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Abstract
This paper considers the trajectory tracking problem for uncertain rigid-link. flexible-
Jjoint. manipulators, and presents a new intelligent controller asa solution to this problem.
The prop osed control strategy is simple and computationally efficient, requires lit tle infor-
mation concerning either the manipulator or actuator/ transmission models, and ensures
uniform boundedness of all signals and arbitrarily accurate task-space trajectory tracking.

1. Introduction

The problem of controlling the motion of robotic manipulators in the presence of
incomplete information concerning the system model has received considerable attention
during the past decade, and much progress has been made in this area. However most
of' the controllers proposed as solutions to this problem have been designed by neglecting
any flexibility associated with the actuator/transmission system and assuming that the
actuators are rigidly connected to the manipulator links, As demonstrated in [e.g., 1].
joint flexibilities constitute an important component of the complete manipulator dynamic
model and thus should be addressed in the controller development process. Recognizing
the potential difficulties associated with ignoring the effects of joint flexibility, several
researchers have recently considered the problem of controlling rigid-link. flexible-joint
(RLFJ) manipulators [e.g., 2-11].In much of this work. the controller development requires
full knowledge of the complex dynamic models for the manipulator and actuator systems
[c.g., 2-5]. Research in which controllers are designed with the capability to compensate
for uncertainty in the manipulator/actuator system includes adaptive schemes developed
using a singular perturbation approach [6,7], which can bec used if the joints are sufficiently
stiff, and more recent work on robust control strategies and adaptive schemes [8-11] which
is valid for arbitrary joint stiffnesses. It is noted that implementation of most of these
robust and adaptive controllers requires the calculation of very complex, manipulator-
specific quantities, which limits the generality and applicability of these strategies.

This paper introduces a new trajectory tracking controller for uncertain RLFJma-
nipulators. In contrast with existing schemes, the present strategy is developed using an
intelligent control approach which combines ideas from robust control and the recently
developed performance- based adaptive control methodology [12,13]. This approach effec-
tively exploits the underlying mechanical system structure of the manipulator dynamic
model to permit reliance on information regarding this model to be eliminated. and as a
consequence overcomes the difficulties associated with previous control methods. Thus the
proposed tracking controller possesses a simple and modular structure, is easy toimple-
ment. and requires virtually no information regarding either the mechanical or actuat or
models. It is shown that the controller ensures uniform boundedness of all signals anc 1
provides arbitrarily accurate tracking control.

2. Preliminaries

Let p € R™ define the position and orientation of the robot encl-effecter relative to
a fixed user-dcfkd reference frame and 8 € R™ denote the vector of robot link coordi-
nates. Then the for-ward kinematic and differential kinematic maps between the robot link
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coordinates ¢ and the end-effecter coordinates p can be written as
p=h(0), p=.J(H) (1)

where h : R” = R™ is smooth and .J € R™ ™ is the end-effector Jacobian matrix.

Observe that there are numerous advantages to formulating the manipulator control
problem directly in terms of the end-effector coordinates p. For example, these coordinates
are typically more task-relevant than the link coordinates 8, so that developing the con-
troller in terms of p can lead to improved performance, efficiency, and implementability. If
the manipulator is nonredundant (so that m = n) and is in a region of the workspace where
J has full rank, then p and f? are diffeomorphic and this formulation presents no difficulties.
A task-space formulation can also be rcalized if the manipulator is cinematically redun-
dant (so that m < n) by utilizing, for example, the configuration control approach [e.g..
14, 15]. In what follows, we shall consider nonredundant and redundant robots together
and introduce a set of n task-space coordinates x obtained by augmenting p with n — m
kinematic functions that define some auxiliary task to be performed by the manipulator
[14,15]. To retain generality, we shall require only that the kinematic relationship between
# and x is known and smooth and can be written in a form analogous to {1):

x=h,(0), x=.J,(6)0 (2)

where h, : R” = R"™ and J, ¢ R**™ . Observe that for x tobe a valid task-space
coordinate vector the elements of x must be independent in the region of int crest: thus it
will be assumed in our development that ./, is of full rank.

Consider an n link RLFJ manipulator with actuator coordinates ¢ € R" and actuator
torques u € W. The task-space dynamic model for this manipulator system is a 4nth
order differential equation relating the end-cffector coordinates x and the system control
input u:

F = Hk + V,x+ G, T=JIF (3a)
u=Jnp+KnT (30)

where F € R™ is the generalized force associated with x, H(x) € ™" is the manipulator
inertia matrix, V&(x, x)eR"™” quantifies Coriolis and centripetal acceleration effects,
G(x) € R™ is the vector of gravity forces, P € R" is the vector of forces and moments
exert ed by the end-effector on the environment, and J,,, , K,, € R™* ™ arc positive, constant.,
diagonal matrices which characterize the actuator dynamics. Note that in obtaining the
RLFJ manipulator model (3) we have scaled H, Ve, and G by the joint stiffness, introduced
the definition T = ¢ — #, and assumed that actuator rotor motion is a pure rotation
relative to an inertial frame. It is well known that the rigid-link manipulator dynamics
(3a) possesses considerable structure, For example, for any sct of generalized coordinates
X, the dynamic model terms H, G are bounded functions of x whose time derivatives H.G
are also bounded in x and depend linearly on X, the matrix H is symmetric and positive-
definite, the matrix V.. is bounded in x and depends linearly on x, and the matrices H
and V,. are related according to H = V.. + V.Z. Additionally, V&(x: X) y = V&(X? y)X Vy,
and if y and y are bounded then V&(x; y) is bounded and V.. (x, y) grows linearly with x.

In this paper we shall address the trajectory tracking problem. The control objective
for tracking is to ensure that the manipulator/actuator system (3) evolves from its initial
state to the desired final state along some specified task-space trajectory x; ()€ R"
(where x4 is bounded with bounded derivatives). In what follows, it is assumed that the

manipulator/actuator system state 9,9,(/5, and ¢ is measurable. Observe that the dynamic
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model (3) consists of two cascaded dynamical systems. One consequence of this structure
is that the rig-id-link manipulator input T cannot be commanded directly, as is assumed in
the design of controllers at the link torque input level, and instead must be realized as the
output of the actuator’ dynamics {3b) through proper specification of the actuator control
input u. The structure of the RLFJ manipulator dynamics (3) suggests partitioning the
control system design problem into two subproblems:regard T as the control input for
the subsystem (3a) and specify the desired evolution of this variable T4(¢) in such a way
that if T = T4 then accurate tracking would be achieved, and then specify the actual
control input u so that T closely tracks T;. This approach to controller design is adopted
in this paper, so that the proposed control system consists of two subsystems: an adaptive
strategy that provides the (fictitious) control input T; required to ensure that the system
(3a) pm-forms as desired, and a robust control scheme that determines the (actual) control
input u which guarant ees that the system (3b) evolves with T closely tracking T,.

3. Tracking Control Scheme

Let e = x4 — X denote the task-space trajectory tracking error and E = T;-T
represent the link torque tracking error. Consider the following tracking controller for
RLFJ manipulators:

Fy= A(t)%g + B(t)kq + £(t) + k1y*w + kavy’e
W = —2yw + y%é
T, = JIF, (4)
u = fo(t) + [b(t) sat(-j-)] + kos
where the notation [gh]=[g151, 92 h2, . . . . gn Pa]"€ R™ (for any two n-vectors g, h) and
sat(g) = [sat(g1),sat(gz), . . . . sat (gn)]” € R™ (with sat(-) the standard saturation function)

is introduced, s = E+4 AE is the weighted torque-torque rate tracking error, f; (t), b(¢)e R"™
are robust control terms, f(f) € R™ and A(t), B(t)€R™™ are adaptive gains! ancl¥1, k.
v, kq, €, A are positive scalar constants. The robust control terms f., b are smooth vector
functions which are defined in the proof of the Theorem below, and the adaptive gains
f, A, B are adjusted according to the following simple update laws:

f=—o1f +piq
A = —09A + Paak} (5)
B = —03B + f3q%;

where g = e + k2 e/kiy— w/~ is the weighted and filtered position-velocit y tracking error
and the ¢; and /3; arc positive scalar adaptation gains.

The stability properties of the proposed tracking strategy (4),(5) are summarized in
the following theorem.

Theorem: The control scheme (4),(5) ensures that (3) evolves with all signals (semiglob-
ally) uniformly hounded provided 7 is chosen sufficiently large and b is properly defined.

Moreover, the trajectory tracking error e,& is guaranteed to converge exponentially to a
compact set which can be made arbitrarily small.

Proof: Observe first that the actuator dynamics ( 3b) can be written

Jm$ = £,(6.0,6,4) —u (6)
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where f,,, (8.0, ¢, gﬁ) is a smooth function obt ained through routine manipulation. Applying
the control law (4) to the manipulator dynamics (3) yields the closed-loop error dynamics
Hé + V& + kyy?w + kyyle + D+ Paxg + Ppxg + Vigé - JJTE =0
, S
Jns + k.S + [bsat ( _6— )] + f() -f,=0 (7)

where ®;=f - G, ®4=A — H, 3= DB - V.4, and the notation V., = Vee(x,%4) i3
introduced.
Consider the Lyapunov function candidate

1 1 1 3
V = —'THé+—k272eTe+ “kywTw + A—QeTHe leHé
2 2 2 kv ~
+3q Jns+ kAETE + ! ®7 P +1t — 4 bT <I> i 8
9% mST Fa 55, 21 Tt g 2als + 5 Ppdy] (®)

and note that V is a positive-definit ¢ and prop er function of the closed-loop system state
if v is chosen sufficiently large. Computing the derivative of {8)along (7) and simplifying
permits the following upper bound on V to be established:

V<= Aa(QY) ]

: ; 2 7
—ko | E P kA | E | + | z1 [l E ~7 — ||

min j71’!’]!’!

kokee : kee
+——|elle]|? +— lw |l & |? +nze + -

}‘"1 r main

(9)

where A (+), Aar(+) denote the minimum and maximum eigenvalue of the matrix argument.
respectively, k.. satisfies || Vee|l g < kee || X || VX, keq is an upper bound on V.4, vy is an
upper bound on || X, ||, the 7; are positive scalar constants which do not increase as e is
decreased and the J; are increased, fy is any (nominal) estimate for f,,, (for example, f; = O
can be used), b is chosen so that b; > max[1,( fm: — fos )2] for 1 =1. 2.,.., n.v is chosen so
that v > max[l, k2/kal 2z = [ e [l e I w 7. ¥ = [[| ;|| 2allr |l &5 ).
Bmin = min{f; ), Bmaz = max{f;), Omin IS the minimum singular value of the matrix
J, (recall that J, is assumed to be nonsingular in the region of interest, so that o,,;, is
nonzero) , and

'A_]?}l —2]{‘; ,.), (kr‘(‘vfﬂ + kcd) 0
Q" = | — g (hetns +kea) (= §5)Am(H) —kea  —Ape(H) — b — Eogtar
0 —Ar(H) — Bt — Begtua k1~

(note that Q* is positive-definite if +y is chosen large enough). Next let 2,= [| 7 |l]|
Il E N7 and
)‘m /Q*) _3 / ng'm J U

Q = [_3/( lm,nn.) AU\ kal

an d notice that Q is positive- definite if %, is chosen large enough. If ¢ is chosen to be
inversely proportional to (s and Bpas/3mks fixed, then there exist positive scalar
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constants 74, 75 that does not increase as y and Sm.n increase, and positive scalar constants
A; independent of v and Gpmin, such that V and V in (8) and (9) can be bounded as

Aq

A i
Mz P42 PV S d |z P+ P
Mrnan mitn,
< Om(Q) BV 222 e
Y Bmin

Now choose two scalar constants Vi, V,, so that Vi, > V,, > V((}, and define ¢p; =
Am Q) "V 1/2 /7; then choose v large enough so that car > 0 (this is always possible).
Let & = max(A3/¢ms Mg/ Xs) and choose Bgso that 758 /8 < Vin (this is always  possibl e).
Then selecting Fmin > P ensures that if V,,, <V <V then V < 0. This condition
together with Vi >V, >V(0) implies that V(t) <V Vi, so that «(t) = M. (Q) -
nsVY2(t)/v >cm >0Vt and

As

o ,
i RO R -

V < —tu

where AG = Bpin — Gy and it is assumed that Omin is chosen so that AG > 0. The
ultimate boundedness results developed in [13,14] are now directly applicable and permit
the conclusion that || z;|],| ¥ | are uniformly bounded and that || z2|].|| ¥ || converge
exponent ially to the” closed balls B,,, B,,, respective] y, where *

r1 = ( 0N14 )1/2
Mo + AB)

L (57714)1/2
T2 = /\—2

Observe that the radius of the ball to which ||Z2||? is guaranteed to converge can be
decreased as desired simply by increasing AfS. L]

4. Conclusions

This paper presents a new solution to the motion control problem for uncertain RLEFJ
manipulators. The proposed control strategy is simple and computationally efficient, re-
quires little information concerning either the manipulator or actuator/transmission mod-
els, and ensures uniform b oundedness of all signals and arbitrarily accurate task-space
trajectory tracking. Future research will involve the implementation of the controllers for
robotic applications in hazardous and unstructured environments.
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