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ABSTRACT

This paper discusses the implementation of a fuzzy logic system using an ASICS design approach.
The approach is based upon combining the inherent advantages of symmetric triangular membership
functions and fuzzy singleton sets to obtain a novel structure for fuzzy logic system application
development. The resulting structure utilizes a fuzzy static RAM to store the rule-base and the end-points
of the triangular membership functions. This provides advantages over other approaches in which all
sampled values of membership functions for all universes must be stored. The fuzzy coprocessor structure
implements the fhzzification and defuzzification processes through a two-stage parallel pipeline
architecture which is capable of executing complex fuzzy computations in less than 0.55ps with an
accuracy of more than 950A,  thus making it suitable for a wide range of applications. Using the approach
presented in this paper, a fuzzy logic rule-base can be directly downloaded via a host processor to an on-
chip rule-base memory with a size of 64 words. The fuzzy coprocessor’s design supports up to 49 rules for
seven fiuzy  membership functions associated with each of the chip’s two input variables. This feature
allows designers to create fuzzy logic systems without the need for additional on-board memory. Final] y,
the paper reports on simulation studies that were conducted for several adaptive filter applications using the
least mean squared adaptive algorithm for adjusting the knowledge rule-base.

I. Introduction

Fuzzy logic systems (FLS) have been successfidly  applied to a wide variety of practical problems.
Notable applications have centered on areas such as contro[, expert systems, digital signal and image
processing, and robotics [1-3]. The desire to use fuzzy logic in real-time has led to the development
special-purpose fuzzy hardware systems [4]-[6]. Many of these systems require the use of high-cost VLS1
fiuzy  logic circuits and memory chips. Often the speed of these systems is slow due to the time it takes to
retrieve and save truth vaiues. Computational accuracy can be a drawback as well. It is established in [7]
that the design of an FLS can be made easier by simplifying the internal parameters of the system. Despite
these simplifications, the resulting design is still capable of supporting a wide class of applications.

The aim of this paper is to present the ASICS hardware development of a fhzzy coprocessor based
upon the concept of the reduced symmetric fuzzy singleton set reference [8] which helps alleviate some of
the drawbacks associated with man y current fimzy hardware systems. This fuzzy coprocessor has the
following features:

(1) two singleton inputs,
(2) one crisp output,
(3) seven symmetric triangular membership fimctions  associated with each input,
(4) tizzy static RAM for rule-base storage, and
(5) on-chip fuzzification and defuzzification processes.

The hardware implementation can be described using VHDL code where the schematic and the detailed
characteristics of the circuit are generated using an optimization compiler by ,Mentor Graphics.

The fuzzy coprocessor’s hardware implementation requires a 64-byte  Static RAM, an 8-bit sign
adder/subtracter, one 8-bit sign multiplier, and an 8-bit comparator as illustrated in Figures 3-4. The
design, which contains approximately 10,000 gates, has been implemented using FPGAs  Alters
technology and runs at a 10 MHz clock speed. Simulation results indicate that the design can run at a 25
Mhz clock speed using 1.2p CMOSN  technology. The paper also discusses the application of the proposed
architecture to problems of interference noise cancellation.

7



II. FL.SCoprocessor Design Procedures

Adiscussion  of theoperation  of the FLScoprocessor  wasinitially  presented in [8]. In the present
work, wewillexpand upon these discussions and present modifications which Ieadtoa more cost-effective
implementation. The FLS coprocessor chip provides two inputs (xl, X2) and one output. We denote the
maximum number of membership functions by the symbol K and for the present study, the maximum
value for K is 7. The membership functions are constructed such that they are symmetric triangular to the
center of the domain and the domain of themselves as shown in Figure 1. The end-point pair (aij-,  aij””)
completely specifies the jth membership function associated with the input xi. Thus the set of all end-point
pairs

{  (%j-, %j+) }

i= l,zandj= 1,2, .-K,

completely describes the K membership functions associated with each of the 2 inputs. The structure of the
membership functions restricts the absolute value of slope to be equal for all membership functions in the
same universe of discourse, Ui. Also, we note from the figure that each input will be matched to exactly
two membership functions in Ui. Restrictions that we place on our design enable us to store all end-points
associated with our membership functions and up to 49 rules in our knowledge base in a 64-byte static
RAM.

In our design, the implication and inference operations are evaluated by using product operators.
This approach has been shown to yield very good results in a number of engineering applications [9]. A
centroid defuzzification scheme is used to determine the output of the FLS coprocessor chip.

The design procedure for the FLS coprocessor is outlined through the following four steps:
We begin by defining K fhzzy sets associated with each universe of discourse, Ui (i= 1,2) by specifying the
end-point pairs [a;, a;] as described above. The corresponding rules of our knowledge rule-base are
denoted as M~,~  (L= 1,2, . . . ,m=49). We use symmetric triangular membership functions of the form

{’ ‘xi – aij
MF; (xi)= 1- for Ixil < Cij

Cij ----------

0 Otherwise

.(1)

where Cij is a normalizing constant to controI the slope
i=l,2
j=l,2,..., K=7
L= 1,2, . . . ..m=49.

2) Next, we construct a set of IF-THEN fuzzy rules in the following form:

L, = IF xl is F~j andx2 is Fjj; Thenml  is Q’

. . . . . . . . . . . ----------(2)

L,n = IF x, is F: and X2 is F;; Then mm is Q“

where ~ is the consequent associated with rule Li. Reference [8] provides more detail for this step.
3) Construct the fiber F: U --+ R based on the M rules of step 2 as follows:

--------(3)

In this step, we form products for each of the pairs of strengths associated with each fuzzy set in each
universe of discourse. We note that due to the structure imposed through our tizzy membership functions,
that the majority of these products will be zero and the denominator of products will be unity. Also, we
note that the terms QL (L=l,  2, . . . . 49) are free parameters and the filter is nonlinear.
4) At this step, we use the following LMS algorithm to update the filter parameters Q 1’ as specified in step
2. At each time points= 1,2, . . . we perform the following adaptation:

QL(s) = Q’(s - 1) +uIO, (S) - F (x(s))1(17fi~(MF;  (x, )MF;(X2  ))) ----------(4)
j=l  hsl
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where a s 1 is our learning factor and O~(s) denotes the desired output. Minimization of the LMS cost
function

K = E {od(S)  - F(x(s)))2 }

ensures that the input sequence X[S]  optimally matches the desired output sequence Od(s) at each time point
s= 1,2, . . . . Finally, a graphical representation shown by Fig. 1 summarizes all the previous steps.

Therefore, the filter F(x(s))  given in Eq. 3 can match any input-output pair [x(s)  ;O~(s)]  to arbitrary
accuracy by properly choosing the parameters Q L. However, this is the only degree of freedom we have
available during the adaptation procedure because the end-points of the symmetric triangular membership
functions, (a~j, a; ), are chosen according to a maximum input limit before the adaptation takes place.

III. ASICS Design of the FLS Coprocessor

The FLS coprocessor layout given in Fig. 3 is based on the mathematical description presented in
the previous section and the concepts of Fig. 1. We obtain 8-bit real-time operation by processing all
computations in parallel with two levels of pipelines separated by a high-speed 8-bit storage buffer. The 8-
bit high-speed signed parallel comparator, given in Fig. 4, compares the released input value with all the
end-points of the symmetric triangular membership functions. There are seven of these end-points. The
comparator releases the upper and lower addresses of the matched membership values as well as the end-
point which is greater than or equal to the input value.

The addresses released from the comparator are stored in a 3-bit D-type flip-flop register, where
they are concatenated via a 3-bit multiplexer to generate a 6-bit address bus. This maps to a designated
rule-base location stored in the 64-byte static RAM. The matched membership finction  degree ~i of the
given input is calculated by subtracting the input from the release end-point and multiplying the result by
the appropriate positive slope. Since we have two matched membership functions for any given input
value and the membership functions are normalized to one, the other degree is simply evaluated by
assessing the inverse of the first evaluated degree. Four 8-bit D-type flip-flops are used as a temporary
storage during this computation.

The computation of the second stage of the pipe-line is achieved by cross multiplying the matched
degree values from the given two inputs with the appropriately retrieved rule-base values. These results
are then aggregated to produce the de fuzzified crisp output according to Eq. 3. In order to speed up the
computations during the two stages of the pipelines, the 8-bit signed adderlsubtracter has been designed
with two stages 4-bit carry look-ahead structure while the 8-bit signed integer multiplier is designed with
Wallace trees structure, which are described in [ 10].

The components are designed using the VHDL language and optimized by Autologic 11 (Mentor
Graphics EDA design tool). Table 1 illustrates the area and the delay of the coprocessor components
optimized under smallest area for the Alters technology implementation and smallest area and fastest time
for implementation using the 1.2P CMOSN technology. The 1.2P technology provides less delay in terms
of its critical path analysis and thus allows the circuit to run at 25 Mhz while still providing an output every
0.55 ps. Using the 1.2u CMOSN technology, we can fabricate the circuit on a single chip with a dimension
of3*3 mm

IV. Application to Adaptive Noise Cancellation

Although the hardware of the FLS coprocessor chip design is simple, the structure itself can
incorporates a wide class of applications based upon LMS adaptive filter approaches. We will describe
how the structure can support applications related to interference canceling using the LMS approach.

As the name implies, adaptive noise cancellation is based upon subtracting noise from a received
signal. Here the operation is controlled in an adaptive manner for the purpose of improving the signal-to-
noise ratio. Fig. 2 shows the general model for an adaptive noise canceler which employs dual inputs and a
closed loop adaptive feedback system. The two inputs to the system are derived from a pair of sensors: a
primary sensor and a reference (auxiliary) sensor. The primary input supplies an information-bearing
signal and a sinusoidal interference which are uncorrelated with one another. The reference input supplies
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a correlated version of the sinusoidal interference. The input data is assumed to be real valued such that
the primary input can be modeled as:
B(n) = d(n)+ A ~cos(wO  n + On)

where d(n) is an information-bearing signal which is characterized by an Autoregresive process d[n] =
v(n)-0.8458d[n-  1 ] such that v(n) is a white-noise process with zero mean and variance 62= O. Here, AO is
the amplitude of the sinusoidal interference, WO is the normalized angular frequency, and @O is the phase.
The reference input is given as U(n)=Acos(wOn+O)  where the amplitude A and the phase CD are different
from those in the primary input but the angular frequency WO is the same. Consequently, applying the
adaptive process presented in Eq. 4 (section 2), the results are depicted in Graph 1 for different values for
the learning factor.

K Conclusions

By incorporating symmetric triangular membership functions, the coprocessor FLS chip offers a
number of significant advantages. It does not require the use of division components. This is attributable
to the symmetrical unity in the denominator of Eq. 3 (see [4] for proof). This in turn accelerates
computations and minimizes the area needed to implement the chip. In addition, the symmetric triangular
membership structure provides a simple and effective means of storing membership fimctions  via their
end-points. This enables us to compute strengths through trivial algebraic computations and allows for
easy and fast memory access.

The coprocessor can store a knowledge rule-base of 49 rules and can produce a final output for
the case of two input variables every 0.55 ps through two pipeline stages using a 20 Mhz internal clock.
All computations are performed through an 8-bit data bus segmented to a 4-bit fixed point arithmetic
decimal point. Though the chip is limited to a single class of membership functions and performs
implication, inference and defkzzification  in only one manner, it is versatile enough to support a wide
range of applications. Its knowledge rule-base can be adaptively altered to achieve optimized results by
employing a learning algorithm.
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Table 1. Gate counts and maximum delav for fuzzv comocessor  in 1.2u CMOSN and Altera technoloszv

Coprocessor CMOS ; ALTERA ~ CMOS ~ Altera
Components Transistor ~ Gate ~ M a x i m u m  ~ Maximum

Counts I C o u n t s  I Delay (ns) 1

-.’

Delay (ns)

8-bit S&ned  Adder/Subtracter I 1
.—— — ——————————————
8-bit S~ned  Special Comparator

--~Q---~~--~J~~  3~--J~~3~---t----------
.—— — ———————— ————
8-bit Signed Mult@lier -+’g---#--#-+--JHy:;--H--:;----

-——— ————— ————————
6X64-bvte  Simed  RAM -j;j~--!--:jf~--~ ---~o-l----~---fi>  ---”
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