CONTINUED EVALUATION OF THE HYBRID FLOATING BRUSH SEAL (HFBS)

S.B. Lattime
M.J. Braun
F.K. Choy
B&C Engineering Associates, Inc.
Akron, OH, USA

R.C. Hendricks
B.M. Steinetz
NASA Lewis Research Center
Cleveland, OH, USA

Scott B. Lattime, Jack Braun, and Fred K. Choy
B&C Engineering Associates, Inc.
Akron, Ohio

Robert C. Hendricks and Bruce M. Steinetz
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio
• Motivation
• HFBS Concept
• Experimental Apparatus
• Experimental Results
• Conclusions
Motivation

- increase thrust to weight ratio
- decrease specific fuel consumption
- eliminate wear of sealing components
HFBS Concept

- combining seal technologies
- allowing for axial & radial shaft excursions
- eliminate interface surface speeds
HFBS Concept

- combining seal technologies
 - brush seal
 - film riding face seal
- allowing for axial & radial shaft excursions
- eliminate interface surface speeds
HFBS Concept

- combining seal technologies
- allowing for axial & radial shaft excursions
 - brush seal is compliant
 - brush seal “floats” on shaft
- eliminate interface surface speeds
HFBS Concept

- combining seal technologies
- allowing for axial & radial shaft excursions
- eliminate interface surface speeds
 - brush seal rotates with the shaft
Experimental Apparatus

- Room temperature test rig (RTTR)
- Brush seals
- Film riding face seal
brush seals
The design of a brush seal for the HFBS is significantly different from that of a stationary brush seal.

Stationary brush seals
- focus is largely on tribo-pairing the materials of the brush and the moving rotor
- reduce the wear at the interface of the two components

HFBS
- prevent the bristles from lifting off the shaft, due to centrifugal forces
- eliminate relative velocities between the two components
Bristle Liftoff Model

The design process of the brush seal involved parametric calculations using the geometric characteristics and material properties of the bristles.

The calculations allowed the determination of the highest rotational speed at which the bristles would begin to lift off the rotor for a given bristle geometry. These properties included:

a) free length of the bristles
b) bristle material
c) diameter of the bristles
d) lay angle of the bristles
e) bristle pre-load
f) bending stress of the bristles
film riding face seal

No more information provided in the text.
Experimental Results

- leakage performance
- axial shaft movement
- shaft radial runout
leakage performance

Sealing performance shall be expressed in terms of a leakage flow factor ϕ.

The flow factor is defined as:

$$\phi = \frac{m(T_{\text{ave}})}{(P_u D)}$$

where:

- m = mass flow rate of air (pps)
- T_{ave} = average upstream air temperature ($^\circ R$)
- P_u = average upstream air pressure (psia)
- D = shaft outer diameter (in)
Figure 6: Leakage Performance @ 16krpm (197fps)
Figure 7: Leakage Performance @ $P_r/P_d=3.04$
(10krpm=123fps)
axial shaft movement

Pressure Change vs Axial Movement @ 10krpm,
d=0.04, L=0.28, alpha=35, PL=0.02

Pu-Pu0 (psig)

Axial Displacement (mils)
Figure 10: Seal Performance with 7mil radial runout, d=.004, L=.28, alpha=35, PL=.02 (10krpm=123fps)
Conclusions

- verified functionality and improved sealing performance of the HFBS at relatively high operational speeds

- leakage performance acceptable for gas turbine applications

- possibility of drastically improving engine efficiency with increased sealing performance

- experimentally tested/proved the theory of the “floating” brush seal by sealing around a rotating shaft during axial motion between the shaft and seal as well as sealing a rotating shaft with a large radial runout

- capable of providing improved sealing performance with the elimination of interface wear that exists in the current "standard" brush seal technology