
1

URC 97003

Issues in Defining Software Architectures in a GIS Environment,

.Jesus Acostaancl Lori Alvaraclo
Department of Computer Science

‘1’he lJniversityof Texas at El Paso
El]’MO, TX 79968

{jac(,sta,alvaraclo} @cs.l,tep.edL,

1 Introduction

The primary mission of the Pan-Arnericarl Center for Earth ancl Environmental Studies (PACES) is to
advance the research areas that are relevant to NASA’s Mission to Planet Earth program [1], One of the
act ivit,ies at PACES is the est abolishment of a repository for geographical, geological and environmental
information that covers various regions of Mexico aud the southwest regiorl of the IJ.S. and that is acquired
from NASA and other sources through remote sensing, ground studies or paper-based maps. The center will
be providing access of this inforrnat,ion to other government entities in the U.S. and Mexico, and research
groups from universities, national laboratories and industry.

Geographical Information Syst,erns (GIS) provide t,hc means to manage, rna]~ipulatej analyze and display
geographically referetlced information that will be mauaged by PACES. Exceilerrt off-the-shelf software exists
for a colmpletc GIS as well as software for storing and managing spatial databases, processing images, rlet-
worki]lg and viewing mirps wit, h Iayercd in forlnat,ion. This allows the user flexibility in combining systems to
cr[>ate a G IS or to mix these software packages with custom-built application programs. Software architec-
tural lar}gpiages provide ttrc ability to specify the computational conlponcr}ts arid interactions among these
components, an important topic in the domain of GIS because of the need to integrate numerous software
packages.

‘This paper discusses the characteristics that architectural]anguages adclress with respect to the issrrcs
relating to the data that rrrust be comrnunic.ated bet,wecn software systcrrls a[ld components whm systems
interact. The paper presents a background on (21S in section 2. Section 3 gives an overview of software
architecture and architectural languages. Section 4 suggests issues that nlay be of concern w[len defining
the software architecture of a GIS. Tile last section discusses the fut,ure research effort and finishes with a
summary,

2 Background

A Geographical Information System (GIS) is a computer-based system capable of assembling, storing, ma-
nipulating and displaying geographically referenced information, i.e., data identified according to its location.
GIS technology can be used for scientific investigations, resource management, and development planning all
within the scope of PACES. The types of analysis that this systcm must proviclc are me~,urement,, mapping,
monitoring, ancl modeling usually called the four M’s of a GIS [7]. Measurerneni is concerned with storing
data with various envirornnent,al parameters. A GIS must be able to retrieve old data and collect new data
both eflcientiy and accurately.

The information may be combined with data from different sources to provide data about a region. A
concern, then, is the ability to form comparisons on separate types of data. The feature of GIS that deals
wit h integrating different types of data is referred to as mapping. For example, a system may aHow one to
relate information about the amount of rainfall to an aerial plrotograph of a region, providing information
about which areas of the region tend to dry Up at certain times of the year. Mapping data from numerous
data sets permits more intense studies of regions to be conducted.

A GM should also allow a user to rnoniior changes in data over periods of time. For exarnplc, if a GIS
can store data rnea.surements taken at different points in time, a researcher can monitor changes that may
occur in these areas.

13

Modeling allows a user to create models based on relations, For example, given an aerial photograph of
a region and elevation readings taken from remote sensing, a model of a region could be produced allowing
a more detailed study of the latldscape.

Systel m that provide the features discussed here can he createci using off-the-shelf software. Software
packages: such as ESR1’S Arclnfol, exist that provide all of the features in one package. ArcInfo is a
series of six integrated software mcrclules that provides basic GIS tools and utilities for cartographic design,
cluery data entry and editing, data translatiorl, polygon overlay and buffering (image processing), network
analysis, and modeling. A GIS can also be constructed by combining the different, soft,warc packages that
provide features llecrmary in SLICII a system. A database managenlent, system SHCII as 0racle7 can be used to
store, manage and query spatial or m~llt,idil~lellsional clata. Image processing software, such as I>Cl’s ACE2,
provides a complete environment for producing digital nlaps, integrating both vector and raster infc)rrnation.
In addition, it inclucles a colnplete cartograp]]ic editing environrncnl. Networking software such as Novell
could also be used to create a (21S. An issue that is addressed in a later section is the need to specify the
interface of t]lese packages in orcler to provide the necessary information for successfully integrating software
in this environment.

3 Software Architecture

Software architecture, an area in software engineering that has emerged seriously in the last decade, deals
with the ability to formally describe the behavior of software systems. The software architecture of a
system is defined in t,erms of cornputationat components and the interactions among those components.
When constructing a system, software architecture defines the different frrllctiona]ities of the components
that make up the system. This can be used to analyze the system and to determine whether the system
will functio]l properly. When integrating software systems, the software architecture is imperative when
det,erl~lil~illg if the syst.eln acco~))plishr+s wl]at is intended,

The lan.guagcs that, are used to specify the architecture of software systems are called Architectural
Description I,anguagcs or AI)L’s [4]. In order for an AD], to be effective, tl}ree common characteristics are
traditionally addressecl. The first of t,llrwe is the coll~ponents or rnodulcs of a system. Tllesc am the parts of
a system that perform actions or functions. Components are suc}l things as clients and servers, databases,
filters, and layers in a hierarchical system [5]. TIIc secoIId characteristic is the corlncctions or interactions
between the specified cornponcnts. lnteractiolls among components at this level of design can be things
SIIC1] as procedure calls and shared variable access as WC]] as any data that is passed between components
of the system. The final characteristic that is adctrcssed in an AI)L are constraints. Constraints are usuaily
expressed on the interface of a component and arc used to clefine restrictions.

J3xpcxirnent,al languages for clelining architectures include Rapidc, MetaI-I and LILLEANA [f+]. or:c
of the architectural specific. at, ion language t]lat we are examining is Rapidc. A component in K,apide is
specified througti its interface, behavior, and constraints [3]. The interface identifies the types of events that
a component can receive and generate by declaring in actions and out actions. The behavior sectiorr contains
type declarations, objects, and a set of transition rules that operate on those objects and types. Objects
and types model the state of the conlponent, anrt transition rules model how ob,jects anct types react to
actions received or generated by the component. The constraint section of a c,ornponent constrains behavior
by defining patterns of execution.

Consider an alarm system, as shown in Figure 1. The components of the system consist of an A Iarm
Control cornponel}t, two light components and a speaker component. The light components, marked as
Ready Lighi and Armed Light, simply display light based on input signals. The two possible input signals
to these components are OH and on. The speaker component is similar in function to the light c.ornponents.
The only difference is that the speaker component sounds an alarm instead of displaying light. The Alarm
Controi component controls the entire alarm system. The Alarm Conirol provides two kinds of external
input actions: readings taken in through a sensor and codes taken in through a key pad.

An example of the AlarmControl component defined in Rapide is given below:

< global types >
type signal is ..,;
on : signal := . . .;

1 See http: //www.innovsys. mm/.
2see httP://wwW.pCi. ~rl.ca/.

C==l

Correct
Key
Code

Alarn~Chntrol

1 Ready Light

~ ‘rmeclLigh’
L

switch I AlarmSpeaker

Figure 1: An alarm control component.

ofl : signal := . . .;
il~terface A larm Corltrol is

in action Correct. Key_Code;
in action SensorSense;
out action Alarm (S:signal);
ollt ad ion Arnlerl(A:signal);
out act ion Reacly(R:signal);

b e h a v i o r
type state.type is (armed, ready, activated)
state: state-type := ready;
Correct.-Kcy_Code where (state = ready) -+

Arrned(on) II Ready (off);;
state := armed;

Correct. Xey-Code where (state = armed) + state := ready;
Armed(off) 1] Ready (on);;

Correct-Key-Code where (state = activated) + state := ready;
Alarn)(off); ;
SellsorSense
Alarlm{on); ;

comst raint
(

where (state = armed) + state := activated;

[Correct-Key-Code where (state = ready) -+
(Armed(on) [[Ready(off))] <

[SensorSense where (state = armed) --+
(Alarm(on))]

)
end Alarm Control;

15

The Rapide Language describes a component in terms of its interface, behavior within the component,,
and constraints 011 transitions that occur based on actions. [n the specification above, in actions arc actions
that can be receivccl from outside of the AlarnlControl colnponent. “rhese include Correct_ Kcy_Co&
and SensorSrmse. Actions generated with data passed out, of a component are specified as out actions.

JVithin the behavior block. actions that are gc]lerated as WCI1 as stat,e transitiorls based on actions are
specified. For example, if a Correct _Key_Codc action is received, and the state of the systel~l is armed, the
transition from armed to ready occurs. ‘Nle out actions A rmccl and Ready pass parameters of type signal
out of the component. The constraint imposes an order on the actions using the < sign. The constraint
above is stating that the alarm must be armed before it, call be activated.

4 Issues

There are a number of issues that are of concern when addressing systems in the GIS domain. These issues
involve storage of datasets, handling of multiple formats, precision issues, and the integrity of the data in a
GIS. GIS systems typically handle large amounts of data that are stored in one or more databases. When
discussing software architectures in this domain, specifying how data is stored, retrieved and analyzed are
central issues.

A GIS typically handles many different types of file formats, such as raster, vector, and image data. This
is also a characteristic that is not, present in traditional systems. For example, if a developer wishes to use
an existing off-the-shelf database to store much of the data, and an image processing software package that
provides mapping features, in colljutlction with a c.rrstorn-brrilt application, determining how the multiple
packages store and operate on data must be communicated to t}le relevant stakeholders. Some of the questions
tl)at shollld be asked include the following [2]:

1. HOW are the nulnbers stored?

‘2. How is the data organized?

3. What is the climensionality of tile data?

4. Js the data on a grid?

.5. What, is the best \vay to analyze the tiata?

lt sI1ou1J be liot,ed that ilumerous groups have hcen orgarlizcri to Midrwss stmldards 011 data, for i[isttincc,
compressing, holding and transr[]it,t,ing images. Exampie stand ar(is in tiiis area include CompuServe Chaphics
Interchange Format (GIF) and Encapsulated PostScript Format (El%). Standards also exist for spatiai data
exch:inge for transferring digitai cartograi)i~ic data anti vect,or/raster spatiai data, e.g. the Spatiai Data
Transfer Specification (SDTS), US Digitai Cartographic I)ata Standards Task Force (DCIIS’~k’). In addition,
t}lere are standards set for database management systems [7].

An issue in using off-the-shelf packages reiates to the difficulty in determining behavior of the software due
to the lack of documentation; manufactl[rers typicaliy do not provide documents that describe the structure
of their software. Information proviclcci in user’s manuais do not acldress internal behavior of a system. How
a package interfaces with other packages, however, can be determined through the documentation that is
provided, as well as through analysis. Our focus is on defining the interfaces of packages used in GIS, and
to determine if the available languages are effective architectural specification languages.

Another issue that must be considered in a GIS is the precision of data. Data used for geographical
studies can vary greatly in precision. 13ecause higher resolution of data requires considerab~y more storage
and processing time, multipie data sets lnay be al’aiiabie for the sa]ne physical area with varying resolutions.
A cIevcioper who plans to interface off-the-shelf software with a custom-built application lmust know how the
data will vary in precision. For exarnpic, if a database package uses 32 bit numbers, and an image processing
tool that will interface with the database uses 64 bit nrrmbcrs, there may be a conflict which will cause 10SS
of data when analysis occurs. I’roviding specifications of interfaces of the software packages that include this
inform at ion would alert a developer to these types of changes.

‘1’hc final issue deals with the support, of integrity checking. In a geographical information system, data
integrity is critical as data is transferred from one software component to another. Inva[icf data input can
significantly modify information usecl in a study. It is essential that architectures, and the languages usecl
in the GIS arena adclress all these issues.

16

5 Future Work

The traditional view of software architectures and architectural description languages are designed to address
general systems. in the domain of geographical information systems, issues exist which may or may not be
addressed by the traditional view of architectures or existing architectural specification languages. The focus
of the ongoing research is in further identifying design issues presrmt in the GIS domain and determining
what is necessary to describe a system architecturally. It also deals with being able to use a language to
describe an off-the-shelf package in terms oIlly of its interface.

It is not known whether t,his can be done effectively with existing languages. Part of the work involves
examining the etTectiveness of existing languages in specifying geographical information systems. Future
interests include developing a survey instrument that can be distributed among software engineers and
stakeholders in the (21S field. This instrument is needecl to refine the issues explained above, as well as to
identify additional issues that may need to be addressed in software architectures of geographical information
systems.

Acknowledgments. This work was partially supported by NASA contract N(XW-0089 ancl NSF grant
no. CDA-9522207.

References

[1]

[3]

[4]

University of Texas at El Paso, “Proposal for the I-’an American Center for Earth ancl Jhrvironrnenta]
Studies,” submitted to NASA Headquarters, March 1995.

k’ortrmr, B., -–-em ‘1’he I)ata Handbook A Guide to Understanding the Organization and Visualization
of Technical Data. Santa Clara, CA: TEI.OS, 1995.

I,uckham, D., et al. “Specification aud Aualysis of System Architecture using Rapide”, IEEE Transac-
tions on Software Engiueeri)lg, 21(4) :330-3V5, April 1995.

Luckham, “ Micro Rapide: An Architectilrc Description Language”, iJournal of Systems and Software,
21(3):253-265, .June 1993.

[5]

[6]

Shaw, M., Garlan, D., “Software Architecture”, Toronto: Prentice Hall, 1996.

Rapide Design Team, “ Rapide 1.0 Syntax Summary”, Program Analysis and Verification Group, Com-
put. Syst. Li>b., Stanford Univ., version 1. cd., August 1993.

[7] Worboys, M., “ GIS: A Corrrputing Perspective”, Bristol: Taylor and Francis, 1995.

[8] Vestal, S., “ A Cursory Overview and Comparison of Four Architecture Description I,anguages”, Hon-
eywell Technology Center: 18 Fch. 1993.

[9] Wiedcrholcl, G., Wegner, S., “Toward Megaprogramming”, Communications ojthc A CM, 35(11): 89-99,
Nov. 92.

