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SUMMARY

We consider the applications of stress-strength models in studies involving clinical

trials. When studying the effects and side effects of certain procedures (treatments), it

is often the case that observations are correlated due to subject effect, repeated measure-

ments and observing many characteristics simultaneously. We develop maximum likelihood

estimator (MLE) and uniform minimum variance unbiased estimator (UMVUE) of the re-

liability which in clinical trial studies could be considered as the chances of increased side

effects due to a particular procedure compared to another. The results developed apply to

both univariate and multivariate situations. Also, for the univariate situations we develop

simple to use lower confidence bounds for the reliability. Further, we consider the cases

when both stress and strength constitute time dependent processes. We define the future

reliability and obtain methods of constructing lower confidence bounds for this reliability.

Finally, we conduct simulation studies to evaluate all the procedures developed and also

to compare the MLE and the UMVUE.
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1. Introduction:

Critically ill patients often requireendotrachealintubation and mechanicalventilation.

Endotracheal intubation is a procedureby which a tube that is attached to a ventilation
machine is inserted into the trachea through the mouth of the patient, allowing oxygento

passthrough the airway. The presenceof the tube interfereswith the mucociliary transport

system - the normal mechanismby which respiratory tract secretionsare removed (see

Gray et al. (1990)). Thus, endotrachealsuctioning is an important component of the

mechanically ventilated patient's care. In the presenceof pulmonary disease,infection

or dehydration, respiratory secretionsmay becomethick and tenacious,making removal

by suctioning difficult. Therefore, instillation of normal saline solution (5-10 ml bolus
of sterile-normal-saline) into the tube prior to suctioning is a common practice. This

procedure is believed to aid in eliciting a cough and also liquefy and mobilize secretions.
Severalstudies have beenconducted to study the side effectsof normal saline instillation

(NSI) on variables such as gas exchange,respirator_ysystem,etc. However, Gray et al.

(1990) were the first to conduct a designedclinical study. Further, Jordan and Garrett

(1991)conductedanother clinical trial to study the effectof NSI on variablessuchas heart
rate, ventilatory rate and Sa02 (the amount of oxygen content in hemoglobin). The effect

of NSI can be studied in two ways: (i) compare these means of the variables with NSI and

without NSI or (ii) estimate the chances that a patient gets worse (or better), in terms of

these variables, by using NSI compared to not using NSI. Here, we are interested in the

latter. For example, we may want to assess the chances of increased heart rate due to NSI

procedure compared to without NSI procedure. In other words, if Yl_ denotes the increase

in the heart rate of the ith subject with NSI procedures, and y2i denotes that without the

NSI procedures, then we are interested in

R = P[Yli > Y2i]. (1)

This probability is usually known as the "reliability" in reliability stress-strength

literature (see Johnson (1988), Guttman et al. (1988), Weerahandi and Johnson (1992)

and the references therein). One may compare the means but as noted by Weerahandi

and Johnson (1992) 'even when comparing two treatments, it may be more informative to

study the unit free quantity, R, rather than comparing the means'. Especially when yx_

and y2i are clinical variables that help measure risk of a particular procedure, R would be

of much more interest.

Much of the work in the literature has been concentrated around situations where

stress and strength are independent, univariate normal random variables (also see Church



and Harris (1970), Downtown (1971),Enis and Geisser(1971)). Owen,Craswell and Han-

son (1964)developedupper nonparametricconfidencebounds for the reliability by relaxing
the distributional assumptions. Weerahandiand Johnson (1992)provided procedures for

conducting a test suchas H0 : R < R0. In the presence of explanatory variables, methods

of constructing confidence intervals for R have been discussed in Guttman et al. (1988).

Most of the applications considered in the literature have been from the industrial point

of view. We feel that these reliability stress-strength results can also be applied to the

clinical data just as easily. However, in clinical setting, it is often the case that stress and

strength would be correlated because of the subject effect, repeated measurements and

observing many characteristics simultaneously. For the cases when stress and strength

follow a bivariate normal distribution, Owen et al. (1964) provided confidence intervals for

the reliability via the non-central t-distribution. This of course includes the paired data

sets, where stress and strength are the paired observations on various subjects.

In this paper we first consider the case of bivariate normal distribution (as in Owen

et al. (1964)), and provide the maximum likelihood estimator (MLE) and also give a

procedure of constructing UMVUE of R. Since MLE and Ul_WUE are not analytically

comparable, we conduct simulation studies to compare their performance in terms of bias

and mean square error (rose). It will be shown that UMVUE performs better when the true

probability (i.e. reliability) is roughly between 0.25 and 0.75. We also give three easy to use

approximations to construct (1 - c_)100% most accurate lower bounds for R. Simulation

studies are used to evaluate and compare the approximations in terms of their coverage

probabilities. Based on the evaluations, we recommend a particular approximation which

maintains the coverage almost identical to the specified coverage.

Next, we study the case when y and x are p-variate normal vectors observed on

same patients using two different treatments or at two different time points using a single

treatment (for example: before and after the treatment). Therefore, we allow y and x

to be correlated. Once again, we provide the MLE and devise a procedure to obtain the

UMVUE of R. Because of the multivariate nature of the problem, we do not get a closed

form for the UMVUE. However, as long as the dimension of the vector is not too high, a

simple program utilizing IMSL or NAG subroutines can be used to obtain the UMVUE.

We compare MLE and UMVUE via simulation studies in terms of the bias and the mse.

Simulation studies once again indicate that the UMVUE performs better than the MLE

when the true probability is roughly between 0.25 and 0.75. Even though MLE has a closed

form, and is easier to compute than the UMVUE, the advantages of UMVUE outweigh

the complexity of its usage. For a good discussion on the advantages UMVUE in similar

settings see Govindarajulu (1995).



Further, we deal with the situations when both stress and strength are observed
simultaneously,at time points 1,2,... ,n, and they are time dependent. Assuming that

the conditional joint distribution of (Y,.+I, xn+l), given all the past observations, depends

only on the current observations y,_ and x_, we develop procedures to predict the reliability

at time (n + 1). We also provide confidence intervals for the reliability at time (n + 1)

conditional on the past observations.

Finally, we apply the results of the first two procedures to the clinical trials data

provided by Jordan and Garrett (1991). We also provide examples for the third procedure.

2. Point and interval estimation of reliability, when stress and strength follow

a bivariate normal distribution.

Assume that y and x jointly follow a bivariate normal distribution given by,

where # is the mean vector and E is the variance covariance matrix.

We are interested in the reliability, defined by

nl = Ply > x]= Ply- x > 0]. (3)

Let c T = (1,-1), then R = _(5), where _ denotes the standard normal distribution

function and 5 = c_#/(c1Ec) 1/2. Let p and E denote the MLE's of # and E, based on the

observations (Yl,'-" ,yn) and (xl,-.. ,x_). Then, the maximum likelihood estimator of R

is given by

?e? = ¢(S) (4)

where 5 is 5 with p and Z replaced by their MLE's, i.e 5 = c'[z/(c'Ec) I/2.

Now we derive the UMVUE of R1. Let A denote an orthogonal matrix with its

1 1 _1_) and a T = (_,1 1first two rows given by a T = (1 ,7 _7 ,., ,'", _,"" 7.)" Also, define

I(:jl_xl) = 1 if (yi - xx) > 0 and I(,jl_=_) = 0 otherwise. Then, it is easy to see that

I(:jx_x_) is an unbiased estimator of Rx. Now, by making an orthogonal transformation

y = Ax, and using Rao-Blackwell Theorem (for properties of complete sufficient statistics)

and Basu's Theorem (on ancillary statistics) (see Lehman (1983)) we obtain the UMVUE

of R1 given by

R UMVUE= / f(z)dz, (5)
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where

f(z) = { bl(1-O n-l'z2)_-2 otherwise,ifIzl < _

with b, r(_-_)/(r( 1 .,-2= _)r(w-)).



Lower confidence bounds for RI:

Using the standard distribution theory (see Rohatgi (1976)), it can be shown that

 cTZc), n (cTz )-l(C c) ~_ X,_-, and hence, _Z'-f_ t.-1 (v/-nS),

where t,_x (v_5) denotes the non-central t-distribution with (n-1) d.f. and non-centrality

parameter v/'n6. If we use the unbiased estimator of E instead of the NILE, then v/-n5 ,-_

tn_l(V_3), where 5 is * with # and E replaced by their unbiased estimators.

Further, since constructing a lower bound on R1 is equivalent to constructing a lower

bound on 6, we obtain a lower bound on 5. A uniformly most accurate, scale invariant,

(I - a)100% lower confidence bound for 6 is given by the solution of

Fttt_l(V/'_) (_y/'_(_) --'- 1 -- O_, (6)

where Ft__l(,/_)(') denotes the distribution function of non-central t-distribution with

(n - 1) d.f. and non-centrality parameter x/_5. Note that in (6) we have used the unbi-

ased estimator of E instead of MLE. If one uses MLE, one needs to adjust the constant

accordingly.

Even though, solution of equation (6) is computationally tenable, a closed form ap-

proximation that is simple to use and satisfies the necessary coverage properties is desirable

in practice. Therefore, we provide three different closed form approximations and obtain

the approximate lower bound in each case.

Approximate lower confidence bounds:

(i) Using a well known approximation of a non-central t-distribution by a standard normal

distribution (see Johnson and Kotz (1970)), we provide an approximate lower bound

for 6 given by

1

LA_(5)=Sb2-za-- I+-- (7)
v_ n-

where b2 - n_2_l (F( n n-1_-)/F(_)) 63 (n-l)[1- 2 F " ,.-1 2, = .--=r-_((_)/F(T)) ], and za =

q_-_(1 - a). If we further approximate this using v_(F(_)/F(-_-I)) = v_- 1, our ap-

proximation of non-central t by standard normal reduces to the one used in Guttman et

al. (1988, Section 2). However, we will use the lower bound in (7) as it is not difficult to

use.

(ii) Another approximation is of the form

_4 sinh-1 - sinh -1 _N(O, 1),
\b5] \ b5 JJ

6



and hencethe lower bound is given by

[ inh(  inh 1b6, (8)
= V_ )) z_j

= - -T)- 1]-1 -_ -where 54 F(.___){2[(n 3)F2( n-2 }2, b5 - x/(n-1)/(n-3) and

u _-1 _-_ _/2n(n 1)}-1.56 = b,r(-7--){r(--_-)

(iii) A further approximation of the approximation in (ii) can be made to obtain a much

simpler lower bound given by

_ 1.
We should note that computation of the left hand side of the equation in (6) can be

done via numerical integration without too much difficulty (as noted also by Guttman

et al. (1988)). However, the approximations provide simple lower bounds that can be

calculated easily and one only needs the standard normal distribution tables to compute

the bounds. As it is clear that there is no direct analytical comparison between these

three approximations, we conduct a simulation study and evaluate these approximations

in terms of the coverage probability in the current setting.

Simulation Studies:

We generated random samples of sizes n=10,15,20,25,30, and 35 from normal distribu-

tion with various combinations of means and variances. For each simulation we computed

the MLE, the UMVUE, and their respective biases. We also calculated the coverage prob-

abilities using: equation in (6), approximation (i) , approximation (ii), and approximation

(iii). At the end of 20,000 simulations, we find the averages and the standard deviations

of these quantities. Further, we calculate the mean square error (mse) for both MLE and

UMVUE. In Table I, we report the true probability, MLE, UMVUE. Biases, Standard

deviations and the root mean square errors of MLE and UMVUE are also given in the

same table. It is apparent from the results that UMVUE does better than MLE if the true

probability is neither low or nor high (i.e. if true probability is roughly between 0.25 and

0.75), otherwise MLE seems to do better. This is not very surprising because, for instance,

when the true probability is very low (or high), even though MLE is biased, the bias will

not contribute a great deal to the mse. }Vhereas, when the true probability is neither high

nor low, the bias plays an important role and hence UMVUE performs better in terms

of bias and mse. When an unbiased estimator is of interest, one should choose UMVUE



regardlessof the true probability becausewhen it doeshave more mse than that of the
MLE, the mseis marginally more. However,if oneprefers to usethe estimate only based
on smaller mse, it helps if one has someknowledgeof the true probability (in terms of

low, medium, high). In practice, one cancalculate 6 and if this value is a high positive (or

high negative) number, that indicates that the true probability is probably high (or low).

This knowledge can be utilized in deciding between the two estimators. In clinical studies,

usually, the cases that are of most interest are when the true probabilities are neither too

high nor too low. As for the ease of use, certainly MLE is easier to calculate than the

UMVUE, however the calculation of the UMVUE in this case is not at all difficult.

INSERT TABLE I HERE

Further, the true coverage (confidence level) and the simulated coverages obtained by

the four methods mentioned above are reported in Table II. From this, it is also clear that

the simulated coverages obtained using (6) and using approximation (i) are very close to

each other and to the true coverage. Approximation (ii) seems to be very conservative

in the sense of having lot more coverage than the desired confidence. In other words, the

lower bound obtained using this approximation is much smaller than the true lower bound,

resulting in a wider interval than necessary. Approximation (iii) does very badly until the

true probability gets to be around 0.25. And as the true probability increases beyond 0.75,

this approximation turns out to be very conservative. Therefore, the practitioner can use

either (6) or the approximation (i). We recommend the use of approximation (i), as it is

very simple to use and needs only the knowledge of standard normal percentile points.

INSERT TABLE II HERE

3. Estimation of reliability for repeated multivariate observations

Let yi and xi denote the observation vectors (p-vectors) made on subject i at periods 1

and 2 respectively, yi and xi could also denote the observations on the same patients using

two different treatments. Thus, yi and xi could be correlated. Assume that y _ N1 (#1, El)

and x _ NI(p2, E2) and yi and xi may be correlated. Therefore, reliability is given by

R2 = Ply > x + r] = Ply- x > r]. (10)

Here x and y represents the p-variate random vector and r is a p-variate known quantity.

The event [y > x] represents that each component of y (i.e y_) is greater than the corre-

sponding component of x (i.e xi). Without loss of generality we can assume that r = 0.

Also, let d = y- x and d_ = y_- x_, i = 1,..., n, then d ,,_ Np(pd, Ed), and R2 = P[d > 0].
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n

Let ;2a = cl and td = "} E (di- d)(d_ - d)T be the usual maximum likelihood estimators
i=1

of #d and Ed. Then, the MLE of R2 is given by

R_ = P[d > 0]_.=_,_,zd=_, _. (11)

It is known (see Anderson (1984)) that (d, Sa) are the complete sufficient statistics for

" ^ Now, let I(d_>0) be an indicator function such that I(a_>0) =(Pd, Ed), where Sd = _-:'y_lEd •

1, if dl > 0 and = 0 otherwise. Then using an orthogonal transformation, Rao-Blackwell

Theorem and Basu's Theorem, we show (see Appendix for the sketch of proof) that, the

UMVUE of R2 is given by

f(D)dD (12)

where

_/ n -½D : - Sd (dl --(_)
n 1

b7 (1 - DTD) "-_-3
2

f(D)= 0

if 0 _< DTD < 1

otherwise,

and b7 = n-1 . F(n_2__ -1r(-r-) [ p/2 )]

Obtaining UMVUE by (12) has to be done via numerical integration. A closed form

estimate is not possible. However, since it has the desirable properties, namely, having the

least variance among all the unbiased estimators, it is worth pursuing. We now conduct

simulation studies to compare MLE and UMVUE of R2.

Simulation Studies:

We generated random samples of sizes n=15,20,30, and 40, from bivariate normal

distribution with several combinations of means, variances, and covariances. For each

simulation, we calculated the MLE and UMVUE of R2, and their respective biases. At

the end of 20,000 simulations, average bias, standard deviation and root mean square

error for both the estimators are calculated. These are reported in Table III. As in the

univariate case, once again the UMVUE seems to perform better than the MLE when the

true probability is roughly between 0.25 and 0.75. However, there are a few cases when

UMVUE seems to do better even when the true probability is about 0.11. It should also be

noted that the difference in the mse of the two estimators is quite small once the sample size

is large. Therefore, for large sample sizes MLE is preferred because of the simplicity in the



use. And for small to moderatesamplesizesonehasto chooseeither onebasedon whether

onewants an unbiasedestimate. We havenot reported the actual valuesof the means,the

standard deviations and correlations used in our simulations. Many combinations were

chosento obtain the true probabilities. Our main interest, however, is in studying the

properties of MLE and UMVUE in relation to the true probability. Since,we are dealing
with a bivariate normal distribution, it is clear that R2 would be around 0.25 if the means

are zeros and the correlation is zero (as the mass would be equally distributed in all four

quadrants). Also, if the means are positive and the correlation is a high positive, much

of the mass will be located in the first quadrant resulting in high true probability (i.e.

R2). In practice, sample information available on means and correlations could be used in

deciding whether to use MLE or UMVUE. Once again if one is interested in an estimator

simple to calculate and that does quite well, MLE is the ideal choice. The computation

of UMVUE for the bivariate case is quite simple, however, for higher dimensions it could

take some time to calculate it, as it would involve integration of higher dimensions. With

some programming knowledge one can calculate the UMVUE via subroutines from IMSL

or NAG.

INSERT TABLE III HERE

4. Prediction interval for the future reliability when the observations on stress

and strength are time dependent.

Let (Yi, xl),..-, (Yn, x,_) denote the observations on stress and strength at time points

1,2,...,n, and are time dependent (see Section 5.2 for examples). We assume that y

and x are independent, and that the conditional distribution of (y,,+l, xn+t) given y(n) =

(y_," "-, yn) and x(n) = (x_,..., Xn) depends only on Yn and xn. This assumption basically

implies that there is a first order correlation (i.e. autoregression of order one) for both

the processes {x} and {y}. We provide several examples (Section 5.2) to show that this

assumption is satisfied easily. This assumption can be relaxed so that the conditional

distribution depends on (y,__l, Yn) and (xn__,x,,), if the autoregression is of order two.

Now, assuming that the observations have normal distribution, the future reliability at

time (n + 1) given the past observations up to time n, is given by

na(y_,xn) = P [yn+i > xn+llY(n),x(n)]
(13)

=

where 0 is a vector of all the parameters, and $ is some function of y,, x,, and 0.

Now, assume that there is enough information available, other than (y,., x_), to esti-

mate the parameter 0 and denote that estimator by 0 (see Kulkarni and Kushary (1991)).
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This assumption is mostly required for the analytical derivations. We needthis to obtain
the conditional distribution of 5 = 5(yn, xn, 0) conditional on yn and xn, which is a crucial

factor in constructing a lower bound on 5. However, in practice one can use yn and xn

also in the estimation of 0 as they contribute highly to the prediction of y,,+l and xn+l.

This should result in better estimates and hefme yielding more precise results.

Since reliability is conditional on y_ and x,,, we study the distribution of 5 = 5(y,_, x_,, 0)

conditional on y_ and x,.. Now, using Taylor Series expansion of 5 as a function of 0, we

have

5(yn,Xn,_ ) : 5(yn,Xn,8) Jr- (5'(yn,Xn,8))T(_ -- 8)

where 5' denotes the derivative of 5 w.r.t. 8.

Suppose there exists 0 such that

- 8) N(0,

Then, the conditional distribution of 5 given x,, and y,. is given by

(14)

(15)

5(yn,xn,O)Z.,N[5(y_,x,_,8), a_(8)] (16)

where _(8) = [6'(yn,x.,,O)]TE.,(8)[5'(y,_,x,_,8)]. Therefore, an (1- a)100% lower predic-

tion bound for 5(y,_,xn,8), given y., and xn, is

(17)

Applications

Applications of procedures developed in Sections 2 and 3.

We consider the data in Jordan et al. (1991), part of which is reproduced here in

L,, = 6(yn,x_, 0) - z_a,,(0),

where a,, (_)) is a,, (8) with 8 replaced by 0 and is a consistent estimator of a,, (8).

5.

5.1

Table IV. They selected 10 critically ill patients that needed mechanical ventilation. Both

the procedures (i.e. with NSI and without NSI) were administered on the same patients.

Observations on heart rate, and ventilatory rate were made among other things. They

recorded the measurements just prior to administering a procedure, right after adminis-

tration and, 10 minutes after the procedure was administered. However, the measurements

that are really of interest are prior to administration and right after administration, be-

cause as more time is given patient's conditions usually return to normal. After the first

11



administration, they allowed at least 90 minutes before administering the secondproce-

dure. The order of assignmentwas random. Another important variable measuredwas

the amount of secretionsremoved.
INSERT TABLE IV HERE

First, we consider estimating the chancesof 'with NSI' being more effective in re-

moving the secretions than 'without NSI' procedure. While the time allowed between the

administration of the two procedures may have eliminated any carryover effects (from the

previous procedure to the latter procedure), the patient effect is not removed. Therefore,

the measurements made by the two procedures are paired observations. Let y and x denote

the amount of secretions removed with and without NSI respectively. Then, for this data,

/_ = 0.99686 and _UMVUE = 0.99988. Since, both MLE and UMVUE are very high,

difference between them seems negligible. Therefore, one can choose either as their point

estimate. Further, we construct a 95% most accurate lower confidence bound for R1 using

all four methods. These are reported in Table V, along with the results for other two vari-

ables of interest, namely, ventilatory rate and heart rate. However, for these variables, we

define y =(post administration measurement with NSI - pre administration measurement

with NSI), and similarly x is defined for the without NSI procedure.

INSERT TABLE V HERE

Next, since all the variables are measured simultaneously on each subject, they consti-

tute a multivariable observation vector. Therefore, it is of interest to estimate the chances

of patient being worse off with NSI compared to without NSI. It is known from the past

studies, and clear in this study as well, that the amount of secretions removed using NSI is

significantly more than without NSI. This is the main reason to administer NSI. Therefore,

we will not include this variable in our multivariate study. The main purpose of the study

is to see if there are increased chances of side effects (due to NSI) such as higher heart rate

and ventilatory rates among other things. Therefore, we only consider two variables heart

rate and ventilatory rate in our multivariate vector. Then, using the results of Section 3,

estimates of reliability are given by/_'= 0.41820, /_[MVUE = 0.40864. Therefore, there is

a little over 40% chance that With NSI procedure results in elevated heart rate and ven-

tilatory rate. In practice, just knowing the chance of increased heart rate and ventilatory

rate may not be very informative as it does not say much about the magnitude of increase.

If a physician determines that an increase of 'a' in the heart rate and an increase of 'b'

in ventilatory rate might be dangerous, then one can calcuate the estimators according to

that. Here we have simply calculated the chance of increased heart and ventilatory rate

(i.e. a=b=0).

12



5.2 Examples for procedure in Section 4.

First, wegiveseveralmodelsthat satisfy the conditional distribution assumptionmade

in Section 4.

Example 1: AR(1) model.

Suppose y,. and xn follow a stationary first order autoregressive model given by

Yn -= PlYn-1 _ ttn

and

xn = p2z,_-i + vn (20)

where un and v,. are independent normal r.v.'s with means 0 and variances a_ and a_. It

is easy to see that the conditional distribution of (y,.+l, Xn+I), given (y(n), x(n)) depends

only on (y,,, x,,) and of course the parameters.

Example 2: Regression model with Autoregressive errors.

Consider the usual regression model with errors following a first order autoregression,

for both y and x, given by

and

Yn : /301 -t- _llCln -I- Un, Urt = pl?-tn--1 -_- gin

x_ =/3o2 + _t2C2,_ + v._, v. = p2v.,-i + e2., (21)

where _ln and e2.. are independent normal random variables with means 0 and variances

a_ and cr2. This model also satisfies the condition that the conditional distribution of

observations at time n + 1 depends only on the observations at time n.

Example 3: First order autoregressive model with regressors.

This model is similar to the model in Example 2, however one is not a simple

reparametrization of the other (see Kulkarni (1987)).

and

Yn = PlYn-I -t- _llCln + un

Xn = P2Zn-1 -t _1262n -t- Vn, (22)

where u,. and v_ are independent normal random variables with means 0 and variances o-_

and cry. It can be verified that assumption is satisfied for this model as well.

13



Next, we consider the model in (22) and illustrate the results of Section 4. Note,

however,that similar resultscanbeobtained for other modelsaswell. For a gooddiscussion
of thesemodels and related modelsseeBasawaet al. (1985) and Kulkarni (1987). For

simplicity, assumethat a_ and a_ are known and let cln = c2,_. Then,

(23)
= + _ e)/v/o +

where m T = (-y_,-cn+l,-x,_,-cn+l), 07 = (6, pl,62,_2) = (0T,0_), with 0T = (5,,Zi)

and 0_ is the MLE of 0 obtained using (yl,zl),""", (y,.-1, x,_-l). Notice that in (23) we did

not have to use the Taylor series expansion as we could simply rewrite it in that form. If

c1,. ¢ c2,., then we would have to use the Taylor Series expansion. Also, assumption of o._

and o._ being known is for simplicity. When they are unknown, we incorporate these also in

and obtain the asymptotic distribution of _(0 - 0), as only (n- 1) observations are

used in the estimation (see Kulkarni and Kushary (1991)). It can be shown using results

in Kulkarni (1987) that (_i 0)A_N(0, I- ,-=-f_lE_(0i)), i = 1, 2, where

_r2 O.i,12 1do.yJ

n--1 n--1 n--i
I

with d - ' E c_, 0"1,12 - 1 E y_-lc_ and a2,,2 = _ E Xi-lCi. E_=1(0_) isn--I n--I ' n--_
i--1 i=1 i=1

estimated consistently by replacing 62 by 6_. Further, (6- 6)ZN(6, E,.(O)), where

zn(e)= [zl.,(e) o ]0 Z n(e) "

Using these results the conditional distribution of 6(yn, x,., 6), conditional on (yn, x,.), is

2
_(yn, xn, _)"_ N (c_(yn, Xn, C_), o.n ( _) ),

2 nl--__lmT_]n (O)m and m is as in (23). Also, estimated variance of 6(yn, xn, On)where a,_ (0) =

is given by o._(0). As noted earlier, in practice one can use yn and xn also in estimating 0

and replace (n - 1) in all the expressions above by n. This should result in more precise

results.

At this point we should note that, even though a medical data set that would fit into

our models is not presented here, the models described above are fairly common in medical

research (see Diggle (1992)) and have broad applications.
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Appendix:

A sketch of the proof of the UMVUE for the p-variate normal case:

Let xl "_ Np(pl, El) and x2 _ Np(#2, E2) and they may be are correlated. Consider,

p = P(xl - x2 > O) = P(y > 0), where y = xl - x2. Now onword, we will concentrate on
n

1the random variable y only. Let y _ Np(p, E) and let fit = _ E _ _ (yi - Y)(Yi - :_)T
i=1

denote the maximum likelihood estimators. Hence MLE of p is _ = P(y > 0)l_,=p,_=_.

Let 5(yl) = 1, if Yl > 0 and 0 otherwise. Since (9, S) are the complete sufficient statistics,

where S = _], using Rao-Blackwell theorem E(5(yl)I_], S) is the UMVUE. Therefore,

we need to find the distribution of yl given (:_, S).

Joint distribution of Yl, "" ", yn is

f(Yl,''',Yn) = Const .IEI-_- tr E -1 (Y_ -- P)(Yi -- P)T .

i=-i

72

Consider the joint distribution of zl,--', zn where z_ = _ C_jyj, and C T = (C_l,.-., C_,.)
.i=1

is the ith row of an orthogonal matrix whose with first and second rows are given by

1 i r andCf = c(1-_,-_, , nC_ = _ i .... ±) respectively. Here, c is a normalizing constant

given by c = (1 - ¼)-½. Using Theorem 3.3.1 of Anderson (1984), it can be shown that
Tt n

zl,-" .,z, are independent. Since, _ (yi-#)(yi-#) T = _ ziz T +(zl-v/-_#)(zl-v/-_#) T,
i=l i=2

Tt n

we have E (Yi - Y)(Yi - _])T = E z_ zT" Thus,
i=l i=2

16



17,

i=3

n

= s_l + c2(yl - y)(yl - y)r.
Now the joint distribution of zl,.-., z,_ is

f(zl,z2,'"z,_)= Const.exp - tr E -1 zizT+(zl--V'n#)(zlv/'n#) v .

Hence, zl, z2, S-I are independent with zl _ N(v/n#, E) , z2 _ N(0, E), and S-1 _-,

W(n - 2, E), where W denotes the Wishart distribution. Now, the joint distribution of

S-1 and z2 is

f(S_ 1, z2) = Const .IP_l-_ IS_l I(n-p-a)/2 exp{-½tr(E -1 S-1) } IEI-½

exp{-½tr[E-iz2z_] }.

From this, we find the joint distribution of S = S__ + z2z T and z2 given by

f(S, z2)= Const. IZl-_-'ls- z2z_l("-'-a)/_exp - ,_[z-ls]

where IS - z2z {] is positive definite.

Further, the joint distribution of S and D = S-½z2 is

[t_(z- s) _Jtsl
½

, 1_ -te:.e_=__.... { 1 1 } DTD)(,,-p-3)/2,= Const. lZl-_-r-'lsI = exp -_(z- s) (1-

implying that D is also independent of S. It can be seen that,

f(D) = k(1 - DTD) ('_-7'-a)/2 , 0 < DTD < 1,

where k = P(-_)[_'/'r(_)] -1

Therefore, the distribution of D is free of the parameters. Since, the UMVUE of p is

Z3= P(Yl > 0[_1, S) but the distribution of S-} (Yl - Y) is independent of parameters, by

Basu's theorem, conditional distribution of S-½ (Yl - y) is independent of 9 and S.

Hence,

.Yl>0
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Table 1.

True Probability

0.01222 M

U

0.02275 M

U

0.04006 M

U

0.06681 M

U

0.10565 M

U

O.15866 M
U

0.22663 M

U

0.30854 M

U

0.40129 M

U

0.50000 M

U

0.59871 M

U

0.69146 M

U

0.77337 M

U

0.84134 M

U

0.89435 M

U

0.93319 M

U

0.95994 M

U

0.97725 M

U

0.98778 M

U

0.99379 M

U

Simulations results on role (M) and UMVUE (U) with n=10

Estimate Bias Std. dev. Root rose

0.01492

0.01225

0.02454

0.02241

0.00270

0.00003

0.00179

-0.00034

0.04088 0,00082

0.04052 0.00046

0.06394

0.06635

-0.00287

-O.00046

0.14919

0.15910

0.02037

0.02190

-O.O0946

O.00045

0.02847

0.O3168

0.02054

0.02190

0.02853

0.03168

0.04071 0.04072

0.04593 0.04593

0.05499

0.06165

0.05506

0.06165

0.10006 -0.00559 0.07221 0.07243

0.10636 0.00071 0.07898 0.07898

0,09126

0.09581

0.09077

0.09581

0.10911 0.10977

0.11047 0.11047

0.12424 0.12482

0.12086 0.12087

0.13521 0.13530

0.12775 0.12776

0.13893 0.13893

0.12989 0.12989

0.13550 0.13562

0.12807 0.12807

0.12382

0.12049

0.10935

0.11064

0.12440

0.12049

0.11000

0.11064

0.21463 -0.01199

0.22655 -0.00007

0.29653 -0.01201

0.30759 -0.00095

0.39639 -0.00490

0.40294 0.00164

0.50096 0.00096

0.50093 0.00093

0.60419 0.00548

0.59760 -0.00111

0.70348 0.01202

0.69242 0.00096

0.78529 0.01192

0.77337 0.00000

0.85218 0.01084

0.84238 0.00104

0.90059 0.00624

0.89435 0.00000

0.00293

0.00051

0.93613

0.93370

0.09047 0.09112

0,09564 0.09565

0.07172 0.07199

0.07857 0.07857

0.05462

0.06121

0.05470

0.06122

0.95970 -0.00024 0.04000 0.04000

0.96014 0.00020 0.04512 0.04512

0.97515 -0.00210 0.02903 0.02911

0.97721 -0.00004 0.03233 0.03233

0.98508 -0.00269 0.02026 0.02044

0.98778 0.00001 0.02179 0.02179

0.99133 -0.00246 0.01349 0.01371

0.99391 0.00012 0.01362 0.01362



Table2. Simulatedcoverageswith trueconfidence0.95.

TrueProbability Using(6) Aprx.(i) Aprx.(ii) Aprx.(iii)
n=10

0.00620
0.01222
0.02275
0.04006
0.06681
0.10565
0.15866
0.22633
0.30854
0.40129
0.50000
0.59871

0.69146

0.77337

0.84134

0.95000

0.94810

0.95190

0.94960

0.94965

0.95075

0.94980

0.95215

0.94880

0.95065

0.94780

0.94860

0.94930

0.94970

0.95440

0.94745

0.94425

0.94965

0.94745

0.94850

0.95000

0.94955

0.95215

0.94880

0.95070

0.94830

0.94975

0.95105

0.95295

0.95790

1.00000

1.00000

1.00000

1.00000

1.00000

0.99985

0.99850

0.99355

0.98155

0.97485

0.99150

0.99915

0.99990

0.99995

1.00000

0.89435

0.93319

0.95994

0.97725

0.98778

0.99379

0.94920

0.95005

0.95435

O.94885

0.94880

0.94630

0.95375

0.95485

0.95980

0.95685

0.95625

0.95285

1.00000

1.00000

1.00000

1.00000

1.00000

1.00000

0.01855

0.07605

0.24055

O.50180

0.73925

0.87680

O.93240

0.95030

0.94845

0.94560

0.94245

0.95055

0.96835

0.98215

0.99540

0.99820

0.99970

0.99995

1.00000

1.00000

1.00000



Table.3. SimulationResultsfor BivariateNormalwith n=15

TrueProbability
0.0520

0.1024

0.1586

0.2015

Estimators
M
U
M
U
M
U
M
U

Bias St. Dev RootMSE
-0.0026 0.0353 0.0354
-0.0002 0.0376 0.0376
0.0002 0.0446 0,0446
0.0002 0.0433 0.0433
-0.0069 0.0748 0.0751
0.0002 0,0776 0.0776
0.0003 0,0769 0.0769
0.0002 0.0743 0.0743

0.2500 M -0.0008 0.0893 0.0893

U -0.0008 0,0861 0.0861

0.3500 M 0.0071 0,0969 0.0972

U -0,0006 0.0930 0.0930

0.4421 M 0.0116 0,1003 0.1010

U -0.0013 0,0974 0.0974

0.5075 M 0.0123 0,1053 0.1060

U -0.0003 0,1027 0.1027

0.5442 M

U

0.6603 M

U

0.0126 0.1061 0.1068

0.0010 0.1033 0.1033

0.0075 0.1004 0.1007

-0.0011 0.0988 0.0988

0,7079 M 0.0138 0.0904 0.0915

U 0,0001 0.0933 0.0933

0,7525 M

U

0.8105

0.8674

0.9048

M

U

M

U

M

U

0.0121 0.0849 0.0857

0,0003 0.0887 0.0887

0,0085 0.0797 0.0802

-0.0001 0.0829 0.0829

0.0039 0.0609 0.0610

-0.0003 0.0662 0.0662

0.0016 0.0512 0.0513

0.0001 0.0559 0.0560



Table4. Data from JordanandGarrett (1992)
Patient Variable

1

4

Heartrate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions
Heartrate

Vent. rate

Secretions
Heart rate

Vent. rate

Secretions

10

Time With NSI
Pre 120
Post 119
Pre 38
Post 44
Post 5
Pre 81
Post 111
Pre 18
Post 20
Post 5.0
Pre 120
Post 125
Pre 45
Post 52
Post 3.5
Pre 84
Post 89
Pre 6
Post 14
Post 3.0
Pre 132
Post 144
Pre 43
Post 64
Post 4.0
Pre 121
Post 140
Pre 7
Post 14
Post 6
Pre 135
Post 146
Pre 43
Post 64
Post 3.5
Pre 97
Post 103
Pre 10
Post 19
Post 5.0
Pre 85
Post 99
Pre 24

Post 42

Post 4.0

Pre 113

Post 129

Pre 14

Post 25

Post 3.5

Without NSI

122

126

42

50

0.5

92

121

14

20

1.0

120

122

50

60

2.0

78

92

8

12

1.5

127

135

42

56

2.0

118

126

8

9

4.0

126

130

42

56

1.0

95

102

14

18

1.5

82

94

21

33

0.5

116

125

16

22

1.0



Table 5. Estimates and lower bounds for the data.

Variable MLE UMVUE L-Using (6) LA1 LA2 LA3

Secretions 0.99686 0.99988 1.43813 1.40315 0.37364 0.96930

Heart Rate 0.62184 0.61194 -0.24557 -0.24582 -0.33987 -0.23241

Vent. Rate 0.57866 0.57204 -0.34189 -0.34197 -0.46876 -0.33368


