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ABSTRACT

The present document is a f'mal technical report under the NCC-1-233 research program

(dated September 15, 1998; see Appendix 5) carried out within co-operation between United

States' NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues

similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and

1998, respectively.

The report provides results of"The study of stability of compression-loaded multispan

composite panels upon failure of elements binding it to panel supports"; these comply with

requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.
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INTRODUCTION

The previous studies in [1, 2] paid major attention, firstly, to postbuckling behavior of

composite panels and, secondly, to the problem of evaluating strength and buckling of a built-up

structure with consideration of postbuckling deformation of some components. These studies

relied on the assumption that the thin-walled elements are attached to supports by links which do

not fail until the structure becomes destroyed.

However, the links may tum out to have inadequate strength, and the structure can fail

due to fracture of the links between the panel and supports. This outcome is evidenced by static

strength testing of a number of real structures. Figure 0.1 demonstrates airplane wing fracture;

one can see that the upper, compression-loaded panel has failed because of fracture of links

between the panel and ribs when the load was much less than the critical value obtained under

the assumption that the buckling nodal lines rest on the ribs.

The present research suggests the approach which enables predicting the panel failure

load as a function of strength of particular links between the panel and supports.

Let us detail now the essence of the problem.

One knows that the major load for upper panels in a large-aspect-ratio wing is the

longitudinal compression caused by general bending. Therefore, parameters of upper stiffened

panels (including the rib spacing) are specified on the basis of critical stress resultants N_r

which are computed under the assumption that ribs are nodal lines for the buckled panel.

This approach is valid if strength of links between the continuous panel and rib/spar

flanges is sufficient for the buckling mode above.

However, if not, the panel may buckle at a load Nxo less than N_r, upon failure of links

along one or more supports.

Thus, there appears the problem of predicting the necessary strength of links between a

compression-loaded panel and the supports (i.e., ribs and spars) - such that the panel buckling

nodal lines be on supports; this problem is rather challenging in case a high stress must be

applied to a monolithic composite stiffened panel.

The problem is treated here by using the energy method proposed in [3] for analyzing

behavior of a compression-loaded composite plate with delamination.

Note that analyzing the strength of links between the panel and intermediate supports is

different from the usual problem of searching for the necessary stiffness of compliant support;

the latter formulation proceeds from buckling shapes caused by mutual deformation of the

supports and permanently attached panel.



Part 1. The method for studying stability of compression-loaded

stiffened multispan composite panel after failure of elements

binding it to transverse and longitudinal supports

1.1. Solution to the problem of postbuckling behavior of

unsupported part in compression-loaded multispan panel upon

failure of support links

Let us consider a rectangular flat orthotropic panel incorporated in a thin-walled wing

torsion box (Fig. 1.1). The panel is attached to rib flanges, and its sides, to spar flanges. Panel

parameters are

- L, the length,

- b, the width,

- a, the rib spacing;

clearly, L = kma where k m is the total number of panel bays. At the ends the panel is

compressed with stress resultants Nxo.

The subcritical (flat) state of the panel (the state I in Fig. 1.2) is characterized with the

resultant Nxo and the in-plane displacement A x.

At a certain value of Nxo the panel can buckle over a certain length £ = k a (where k is an

integer), which process makes the panel be separated from k - 1 ribs - refer to state II in Fig. 1.2.

The other buckling mode is panel buckling over a certain length g with separation from

k - 1 ribs and two longitudinal supports (that is spars) - refer to state III in Fig. 1.2.

If the panel is connected to ribs and spars by rather strong links, then the major buckling

shape is the usual sinusoidal surface whose nodal lines are on ribs and spars - see state m in Fig. 1.2;

in this case the critical load N_ is calculated by usual formulas.

Let us address now panel buckling with transition from state I to state II (Fig. 1.2).

Assume that the panel in its subcritical condition is corripressed with the stress resultant Nxo ;

the panel ends have a mutual longitudinal displacement A x" The panel energy U is equivalent

1

to the triangle area _-Nxo A x, Fig. 1.3. Upon failure of rib links the panel buckles over a

portion of length t?, and the load gets decreased to N xo. With the state II implemented, the

displacement A x does not change. The total initial compression energy U transforms into



- compression energy Up and

- bending energy Ub,

and the panel has an out-of-plane displacement f. The difference of energy between states I and II,

is released when the links fail. Energy balance equation (1.1) is represented graphically in Fig.

1.3; here, R is the work for destroying the links between the panel and ribs during buckling over

the length g = k a.

Thus, energy balance equation (1.1) and the condition A x = const for the transition

from state I to state II make it possible to determine Nxo and the final out-of-plane

displacement f. The buckling surface length _ = k a is evaluated by minimizing Nxo with

respect to k.

We should relate the compression energy U and the mutual displacement A x to other

variables in the problem.

Strains and stress resultants in the midsurface of the orthotropic panel are interrelated as

follows:

ex = A11Nx + A12 Ny, ey = A12 N x + A22 Ny, 7 = A33 Nxy, (1.2)

where All, A22, A33and AI2 are cocos of compliance of the panel in its plane. The mutual

end displacement may be expressed as,

A x = L All Nxo. (1.3)

Compression potential energy is,

All N2xo (1.4)
U = Lb "-_'- .

To compute the bending energy component Ub and the compression energy component

Up, we consider the panel buckled over the length e. Ass_ae that the plain (not buckled) parts

of the panel clamp the transverse edges { x = 0 } and { x = e } of the separated part.

In case the panel is torn offthe ribs only, the out-of-plane displacement is expressed as,

wx . ny
w = fsin 2 --_-sm--_- . (1.5)

The midsurface stress resultants are determined by solving the deformation compatibility

equation from [4]:



a2gx a2_y a2T 1.z_(w,w)'
c_y-'--_+ ax--'--T-ax0y - 2

(1.6)

where wc usethenonlinearoperator

:ta-777yJ- ox---_ Oy2'

and midsurfacestrainsare

2, 0v I¢0w12 Ou c3v c3w.Ow
au I (0wl "y +2_X-_x+2\-_-x) -_y \'_y) ' Y=_y+_x+'_-x Oy

(1.7)

Now, stress resultants N x, Ny and Nxy are expressed in terms of the function _:

02_

N x - ay2 '

and substituted (with Sx, Sy, and

a2_ _a)
Ny - Nxy = - , (1.8)0x 2 ' Ox Oy

y from (1.7) and w from (1.5)) into the formula (1.6) to

obtain the following equation:

where

1
A(_)=7-r(w,w), (1.9)

04 04 04
= -- +All

LI() A220x 4+2A 3c3x 2ay _ ay 4'
(1.10)

1
A 3 =AI2 + _A33"

The relation (1.5) is to be substituted in the right-hand side of(1.6) to obtain

1L(w,w)_ f2 _4 ( 2Tcx 47zx 2_:y 2nx 2ny_2Lcos__T _cos_T-+cos___-_cos--/-cos-_-j2 £4
(1.11)

where

where

g

b
i

The general solution to (1.9) looks like this:

y2
= _1 -Nxo T, (1.12)

t_I = -_- Ct282 COS e 16 COS +_-_- COS---_-"- a2 (53 cos----_ cos ,

1 1
- , (52 - , (53 =

81 AII A22 A22+2A3 a2+AIIa 4"



Taking into account (1.12), the stress resultants N x, Ny, and Nxy in (1.8) can be

represented in terms of coordinates:

(
2my °t 4 2m¢ cos_2__) 'Nx = -_xo - t2 \ 81 cos--_- - 53 cos--_--

COST COSI ( 2n'x I 4...._INy = -t2ot 2 52 _cos----_-- -_cos -53
(1.13)

where

of[4]:

f2 _2
t 2 _

8 £2"

The equation of bending for the orthotropic panel in question may be written on the basis

t94W C34W Cg4W 02W 02W GO2W

_-Ny0x2 0Y 2 -2Nxy - 0, (1 14)+2D 3 +D22 V-NxDll c3x 4 c3x 2 ¢3y 2 OX Oy

where Dll, D22, and D 3 are the panel bending stfffnes s parameters; these could by using [2]

be related to stiffnesses of the orthotropic skin and stiffeners.

mmg

The dependence of panel out-of-plane displacement on the external load N xo is

evaluated by solving Bubnov-Galerkin equation:

_b

I = X sin 2 _- sin dx = O,
O0

where X is the leR-hand side expression in (1.14). By allowing for (1.5) and (1.13), we derive,

0 _ -(8Dll + 2cc2 D3) cosT21t'x sin_+ ct4 D22 sin2 T_ sin-_"

[Nxo 2t2(St l " 4 2nx'_ 2ny] 2nx
-- + _ CO S I _ l

[IR'y _ t2_4 COS _-sin g 2

_. 2rrx 2xy-] i 2nx . roy 2nx. 2ny _ry]. 2x'x . 7t'y.. ,,
- o3cos--_cos--_-Js n --£- sin-b-- 2t2ot483 sin2---_stn--_-eos-_f sm --_-sm-_- axay=u.

By estimating the integrals and stipulating f ¢ 0, the following relation appears:

( ] = t2 I a4(17 l )]
n 2 1 3 Gt4

4--_ DII+_a2D3+_ D22-Nxo+-_- 51+ \1682+_:53 =0.



Hereinailer, the new symbols are utilized:

Nncr = aS Dl,J

In these terms,

a 4_ D]I0<a=k-_< 4D22,

54=_Si+_ 2+ a453 ,

54

The mutual in-planedisplacement of the edges {x = 0 } and {x = L } is,

(1.15)

(1.16)

(1.17), the result is,

A x - 81 Nxo + I t2 cos + 4 sin --_ sin 2 dx,
0

or, substituting t 2 from (1.16):

Ax-84 (g4+_)Nxo-?N_ , (1.17)

where g4 =54/51 and _=f/L.

To determine extemal load Nxo applied to the buckled portion, we make use of the

condition A x = const in case the panel comes from state I into state II. Allowing for (1.3) and

_--" g4 Nxo + _N_

Nxo = g4 + _ ' (1.18)

Potential energy U of the compression-bent panel is to be subdivided into the bending

m

energy component Ub and the midsurface deformation energy component Up :

ram= wing

U = Ub + Up . (I.I9)

produce

Herein, the component from (1.7)

Ox - Sx-_"

should be substituted; and formulas (1.2), (1.5), and (1.13) have to be taken into account to
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The bending energy component may be written as

1 i i DII_,0--_)+2D12- +D22[,,-_y2) +4D33 dxdy.
Ub = _" 0 0 c3x2 c3y2 0x c3y)

By substituting w fzom (1.5) into the above expression, we obtain

_4 f2 I b [-( 22_X 2_X 2 _:X I 47) sin2_yf .{LLD, cosT-Dl:_:cosTsin T+_D::cdsin --g-+Ub = 2_ o o

• 22r_x _'Yl+ D33 a 2 sm --7- c°s2 _ dx dy.

Upon estimating the integrals and taking into consideration (1.15) and (1.16) the energy is

Ub -" _ N Nxo - N ,

Or, with (1.18) in mind, we can write

= *b Nxo - N_

_4+_ (1.20)

The midsurface deformation energy component is represented by

=UP=_oI_(AIINx2+A22Ny2+2AI2NxNy+A33Nxy2)dxdY'o

here, equation (1.13) for stress resultants is substituted:

-- Lb----2 t 4 e b __+6 2 COS2--_-+'_ cOsI ,,oo: @

cos _ cos 2 + (x 2 A33 sin 2 _ sin 2 dxdy.

Upon estimating the integrals and taking into consideration (1.16) the energy expression

becomes

-- Lb I- --2 I 71121Up - 2 8 4 8 4 Nxo + _ _xo -, cr ,

or, due to (1.18), the relation (1.21) appears:

-- L b [g4 N2xo + _ (NIcIr)2Up - 281 g4 +3 (1.21)

Now substitute (1.20) and (1.21) in (1.19) to derive the total potential energy for the

panel in state [I:

u - ,Nxo • (,.22)

Ca_

t ,

",4'
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ribs:

Relations (1.4) and (1.22) should be inserted in (1.1) to obtain

tb All (Nxo N_) 22 + =R. o.23)
Wc may express work R releasedduring fractureof linksbetween the panel and k - I

R=yfb(k-1), (1.24)

where yf is the specific work necessary to separate the panel from a rib over a unit length of the

rib flange.

For the moment when the panel becomes separated from ribs, the stress resultant Nxo is

determined fi'om (1.23) and (1.24):

Nxo=NcII r + ___ 2 (g4 +_)yf (1.25)
a All

Both left-hand and fight-hand sides in (1.25) could be undimensionalized by dividing

these by the critical load N_r =N_ for buckling between ribs (refer to state IV in Fig. 1.2); the

critical load is obtained in the usual way by approximating the out-of-plane displacement with

the formula w = f sin wx sin -_--_"
a b

_2Dllk_, k_ 1+2a2o D3 4 D22 (1.26)-- = _+(gO --'
Ng a-_ D11 D11

where

a ¢a°-b 0 < %< 4 D1---L (1.27)
, - _ D2 2

Upon these transformations, obtain

N _ --n _/_u= = Ncr+ X, (1.28)

where

, :
N- N---_r, Ncr - N'-"_ , X- ayp--' YP=2 All(N_) ' 1311_ k-lk [_g4+ _-m) .(1.29)

The yp variableisthe specificenergy thatwould be accumulated in a panel with a unit

length,which iscompressed with the stressresultantN_ ;also,the undimcnsionalizcd value X

isthe rclativeenergy spentto separatethe panel from a rib.

In order to determine the minimum possible value _=_II we must minimize (1.28)

with respectto k, where k = 2, 3, ...,k m .
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Now we should analyze panel buckling with transition from state I to state rn (Fig. 1.2) -

that is, panel buckling with separation over the length g = k a from k - 1 ribs and two spars to

which the panel is attached by its side edges.

Upon the separation from spars the longitudinal edges are flee, Displacement w may be

expressed as,

w= f sin 2 7rx
£ (1.30)

With links between the panel and spars broken, the panel buckles over the length t, and

load decreases to Nxo. During transition from state I to state III the displacement A x does not

vary. So the panel buckling critical stress resultant is

NIr II a:2 Dll k_ k_ =_-2 (1.31)

Now we use analogy with theories of [5] for the angle of the tangent to the midsurface of

the buckled panel in the longitudinal direction and take into account (1.30) to obtain

8=08er,

where

0 = 8 Nxo- N_ 2TffX

8or =sin g

To derive the displacement w, we utilize the boundary condition {w = 0 at x = 0 and x =g }:

xr g wx
w = 0 _/Scr ds = 0 -- sin 2_.

n
0

This relation is compared with (1.30) to have,

t 2 _
f27_2 _xo -N_

8 g2- N m

The stress resultants Nx, Ny, and Nxy for state m are

(1.32)

Nx =-_xo, Ny = Nxy = 0.

The mutual displacement of edges {x=0} and {x=L}

consideration of(1.2), (1.5), (1.33), and (1.32):

= _u Nxo -N_

x -(_xdx = 2e N_ r- +LAll_xo.

is written

(1.33)

with due

(1.34)
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The external load

A x = const

have

where

I

Nxo of the buckled panel may be evaluated by using the condition

for the panel transition from state I to state llI. With (1.3) and (1.34) in force, we

== ScrNxo + 2£ N_
Nxo = - , (1.35)

Scr +22

From (1.32) and (1.35):

Ccr = All N_. (1.36)

t2 = Yxo- N_

The bending energy component is expressed as,

b _DI, [a2wl 2 b=70 dx.

(1.37)

Now substitute w from (1.30) and allow for (1.36) and (1.37) to obtain

= Ai, 4N_ yx° -N_ (1.38)
U b = £ b _ Scr+ 2_ "

The relation(1.33)is now taken into account to derive the

component fortheplatemidsurface:

= b _AlIN2xdx.
Up =20

Herein, we substitute stress resultants from (1.33) and (1.35):

scr +22 ) • (1.39)

With relations (1.4), (!.38), and (1.39) obtained, equ,3tion (1.1) may be re-written as

£bAll Scr+£ (Nxo_N_) 2 :R

Real panels are characterized with the interrelation Scr<<_, SO

All (Nxo _ N_I )2L b --_- =R.

Let us decompose R into two summands:

R = Rf + Rr,

compression energy

(1.40)

(1.41)
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where

Rf=yfb(k-1), R r =2_,ra-k,

Yr is the specific energy necessary to separate the panel from a unit length of the spar.

Here, we substitute (1.41) and (1.42) in (1.40) and take into analysis that _ = k / k m :

(1.42)

Nxo = N_ + ),f + 2aoY r . (1.43)
a A 11 km

Both left-hand and right-hand sides of (1.43) may be divided by the critical stress

resultant N_ =N_ for panel buckling within a single bay with no separation from ribs and

spars (refer to state IV in Fig. 1.2):

N --m x/13m= =Ner + X , (1.44)

where X corresponds to (1.29) and

Xr _ Tr --m N_ [3ii I 1 a°Xr)-l]' Xr - Xayp' Ncr - N_ ' = k---m[ k(l+2 -- Xr (1.45)

For particular values of ct o and ratio Xr we should determine the value of k (with

k = 1, 2, ..., k m ) which provides the minimum N level.

The maximum load N that may be carded by the panel not separating from supports

(with panel parameters and link fracture energy prescribed) corresponds to the lower value

among _II and _m (as provided by (1.28) and (1.44)) while assuming that N < 1. Note that

both (1.28) and (1.44) have been obtained under the assumption of Nxo < N_ ; so the relations

N=

are allowed to be united as

_II if _II < _III and Nxo < N_,

_III if _II > _III and Nxo < N_,

1 if rain _III >,1.

(1.46)

Let us use Xcr to denote the minimum possible value of the relative link fracture energy

X for links between the panel and a rib; this Xcr value at the X r /X ratio specified ensures

N = 1 (see (1.46)), and no greater X value could increase the failure load. From (1.28), (1.44),

and (1.46) we obtain

Xcr
XIII

Cr,

if X II > yIII-- "_Cl"

,gill 'if X II <--or
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where

-Xnr
k=2,3 ..... k m( _ ' XcIIrI = k=l,2max..... k. 1- N_ .

--II --1TI
These formulas utilize the k values which ensure Nor -< 1 and Ncr< 1, respectively.

When X > Xcr, the panel is attached to supports strongly enough for the panel to buckle

between ribs (i.e., to come to the state IV) with no separation from ribs and/or spars. Thus, the

critical value Xcr of link fracture relative energy at Xr prescribed is an important indicator of

strength of joints between the panel and its longitudinal and transverse supports.

In particular, the present methodology may be employed to evaluate link fracture energy

for a skin and the longitudinal and transverse stiffeners.

1.2. Dependence of ultimate load on panel parameters and link

fracture energy available: A parametric study

In the general case an orthotropic panel may be described as a composite skin (with a

thickness h and a symmetric stacking) stiffened with stringers. The material characteristics of

the orthotropic skin include E_,E_, G°,_t_, and p._ - that is, elastic and shear moduli and

Poisson's ratio. Stringer parameters include the following set:

- b s = b / (n s + 1), the stiffener spacing,

- n s, the total number of stiffeners,

- E s, the stiffener Young modulus,

- F s , the stiffener cross-sectional area,

- Is , the stiffener cross section inertia moment, and_

- z s , the distance from the stiffener cross section centroid to the skin midsurface.

For the panel the compliance cocos are

1 1 Pq gt2 1

All - Elh' A22 - E2h' A12 = Elh -A21 =-E2-_' A33 - Gh'

where

l_+r _._._ E__

E l=E_(l+r), E 2=E_i+r, _tl =_t_' P'2 =l+r, _t_=la_ E_'

, -: ( oo)
(3=G ° r r 1-p.l_2 , r= E_hb s
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The panel bending stiffness is determined through skin and stringer stiffnesses as

follows:

where

DI1 = D_I + D_I, D22 = D_2, D 3 = D_ = DI2 +2D33 ,

h 3 G ° h3

D_I-12( E_21_t_)' D_2 =12(?_t_- _t_)' D33-D_3- 12 '

E_h

1-p._ p._ EsIs +LsF_(zs_hl) 2,
1 0

D12 = D_2 = _'(la 2 D_I + _ D_2),

and h 1 is the distance from the skin midsurface to the centroid of the cross section of the

stiffener with the neighbouring skin.

By analyzing formulas (1.28) and (1.44) it can be concluded that, with X and X r /X

specified, the value of N (and the integer k which minimizes N) depends on the following

parameters:

A22 A__L D11 D] I
ao, km, --,

A11 All D22 ' D3

It is easy to write similar parameters for a plain (unstiffened) orthotropic panel:

G°
a°' km' E_' El' btl)"

m

In case the panel is isotropic the N value does only depend on Oto, kin, and _t.

Thus, the total number of parameters influencing N is rather large. In this connection we

limit ourselves to analysis of a few typical versions that help nevertheless to detail the entire

methodology.

Firstly, let us consider a 10-bay panel (with k m = 10) attached to ribs and spars; assume

that the rib spacing is much less than the distance between spars (here, a o = 0.2). At the

initiatory stage, we presume in addition that the relative strength of panel/spar links is notably

greater than that of panel/fib links (X r X >> 1) - this me,ins that, as the load is growing, the

panel may separate from ribs only. We will address three versions of panel design:

- isotropic panel,

- homogeneous orthotropic panel, and

- inhomogeneous orthotropic panel (stiffened in the longitudinal direction).

Figure 1.4 represents the dependence of N on X for the isotropic panel in which
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Dll - A22 -: Dll - A3 -1.
D22 All D3 A11

If the available link fi'acture energy X grows, the ultimate load N gradually increases, which is

accompanied with shortening of the separation zone length £ = k a. For example, within the

interval { X56 < X < X45 } the panel buckles and separates fi'om four ribs (k = 5), whereas

within the interval { X 56 < X < X cr }, f_om three ribs (k = 4 ). When X > X cr the panel

buckles between ribs and obtains the shape corresponding to state IV in Fig. 1.2. From Fig. 1.4 it

is seen that the isotropic panel is characterized with Xcr = 0.53.

Figure 1.5 depicts the same kind of dependence for the homogeneous orthotropic panel

(that has a composite skin with a symmetric layup and no stiffeners) in which

D11 = A22 =2.87, D1 ] =3.64, A---_-3=4.63.
D22 All D3 All

The panel dimensions are the same as in the previous example. Here, we have the critical

value Xcr =0.71, which is higher than that in the isotropic structure.

Figure 1.6 shows the <<N-X>> diagram for the orthotropic panel (with a composite

skin and stiffeners) in which the in-plane dimensions are identical to those in previous

versions; here,

Dll =70.1, A22 =3.46, D1----LI=88.8, A3 =5.63.
D22 A11 D3 A11

Here, the structure has the critical value Xcr = 0.77, which is slightly higher than that in

the unstiffened composite panel.

By comparing values of X cr for the three versions, it is clear that increasing the

longitudinal stiffness results in greater X cr values.

Of interest is the dependence of X cr on the relative rib spacing a o .

Figure 1.7 demonstrates how Xcr of the isotropic panel depends on ao; Figures 1.8
i

and 1.9 show similar functions for the homogeneous composite skin and the orthotropic panel

with the stiffnesses reported above.

From Figures 1.7 through 1.9 it is seen that Xcr notably decreases as a o grow s.

Below, we consider the same panels but assume that these could buckle in accordance

with models II and III. The ratio X r /X = _'r /_'f for these examples reaches various levels:

- 6.0 for the isotropic unstiffened panel,

- 4.0 for the composite unstiffened panel, and
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- 3.0 for the composite stiffened panel.

Figures 1.10 through 1.12 represent relevant _N-X >>diagrams. The curve corresponding

to state II intersects (at a certain point X = XIII__I I ) with the curve for state lII. For the panel

versions under consideration the Xcr value are on the curve corresponding to state 1"I.

Figures 1.13 through 1.15 demonstrate the Xcr dependence on ot o . As for the isotropic

panel the curve corresponding to state II intersects the state 1T[ curve at the point with ot o -7_0.23.

Consequently, if the available X value is below Xcr, whereas ot o < 0.23, then the buckled

panel may separate from ribs only - state II. If, however, the available X value is below Xcr,

but oto > 0.23, the buckled panel separates from ribs and spars - state lII. And the structure with

X > Xer buckles between ribs with no failure of links to both the ribs and spars - state IV. As

for homogeneous composite and structurally orthotropie panels (with the respective X r /X

values written above) the coordinate oto of intersection of curves corresponding to states II and

ITI is slightly larger than that for the isotropic panel (here, o_o --__0.31 and ot o _0.34,

respectively).

To conclude the investigation, we carried out studies on dependence of N on X and

X cr on ot o for panels with different lengths - at k m = 7, 8, 9, 10.

Figure 1.16 depicts the dependence of N on X for the isotropic panel at oto = 0.2. The

bright circles on the curves denote panel transition from type 111 buckling to type 11buckling.

Figure 1.17 demonstrates how X cr for the same panel depends on ot o . These curves

suggest that decreasing the total number of bays in the generic panel decreases Xer, other things

being equal. This is associated with the fact that, with the total number of bays decreased, the

potential energy of the unbuckled panel portion (whose length is L - t) decreases as compared

with the total energy of the entire panel upon buckling.

Figure 1.18 shows dependence of Xer on o_o for the composite stiffened panel whose

stiffnesses are represented in the Figure.

Figure 1.19 provides the computed results on X cr as a function of the "relative stiffness

capability" in the longitudinal direction - DII D22 ; the ot o parameter assumes certain values:

0.2, 0.25, 0.3, 0.35, and 0.4. In the case of DII D22 > 20 the parameter is seen not to influence

X el- •
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Part 2. Fracture energy and strength of links between the multispan

panel and supports: Critical values for ensuring traditional buckling with

nodal lines being on the supports

Part 1 above introduced the notion of "specific link fracture energy X" for a compression-

loaded multispan panel attached to supports; also, Part 1 provides analytical expressions and some

parametric analyses that establish dependence of the panel failure load on X. To carry out real

analyses, one should be able to determine X for particular supports and joints. There exist

various designer solutions in respect of supporting elements and types of panel-to-support joints.

In addition, the "panel-joint-support" system fails at its weakest point. So the link fracture

energy is recommended to be determined by resorting to special experiments with real structure

parts; experimenters should record

- the load-displacement diagram, t_q - A >>,and

- the ultimate load q p

(here, q is the linear density of the peeling-off load normal to the panel surface and applied to

the line of joint between the panel and the support, and A is the displacement in the q

direction). This diagram must be obtained while increasing the load q from zero to "panel-

Ap

support" link fracture. The area outlined by this diagram, fq dA is the equivalent to the link

0

fracture energy; here, A p is the displacement at fracture.

However, the experimenting with real structural parts is difficult to implement for a

number of reasons. In this connection we propose the method for theoretically determining the

link fracture energy while assuming that the v_eakest point in the "panel-support" system is the

joint (i.e., a bolted or riveted joint or an adhesive bond) whereas the support itself is rather stiff.

If the support is a beam-like rib transferring its load to spars, then the rib deformation energy,

i M2(qp) +i °_Q2(qp)U b.w. = dy dy (2. l )
2EJ 2GF

0 0

can be added to the fracture energy of the joint, as this energy is released at the failure time

instant. In the above equation the symbols M(q p ) and Q(q p) are the bending moment and the

shear force at the load q p, respectively, and EJ and GF are the rib bending and shear

stiffnesses, respectively.

Let us preliminarily address a simplified approach to bolt/rivet fracture energy, provided

that the joint fails because of breakage of the rod of a bolt or rivet.
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2.1. The method to evaluate link fracture energy for bolted and riveted

joints. Relation to load-displacement diagram and bolt/rivet fracture

load

To carry out real analyses, designers should evaluate parameters ? f and ? r" We suggest

the method for determining these on the basis of experimentally obtained _tq- A >)diagram;

here, q is the linear density of the tensile load that tears the panel off the rib/spar, and A is a

characteristic displacement in the joint subjected to tension. The specific fracture energy (per

unit length of the joint) is,

Ap

? = JqdA, (2.2)
0

where A p is the characteristic displacement at fracture time instant.

If the panel is attached to the supports by using bolts and/or rivets, and the fasteners fail

due to rod breakage, then 3' may be approximately computed on the basis of the _<o- e >>

diagram for the bolt/rivet material.

Assume that the, o - e >>diagram for tension of a bolt/rivet has the shape represented in

Fig. 2.1; here, we employ the following notation: 002 is the yield stress; e 2 = o02E ; and O-p

and e p are the ultimate stress and the relative elongation at fracture, respectively.

With this, the rivet/bolt fracture energy and the y value may be calculated as,

n
A=HFS d and 3'=--HFSd, (2.3)

C

where

H and F are rivet/bolt rod length and cross-sectional area, respectively,

c is the rivet/bolt spacing in a row,

n is the number of rivet/bolt rows in the joint, and

_p

Sd= lode is the area occupied by the _o- e >>diagram; the area may be approximately
O

computed as,

S d = Op£p_ , •(2.4)

where rl is the <_o - e >>diagram filling ratio:

1 [ 002 82

L2 _ Op £p
, 0.5--- rl < 1. (2.5)
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Thus, to determine ),, we should substitute the integral (2.4) into the formula (2.3):

_' = ¢lqpAp, (2.6)

note that

t_pF
=_n and Ap=Hsp. (2.7)qP c

By substituting (2.6) into (1.29) and (1.45), we obtain relative link fracture energy values

X (for ribs) and X r (for spars):

2rlfqp f Apf 2rlr qpr Apr
X = X r = 2 ' (2.8)

Here, q pf, q pr, 11f, 1"1r, A pf, and A pr are the characteristics introduced above for evaluating

joints between the panel and ribs and spars, respectively.

The values X and X r enable one to use either plots in Figs 1.10 through 1.12 or

immediate computation in order to establish

- the load at failure of the compression-loaded multispan panel and

- the real buckling mode (that is, II, 111,or IV).

There exists an opposite problem: one may want to ensure such a buckling surface shape

between ribs that links do not fail; in this situation the condition X > Xcr makes it possible to

determine the required parameters of bolts and rivets, as (2.7) includes fracture characteristics

O p and S p, bolt/rivet section area F, spacing c, and number of roves n.

2.2. Finite element analysis of link fracture energy for bolted joints

A joint is a system of discrete, irregular components which are in contact. A joint may

fail not only because of the bolt/rivet rod breakage considered in 2.1 but also due to head

separation and/or breakage of a plate/support near the bolt/rivet head. In this connection the

discrete link fracture energy should be established by utilizing Finite Element Methods (FEM).

The joint with the neighbouring portions of a rib and/or spar should be "dissociated" into finite

elements, and for each element we must determine the stress tensor cr ij and the strain tensor s ij ;

the joint is assumed to be loaded with tension due to detachment of the parts. In this case the

energy accumulated by the components during the system deformation to failure is described by

the following expression:



A= j" o0d 0dV, (2.9)
v0

where V is the total volume of all elements in the unit, and _p is the breaking strain (let us

assume that the structural system is destroyed if the breaking strain is attained in at least one point).

It is obvious that the problem of establishing stresses and strains within the unit is

notably nonlinear- due to two circumstances:

- the components are in a variable contact and

- materials are physically nonlinear, which is of importance in structures with heavy

loads.

Each of these problems is traditionally solved by employing stepwise approximation

methods, which require much more computation costs than dealing with linear problems. Here,

we propose an efficient means for determining contact stresses and allowing for material

nonlinearity within FEM.

Method for solving contact problems

The principal set of equations is obtained by minimizing the Lagrange energy functional

and looks like this:

[K] {5} ={R}, (2.10)

where {5} is the nodal displacement vector, {R} is the external load vector, and [K] is the

structure stiffness matrix. To solve the set (2.10) we must specify boundary displacement

conditions for a certain part of the domain:

6-U o (2.11)

Let us consider two bodies of arbitrary shapes (i and] are indices to identify the relevant

bodies) in the Cartesian coordinate system OXY (Fig. 2.2).

Let Sic and Sjc be the assumed surfaces of contact, i.e., those portions of the bodies i

and j that can interact during loading. The surface Sic at every point Cik (k is a point number,

k=l, 2, ...) has an outward normal nik. Points Cik and Cjk having identical second indices

will hereafter be referred to as conjugate points if these could establish mutual contact. As noted

in [6], whether points are conjugate can only be determined with a fair degree of accuracy and

prior to solving the problem if the pattern of contact deformation is obvious and the bodies have
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rather simple geometries. If it is not the case, the contact area will be outlined by employing an

algorithm based on criteria of mutual nonpenetration of bodies.

Introduce radius vectors roi and roj"to identify initial positions of the points C ik and

Cjk, respectively (Fig. 2.2). After loading, positions of these points in the three-dimensional

space will be defined by the relations,

{rik } = {roi} + {Sik }, {rjk} = {roj} + {Sjk }, (2.12)

where {6ik } and {8 jk } are displacement vectors of the conjugate points of the i-th and j-th

bodies. The criterion of contact of the pointS Cik and Cjk Can be written as,

Atter considering equation (2.12), from equation (2.13) we obtain the compatibility

condition:

For conjugate noncontacting points the following condition should hold:

which, in its essence, expresses the condition of mutual nonpenetration of bodies. In the

projection on the normal n ik, the condition (2.14) becomes

8(n) 5(n) _(n) (2.16)ik + =Vjk ,

_;(n) _;(n)
where Vik and Vjk are displacements of conjugate points of the bodies i and j along the

outward normal; 8(on) is the initial (positive or negative) interference between the conjugate

points as measured along the normal n ik. The equations of equilibrium of isolated bodies i and j

(with no contact between these) in block matrix notation are •

Ki:, Ki:2][15i2}={_ii} ' rKj" Kj,_-lfSj, Pj

where

5il and 5jl are displacements of nodes (on the bodies i and j, respectively), that do not

contact mutually,

8i2 and _5j2 are displacements of nodes which contact one the other,
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Pi and Pj are prescribed external loads, and

Qi and Qj are contact forces to be found.

Now we resort to the Gaussian elimination procedure for block matrices to describe

unknown displacements of contact nodes:

where

(2.19)

Assume that the conjugate (k-th) nodes of the i-th and j-th bodies are interrelated in

a local coordinate system:

where

(2.20)

b'] [[c] -[c]]
=L-[c] [c]J' (2.21)

Qik and Qjk are the contact forces applied to the conjugate points,

0]in two-dimensional problems,
[C] = C_

[C] = C { 0 in three-dimensional problems, and (2.22)

0 C n

C n , C{, and C n are link stiffnesses along the lodal coordinate system axes n, {, and

11, respectively.

Let us introduce [_.], the direction cosine matrix relating the local coordinate system

(n, {, 1"1) to the global one (x, y, z). Expressions (2.18) and (2.20) should be summed up to

produce the equilibrium equations for the bodies in contact:

"[Kr]+CV °] 7[]/0 ] ]Ssi_ SRT}
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Values in the r[y o ] matrix characterize link stiffnesses in the general coordinate system:

[)'_jj] = [_,kij] T [C] [Xkij]. (2.24)

If the i-th body has interference, {5 o }, the fight-hand side of the first equation in (2.19)

should be complemented with the load summand

{R o } = [K i ] {8 o }. (2.25)

In ease the bodies are not in contact,we obtain [?°]---0,and the formula (2.23)is re-

written as,

°jI -
The latter system for unknowns { 8 i } and { 8j } may be solved immediately. But when there

occurs a contact, the system (2.23) is to be solved using the following algorithm

1. Specify the contact nodes and their stiffness maMces [C ik ].

2. Compute the direction cosine matrix [)_] for the contact nodes.

3. Calculate the substructure stiffness matrices and right-hand side vectors - in

accordance with (2.18).

4. Use (2.18) to derive equilibrium equations (2.19) for contact points, by utilizing the

Gaussian elimination procedure.

5. Use (2.17) to determine along-the-normal interference 6 R between nodes:

tSRk =6jnk --_i_ -8ok

6. Find the forces R applied to the body i due to the interference 8Rk:

{R i } = [K i ]{6Rk } ; add the forces to the external load vecior of the body.

7. Utilize expressions (2.24) in order to transform link stiffness matrices into the global

coordinate system; add these to the structural stiffness matrix (2.23).

8. From the relation (2.23) determine the contact node displacement vectors {8 i } and

9. Use (2.22) to compute contact force components along normals:

Qk = Ck _. (Sik -Sjk). (2.27)
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10.Checkup thenonpenetrationcondition(2.16) being met. If yes, go to item 11 below;

otherwise, repeat the analysis starting from item 5.

11. Terminate the iterations and calculate stresses by employing usual FEM relations.

Allowance for materials plasticity

If at least one component in the joint behaves nonlinearly, the contact problem is much

more difficult to solve. To describe physical nonlinearity, we use the strain theory of [7].

The problem is solved under the assumption that the structural displacement are small in

comparison with overall dimensions. To outline the contact area, the above algorithm is

involved. The coefficients K _ of the equilibrium system (2.23) for the interacting elements:

become dependent on nodal displacements; so these should be determined by resorting to a

successive approximation procedure in couple with the stepwise (incremental) loading method.

The algorithm for treating the elastic-plastic contact problem has been detailed in [8]. To

improve iterations for outlining the plastic deformation zones, we utilize the secant modulus E s

correction approach similar to the Reference [9] overrelaxation method for linear algebraic

systems. The correction is implemented as follows:

E_i =Esi + co(Esi+l - Esi),

where i is the plasticity iteration number and co is the relaxation factor which is varied within

theiterative cycle:

co = 1 + At, / i ct . (2.29)

To def'me an optimum co value, additional numerical experiments have been mounted

for various problems. The parameter Aco involved with (2.29) was changed from 0 to 0.8,

whereas _ was specified to be from 0.5 to 4.0. Iterations were terminated when a relative error

had been less than 0.005.

It turned out that the minimum number of iterations is required in most problems when

At, =0.6 and t_=2.0. These values were utilized to solve the problems reported here.
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Example problems

To improve (and approve) the present method for solving contact deformation problems,

we analyzed stresses and strains in the bolted joint model that was studied in experiments with

optical polarization devices, as described in [10]. A schematic of the bolt and the load

application may be seen in Fig. 2.3.

The flat models of bolts were manufactured out of 4.2-ram thick plates of the optically

active material, OASO. The bolt model 1 was placed on a support model 2 (made of acrylic

plastic) which was on the bar 3 of the polariscope load application frame. All test models have

an identical width of the cylinddcai part: d=24 mm. The head/rod fillet radius R is 1.2 man.

The matching surface of the support 2 at the fillet has a chamfered edge measuring 2 by 2 ram.

The lei_-hand side of Fig. 2.4 depicts the finite-element model of bolt 1, support 2, and

bar 3. The right-hand side of this Figure demonstrates deformed bolt rod and head aider the

force P had been applied.

Figure 2.5 represents equal shear stress lines for the tensile load P=40 kg. Shown to the

left are lines obtained theoretically, and to the right, the pattern got by experimenters. These

pictures are easy to compare to conclude that finite element analyses and experimental data

converge well in both the pattern and amplitudes of maximum shear stresses.

Figure 2.6 represents theoretical variation of the stress concentration factor

K = cr1 Crnom at points A and B, depending on the relative bolt head height h'd; here,

Crnom =P/(td) and cr1 is the principal tensile stress at a point. In the Figure we provide

experimental data for h d = 0.4, 0.5, and 0.6. The most severe stress appears at the point B - on

the fillet between the bolt rod and head. Therefore, it is at this point where the primary failure

should be expected to occur; at a higher load the bolt head will be broken.

Consider an additional example: the problem on a cylindrical fitting (see Fig. 2.7a)

loaded with tensile force P=6000 kg through two bolts. The FE model of the structure is

depicted in Fig. 2.7b; it includes simplex axisymmetric finite elements. The total number of

unknown displacements is 1298. When solving the contact problem, we considered 44 unknown

displacements over the zone where the bolt interacts with the fitting (refer to Fig. 2.7a).

Computed results are compared with experimental data obtained by strain gaging during tests.

Figure 2.7c demonstrates axial stress profiles over the external and internal surfaces of

the cylinder. Points show the experimentally obtained values. The theory and experiment may be

regarded as converging well.
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Computing the link fracture energy

The link fracture energy can be determined by using (2.9). Integrals in (2.9) may be

estimated by the following procedure. The external load in subdivided into a number of

increments. As the load grows, each element in the unit is evaluated in what concerns stress and

strain tensor components; their algebraic products are summed up for each increment by

utilizing the trapezoidal technique. The volume integral is the sum over all element of the joint.

Let us address tension of an aluminum bolt whose dimensions ate represented in Fig. 2.8.

The bolt material has the following characteristics: E=7200 kg/sq.mm, ultimate stress

Op =38 kg/sq.mm, assumed yield limit or02 =24 kg/sq.mm, and elongation at rupture, ep = 0.1.

The tensile _tcr-e >>diagram of the material (see Fig. 2.1) is modeled by two straight

lines: the first line approximates elastic bolt behavior, whereas the second line runs from the

assumed yield limit point to the ultimate state point to approximate behavior of materials in the

case of notable plastic deformation.

Figure 2.8 depicts dependence of bolt fracture energy on stress or. We represent three

versions. In the first version the bolt head rests on the support Co) manufactured of the same

material. In the second version the head is in contact with an absolutely rigid support (c). In the

third case we consider the bolt rod only. The analytical model for the joint under consideration is

similar to the one demonstrated in Fig. 2.4 - except for the fact that, instead of fiat (two-

dimensional) f'mite elements, we used axisymmetric ones. Established as a failure criterion is the

strain intensity ep = 0.1. In Fig. 2.8 it is seen that the link fracture energy (symbolized with

crossed squares) is slightly greater for the bolt contacting with the deformable support (1), than

the value for the bolt resting on the rigid support (2). However, link fracture energy for the two

versions is much less than that for the separated bolt rod (3); this is so due to the considerable

stress/strain concentration at the bolt head-to-rod fillet.

Now address ihe second example: a skin 2 attached to a rib or spar 3 by a single-row

screw joint; one of the screws 1 is depicted in Fig. 2.9. The skin thickness is 6 mm, the screw

diameter is 8 mm, and the screw rod length is 20 mm.

When computing, we assumed that the rib/spar 3 is made of aluminum alloy, the screw

is made of either steel or aluminum alloy; the steel has E=21.000 kg/sq.mm, Gp = 60 kg/sq.mm,

602 =40 kg/sq.mm, and ep =0.1. The skin is made of aluminum alloy in the first version,

and of a composite material in the second version. The composite skin includes 24 layers each

0.25 mm thick. A substack of 4 layers has a quasi-isotropic layup (see [11]): [0, +45, -45, 90].



Characteristics of a layer may be seen in the mid-column of Table 2.1; the subscript 1

designates the fiber direction, and the subscript 2, the transverse direction; p stands for tensile

load, and c is for compression. Characteristics of the entire stack are reported in the rightmost

column of Table 2.1.

Table 2.1

E1

E2

G12

l.tl2

C_Ip

Layer data

kg/sq.mm

13000

700

590

0.36

153

Stack data

kg/sq.mm
5200

5200

2000

0.29

51

_2p 3.4 51

_lc 120 40

_2c 3.4 40

z12 s 6.0 30

The metallic materials (that is, steel and aluminum alloy) are assumed to become

broken when the strain reaches its limit; for the composite material (whose fibers and matrix

behave linearly to failure) we use the Tsai criterion from [ 12]:

Ol2 clo 2 a22 x22

+ +

where S = "_12s is the limiting shear stress, and S1 and S2 are the ultimate normal stresses along

and transverse to fibers, respectively:

IOlp at Crl>-0, tO2p at or2>0,S 1 = S 2 =
[Olc at o I <0, lO2c at 0 2 <0.

Mechanical properties of the quasi-isotropic plate are obtained by using the Tsai method in [13].

Figure 2.10 demonstrates the deformed model (composed of axisymmetric finite

elements). Figure 2.1.1 represents dependence of link fracture energy on the force P (which is

calculated by integrating the distributed load p over the skin surface area).
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From Fig. 2.11 it is clear that link fracture energy for the aluminum skin and the steel

screw (b) is approximately twice that for the structure with an aluminum screw (a). Failure

mode implemented is also depending on the screw material: the aluminum screw fails due to

head separation, whereas the steel screw survives the skin.

The composite skin (represented by lines c and d) gets broken at the screw head when the

separation force is at a rather low level. The fracture energy in this structure may be increased to

the line b by resorting to usual designing solutions (detailed, for example, in [14]): increasing

the screw head diameter, increasing the plate thickness around the joint area, etc.

2.3. Establishing parameters necessary to ensure a specified

panel-to-support link strength

Consider panel separation from support in case the support (rib) deformation energy is

comparable with the link fracture energy for a bolted or riveted joint. The work for separating

the panel from a rib may be written as,

"/f = Y pf + 3' bf, (2.30)

where 1, pf is the specific work of breaking the fasteners between the panel and the rib (the work

is referred to a unit length of the rib flange) and t' bf is the specific potential energy of rib

deformation at the panel separation instant.

We can model the rib as a beam simply supported by spars at edges {y=0} and {y=b}.

At the moment which immediately precedes the panel separation from the rib, the latter is

loaded with a uniformly distributed transverse force qp. The rib deformation potential energy

Ubf is computed by using (2.1) where

M=-_-(y2-yb), Q=-_-(2y-b), , (2.31)

f is the coefficient depending on the rib cross-section shape; the coefficient may be assumed

to be equal to 1.0 for a web-like rib.

By substituting (2.31) into (2.1) and integrating, we obtain the following expression that

relates the specific potential energy y bf = Ubf/b to the load qp"

Y bf = cbfq 2 (2.32)P

b4 [ 10 (EJ)f ].Cbf - 240(EJ)f 1+ b_ (G-_w)f

where

(2.33)
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The coefficient Cbf quantifies the rib compliance under in-plane bending and shear.

The specific

follows:

fracture work (referred to a unit

Ypf =Cpfq 2.

length of the joint) can be written as

(2.34)

The coefficient Cpf quantifies the compliance of fasteners between the panel and the rib when

loaded to failure. A particular expression for Cpf depends on both the panel/rib joint type and

the failure mode. For example, if a panel is attached to supports by bolts or rivets and if a bolt or

rivet is destroyed due to breakage of the rod, then, in accordance with (2.6) and (2.7), we obtain

rlfcfHf (2.35)

Cpf - nfFpfEsp f ,

Here, Espf = ¢_pf/epf, ¢:rpf and Spf are respective values of fasteners at failure; Fpf is the

bolt or rivet cross-sectional area; and cf and nf are the fastener spacing and the number of

fastener rows, respectively.

However, fracture may be because of bolt head breakage and/or skin tear at the bolt head;

in these situations the Cpf coefficient can be computed on the basis of data from finite-element

analyses, similar to those in Figs 2.8 and 2.11.

With (1.29) derived, we have

7f =_aAll

Upon substitution of (2.30), (2.32), and (2.34), the relation (2.36) between the failure load qp

and the link fracture energy X appears:

qp = _f_c,

in which

(2.36)

_ _ 2Cpf _ 2Cbf

= , Cbf ='aA 1 (2.37)c Cpf+Cbf, Cpf- aAll 1

If one knows parameters of the rib and fasteners (_'at is, c is known) the formula (2.36)

w

can be utilized to calculate the relative per-unit-length load q p applied by the panel to the rib

through the fasteners.

In accordance with (1.28) and (1.44), the panel coming from state I into state S (with S

being either 17 or HI) is loaded with the compressive stress resultant

-- --s .fBSxN=Ncr +

from here and (2.36),the expressionis,

= _cSr + _p _:_-_S (2.38)
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Figure 2.12 represents <<N - q p, diagrams for three versions of the stiffened panel in which the

skin has the following characteristics:

D_I A _2 -D_l A
- - 2.78, - 3.64, - 4.63,

D_2 g _1 D] g _)1

the three panels have identical values of bending stiffness ratio D 11/D22 = 70 and coefficients

oco = 0.3 and c = 150; whereas, the panels differ in the ratio A 22/A I 1 "

A22
-3.44, 4.30, 5.72.

All

Diagrams in Fig. 2.12 suggest that if the longitudinal stiffness of the panel stringers is increased,

then a particular N value (that is a minimum relative load which separates the panel from fibs)

takes place at a lower load q p applied to the panel/fib fasteners.

Upon computing the available q p values the plots in Fig. 2.12 can be employed to

(q)determine whether the panel separates from ribs under the compressive load. If q p < P cr

then the joint will become broken at a load N <NcWr . However, if qp > then the panel
-- P Ca"

buckles between ribs at N = N_.

If one would specify fib and fastener parameters which ensure the panel to buckle

_between fibs, then the parameter c should be determined from the condition qp > . Let- P cr

/ oo,omeo  o  nol  amotor,
us consider now the dependence of x P 'or

Compute X= Xcr by using (1.47) and (1.48) and substitute the value into (2.36) to

(q) values on a o for the Panel concept versions involved;derive the dependence of critical Pcr

see Fig. 2.13. For each value of A 22/A 11

variable does only slightly vary with cz o .

A similar kind of picture for (qp)cr

within the interval { 0.3 _<czo < 0.45} the (qp)cr

as a function of Dll/D22 for the above values of

q) does notA22/All , cto=0.3, and c--150 may be seen in Fig. 2.14. It is clear that P cr

almost depend on Dll/D22 when this ratio is above 50. This fact allows us to derive a unified
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(q)relation between P cr and relative compliance c of the panel-to-fib joint for ¢Xo>0.3 and

D11/D22 :>50; the relation is demonstrated in Fig. 2.15.

There exists a really essential interval of variation of the relative panel-to-fib joint

(q) varies fi'omcompliance: 100 < c < 400 ; here, the critical value of the relative failure load Pcr

0.04 to 0.08 - this means that the panel-to-fib joint will fail under a load exceeding 4% - 8% of the

--IV
critical compressive load N cr ; note also that the stiffer the rib, the higher the failure load

/q/ anO_os_on_o__o,_,o=m_tbe
Pcr]

The function depicted in Fig. 2.15 makes it possible to specify parameters of usual ribs

and fasteners so as to ensure the panel to buckle between ribs without breaking the joint.
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CONCLUSION

The NCC-1-233 programme (in Appendix 5) dated September 15, 1998, has been the

basis for the investigation of how compression-loaded multibay panels manufactured of

composite materials buckle upon failure of joints with supporting elements.

The following principal results should be noticed here:

- a new method for studying the buckling of a multibay stiffened panel made of
m

composites is proposed; it allows for destruction of panel joints with transverse and

longitudinal supports in the course of buckling;

- the solution to the problem is derived; parametric research on failure load dependence

on available link fracture energy and other panel parameters has been conducted;

- notions of critical link fracture energy and link strength for a multibay panel are

introduced; the critical values outline the domain within which the panel buckles with

nodal lines being on supports;

- techniques to compute the link fracture energy for some types of joint are proposed;

- a relation of link fracture energy to the load diagram and failure load of the joint is

established; and

- a methodology for calculating the support/fastener parameters necessary to ensure a

strong joint between the panel and supports is presented; usual web-like ribs and

fasteners are shown to be necessarily designed so as to carry a load which is 4% to 8%

of the longitudinal compressive critical force for the panel.

The present study method makes it also possible 'to solve the following problems of
i

practical interest: how the compression-loaded composite panel buckles upon local separation of

stiffeners from the panel and how strong the joint between the skin and stiffeners should be for

the separation not to occur before the general buckling takes place.

By proceeding in a similar way, the problem of compression-loaded sandwich panel

buckling with separation of the composite skin from the core over a certain (local) portion can

be solved.

Efforts including solution of these and some related problems may be a continuation of

the composites study programme within cooperation between NASA and TsAGI.
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