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Abstract

In many vibration minimization control problems for high rise buildings subject to strong
earthquake loads, the emphasis has been on a combination of minimizing the dkplacement,
the velocity and the acceleration of the motion of the building. In most cases, the
accelerations that are involved are not necessarily large but the change in them (jerk) are
abrupt. These changes in magnitude or dkection are responsible for most building damage
and also create discomfort liie motion sickness for inhabitants of these structures because
of the element of surprise. We propose a method of minimizing also the jerk which is the
sudden change in acceleration or the derivative of the acceleration using classical linear
quadratic optimal controls. This was done through the introduction of a quadratic
performance index involving the cost due to the jerk; a special change of variable; and
using the jerk as a control variable. The values of the optimal control are obtained using
the Riccati equation.

1. Introduction

Classical optimal controls in buildings typically consider the control of displacements and
velocities ~oh and Ma, 1994, Soong and Yang, 1988]. There is minimum consideration
for the control of acceleration [Yang and Li, 1991] or the rate of change of acceleration,
otherwise known as @ ~irmey and Thomas, 1994],. This imposes limitation on the
effective control of motion sickness resulting from jerks. There is therefore a need for
more precision about the modeling of control forces in buildings since seismic excitation is
jerky. For a building structure subjected to earthquake excitations, a jerk minimization
method for vibration control is proposed.

2. Equations of motion

We consider a MDOF system of the form

Mii+Cx+Kx=Du+Ef (1)

where x is the n-dimensional displacement vector, M, C, and K are respectively the n x n
mass, darnping and stifiess matrices. u is the m-dimensional control vector forces and f is
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the r-dimensional external excitation vector forces, whereas, D and E are respectively the
n x m and n x r location matrices of the controls and external forces.

3. Control algorithm

We seek to minimize the performance index of the form

J = ;(XTQIX+ XTQZX+ XTQ,X +XTQ4X  + uTRu)dt (2)
o

which is the analogous of the usual linear quadratic cost, where Qi, i = 1,...,3, are
symmetric positive semi-definite matrices and Qd and R are symmetric positive definite
matrices.

Introducing the change of variable

[1[1
x %

Z=X=X2

x X3

and using the jerk as a control variable via

Hu~. 3 with x = w , system (1) can be transformed into
Lwj

.,

i= Az+Bti+Hf, z@) = Z.

where

[

o I O-

A  =  –M”lK  –M-lC O

0 0 0

is the 3n x 3n system matrix,

[10 0
B =  M-lD O,and H=

0 1

0-
M-l’E

0

(3)

(4)

(5)

(6)

are 3n x (n+m) and 37? x r location matrices respectively for the controls and external
forces. Here O and 1 denote respectively the zero matrices and the identity matrix of
appropriate dimensions. The corresponding periiormance index is given by
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T

J = j(zTQz  + iiTRti)dt
o

(7)

where

!1Q,oo

Q= O Q, [1RO
O is a symmetric positive semi-definite matrix and i = is a

o 0 Q, o Q~

symmetric positive definite matrix.

The usual necessary conditions for optimal control are given by

(2L0

%=
a . .
z ‘1=
with

1’ (T)= O

(8)

(9)

and Hamiltonian

L(z,ii,  t) = zTQz+tiT&i+  ~T(Az+Bti+Hf) (lo)

The above system yields

~ = –+-lB’l (11)

a = –ATJ  – 2Qz, AT (T)= O (12)

This problem can be solved by the Riccati equation approach. We assume that the control
is regulated by the generalized state vector, i.e., we seek a solution of the form

a(t) = P(t)z(t) . (13)

Here P(t) is a symmetric and differentiable matrix. When the external excitation vector is
neglected, P(t) satisfies the so called Riccati differential equation
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P(t) + P(t)A – :P(t)B~-lBTP(t)  + A’P(t) + 2Q = O, P(T) = O (14)

The solution is obtained through backward integration in time. Since in most structural
engineering applications the matrix P(t) remains constant throughout and drops to zero
near T, P can be assumed constant. It follows that P satisfies the algebraic Riccati
equation

pA –~PBK-’BTp+ATP  +2Q = o

ii(t) = - ;R-lB%(t)

(15)

(16)

If the solution of the Riccati equation obtained is written the form

where each Pij is an n x n matrix, then

u(t) = –~R-lDTM-’TPzz(t)  = –~R-lDTM-lT (pzlX1 (t) +pzzXz  (t) + pz~x~ (t))(lg)

and

hence from (3), the expressions (18) and (19) can be rewritten as

u(t) = –~R-’D~M-lT  (pzlX(t)  + Pzzx(t) +PBii(t)) (20)

and likewise

w(t) = x(t)= – :QA-l (P31x(t) + P3zx(t)  + P3~x(t)) . (21)

Once the matrix P is obtained and the case the generalized state vector is available for
measurement the control can be designed by appropriately choosing the weighting
matrices Q and R
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4. Applications

The analysis proposed will lead to the design of more efficient controls for jerky excitation
like earthquake loads and the design of better controllers to prevent motion sickness.

5. Conclusion

The concept of jerk minimization was introduced in this paper with a detail of how this
promising new concept can be applied to linear systems via quadratic performance index
involving the cost due to the jerk. This was done through a special change of variable and
using the jerk as a control variable. The values of the optimal control are obtained using
the so ca~ed of Riccati equation. This result is a fruit~l step toward designing efficie~
controllers for the minimization of vibration in structures.
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