to state "i"

in bold text, we mean its vector form, and when we refer to state "i" in plain text, we are

referring to its lexicographic index, unless otherwise stated.



Chapter 2

Background

2.1 Petri Nets

A Petri net, such as the one pictured in Figure 2.1, is a directed bipartite graph described by

the tuple PN = (P, T, A, A-, A +, A °, g, -_, m0) with finite vertex sets :P (places) and T

(transitions) and a finite set of arcs (drawn as directed line segments), A C_ p × TU T × P.

Places (drawn as circles) can contain an integer number of tokens (drawn as dots or denoted

by a number inside the place). We denote the marking of the net by a row vector m E N Ivl

that contains as entries the number of tokens in each place. Hence, mp denotes the number

of tokens in place p of marking m = [ml, m2,... , rely I ]. The vector m0 denotes the initial

marking.

Markings can be altered when enabling rules are satisfied at transitions (drawn as rectan-

gles), permitting one or more transitions to fire, thereby removing tokens from input places

and depositing them to output places according to the connecting arc multiplicities. Arc

multiplicities are defined on arcs as either nonnegative integer constants or marking depen-

dent functions that return a nonnegative integer; the semantics depend on the type of arc.

For input arcs, the multiplicity, denoted by A_(m), specifies the minimum number of to-

kens needed in place p before transition t can become enabled in marking m; this number

of tokens is then removed if the transition is indeed chosen to fire. Special input arcs, called

inhibitor arcs (drawn as directed lines with a circle at the end instead of an arrow), have

a complementary effect on the enabling of transitions. For inhibitor arcs, the multiplicity,

denoted by A_p (m), is the minimum number of tokens needed in place p to disable transition

t in marking m. For output arcs, the multiplicity, denoted by A_(m), specifies the number

of tokens that will be deposited in place p when transition t fires in marking m.

Guards, denoted by g and defined for transitions, are functions NI_'I --_ { true, false } that

conveniently specify additional firing rules on transitions. Given some marking m, gt(m)
must return true to enable transition t.

The PN component -_ C T × T specifies an acyclic, preselection, priority relation, which

can resolve conflicts between competing transitions attempting to fire.

Either inhibitor arcs, guards, priorities, or marking-dependent multiplicities alone in-

creases the modeling power of a PN to that of a Turing machine (so we can represent any

computational model), and hence are referred to as Turing extensions [6, 7]. Including all

four Turing extensions merely provides additional modeling conveniences since the modeling
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Figure 2.1: Example Petri net model.

power can no longer increase.

A transition t E )C(m), the set of enabled transitions in marking m, if all of the following
hold:

1. gt(m) = true

2. all of its input places p contain at least as many tokens as the corresponding input arc

multiplicity A_p (m):

Vp • P, mp 2 A_(m)

3. all of its inhibitor arc places p contain fewer tokens than the arc multiplicity At°p(m):

vp • v, <

4. no other transition with higher priority -_ is enabled:

Vu•T,u_ toru_)C(m)

The firing of a transition is assumed to be atomic, consuming zero time. And, timing

constraints aside, the PN defined above can evolve through markings originating from the

initial marking by firing enabled transitions in any order. A transition t • )C(m0) can fire

thereby changing the marking, m0 --_ rnl, where frtl is obtained by consuming tokens from

input places and depositing tokens to output places according to the input and output arc

multiplicities A_. and A +, respectively. By treating the A_. and A + as vectors, we can write

an equation for the next marking as

ml = mo + A+.(mo) - At.(mo )

= mo + It A(mo)



where A(m) = A+(m) - A-(m) is called the incidence matrix and It is a unit vector with

a 1 at the t th position and 0 everywhere else. It is convenient to extend this next-marking

computation to one that takes a sequence s E T* of transition firings as input, where T*

denotes the set of transition sequences obtained by concatenating zero or more transitions

from T. We do this by defining the next-marking function M : T* x NI_'I _ NI_'I to operate

on a transition firing sequence s = ( tl, t2,. • • , t_ ) E T _ and a marking m and return a new

marking. With c = ( ) denoting the null sequence, the next marking function M is defined

recursively as

M ( e,m ) = m,

M( (tl,t2,... ,t_),m)= M( (t2,... ,t_),m + ltlA(m) ) iftl E 5r(m),

and is undefined otherwise.

The PN behavior characterized by the set of markings reachable from the initial marking

and the transition firings that cause the net to enter one marking from another can be repre-

sented as a directed graph with vertices corresponding to markings and arcs corresponding

to the firing of transitions, completely constructed using M. Such a graph is called the

teachability graph. The teachability set, T_, the set of reachability graph vertices, is the set

of all markings reachable by a sequence of transition firings starting from the initial marking

m0:

= {m: 3s T*,m = M(s, m0)}

The reachability graph of the example PN model is portrayed in Figure 2.2 assuming

for the moment that the net is untimed. The possible state space is subject to the number

of tokens that can reside in each place pl,p2,... ,Ps and the possible sequence of transition

firings that move the net between markings starting from the initial marking (mira2 .. • ms) =

(111000). Without timing constraints, transitions tl,t2, and t3 are concurrent with each

other and each can fire asynchronously. However, synchronization is imposed after these

three transitions fire before transition t4 can become enabled and fire, returning the net to

the initial marking. Because all transitions have a fair chance of firing, the reachability graph

contains all possible markings and all possible transition firing sequences.

Petri nets as defined are useful in the study of many types of systems, with or without

concurrency, with or without synchronization. But without the inclusion of time, we are

limited to the qualitative analysis of properties like liveness, deadlock, boundedness, and

invariants [8]. To broaden the applicability of PNs, the notion of time has been incorpo-

rated into the Petri net by various researchers with various generalities by requiring that

an enabled transition delay some amount of time before firing. Ultimately, the specification

captured by the Petri net must be transformed into an (underlying) mathematical model

that can be solved to obtain quantitative measures. When the firing delays are specified as

random variables (or even if deterministic but contemporary transition firings are allowed),

the underlying model is a stochastic process, the solution of which governs the overall com-

plexity of the model solution. As one would expect, the tractability of the solution decreases

as the generality of the model increases.

Extended Petri nets with the most convenient stochastic models include those with ge-

ometrically distributed (Geom) firing delays [1] having an underlying discrete-time Markov



Figure 2.2: Reachabilitygraph of examplePN model.

chain and those with exponentially distributed (Expo) firing delays[9] having an underly-
ing continuous-timeMarkov chain. TheseMarkovian extensionshaveproven useful in the
years for studying discrete-eventsystemswith random behavior. But with the usefulness
of thesemodels to morecomplex and realistic systemsin question,more recentextensions
havetried to incorporate non-Markovian behavior. Noteworthy extensionsand associated
underlyingprocessesarethe phase-typeSPNwith anunderlying, expandedcontinuous-time
Markov chain [2], the extendedSPN (ESPN) [10]with an underlyingsemi-Markovchain,the
deterministic and stochastic PN (DSPN) [S]and the Markov regenerativeSPN (MRSPN)
[11, 12, la] with an underlying semi-regenerative process, and the discrete deterministic

and stochastic PN (DDSPN) [a] with an underlying, expanded discrete-time Markov chain.

However, the complexity of solving more general underlying stochastic processes oftentimes

limits in practice their usefulness to problems with small dimensions.

Consider now the SPN where the states reachable from the initial state are subject to the

possible state transitions under the constraints imposed by the timed execution. Sometimes

the teachability graph of the PN is isomorphic to the underlying stochastic process that

models its timed execution. It is important to know when this property holds because it

determines when and how the teachability graph of markings and the underlying stochastic

(marking) process can be constructed. When they are isomorphic, there is a one-to-one

correspondence between states in the teachability set T¢ and the state space of the stochastic

process, denoted by $. This is the case for SPNs with Geom or Expo firing delays, which have

underlying Markov chains. In such cases, it may be convenient to build the teachability graph

first and then construct the (matrix) equations for the stochastic process from it second [14].

Also when they are isomorphic, one may wish to perform the qualitative analysis by operating

10



on the incidencematrix or reachabilitygraphseparatelyfrom studying the stochasticmarking
process[8]. If we know that isomorphismis not guaranteedor doesnot exist, then $ may
be a strict subsetof 7_. Consequently, the results from reasoning about the reachability set

7_ independently from the timing specification is less meaningful, and possibly misleading.

The semantics of a SPN model also depends on the chosen execution policy. The exe-

cution policy specifies two things: 1) how the next transition to fire is selected among those

enabled and 2) how memory is kept regarding the remaining firing time (RFT), or similarly

the "age", of transitions with non-memoryless distributions.

In regard to selecting transitions to fire, the policy most frequently assumed is the race

policy where the transition selected to fire is the one with the minimum remaining firing time

over all enabled transitions. But it is also possible to perform the selection on the basis of

additional specifications that do not depend on the duration of the activities associated with

the transitions that are enabled. One such policy is called preselection where transitions are

selected to fire among the enabled set according to a priori information, independent of the

firing delay distributions. For example, a probability mass function (pmf) can be defined

over the set of enabled transitions in a given marking, and used to choose the transition that

fires next. This preselection can be done globally, defined for all markings of the net, which

implies serialization of all activities. Alternatively, the preselection can be done locally,

defined over transition groupings, not necessarily disjoint, within which a preselection policy

is applied. Local preselection can be done in concert with the race policy as follows. In

a marking that enables transitions belonging to these groups, the next transition to fire is

identified by selecting first, with time independent criteria, an enabled transition (if one

exists) from each of the groups, and then by choosing among the preselected transitions the

one whose firing delay is minimal [4].

We allow a combination of race policy with pre- and post-selection in terms of priorities.

Under the race policy, we select among the enabled transition whose sampled firing delay is

(statistically) the shortest. This policy provides very useful models of systems that exhibit

concurrency where multiple activities compete such that the first to finish determines the

change in system state. We assume that immediate transitions, those that fire in zero

time, have a higher priority of firing over timed transitions. Thus, we implicitly employ a

preselection policy between timed and immediate transitions. Other execution policies like

pre- or post-selection among timed transitions are discussed at length in [4] and may be

required as well to resolve confusion, which is discussed later.

In regard to how memory is kept about the age, or RFT, of transitions, the memory

policy is only meaningful for transitions with non-memoryless firing-delay distributions since

these are the only transition that can "age". Transitions that have memoryless distributions

(the Expo in continuous time and the Geom in discrete time, the Const(0) is a special case

of the Geom) are not affected since their firing delays can equivalently be sampled after

every transition firing. Memory policies are as important to the semantics of non-Markovian

SPNs as the net topology and the policy used to select the next transition to fire. There are

three policies that are most-frequently used in modeling applications, namely, resampling,

enabling memory, and age memory [1, 4]. The chosen memory policy need not be global; a

different policy can be associated with different transitions and be marking dependent [15].

A resampling policy requires that transitions obtain a new firing delay, sampled from the

respective distribution functions, after some transition fires, including itself. Since each

11



transition firing causesa state change,a resampling policy for all transitions results in a
semi-Markovprocess,which enjoys an absenceof memory after eachstate change. Sucha
policy (with raceexecution)is usefulfor modelingcompetingactivities (modeledof courseby
transitions wherethe amount of work performedis representedby the firing delay) in which
the next state of the systemis decidedby the activity that finishesfirst. Consequently,the
work performedby the losing transitions is lost. Alternatively, an enabling-memorypolicy
causesthe firing delays to be resampledonly when a transition becomesenabled again
after being disabled. The enabling memory policy is useful in modeling activities where
work is performeduntil either completionor termination by anotherevent causingthe work
performedto be lost. Finally, the age-memorypolicy causesthe firing delayto be resampled
only after the transition itself fires, eventhough it may havebeendisabledand re-enabled
many times. Thus, the work performedby age-memoryactivities is neverlost, which makes
such transitions useful in modeling tasks that can be preemptedand then resumedat the
samepoint.

2.2 Markov Models

When the SPN firing delays are defined by random variables, the SPN provides a compact

specification of an underlying stochastic process. Hereafter, we will denote this stochastic

process as { X(O) • 0 >_ 0 }: a collection of random variables defined over the same probability

space, indexed by a time parameter 0, and taking on values in a state space $, which may

be finite or infinite as well as continuous or discrete. A stochastic process that has a discrete

state space is called a chain. The index (time) parameter 0 can also be continuous or discrete.

Hereafter, we will denote discrete-time processes by { Xo • 0 E N}.

A stochastic process (chain) {X(0)" 0 _> 0} with the property

Pr{X(v + e) = j IX(v) = i,X(¢) = x(¢),O <_ ¢ < v } =

Pr{X(v + e) = j IX(v) = i}

g i,j,z(C) E $, 0 >_ O, v >_ O, is called a Markov process (chain) and the property is referred

to as the "memoryless" or Markov property. Thus, the determination of the state the process

will transition to next depends solely on the current state and not the past history of the

process. When the value of that conditional probability is independent of v, the process

is said to be homogeneous or time invariant; this is one of our assumptions. Also, because

of the discrete nature of the PN markings, we will mostly concern ourselves with discrete-

state processes or chains. The acronyms DTMC and CTMC are used for discrete-time and

continuous-time Markov chains, respectively. There will be occasions, presented later, when

the "state" is supplemented with additional, continuous-valued information for modeling

purposes thereby giving rise to a continuous-state process.

The amount of time that a process spends in a state is referred to as its sojourn time.

Clearly, if the evolution of a Markov process depends only on the current state, it should

not matter how long the process remains in the current state before making a transition.

Thus, the sojourn time is geometrically distributed (Geom) for DTMCs and exponentially

distributed (Expo) for CTMCs. This is expected since the Geom and Expo random variables

are the only ones that exhibit the "memoryless property" for discrete and continuous random
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variables,respectively.Without limiting ourselvesto only Expo and Geomfiring delays,the
efficientanalysisof SPNsusing DTMCs and CTMCs will be the main focusof our research.

It follows from the memorylessproperty of Markov chains,letting

Pij(O) = Pr{X(O) = j IX(O) = i },

that

kC$

This is known as the Chapman-Kolmogorov equation for Markov chains and is key in for-

mulating the analytical solutions of Markovian models.

2.2.1 Discrete-Time Markov Chains

Consider a DTMC defined by its transition matrix/-/= [H/j], i, j E $, where

H/j = Pr{ X1 = j lXo = i }

gives the conditional transition probabilities between states in one step or jump. It is often

the case with DTMC models that the time spent in each state is of no concern, only the

states that can be occupied after a given number of "jumps" is of interest. But we can also

imagine that the DTMC remains in each state a fixed amount of time T, referred to as its

basic step time.

A fundamental property of DTMCs is that the Chapman-Kolmogorov equation takes
the form

/-/0= [
where 0 E N. However, we do not have to, nor would we want to, compute the matrix H °.

Instead, we can compute the unconditional probability vector

x (°) = [Pr{ Xo = i }] = x(°)H °

iteratively using the recursive relation

x(o) = x(O-_)H

known as the power method where x (°) = [Pr{ Xo = i }] • RIsl is given by the initial proba-

bility distribution.

We can also compute the cumulative probability vector y(O) = [y_O)] = fo0 x([Uj)du,
defined as

y_O) = E[ number of visits to j • $ until time O IX o = i]

with an extended power method:

y(_) = y(_-l) + x(_-l)

x (_) = x(_-_)lI

13



for n +--1 to 0 with initial condition y(0) = 0 (the vector of all zeros).

If the DTMC contains transient states that lead to strongly-connected recurrent states

(including absorbing states), then we can partition the state space into ST and SR, the set of

transient and recurrent states, respectively, such that S = ST U SR. Then, by defining a new

matrix/_ by restricting/-/to states in ST only, we can compute the cumulative probability

vector _ = [_j] E ]RISTI defined as

_)j = lim y}O) = E[ number of visits to j E ST until absorption IX0 = i]
0--+oc

with the same extended power method except that matrix/_ is used instead of/-/, & E RIST I

is used, and we stop when probability mass remaining in ST, determined from the vector

norm II& II1, becomes small enough.

The power method can also be used to compute the stationary or steady-state solution

x = [xi], i E S, of DTMCs where xi = lim0-_o_ Pr{ Xo = i }, by iterating long enough for the

sequence _x (_))°_ to converge to x.
I. )n=0

For the limiting measures where 0 --_ ec, convergence utilizing the power method may

take a long time, making for a poor method in practice. Alternatively, we can observe

that a stationary solution x, if it exists, would satisfy the equation x/-/= x. This is just

the case for ergodic DTMCs (those that are irreducible, aperiodic, and positive recurrent).

Fortunately, ergodic DTMCs have a unique stationary solution that satisfies the system of

equations

xH = x subject to _ xi = 1. (2.1)
iC$

Of course, we could utilize direct methods like standard Gaussian elimination or LU decom-

position to solve for x. But because the coefficient matrix based on H would be modified

and susceptible to fill-in and because H is typically very large for realistic models, direct

methods are rarely used in practice. Even though the DTMC specified by H (and most any

stochastic model for that matter) is large, it is at least sparse in general. So iterative methods

like Gauss-Seidel and successive overrelaxation (SOR), which have much faster convergence

than the iterative power method, are usually employed to compute x. These methods do

not modify the iteration matrix based on/-/and if sparse matrix storage is used, the time

complexity is O(Nr]) where N is the number of iterations needed for convergence and r] is

the number of nonzero entries in matrix /-/. Unfortunately, N may be unbounded since

these iterative methods do not guarantee convergence for all initial guesses for x. This is

because /-/is a stochastic matrix (each row sum is one), which makes the spectral radius

(the largest eigenvalue) equal to one. Iterative methods have guaranteed convergence for

any initial guess only when the spectral radius is less than one [16].

With these iterative methods, we can also solve the following system of linear equations

for the cumulative probability vector _) when S contains transient states:

_)(I- if/)= _(0). (2.2)

or equivalently
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While the useof iterative methodsto solveEquation 2.1may not convergefor all initial
guesses,convergenceis insteadguaranteedfor Equation 2.2, since(I -/it) is an M-matrix,
(nonsingular,elementsare lessthan or equal to zero,and having a nonnegativeinverse[16]),
which always has a spectral radius less than one. Therefore, solving Equation 2.2 with
iterative methodshasguaranteedconvergence,regardlessof the initial guess[17].

2.2.2 Continuous-Time Markov Chains

Consider now a CTMC, where for all continuous points in time, state transitions can occur

and the process is memoryless. Let the rate at which the process transitions from state i to

state j be denoted by hij E R +, i,j E $. The sojourn time in each state i is exponentially

distributed, so by letting hi = _j_s hij, we can obtain the expected sojourn time from

E[sojourn time in state i] = hi -1.

The interpretation of the rates is such that

lim Pij(O) _ .Xij, i # j (2.3)
0--+0 0

lim 1 - Pii(O) = .Xi. (2.4)
0--+0 0

By observing the CTMC just after each state transition, we can construct a DTMC

consisting of the possible sequence of states the process can move between over time 0. If

only limiting measures where 0 --+ cc are sought then we can also compute the probability of

transitioning between state i and state j in the DTMC from the ratio ._ij/._i since the sojourn

times are exponentially distributed. Let diag(hii) be matrix with hi along the diagonal Vi E $
and zero elsewhere. Then the embedded DTMC matrix/7 E RlSl×lSl constructed from the

CTMC is defined as

/7 = diag(._i)-l[._ij]iCj (2.5)

Constructing a DTMC by observing a stochastic process (a CTMC in this case) at times

when the Markov property holds is called embedding. Then steady-state, state-occupancy

measures such as the stationary distribution or time-to-absorption (TTA) can be computed

from the embedded DTMC (EMC) using Equations 2.1 and 2.2, respectively. But, since the

quantities x and y from Equations 2.1 and 2.2 for the EMC are interpreted as or are based on

the "number of visits" to states, we must convert these measures back to the original CTMC

by appropriately scaling them. The needed "scaling factors" come from the knowledge that,

with each visit, the expected sojourn time in each state i is just hi -1. For example, the

CTMC stationary distribution p = [Pi], Pi = lim0__+o_Pr{ X(0) = i }, can be computed by

using the embedded DTMC matrix (2.5) and then computing

x/7 = x subject to _ xi = l, xi = xi h -li , PJ - 2j
i_s _ 2k

kC$

where the last step is needed to re-normalize the distribution so that it sums to one once

again.

15



Embeddinga CTMC is applicable for steady-statesolutions, not time-dependentsolu-
tions. With simpleembedding,the CTMC is observedonly at times when state transitions
occur. Consequently,information concerninghow long the processsojournsin states is lost
making the EMC time-dependentsolutionsuseless.For time-dependentanalysis,we must
onceagainmakeuseof the Chapman-Kolmogorovequation. For steady-stateanalysis,em-
beddingwill once againbe usefulfor more complicatedstochasticprocessthan CTMCs, as
discussedin more detail in later sections.

By manipulating the Chapman-Kolmogorovequation:

kC$

kC$

Pij(t9 q- v) - t:)ij({_) : E Pik(tO)PkJ(v) -- (1 - Pjj(v)) Pij(t9)

k¢i

then dividing by v and taking the limit as v --+ 0:

lim _j(O + v) - _j(O) = lim _ _k¢i _k(O)Pkj(v) -- (1 -- Pjj(v)) _j(O)

v--+O V v--+O [ V J

and finally substituting 2.3 and 2.4, we get what is known as Kolmogorov's forward equation:

d

_P_j(o) = Z P_(o)A_j- P_j(o)Aj. (2.6)
k¢i

The interchange of the summation and the limit, needed to obtain Equation 2.6, is not

always justified, but it does hold for most models including those with finite state spaces, as

is the case here [18]. Similarly, we can derive the Kolmogorov's backward equation,

d P_j(O)= Z A_P_j(O)- AiP_j(O), (2.7)
k¢i

by looking backwards in time from a given state.

By defining what is called the infinitesimal generator matrix, Q = [Qij] E Rlsl×lsl, as

Q = [Aij]i¢j - diag(Ai)

and letting P(O)= [P_j(o)]• R_×_, Kolmogorov's forward and backward equations can
be rewritten in matrix form as

dP(O)=P(O)Q

and

dP(O)=QP(O)

(2.8)

(2.9)
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respectively. Thesedifferential equations can sometimesbe solved with conventional,di-
rect or indirect means(suchas Runge-Kutta or Laplacetransforms) but this restricts the
usefulnessof CTMC models to small problems. Instead, we could makeuseof the known
solution

P(O) =e Q°,

which is a matrix exponential computed from

(QO)_ (2.10)
eQ° = n!

ftzO

However, the matrix exponential method is susceptible to subtractive cancellation errors due

to the positive and negative entries in Q, which makes the method unstable.

In practice, the time-dependent solution of the CTMC is usually computed using Jensen's

method, also known as uniformization. The basic idea behind uniformization is to perform

time-dependent analysis on a DTMC constructed from the CTMC in a way similar to "era-

bedding" except that all states are forced to have the same expected sojourn time by imposing

selfloops on states where necessary. By uniformizing the CTMC, the CTMC is observed at

times of state transitions, when they occur naturally, and at more frequent times, when

self-transitions occur. Hence, information is retained about how long the CTMC occupies

each state, unlike the embedding method.

The basic uniformization algorithm defines a DTMC matrix, A E RlSl×lSl, as

A = q-lQ + I (2.11)

where q _> maxi Qii is chosen as the "sampling" rate, at least as large as the maximum

outgoing rate of all CTMC states. The sampling rate q is normally chosen to be slightly

larger than the maximum outgoing rate to ensure that the DTMC will not be periodic. Also,

all A entries are non-negative. So, substituting

Q=(A-I) q,

derived from 2.11, into the matrix exponential 2.10 provides an efficient and much more stable

computation of P(0), for a given initial probability distribution x (°) = [Pr{ X0 = i }] E lRIsl,

that makes use of the Poisson random variable:

x(°)P(0) = x(O)eQ 0

= x(O)e(A-I)q 0

: x(O)eAqOe-Iq 0

o_

= x (o)
rtzO

o_

= x (o)
rt_O

o_

= x (o)
rt_O

A_(qO)_ .
n!

n:O

A_(qO)_. _-
n!

n_O

(qO) ne-qO A n.
n!

r(-qe) 
n!

(-qO) n

n!
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The summationcan be easilycomputedwith

x(_)Poiss(n,qO) (2.12)
n=0

where

x (_) = x(_-l)A

and

Poiss(n, qO) = Poiss(n - 1,qO) qO, Poiss(0, q0) = e -q°.
n

So we see that uniformization is another version of the power method, only extended

for suitability in studying CTMCs. Essentially, uniformization subordinates the uniformized

process with a Poisson birth process. This has a nice interpretation. The Poisson process

determines the probability that the uniformized process (the DTMC) can make n jumps

within fixed time 0. Given n jumps, A n determines the set of states that can be occupied

conditioned on the initial state. By doing this for all possible n (and summing the proba-

bilities), we can uncondition on n and obtain our desired solution for the original CTMC

process.

In practice, computing x(°)e Q° requires that we truncate the infinite series 2.12 and sum

the remaining terms in a numerically stable way. To do this, we employ the Fox-Glynn

algorithm [19], which defines left and right truncation points, L1 and R_, respectively, so
that

R1

x(°)e Q° _ _ x(n)Poiss(n, qO)
rt=L1

and the error is bounded by 10 -e (d digits of precision) if

k lO-d }
L1 = max _ Poiss(n, q0) < --

k_N -- 2
n----O

R_=min 1- _ Poiss(n, q0)< 10 -a .
kEN

n=L1

Note that although the Poisson probabilities are only computed in the range L1 _< n _< R1,

the vector-matrix multiplications must be done for 0 _< n _< R1.

Just as in the power method for DTMCs, we can compute the same y(O) and _, defined

in the previous section as

y(O) = fo ° x(_) du

= lim y(O)
0--+oo

x (°) fo °
= eQu du
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at the sametime x (°)eQO is computed [20]. Substitution of the uniformization computation

for e Qu yields

So0 So0( )eQ_du = x(n). Poiss(n, qu) du

and after factoring the summation series over n, we have

oo

x (_) fo e Poiss(n, qu) du,
rt=O

which can be written equivalently as

1 (1
n=O g=O

using integration by parts. Although we must begin at n = L2 = 0 here, a right truncation

point R2 can be found with bounded error. Since the total sojourn in all states over an

interval [0, 0] must be 0, so that

x(°) f°° 1e Qu du = O,

we can stop when the difference between 0 and (1 - E "e=0Poiss(g, qO)) becomes small. Thus,

we have the right truncation point

  min{01 ( )}ken q 1 - Poiss(g, qO) < 10 -d
n=O g=O

When computing both x (°) f:e Qu du and x(°)e QO, the smallest left truncation point

L = 0 and largest right truncation point R = max(R1, R2) are chosen.

In case the CTMC with generator Q is ergodic, we can also test for stationary conditions

to check whether 0 is large enough for the DTMC to have reached steady state. Detecting

stationary conditions that occur before the right truncation is reached, and halting, can

result in significant performance gains.

But if stationary solutions are sought then there is a better way just as in the DTMC

case. When stationary or steady-state equilibrium is reached, the change in probability mass

between states becomes zero. So we can set the derivative in Equation 2.8 to zero and obtain

global balance equations for the CTMC:

mQ=O (2.13)

where x satisfies the stationary solution limo-+oo x (e) independent of the initial probability

distribution when the CTMC is ergodic. The same argument used in the previous section

against employing direct methods apply here as well; iterative methods are better even

though convergence is not guaranteed for all initial guesses.
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With iterative methods, we can also solve the following system of linear equations for

the cumulative probability vector _) = lime__ y(e):

yQ = __(o). (2.14)

Like in Equation 2.2 for the DTMC case, the use of iterative methods for Equation 2.2

enjoys guaranteed convergence since -Q is also an M-matrix. Because the use of Equations

2.13 and 2.14 has the same complexity as Equations 2.1 and 2.2, respectively, steady-state

solutions are computed directly from the CTMC in practice.

Because the uniformization algorithm is integral to the solution algorithms developed

later, we provide it here as Algorithm 2.2.1, without steady-state detection. The algorithm

computes the transient probability vector _.(0) E RlSil on the CTMC state space $i orig-

inating from the initial state i where _j = Pr{ X(O) = j Ix(0) = i } and the cumulative

probability vector o" = f0° _.(u) dtt. The algorithm assumes that _- contains the initial proba-

bility distribution when the algorithm is invoked.

Algorithm 2.2.1 Extended uniformization algorithm

1: Given the solution time 0, generator Q E RISil x ISil, and

initial probability vector _" E RIS_l,

2: Let q +-- 1.02 • maxi I@il and A +---q-lQ + I

3: • +-- _"

4:_'+-0

5:o'+-0

6:s+--1

7: Choose L and R for desired precision 10 -d

8: Compute Poiss(n), V n, L __ n __ R using Fox-Glynn algorithm
9: forn+--0toL-ldo

10: o- +-- o- +

11: _ +-- _A

12: end for

13: for _t +-- L to R do

14: 8 +-- s -Poiss(n)

15: _- +-- _- + Poiss(n) • 5:

16: 0-+-0-+8.5

17: _ +-- 5:A

18: end for

19: o- +-- o-/q

20: return solutions _', o"
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2.3 Phase-Type Models

Phase-type random variables are defined as the time-to-absorption of Markov chains with at

least one absorbing state. An absorbing CTMC (via a rate matrix) is used for continuous

phase-type distributions (let PH denote this family hereafter) and an absorbing DTMC (via

a stochastic matrix) is used for discrete phase-type distributions (denoted hereafter by DPH).

Each must also include a specification of the initial state occupancy probabilities that the

absorbing Markov chain assumes when a new random variable is "sampled". Special cases

of PH, as shown in Figure 2.3, include: exponential (Expo), Erlang, hyper-exponential

(Hyper), and hypo-exponential (Hypo). Special cases of DPH, as shown in Figure 2.4,

include: geometric (Geom), constant integer multiples of r (Const), and discrete uniform

(Equiprob).

Expo(X)(_X_

Erlang( X, 2 )

Hyper( _Li, 2 )

arbitrary PH-type X3 X8

_X5 _

Figure 2.3: Example continuous-time phase-type (PH) random variables.

Geom( o_,31: )

Const( 31: )

Equiprob( 1, 3, "_)

1

2_ w/p o_

31; w/p 1-c_

Figure 2.4: Example discrete-time phase-type (DPH) random variables with step r.
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The reachability graph and correspondingstate spaceof a SPN with PH or DPH firing
delaysis constructed by expanding the state space and state transitions so as to remember

the RFT of each enabled transition until one or more transitions can fire. The RFT for

phase-type firing delays is naturally discretized, and so the pairing of each possible phase

vector 0 together with each possible, discrete PN marking vector m produces a state (m, 0)

within an expanded Markov chain. By including enough information in the current state

about the past evolution of the process, the past can be forgotten, essentially Markovianizing

the process. Because the idea of supplemented states is important to our research, we will

soon revisit this topic in greater detail. After firing a transition t, the execution policies that

define what happens to the RFT of transitions still enabled are then applied to create a new

phase vector 0' paired with the new marking M(t, m).

If the transition t that fires is once again enabled in the new marking, then a new firing

delay is sampled from its PH or DPH distribution function (an absorbing Markov chain)

and included in 0' of the new state. If the firing transition t is not enabled in the marking,

then its phase component, ¢_, within vector 0' is unspecified, a "don't care". This procedure

continues until no new state is discovered or until no transitions can fire (this event results

in an absorbing state in the reachability graph).

For all phase-type transitions t and all reachable markings m, the possible combination

of phases can be obtained by performing the Cartesian product of the phase space, denoted

by T _t, of each absorbing Markov chain that specifies the phase-type firing delay: a stochastic

matrix Dr(m) for DPH phases or a rate matrix Et(m) for PH phases. We allow the firing

delays to be marking dependent by letting these matrices be functions of the marking.

For DPH phases, the result is a Cartesian product of the constituent phase spaces and an

arithmetic product of all corresponding one-step probabilities. For PH phases, the result is

a similar Cartesian product and an arithmetic sum of all corresponding rates. Hereafter,

we let Z) denote the potential phase space in the expanded model. When discrete-time and

continuous-time models are considered separately, an expanded DTMC results from DPH

phases and an expanded CTMC results from PH phases.

For DPH models, the expanded DTMC states and transition probabilities are specified

formally using the Kronecker multiplication. Letting A E R r×r and B E R 8×8, the Kronecker

product ® is defined as

A@B =

allB a12B ... alrB

araB a22B "" a2rB

: : ".. :

arlS ar2S "'" artS

the result being of order rs [21]. Then, for each DPH transition t, the expanded DTMC on

the total, potential phase space T_ is given by

D(m)=(_Dt(m) (2.15)

with order [It IT_tl • The stochastic matrix D(m) completely specifies all conditional next

phases and associated probabilities that can occur in one basic step. By referring to a
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"potential" phasespace,weemphasizethat not all combinationsof discretephasesgivenby
the matrix equation 2.15is reachable.

For PH models,the expandedCTMC states and transition rates arespecifiedformally
using the Kronecker addition. Using ® and the identity matrices Ir and I8 of order r and

s, respectively, to obtain the correct dimension for summing A and B, the Kronecker sum

® is defined as

A®B = A@I8 +Ir @B

Then, for each PH transition t, the expanded CTMC on the total, potential phase space

is given by

E(m)=_Et(m) (2.16)
t

with order [It ]Z)t] • The rate matrix E(m) completely specifies all conditional next phases

and associated transition rates that can occur in continuous time.

An example reachability graph isomorphic to an expanded DTMC is shown in Figure 2.5

assuming DPH transition timing: tl _ Geom(p, 1), t2 _ Geom(q, 3), ta _ Const(2), and t4

Const(1). The states are composed of both marking and RFT information corresponding to

the discrete, firing delay phases of each enabled transition. Phases of transitions not enabled

are of no importance and consequently are indicated by "." symbols.
Note that the state transitions associated with "e" are those where no transition actu-

ally fires, but merely update the phase information. The one-step transition probabilities

originating from state (110001, 11 • .) are shown in Figure 2.6. Here we see the presence

of the simultaneous firing of tl and t2 between states (110001, 11 • .) and (000111,. • .1).

Unlike the continuous-time PH models where the probability of any two transition having

the same firing time is zero, such contemporary firings are possible, indeed likely, with DPH
models.

Contemporary firings not only have the potential of making the reachability graph more

dense (more state transitions) than one with PH transitions, but can create confusion. Two

transition are said to be concurrent when each can fire and the firing of one does not affect

the firing of the other. Two transitions are said to be in conflict when the firing of one

prevents the firing of the other. When we have both concurrency and conflict, we may have

confusion [8].

Consider the examples of possible confusion in Figure 2.7 where contemporary firings

are possible and where there exists a mix of concurrency and conflict. In both examples,

transitions a and c are concurrent, and transitions b and c are in conflict. In the bottom

example, there is also conflict between transitions a and b. Even though contemporary firings

are possible, a firing sequence must be chosen and applied to the function M to determine

the next marking. PN confusion can occur when the next marking depends on the order in

which transition firings are chosen. When considering the marking

(mlm2mam4mh) = (10100)

shown in the top example, we only see the concurrency between transitions a and c, but if

we choose to fire transition a first, and move to the next marking

(mlm2m3m4ms) = (01100),
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t 1

_ t 1

t

t 1 ~ Geom(p,1)
] tlt1 t 1

t 2 ~ Geom(q,3) __t 3 ~ Const(2)

t4 ~ Const(1) t,

state

t3

S

t 1

t2

Figure 2.5: Markovianized process of the example SPN of Figure 2.1.

we encounter a conflict between transitions b and c. If we instead choose to fire transition c

first, and move to the next marking

(zrtlzrt2ZrtaZrt4zrt5) = (10001),

then transition b is prevented from firing whether or not transition a fires next in the same

marking. Thus, different outcomes arise depending on which transition, a or c, is chosen

first as shown by the reachability graph in the top-right corner of Figure 2.7. The confusion

about which transition to fire first must be resolved by either avoiding the confusion in the

first place, by preventing the bothersome enabling of transitions, or by forcing a particular

firing sequence. Either fix can be accomplished by employing a different net specification,

guards, or preselection priority. Preselection priorities can resolve conflicts in untimed PNs

or within timed PNs for immediate transitions that can fire in zero time. Using preselection

priorities for example, different probabilities can be assigned to each sequence leading to the

three new states, such that all probabilities sum to one. This results in a stochastic model

even though the PN may be untimed.
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p(1-q)

(1-p)(1-q)_

(1-p)q pq

Figure 2.6: Transition probabilities for a portion of Figure 2.5.

When analyzing timed PNs, we may also have stochastic confusion. In the bottom

example of Figure 2.7, PN confusion does not exist since the net reaches the same marking

no matter which sequence is chosen. However, if impulse rewards* 7 : T -+ R are used such

that 7(a) + 7(c) -_ 7(b) then stochastic confusion results since the reward measure depends

on the chosen sequence. If the stochastic outcome differs depending on the order in which

transitions in a contemporary firing sequence are selected to fire, then the model is not "well

defined". Such confusion may be resolved the same way as with PN net confusion or with

the addition of postselection priorities. Rather than preventing the simultaneous enabling

of transitions that may lead to confusion, we may instead leave them be, let them delay,

and if their simultaneous firing leads to confusion, decide then which transition gets to fire

first using postselection priorities. The understanding of this problem and possible solutions,

including the use of postselection priorities, have already been discussed in [22, 23, 24] and

can be brought to bear on the research proposed here.

2.4 Semi-Markov Models

If the sojourn times in states are Expo or Geom random variables, we have a Markov chain:

a CTMC in the former, which is memoryless for all time, and a DTMC in the latter, which

is memoryless at times multiple of the basic step. Alternatively, if the sojourn times in

states are all equal to the same constant _- E N, we still have a DTMC. From the previous

*Each time a state transition occurs due to the firing of t, a reward of 7(t) is accumulated.
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v(c)

stochastic confusion

ac

b

Figure 2.7: Examples of possible Petri net and stochastic confusion.

section, we know that although such models are restricted, they lend themselves to efficient

time-dependent and stationary analysis.

In more general cases, semi-Markov processes satisfy the Markov property at times of

jumps when state transitions occur, but not necessarily between jumps. Consequently, the

sojourn times for semi-Markov processes can be arbitrary, nonmemoryless random variables.

Satisfying the Markov property in at least a "semi" way affords efficient, stationary analysis

just as strict Markov chains, but time-dependent analysis becomes difficult. The following

theory used to study semi-Markov chains is provided below in preparation for the more

general theory needed to study semi-regenerative processes, of which Markov and semi-

Markov chains are special cases.

Consider a random variable X., defined for each n E N and taking values from the state

space E, and a random variable T., likewise defined for each n but taking values in R + such

that To = 0 and T. _< T.+I, V n E N. The process { (X., T.): n E N } is called a Markov

renewal process (MRP) with state space g if the following holds Vn E N, Vj E E:

Pr{ Xn+l = j, Zn+l - Zn <_O IXo,XI,... ,X_;Zo, Zl,... ,Z_ } =

Pr{X,,+I = j,T,,+I - T,, <_O IX,,} = Pr{X1 = j, T1 <_O lXo }

The sequence {X. :n E N} is a DTMC. An example MRP sample path is portrayed in

Figure 2.8.
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Figure 2.8: Markov renewal process.

Consider a stochastic process {X(0) • 0 _> 0} with state space $ that has an em-

bedded MRP with state space g C_ $. That is, observing X(O) at certain, random times

T_ and recording the state X_ occupied at those times produces a MRP. Analogous to

the CTMC embedding discussed in the previous section, if we can determine the tran-

sition probability matrix /7 of the embedded DTMC (EMC) and its stationary solution

xi = lim__+oo Pr{ X_ = i }, i E g, then we can easily compute the stationary distribution

pj = lim0-+oo Pr{ X (0) = j }, j E $, of the complete process. For a semi-Markov process,

one that enjoys a renewal after every state transition, as portrayed in Figure 2.8, we have

$ = g and E[ T1 IX0 = i ] = E[sojourn in i], i E g, and

xi = :ci" E[ sojourn in i ], xJ (2.17)
PJ-- E2k"

kC$

This well known technique of "embedding" is based on the following reasoning. The station-

ary probability distribution can be interpreted as the fraction of time the process resides in

each state. For there to be a unique stationary solution, the EMC must be ergodic; i.e., it

is aperiodic, positive recurrent, and irreducible. The aperiodic property ensures that we can

compute an unique stationary solution, given that the other two properties also hold. The

positive recurrent property means that the process after leaving some state will eventually

return to the same state in some finite time. The irreducible property means that every

state can reach every other state. So to determine the expected cycle time of the stationary

process, we need only pick a single reference state. Let state k be this reference state. Then

after determining the stationary solution of the EMC, xi, Vi E g, we can interpret the ratio

xi/xk as the expected number of visits to state i between two visits to state k. The expected

sojourn time in state i within a stationary cycle is just E[sojourn in i] • xi/xk and the ex-

pected cycle time is just _jee E[sojourn in j]. xj/xk. Equations 2.17 then follows from the

interpretation that the stationary probability distribution is the fraction of time the process

resides in each state within the expected cycle time.

The embedding method makes intuitive sense as well when we think of it as just scaling

the stationary probability distribution of the EMC according to the expected sojourn times

and then normalizing so that the new distribution sums to one. This idea of "scaling" is

useful in understanding the theory that follows.
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2.5 Semi-Regenerative Models

For a semi-regenerative process, one that becomes a probabilistic replica of itself at certain

random times T_, given the same state X_, the stationary solution is computed in a way

similar to semi-Markov processes except that//and E[ sojourn in k during [0, T1) I X0 = i ],

i E E, k E $i, must be computed by studying the subordinate process, the process with state

space $i that evolves between renewals [25]:

xk = _ xi" E[ sojourn in k during [0, T1) IXo = i3,
ic£

xJ (2.18)
PJ-- _xe"

An example sample path of a semi-regenerative process is portrayed in Figure 2.9.

Figure 2.9: Semi-regenerative process sample path.

The problem of solving a semi-regenerative process using Markov renewal theory is re-

duced to studying the stochastic process between the T_ points in time when the process

enjoys an absence of memory concerning its past. Unlike the semi-Markov process, the

semi-regenerative process can occupy many states (within the subordinate process) between

renewals, referred to hereafter as regeneration times. So the embedding technique used for

semi-Markov processes by "scaling" is applicable to semi-regenerative processes except that

we proportionally redistribute the EMC stationary distribution over all the states visited

in the subordinate process between regenerations, followed by normalization. For semi-

regenerative processes, the distribution, scaling, and normalization required to compute the

stationary solution from the EMC is referred to hereafter as conversion. We will return to

the subject of embedding a semi-regenerative process after we present the key aspects of

Markov renewal theory, which is needed to compute the EMC and the conversion factors.
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In general, Markov renewal theory depends on the specification of the following two

quantities:

G/y(O) = Pr{ Xnq_ 1 = j, Tn+l - Tn < O IXn = i }

=Pr{XI=j, T1 <_OIXo=i },

H/k(O) = Pr{ X(O) = I_,T 1 > O IX 0 = i } i,j • g, I_ • &

where the elimination of n is justified by assuming homogeneity. H/k (0) gives the transient

probability of occupying state k • 8/ C_ $ at time 0 before the next regeneration given the

initial state i • E entered at the last regeneration. The subordinate process evolves during

the interval [Tn, Tn+l) or equivalently [0, T1) when Xo = X_. Gij(O) gives the state transition

probability of the EMC between two consecutive regenerations jointly with the distribution

of the regeneration period T1.

The quantities G and H can be recursively combined similar to the Chapman-Kolmogorov

equation to obtain

/o°Pij(O) = Hij(O) + _ dGik(v)Pkj(O- v) i,j • $ (2.19)
kCC

known as the Markov renewal equation. Markov renewal theory is essentially the application

of this equation to aid the study of semi-regenerative processes.

If g is finite, the Markov renewal equation is satisfied by the unique solution

£/o° j(o) = H j(O- (2.2O)

where R is the Markov renewal function [25]. The Markov renewal function R/j (0) is defined

as the expected number of renewals observed at a fixed state j • g starting from state i • g

within a fixed interval [0, 0]"

R/j(o)= E Pr{ = j,r <_OlXo = i } = E
n=0 n=0

where G_(O) is the n-fold convolution of G/j(O) with itself.

Finding the transient probability distribution P/j (0) that satisfies Equations 2.19 or 2.20

is not a trivial task in general. For models with large dimensions, direct solution in the time

domain is expensive and is susceptible to numerical difficulties or instabilities. Alternatively,

Equation 2.19 can be solved as a linear system of equations in the s-domain by utilizing the

Laplace-Stieltjes transform [26]. However, the numerical inversion necessary to obtain the

time-domain solution afterwards is also complex if numerical instabilities are to be avoided.

So it would seem that the difficulties in obtaining an exact, time-dependent solution of semi-

regenerative processes makes a good case for either reasonable, simplifying restrictions that

make R easier to compute, or approximations [27].

Fortunately for stationary analysis, the method of embedding indirectly produces a so-
lution that satisfies

_0 °lim Pij(O) = lim _ dR/k(v) Hkj(O - v)0--+00 0--+00

29



for any initial state i E $ (assumed to be an embedded state at time 0) with much less

difficulty than solving Equation 2.19 or 2.20 directly [25]. To do this, we determine the
EMC transition matrix from

Hij = lim Gij (0) i, j E E
0-+00

(2.21)

where G itself is determined from H by observing the subordinate process at regeneration

times. At the same time, the conversion factors, denoted hereafter by h = [hik] E 1RIEI×ISI

are computed _/i E E, k E $i, from

/7hik = E[ sojourn in k during [0, T1) IX0 = i] = Hik(O) dO (2.22)

from which we can also compute the expected value of a typical regeneration period

E[ I IXo = e]= Z
kE,Si

Consequently, the complexity of the method is dictated by the complexity of studying the

subordinate process and the EMC. The solution complexity of these two subproblems de-

pends to a large degree on the regeneration points that are sampled which ones and how

many. The PDPN solution algorithms we propose in Chapter 4 are developed with these
considerations in mind.

We now focus on the application of Markov renewal theory to the deterministic and

stochastic PN (DSPN) [3] and its generalization, the Markov regenerative SPN (MRSPN)

[12]. We assume for clarity that the probability distribution function or PDF (also known as

the cumulative distribution function or CDF) for the firing delay of a generally distributed

transition t,

Ft(O) = Pr{ transition t firing delay _< O },

is not marking dependent and that t cannot be preempted by the firing of another transition.

While marking dependent PDFs and preemption policies have been addressed, in [28, 15,

29, 30] for example, such situations introduce an unnecessary complication to the following

discussion. Although we assume marking independent PDFs for our work, we do allow

certain kinds of preemption and so this topic is discussed later in Chapter 4.

Starting with Gij(O) and conditioning on the events { T1 = v } and { X(v) = k }, we can

equivalently write, for i, j E E,

0

Gij(O) = _ f Pr{ X 1 = j IX(v) = 1¢}Pr{ X(v) = k lXo = i }dPr{ T1 _< v ]Xo = i }.
kE,5 0

(2.2a)

For MRSPNs, which are restricted so that at most one generally distributed transition is

enabled in any marking, and with our assumptions, regeneration points are observed at

times when generally distributed transitions either become enabled or fire. When only Expo

transitions are enabled, regeneration points are observed just after each state transition as a

30



result of Expo transition firings. This meansthat the subordinateprocessis ageneralCTMC
at worst, when a generally distributed transition is enabled,and a single state CTMC at
best, when no generallydistributed transitions areenabled.

Considera regenerationperiod starting with a known embeddedstate i E g. For the

simple case when only Expo transitions are enabled, let A_-1 denote the expected sojourn

time in state i and let Aij be the rate that the exponentially distributed process transitions

between state i and some next state j. Then Hij is given in closed form as AijA_-1.

For the more complex case, when a generally distributed transition t is enabled, we can

substitute the PDF for transition t, Ft(v), in place of Pr{ T1 __ v I X0 = i } and recognize

that Pr{ X(v) = k I X0 = i } is just the solution of the subordinate CTMC at time v when t

may fire. The quantity Pr{ X1 = j I X(v) = k } is simply the probability of entering marking

j when t fires in marking k, possibly followed by a firing sequence of immediate transitions,

all occurring in zero time. We denote this switching probability with A_j. If no immediate

transition firing can occur, A_j = 1 if k = j and 0 otherwise. These substitutions into

Equation 2.23 yields

0

Gij(O) = Z f [eQiv]ik drt(v)Atkj i,j E g (2.24)
kE$ _0

for the MRSPN where Qi denotes the CTMC generator with state space $i and initial state

iEg.

When only exponential transitions are enabled in state i E g, we know that the expected

sojourn time in i is A_-1 from Equation 2.4, and so Hii(O) = e -_i°. For the more complex

case, we can rewrite Hik(O) equivalently as

Hik(O) = Pr{ X(O) = _,T 1 > O lX 0 = i }

=Pr{X(O)=kITI >O, Xo=i}Pr{Tx >OlXo=i } iCE, keSi

and again for the MRSPN when a generally distributed transition t is enabled in state

i E g, we can substitute Pr{ X(0) = k ] TI > 0, X 0 ---- i } with the transient solution of the

subordinate CTMC at time 0 and obtain Pr{ T1 > 0 I X0 = i } from the PDF of t to get

Hik(O) = [eQ_°]i k (1- Ft(O)). (2.25)

The DSPN is a special case of the MRSPN where the non-exponential transitions t have

deterministic firing delays, specified by Const(Tt). With the substitution F(v) t ---- Const(Tt)

in Equations 2.24 and 2.25 we can obtain the Equations 2.26 and 2.27 for the EMC H = [Hij]

and conversion factors h = [hik], respectively:

lira Gij(O)
0--+(_

OO

/_c$ o

/_c$ o

/-//j =

(2.26)
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and

fO °hik = Hik (0) dO

= f0 °_ [eQiS]i k (1- Ft(O)) dO

= fo _ [eQiS]i k (1- 1(0- "rt))dO

(2.27)

where 3(.) is the unit impulse function and 1(.) is the unit step function. We will find

Equations 2.26 and 2.27 useful in the analysis of the non-Markovian SPN proposed in the

remaining chapters.

We end this section by providing in Figure 2.10 the underlying semi-regenerative process

for our running example when all transitions but t3 are exponentially distributed. The semi-

regenerative process graph shown here is the same in structure, but not timing, of course,

whether we consider the model to be a MRSPN or a DSPN by assuming transition t3 to

be generally distributed or deterministic, respectively. States in the EMC are shadowed to

distinguish them from the states in the subordinate Markov chain that evolve due to the

firing of transitions tl and t2 while t3 is enabled. Once t3 has fired, all states visited are

considered embedded states until t3 becomes enabled once again. The initial state (111000)

is considered to be both an embedded state and subordinate state by definition. Note that

the semi-regenerative process graph is isomorphic to the PN reachability graph given in

Figure 2.2. This is not happenstance. This is always the case for DSPNs or MRSPNs when

at most one deterministic or general transition, respectively, is enabled in any marking.

A sufficient condition for isomorphism between the PN reachability set T4 and the under-

lying stochastic state space $ is if all firing delays have continuous distributions with infinite

support [0, co). But this is not a necessary condition as shown by the fact that DSPNs,

with finite-support, deterministic firing delays, have reachability sets that are isomorphic to

the underlying stochastic state space. The necessary conditions for isomorphism ensure that

the timing specification allow every enabled transition to have a chance of firing. That is,

Vrn ET4:

1. The quantity Pr{ t fires, firing delay _< 0 I history }, at the present, is uniquely deter-

minable by observing the past evolution constituting the history,

2. _ lim Pr{ t fires, firing delay G 0 I history } = 1, and
tE._'(m) 0--+oo

3. Vt E be(m), Pr{ t fires I history } = lim Pr{ t fires, firing delay < O I history } > 0
0--+oo

are true [4]. Simply put, (1) and (2) ensure unambiguous determination of future states given

the past even when timing constraints are imposed, and (3) ensures that every transition

has an opportunity to fire in every marking that enables it. When these criteria are met,

the determination of T4 is independent of the firing-delay distributions. These conditions are

satisfied by DSPNs and MRSPNs since at most one deterministic or general, respectively,

transition t is enabled in any given marking. Because all other enabled (Expo) transitions
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havecontinuousdistribution functions with infinite support starting at 0, transition t is able

to fire before any other enabled transition, and the other transitions are able to fire before

transition t. Hence, every enabled transition has an opportunity to fire.

embedded subordinate _ t _"

states states 10_ 3 _

. tl tl" N

state mm-king t3 "

Figure 2.10: Semi-regenerative process for generally distributed t3 and all others Expo.

The complexity of studying semi-regenerative processes increases with the complexity of

the subordinate process. Models with at most one generally distributed transition enabled are

convenient because they restrict the subordinate process to a CTMC. But when we allow the

simultaneous enabling of multiple, generally distributed transitions, the subordinate process

is more complicated. For example, the MRSPNs was extended in [29] by allowing multiple

general transitions to be simultaneously enabled, provided that only one of the general

transitions defines the next regeneration point. But the subordinate process becomes a

semi-Markov chain, which is more difficult to solve in the transient than a CTMC. With

unrestricted models in general, the subordinate process may be a semi-Markov chain or

worse, perhaps even a semi-regenerative process by itself.

For example, consider our running example model with two generally distributed and

two exponentially distributed transitions: tl _ /_tl (0), t 2 rxa /_t2(0), t3 rxa Expo(/_), and

t4 _ Expo(#). Since tl and t2 are simultaneously enabled in markings (111000) and (110001),

we cannot be sure, in general, that the underlying process is semi-regenerative. But if, for

instance, the PDFs were such that tl always delays longer than t2 then, because they both

become enabled simultaneously, we know that once transition tl fires, everything about the

past since tl and t2 became enabled can be forgotten. Because the stochastic marking process

regenerates itself at this point in time, and depends on the state reached when tl fires, the

process is semi-regenerative.

Starting in the initial state (111000), assumed to be a regeneration point, the next

regeneration point would coincide with the firing of transition tl and the subordinate process
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that evolves in between (due to the firing of t2 and ta) is itself a semi-regenerative process. So

we have a two-level semi-regenerative process hierarchy regeneration when t2 fires at level 2

and regeneration when tl fires at level 1. This underlying process is portrayed in Figure 2.11

where the embedded states at level 1 (the ones we wish to place in E) are shadowed.

embedded subordinate /:::-_-i-["_... ..... :::':::-_-i
states states _:-::c,_ :_ .... _:-::c,_-_:_

°° ..-"
.- .- • -.:: ..::

'eve' ....:"
subordinate CTMC - ", __..0. _ t2 _,,t2," _ _110 111

......% .... :X /

" " *_i1 tzlevel 1 .....subordinate CTMC ................. t3 }

°o.. ...... .-"

Figure 2.11: Two-Level Semi-regenerative process.

The subordinate processes for levels 1 and 2 are partitioned into two groups. The level

2 subordinate process, a 2-state CTMC, has initial state (111000) with probability one; it is

also an embedded state by definition. The level 1 subordinate process, also a 2-state CTMC,

has an initial probability distribution subject to the transient analysis at level 2, which gives

the probability of entering either of the two states (101010) or (100011) when t2 fires. The

embedded state entered at level 1 depends on the subordinate state occupied when tl finally

fires. The grayed portion of the graph indicates the states that are no longer reachable

from (111000) because of the imposed timing, i.e., transition tt must fire after t2. Unlike

the previous examples, the teachability graph is obviously not isomorphic to the stochastic

process and B c T¢.

In cases like this, studying the subordinate process between regeneration points becomes

as difficult as studying the actual process. Moreover, under different assumptions, regener-

ation points may be rare or the process may not even be semi-regenerative. Without sim-

plifying assumptions, the underlying process of an SPN may be a generalized semi-Markov

process.
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2.6 Generalized Semi-Markov Models

By definition, the future markings of an untimed PN depends only on the current marking,

not the past markings, and so the Markov property holds. It is the nature of the timed

marking process, a stochastic process, that complicates matters when any transition t has a

PDF, Ft(.), that is not memoryless, and hence the Markov property does not hold. Without

restrictions, the underlying process of an SPN is known as a generalized semi-Markov process

(GSMP).

By including in the GSMP state the RFT information for each transition along with

the current marking, everything about the past that is needed to determine the future

evolution of the stochastic process is contained in the current state. Hence, the past can be

forgotten. Alternatively, we could instead augment markings with age information, which

records the times since transitions became enabled without firing. Either way, by effectively

Markovianizing the process, customary Markov techniques can be applied, albeit to a larger,

possibly continuous, state space and, perhaps, a more complicated teachability graph. This

"Markovianizing" of the underlying process, which can then be solved using a generalization

of Kolmogorov's forward (or backward) equations, is called the method of supplementary

variables, which was first proposed by Cox in [31]. However, the new, Markovianized process

is a continuous-state process in general because of the continuous nature of the age or RFT

information that are augmented with the discrete marking information.

The method of supplementary variables has been applied to DSPNs and MRSPNs in

[32] as an alternative to Markov renewal theory. Unlike Markov renewal theory, this method

is still applicable when the process is a GSMP. A fourth-order, stationary solution algorithm

has been proposed in [33] for DSPN and MRSPN models. Unfortunately, the solution of such

system of equations is usually too numerically challenging for anything other than models

with very small dimensions. We will back up this claim while describing the method of

supplementary variables using our running example.

When employing the method of supplementary variables, there is some freedom of choice

in how the generalized Kolmogorov's equations are constructed. We can choose to look

forward or backward, use age or RFT variables, and specify differential or integral formulas.

The published literature regarding the solution of extended DSPNs and MRSPNs with the

method of supplementary variables tend to use forward equations and age variables, and we

choose to do so here as well.

Generalized Kolmogorov's equations, forward or backward, require the use of a stationary

probability density function (pdf) on the state and age variable jointly:

qk(v) = lim dpr{X(O) = k, a < v}
0-+oc _V

where v E 11{+ , k E 8, and a E 11{+ denotes the age variable. A multidimensional pdf,

qa(al, a2,... , aN), is used for states that enable more than one generally distributed transi-

tion. Instead of the constant rates given by the infinitesimal generator matrix, the generalized

Kolmogorov's equations also require the use of instantaneous rate functions, defined as

As(v)- 1 - Fe(v)
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where if(t) = _Ft(v) is the pdf of the firing delay for transition t. Since At(.) is a conditional

probability function (not a PDF however), this allows the age information a to be taken

into consideration when computing the state transition rates. That is, if a denotes the

age of transition t then At(a)da is interpreted as the conditional probability that t fires

in the next da interval given that it has not fired in time a since becoming enabled. Of

course, At(.) = A, a constant, if t is exponentially distributed with rate A. So when only

exponentially distributed transitions are enabled, the forward equations will degenerate to

the familiar system of equations (Equation 2.8) presented earlier for CTMCs.

As a consequence of the supplementary variable conditioning, we must be careful of

the initial value and boundary conditions when constructing the state equations. Moreover,

the Kolmogorov's forward equations must be partial differential equations when more than

one transition with general firing delays are enabled simultaneously, coinciding with states

having multiple age variables.

Consider the last example model used at the end of the previous section but without any

special assumptions about F tl (') and F t2 (.). In this case, the underlying process is a GSMP.

Let al E IR and a2 E IR be the ages of transitions tl and t2, respectively. Of course, age

information for transitions ta and t4 can be omitted since the Expo PDF is the same when

conditioned with age (or RFT) information; hence, nothing concerning elapsed time needs

to be remembered. Only states that enable t_, t2, or both are supplemented with a_, a2, or

both, respectively. The GSMP for our example is shown in Figure 2.12 while also introducing

a different depiction of "supplemented states", enumerated by k E { 1, 2,... , 8 } = 8. That

is, the supplemented states are portrayed as two circles: the smaller, raised one contains

the marking and the larger one contains the age information. This depiction will be used in

Chapter 4 when presenting the solution algorithms for our new SPN class, except that instead

of continuous age, discrete information concerning the RFT of phase-type transitions will be

recorded. Referring to Figure 2.12, the state equations using the method of supplementary

"age" variables are constructed as follows.

state ( marking, age )

1 _-_tl(al)_ 3 A'..I(aly NN_'2(a2)_ 6 >_'t2(a2)

_ al__. _" 10"_j1 _ [_01_ _._. _ _.._[( 000 _

_.i2(a2)NN, N _.i 1( a 1)_ I "-.._I2(a2 ) Ail(al)

Figure 2.12: GSMP where tl, t2 are generally distributed and all others Expo.
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First, wemust considerthe initial valuesfor the agevariables,which are both reset to
zeroonly upon enteringstate 1 from state 8. We assumethat Ftl(.) an Ft2(.) do not have

mass at the origin and so tl and t2 must delay some positive value before firing, and so no

other events causing outflow of probability mass needs capturing. Consequently, the initial

value condition is simply

ql(o,0): q_.

Second, we have the state equations for positive-valued age variables, constructed in the

spirit of Kolmogorov's forward equation:

j_0 °_
d q4(aj = ql(al, a2)At2(a2)da2-q4(al)A,

dal

d q7(al) = qa(al, a2)At2(a2)da2+q4(al)A,
dal

d q2 (a2) = ql(al, a2)._tl(al)dal_q2(a2)._,

da2

qa(al, a2)Atl(al) dal + q2(a2)A,

qa(al, a2) = ql (al, a2)A,

al >0

al >0

a2 >0

a2 >0

al > O, a2 > 0

d

qs(a2) = rio_
da2

The integrals are needed to uncondition on the age variable associated with the transition

that fires, thereby causing the state transition of interest.

Third, we have equations for states without age variables, which resemble the familiar

flow-balance equations for CTMCs:

/0 /0q4(al)/_tl(al) dal --[- q2(a2)At2(a2) da2 - q6A = O

/o /oq7(al)._tl(al)dal-_ - q5(a2)At2(a2)da2+q6A-qs#=O

Fourth, since we are only interested in the stationary probability distribution of mark-

ings, we also need equations that eliminate the age variables:

[ ff_ qk(al, a2) dal da2 • k•{1,3}

= _ f_ qk(a2) da2 k • { 2, 5 }

_ If_ qk(al) dal k • { 4, 7}
I,qk k • {6,8}

wherep_= lim0._ Pr{X(0) = k }, k • S.
And finally, we need one last equation to normalize the solution:

_Pk = 1.
kE8

Of course, all of the above equations need to be satisfied simultaneously. Numerical

solution of such system of equations ultimately requires the discretization of the continuous
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variabledifferential-integroequationssothat finite differenceequationscanbesolvedinstead.
We must also assumethat Ftl(.) and Ft2(.) have finite support so that a finite dimension

mesh can be constructed. But even then, computing the solution is numerically challenging.

We do not intend to solve models this way. The real purpose of this exercise was to show that

even with this small, simple model, solving general SPN models with underlying GSMPs is

computationally challenging and costly.

Alternative solution techniques for GSMP models have been investigated. One of these,

presented in [34], observes the process at fixed intervals and records the marking and RFT

at these times. This procedure gives rise to an embedded general state-space Markov chain

from which state equations can be written and then transformed into a system of Volterra

equations. These Volterra equations permit the specification of state transitions subject to

the clock readings at the equidistant time intervals and can be simpler to solve numerically

than the method of supplementary variables.

When faced with practical considerations, the modeler is usually limited to simulation.

SPN-specific simulation techniques have also been investigated. In [35], structural properties

and conditions imposed on the SPN model are exploited that ensures the underlying pro-

cess is regenerative so that faster regenerative simulation can be employed. A regenerative

process is in fact a special case of semi-regenerative processes, one that regenerates itself

probabilistically but also independently to the state entered at each regeneration time, thus

it is more restricted. For example, a semi-regenerative process with only a single state is

a regenerative process. A different simulation technique can be found in [36] where time-

averaged statistics can be obtained using methods based on standardized time series, in

particular, the method of batch means with the number of batches fixed. This method can

analyze simulated output where the regeneration methods are not applicable.

The disadvantages to using simulation for general SPN models is that the results can

be inaccurate, limited to confidence intervals, and require long simulation times. Also, the

state space is never explored exactly, a shortfall that may preclude logical analysis and

model-based formal verification. That is, just because some state specific property (such

as deadlock) or sequence-specific property (such as an undesirable chain of events) is not

observed in the simulation run does not mean that such properties do not exist in the model.

It could simply mean that the simulation was not run long enough.
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Chapter 3

Proposed Research

The concept essential to studying a non-Markovian process using Markovian techniques is

the inclusion of additional information in the state for the purpose of remembering the

time each enabled transition has to delay before its scheduled firing. This time is initially

sampled from its probability distribution function when a transition first becomes enabled.

Compared with general firing delays, phase-type firing delays have the advantage that the

extra RFT information included in the state is conveniently discretized into states of an

absorbing Markov chain, greatly simplifying the solution when either PH or DPH are used
alone.

PH or DPH random variables can approximate any general random variable arbitrarily

well. The use of phase-type firing delays has had success in the past as a way of broadening

the applicability of SPN models. Indeed, continuous PH random random variables like Erlang

can even approximate discrete, constant random variables by including enough stages, since

the variance diminishes as the number of stages increases. Similarly, the discrete Geom

random variable can approximate the continuous Expo random variable arbitrarily well by

reducing the basic step size. But approximating general timing behavior by allowing either

PH or DPH alone in a given model offers less modeling convenience and, possibly, requires

more computational work.

Limiting a model to either PH or DPH timing may also require more computational

work. Capturing a deterministic activity into a model with only PH-type timing requires an

approximation using an Erlang random variable and may require many stages, and hence

adding to the state space, possibly, requires more computational work.

Fortunately, such restrictions are unnecessary.

We propose to extend the SPN definition of the previous chapter to include non-Markovian

timing that may prove useful to many problems while still affording an efficient, numerical

solution. To this end, we elect to extend the phase-type SPN formalism for use in both

discrete and continuous time, present simultaneously in the same model. This research ef-

fort will develop a new class of SPN that permits transition firing delays with both PH and

DPH distributions. We call this new formalism a Phased Delay Petri Net (PDPN). The
contribution herein includes the first time that PH behavior has been combined with DPH

behavior in the same model, thereby extending the aforementioned research that considered

each separately. Alone, PH and DPH models enjoy the "memoryless" property of under-

lying CTMCs and DTMCs, respectively, making efficient solutions possible. Together, the

reasoning about the combined behavior becomes complicated. The proposed research will
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show that the underlying processis semi-regenerativeat best (perhapsdegeneratingto a
DTMC, CTMC, or semi-Markovchain at times) and a generalizedsemi-Markovprocessat
worst [25,37]. So,our contribution alsoincludesaformalizedunderstandingof the stochastic
processunderlying this new classof SPN and the developmentof efficient algorithms for its
solution.

After presentingthe PDPN in a generalsetting, we intend to show how certain simpli-
fying assumptionsrestrict the underlying stochasticprocessto onethat is manageablewith
efficient solutions. Investigationswill be conducted into techniquesthat offer efi%ienciesin
exact solutionswhen practical. Otherwise,approximatesolution algorithms will be sought
that giveheuristically goodresultswith high fidelity and efficiency.Although theseassump-
tions may also restrict the set of problemsthat canbe modeled,weanticipate nevertheless
that this will not precludethe usefulnessof the PDPN to many real-world applications.

While the PDPN approachhas the benefit in fidelity that comesfrom mixing PH and
DPH behavior, the expansionof the state spacerequired by this approachwill undoubtedly
compoundthe well known "state-spaceexplosionproblem". However,this extra burden on
memorycanbealleviatedby utilizing advanceddatastructuresandmanipulation algorithms.
Forinstance,decisiondiagramsproposedin [38,39]offer verycompactstoragewith afraction
of the memory requirementsas conventional sparsestoragestructures where the memory
usagegrowslinearly with the number of states. Theseadvanceddata structures should be
just asapplicableto storing the PDPN reachability graph (for performanceanalysis)aswell
asthe reachability set (for logical analysis).

We canalsoexploit the convenientformulation of the PH and DPH state spaceexpansion
usingKroneckeraddition and multiplication, respectively.By employingdata structuresand
manipulation algorithms similar to the aforementionedones,wecan take advantageof the
Kroneckerrepresentationsto efficiently store the expandedstate spaceimplicitly. That is,
the sparsePH and DPH Markov chainscan be stored in isolation and the expandedstate
spaceand matrix entriescan beconstructedasneededusingthe Kroneckeroperators. Such
techniqueshave already been investigated in [40, 41, 42], and we feel that these recent
advancementsin compactstate-spaceand matrix storagetechniquesmakephase-expansion
approachesworth revisiting.
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Chapter 4

Preliminary Research

Before efficient analysis techniques can be investigated, the PDPN model must first be

formalized, its inherent properties understood, and interesting subclasses defined to aid the

investigation of solution algorithms. In this section, we discuss the underlying stochastic

process of the PDPN, how to study it, and at the same time define three subclasses to the

general PDPN base class. The subclasses restrict the underlying process to one that can be

more easily studied. We discuss the findings of our preliminary research and the implications

to solution complexity and applicability of PDPNs. We end this chapter with a proposed

stationary solution algorithm and its analysis.

4.1 Analyzing the Underlying Stochastic Process

For convenience, we partition the set of transitions T into the set Tc having PH distributions,

the set TD having DPH distributions, and the set Tz of immediate transitions having Const(0)

distributions. Although the "immediate" transitions in Tz are, in fact, special cases of DPH

transitions, we consider them separately since they are given higher priority in firing over the

timed transitions in Tc U TD, and hence are usually handled separately during the analysis.

As already stated, when PH (DPH) is used alone (possibly in conjunction with immediate

transitions), an otherwise non-Markovian process becomes a CTMC (DTMC). When PH

and DPH are allowed to coexist, we have complicated matters, but not as badly as allowing

completely general distributions. Towards constructing a PDPN reachability graph and the

corresponding stochastic process specification, we must determine the possible combination

of phases that can occur, ultimately leading to a phase that allows some transition t to

fire. While at least one t E TD is enabled, phase changes occur at discrete instants of time

nw, where n E N and w denotes the basic step interval common to all DPH transitions,

referred to hereafter as the clock. Because PH distributions are continuous, the probability

of observing a PH phase change at any particular point in time, in particular at times nw, is

zero. Therefore, we can consider the DPH phase changes separately from PH phase changes.

The possible combination of DPH and PH phases for each marking rn can be obtained from

Equations 2.15 and 2.16, respectively. Hereafter, we let 7P denote the potential phase space.

The actual state space of the stochastic process will be denoted by $ C_ T_ × 7P.

An example reachability graph assuming that transition ta is either Erlang(., 2) E PH

or Const(2) E DPH and all others are Expo E PH is given in Figure 4.1. The states are
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shadowedin a way that distinguishesthe RFT information of transition t3 corresponding to

its firing delay phase.

t3 t1_/_ t2

Figure 4.1: Markovianized process of the example PDPN.

PDPNs do not satisfy the conditions for isomorphism between the reachability graph

and state space because multiple TD transitions can be enabled and fired simultaneously, a

sequence s E (TD U Tz)*, with the possibility of disabling any or all co-enabled transitions in

a way that prevents their firing in certain states. Therefore, the construction of the PDPN

reachability graph and the underlying stochastic process must be done in concert. As an

example of how the timing constraints can restrict the reachability graph, consider the case

where t2 _ Geom(q, 3), t3 _ Const(2), and the other transitions are Expo. The resulting

stochastic marking process is portrayed in Figure 4.2 where the grayed portion indicates the

states that are no longer accessible due to the time constraints. Whereas the sojourn times

in markings (100011) and (000111) are exponentially distributed and therefore memoryless,

this is not the case for the other markings.

In general, the underlying stochastic process of the PDPN is a generalized semi-Markov

process. Although state equations can be constructed, as discussed in Chapter 2, and the

method of supplementary variables applied, the method requires the solution of partial dif-

ferential equations, which is computationally intensive in general. Recall that for MRSPNs,

the restriction that at most one generally distributed transition is enabled in any marking

simplifies the model to one consisting of ordinary differential equations, which are easier to

solve. But, since this restricted marking process is a semi-regenerative process, the supple-

mentary variable can be eliminated altogether by constructing the solution algorithm around

Markov renewal theory.
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tl _ti t2

Figure 4.2: Example non-Markovian process when t2 _ Geom(q, 3) and t3 _ Const(2).

For PDPNs, we can eliminate the clock variables from the state, thereby reducing the

state-space memory along with the computational costs if we restrict the PDPN so that

synchronization is maintained among all enabled TD transitions. By synchronizing the TD

transitions, the analysis is simplified, subject to only a single clock, thus requiring the storage

of just one clock variable in each state. Even better, the clock variable can be eliminated

altogether for this restricted PDPN by recognizing the underlying stochastic process as a

semi-regenerative process. The conditions necessary for such synchronization in any marking

rn E T_ are:

1. transitions t E TD are never enabled by a firing sequence s E "-Fc'-F_ except when

_(m) N TD = 0, and

2. if a firing sequence s E TcT_ resets the current phase of a transition t E $C(rn) N TD

then it must do so for all transitions in $C(rn) N TD.

Theorem 4.1.1 The stochastic process underlying a synchronized PDPN is semi-regenerative.

PROOF. Let X = { X(O)" 0 > 0 } denote the underlying stochastic process. Clearly, if

only TD transitions are enabled, X is a DTMC, and if only Tc transitions are enabled, X is

a CTMC, both of which are special cases of the semi-regenerative class. Consider periods

when both TD and Tc transitions are enabled. Because the firing sequences s E (To U Tz)*

are expanded into Expo and Const(0) state transitions, which are memoryless for all time,

we need only observe the successive times when the TD transitions become enabled, fire,

or undergo phase advancements. Restrictions (1) and (2) ensure that all such events for

different TD are synchronized and therefore occur at successive jump times T_ = T__I + _-

at which time state X_ is entered. The sequence of states { X_ "n _> 0 } form a DTMC,

and together the sequence {(X_,T_)'n >_ 0} forms a Markov renewal process. Therefore it

follows, by definition, that X is a semi-regenerative process. []
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The processshownin Figure 4.2 is semi-regenerativesince t2 and t3 maintain synchro-

nization with respect to the basic clock advancements. As such, Markov renewal theory

can be applied to solve the model. While it has been shown that solution algorithms based

on Markov renewal theory has the same asymptotic costs as the method of supplementary

variables [11], we believe Markov renewal theory can be more intuitive in some ways, in-

terpretation of the results to the original process can be preserved, and opportunities to

eliminate phase information from the state can be exploited. But to make Markov renewal

theory applicable, we must impose the above conditions on the PDPN model to ensure that

the underlying stochastic process is semi-regenerative.

4.1.1 Theory Applied to PDPNs in General

We already know that, separately, PH and DPH based SPNs enjoy the efficient solution

of underlying CTMCs and DTMCs, respectively. We also know that mixing PH and DPH

behavior requires the solution of a semi-regenerative process, thereby complicating matters.

However, by assuming synchronization between TD transition when enabled and with the aid

of Markov renewal theory, we have reduced the analysis problem to one of studying multiple

CTMCs (the subordinate processes), one for each embedded state in E, and one DTMC (the

EMC). To this end, we must simultaneously study the evolution of both the DTMC and

each CTMC in turn as they interact with one another.

Figure 4.3 shows a sample path observation of a typical PDPN regeneration period aided

by Markov renewal theory. Because isomorphism between the timed and untimed PDPN

reachability graph is not guaranteed and because of the potential interaction between the

DTMC and CTMC models, we take the approach of constructing the stochastic matrix, H,

of the EMC, one row at a time.

[ eQi z Ilk

CTMC

PDPN SRP

[

SMC

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_transitions fire
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii_iiiiiiiiiiiiiiiiiiiiii_

n_

Figure 4.3: Studying a PDPN regeneration period.
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The basicalgorithm to construct H can be as follows. Starting with a known embedded

state i E g, we observe the subordinate CTMC (SMC) up to the next clock advance, a

period of at most length 9-. The regeneration period T1 defined here is actually a random

variable over the range (0, 9-]. T1 is exactly 9- if at least one t E TD remains enabled during

the entire period. However, if all transitions in TD become disabled or they all are forced to

simultaneously reset to a new firing delay (resample) due to the firing of a transition from

Tc U Tz, then T1 will be less than 9-. Assuming that T1 = 9-, we simply solve the SMC (with

generator Qi and state space $i originating from the embedded state i) at time 9-. The state

occupied at time 9-, when the clock advance occurs, is applied to the next state switching

matrix ZI that computes the set of states reachable after some s E (TD U Tz)* following
the clock advance. This set of next states are new embedded states and are added to g.

This procedure repeats until no new embedded states are found. Formally, the analysis is

expressed by the application of Markov renewal theory with the PDPN properties in mind:

= (4.1)

Hij : E [eQi_]ikAkJ (4.2)
kE$i

where, of course, eQ_° is the transient solution of the SMC at time 0, one solution for each

i E g. Notice that these equations are the same as for DSPNs except that for PDPNs we

have a fixed deterministic delay T. The following equations that are needed for the stationary

solution of PDPNs are the same as well and are repeated here for convenience.

We can distinguish the two cases of {T_ = 9-} and {T_ < 9-} by appropriately construct-

ing the SMC. That is, the CTMC states reached that also coincide with TD simultaneous

disabling or resampling are made absorbing and are regarded as embedded states in £. The

set of absorbing states, which are formed in this way, will be denoted hereafter as the set Ei.

In this way, we trap such events and associated probability mass in these absorbing states

when solving the CTMC at time 9-. If the total probability mass absorbed is c_, then because

Pr{ T1 > 9- } = 0, we know that Pr{ T_ < 9- } = c_ and Pr{ T_ = 9- } = 1 - c_. For stationary

analysis where we are interested in constructing the EMC matrix Hij = lim0__ Gij(0), the

exact value of T_ is of no consequence, only its expected value is important. With the ap-

propriately constructed absorbing CTMC, the expected value of T_ is determined from the

cumulative probabilities

[// lhia=E[sojourninkduring[O, T1) lXo=i] = eQ_Vdv iEg, kE,._i\gi (4.3)
ia

in each CTMC state, which are computed anyway to obtain the necessary conversion factors.

Then

k

for each i E g and for all k E N\gi.

The stationary solution x = [xi] E Rlel of the EMC satisfies the set of balance equations

x/-/= x subject to _ xi = 1. (4.4)
leg
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