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Abstract
At fist glance. it may seem that reconstructing the past is, in general, easier than predicting the

future, because the past has already occurred and it hiw already left its traces, while the future is still
yet to come, and so no traces of the future are available.

However, in many real life situations, including problems from geophysics and celestial mechanics,
reconstructing  the past  is much more computationa.lly  difficult than predicting the future.

In lhis paper, we give an explanation of this difficulty. This explanation is given both on a formal
level (as a theorem) and on the informal level (as a more intuitive explanation).

1 A paradoxical fact: in some situations, it is easier to predict
the future than to reconstruct the past

At first glance, the past must be easier to reconstruct than the future. At first glance, it seems
like reconstructing the past must hc cornputationally  easier than predicting the future, because:

● the past is already there, with all its traces left for the researchers to pick, while

● the future is yet to come, and it has not left any traces left.

In reality, it is often easier to predict the future. However, in many situations, it is much conlputa-
tionally caaier  to predict the future than to reconstruct (hc pasL. For example:

● In geoPhY5tcs,  if We assume t}lat we know the laws describing how the system chaogcs  in time, then:

predicting the Julure  is reasonably easy: it means  that we apply these known laws to  predict the
values  of all physical quantities in all consequent moments of time. So, if we bavc  cnougl} data,
we ran predict what will happen in thousands ancl millions of years.
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— However, if we want to use these same observations to reconstruct what happened in the past, the
results of this reconstruction become much less certain and requi  rc much more computations.

● In celestzal  mechanics, if we know the current, positions, masses, and velocities of all ce]estia[  bodes,
then:

we can very accurately predict where they will be in the jutru-e; e.g., we can very accurately predict
the future trajectory of the spaceship;

however, it is much more difficult to reconstruct the past trajectory, e.g., to reconstruct where
a given meteorite has come from; even when such a reconstruction is possible (as with mete-
orites traced to the Mars), the corresponding computations are much more complicated than the
computations needed to predict the future.

How can we explain this “paradox”?

A side comment: from the common sense viewpoint, this “paradox” is not so paradoxical
after all. Above, we gave “scientific” reasons why past should be easier to reconstruct. However, from the
common sense viewpoint, predicting the past is rfiflicult.

For example, the fact that the totalitarian regimes of Orwell’s “1984” anti-utopia [12] could relatively
easily suppress the past by destroying a few documents is a good indication that in general, reconstructing
the past is a very difficult task.

Uncertain ies: an informal explanation of the paradox. If we knew the exact equations, then, in
principle, predicting the future and reconstructing the past would not be that different in complexity.

For example, if t he equations are differential equations, then, since physical equations are usually invariant
with respect to the change in time orientation (i. e., transformation t --+ —t), both predicting the future and
reconstructing the past mean, in mathematical terms, that we integrate the same system of differential
equations.

In the simplified situation, when the equations describing how the future state j = (!l, . . . . jm) of the
system is related to its past state p = (P1, . . . . p~) are bneufl  f = ~P. or

n

.fi = ~ %P) I (1)
j:l

predicting the future means actually computing .fi from Pj,  while  reconstructing the past means solving  the
system of iinear equations (1).

c For predicting the ~utur-e, we need 7i multiplications and n additions to compute each of n quantities
f: that describe the future state. TOtaily,  we need 0(n2 ) computational steps.

s There exist algorithms that soive  linear systems in o(na), where cr <2.5, and it is conjectured that it
may be possible to have a N 2 (see, e.g., [5]). Thus, the computational complexity of reconstructing
the past is aimost the same as the computational corrrpiexity  of predicting the future.

Since in case of exact knowiedge,  the tasks of predicting the future and reconstructing the past are of equai
(or almost equai) computational complexity, the oniy reason why these tasks are in reaiity cornputationally
different is because the actual knowiedge  is not precise, we have uncerlairdies.

What we are planning to do. In this paper, we wiii show tilat if we take uncertainties into consideration,
then reconstructing the past is indeed much more compiicat.ed  than predicting the future.

We will show it on the exampic of the simplest possibie  relationship between the past and the future:
iinear equation (l).

2 Motivations for the following definitions

How can we describe uncertainty in pj and f;? Enter intervals. Me=.urernents  are never l~tJ~o
precise. Thus, if as the result of measuring a certain quantity, we get a certain value i, it does not necessarily
mean that the actual vaiue  z of this quantity is exactiy equai  to i, If a car’s speedometer shows 4(I m.p. h.,
this does not mean that the speed is exactiy 40.0000 m.p.h., it simpiy  means that the speed is equai  to 40
within the accuracy of this particular measuring instrument.
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The manufacturer of the measuring instrument usually supplies it w[th the upper bound  A for the
measrrrernent  error Az = ~ – z: in order words, the manufacturer guarantees that [Az]  ~ A. (If no such
estimate is given, then for any given measurement result, we can kiave arbitrary actual value of x and
therefore, we can say nothing about the actual value. So, if we want to call something a rneasurernerrt,  some
bound must hc given.)

Sometimes, in addition to the upper bound for the error, we know the probahdtties  d different error
values. However, in many real-life cases, we do not know these probabilities, and the upper bound A is the
only information about the measurement error Ax that we trave.

Since we are considering the simplest case (of a linear system) anyway, in the present paper, we will
restrict ourselves to the simplest case when A is the only information.

In this case,  if we have measured a quantity z and the measurement result, is i, then the only information
that we have about the actual vaIue  is that this actual value cannot difrer from ~ by more than A, i.e., tha t
this actual value must be within the interval  [~ – A, i + A].

Comerti.  Computations that take this interval uncertainty into consideration are called interval computations
(see, e.g., [6]).

First step towards formalization. In the problem of predicting the future, we measure the past values
pj and we try to reconstruct the future values ~i. Since the past values arc obtained from measurements, we
only know the intervals Pj = ~j, ~j]  of possible values  of Pj.

Since we do not know the exact values of pj, we cannot hope to predict the exact values  of .fi; at best,
we can hope to get some intervak fi of possible values of f;.

Similarly, when we reconstruct the past, we start with measuring the future values ~;. Thus, we start
with the intervals fi, and we are interested in finding the intervals Pj of possible values of Pj.

We also need to describe uncertainties in aij. If we knew the coefficients aij precisely, then WC would
be able to complete the forrnalization. However, in many real-life situations, these values aij  must also  be

determined from measurement, and are, therefore, also uncertain.
How can we describe this uncertainty? A natural way to find the values of rrij k ss follows:

s We prepare, very carefully. a state with the known values of parameters p = (PI, . . ., p~ .)

● Then, after a certain period of time, we measure the parameters ~1, . . . . j“ of the resulting  state.

The resulting measurements have uncertainty in them, so, as a result, we have the intervals fj of possible
values  of jj. As a result,  from t,he equation ( 1), we can only get interval estimates for (be unknown vahres

a;j

Comment: this is where time symmetry is breaking. In the idealized case when measurements are
absolutely precise, the problem is symmetric w .r. t. time reversal: from ( 1 ) we can go to a similar equation
p = A–’ f for an inverse matrix A – 1.

However, under a more realistic consideration, when we take uncertainty into consideration, the symmetry
disappears. Indeed, we can carefully generate precise values in the present and trace how they evolve in the
future, but the very fact that we are generating these values right now means that before the generation,
these values did not exist, and therefore, their past “evolution” cannot be traced.

For example, we can very carefully place the spaceship at a given position, give it a prescribed velocity,
and by measuring its trajectory, test where it goes, say, in one minute. However, it is impossible to make an
experiment in which the initial position and velocity are fixed in such a way that the position in 1 minute is
equal to the fixed point.

N O W, we are ready for the formal definitions.

3 Definitions

Definition 1. Let By predicting the future, we mean the following  probiern:

GIVEN:  n  in tervals  pi = ~j,~j]j 1 ~ j ~ n, and Tt x TL intervak a,j z [~j,  ~ij],  I < i,~  < n.- .

FIND:  The intervak fi = [~, ~i], 1 ~ i < n, o f  p o s s i b l e  v a l u e s  o f f ;  = ~ aij~j  Wtrerr  aij  E aij ad

Pj GPj.
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Definition 2. Let By reco nstructzng  the past, we mean the following probkrn:

GIVEN:  n i n t e r v a l s  f; = [~l~i], 1< i ~ n, and n ~ n intervafs aij  = [~il,~ij],  ~ < i,~  S TI.

FIND:  The intervals Pj = @j, P, ], 1 s j < n, of possible values  of Pj, Where  fi = ~ aijpj,  aij  E aij and

fi E fi.

4 Results

Known results of interval comput  at ions show that predicting the past is indeed much  more
difficult. It is known that:

● the problem described in Definition 1 requires 0(n2) rmrnputational  steps, while

● the problem described in I)cfinition  2 is, in general, computationally intractable (N P-hard) (see, e.g.,
[13, 7,8,9, lo]).

These results clearly prove that reconstructing the past is indeed a much more difficult problem than pre-
dicting the future.

Can we get an int uitive understanding of these results? The proofs of the above resr.rlts are reasonably
formal and not very intuitive. Since our goal is to solve a phystca[  problem, we would like to have some more
intuitive explanations why reconstructing the past is so more dificult..

These explanations are provided in the papers [11, 3, 2, 1, 4] that describe the geometry of the set of
possible values of p = (Pi, ..., p~) in Definition 2. Namely, it turns out that:

● in the simplest case, this set is piece-wise linear  [1 1];

● for symmetric matrices a;j, it is piecewise  quadratic [3, 2, 1]; and

● in the general case, it can be of arbitrary algebraic complexity [4].

On the other hand, the equations that describe the set of possible values of ~ = (jl, . . . . j~) is definition 1
is always quadratic.

This difference in algebraic complexity gives an intuitive explanation of why reconstructing past is a more
diflicult  problem than predicting the future.
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