
URC97042

Integrity Constraint Monitoring in Software Development:.
Proposed Architectures

Francisco G. F’ernandez’
Department of ~omputer Science

The 7Jniversity of Texas at El Paso 79968
ffmmancl@cs.utcp. eclu

1 Introduction

In the dcweloplnrmt. of complex software systems, designers are required to obtain from many sources and
rrrzmage vast amounts of knowledge of the system being built a~id communicate this information to personnel
with a variety of backgrounds. Knowledge concerning the properties of the system, including the structure
of, relationships bet,ween and limitations of the data ol).jects in the system, becomes increasingly more vital
as t,he complexity of the system and the number of knowledge sources increases. Ensuring that violations
of these properties do not or-cur becomes steadily more challenging. One approach toward managing the
enforcement of syst,ern properties, called corrtczt rrtonztor-ing [2, 3], uses a centralized repository of integrity
constraints and a constraint satisfiabi]ity I)leclla]lisrn for cfyllanlic verification of property enforcement during
program execution.

The focus of this paper is to describe possible software architectures that define a n~echanism for dynam-
ically checking tile satisfiability of a set of constrairits on a program. The next section clescribes the co~ltext
monitoring approach in gellcrid. Sect, ior] 3 gives an overview of tllc work currently hcing done towarcl the
addition of an integrity constraint satisfiabiliiy mccllal)isl~l to a high-level program language, SequcnceL,
and demonstrates how this rnoclcl is bei]lg cxanlined to develop a genera] software architecture. Section 4
describes possible architectures for a general constraint satisfiability nlcchanisrn, as well M an alternative
approach that, uses embedded database queries in lieu of an external monitor. The paper concludes with a
brief summary otrtlining the, current state of the research and future work.

2 Background

This section provides an cwerview of the context monitoring approach to software development,. In addition,
a detailed exarninatioll of a dynamic constrain~ sat,isfrability mechanism is provided.

2.1 Context Monitoring: A Brief Overview

(lmtext monitoring [3] is an approach to software development that uses knowledge of the data objects of
a software system to ensure program correctness with respect to selectecl properties, The approach consists
of two parts [4]:

● t,he elicitation and specification of constrairlts on data or objects being modeled by the systernl and

● a constraint satisfiahi Iity nlec,hanisrn that dynamically verifies constraint enforcement during program
execution.

Constraints on the data objects of a system can be identified at any stage of the development cycle.
Domain experts and end-users identify coilstraints that define the behavior of the system, System developers
may further refine the behavior of the system by making assumptions about the properties of clata objects
and the environment in which the program will run during the design and ilnplernentation of the system.
For example, consider a software system for pharmaceutical sales. A government pharmaceutical boarcl may

* THIS WORK WAS SPONSORED BY NASA UNDER CONTRACT NAG-1OI 2 AND NCCVV’-OO89

243

state that, each clri(g sold at the pharlnacy is identified by a unique 111 code specified by the board. ln turn.
i he rfcvcloper-s of t hc system may make an assumption about these ID codes, such as assuming that all ID
codes are at tnost 15 characters in length. Such an assumption may not necessarily have been identified
l)y t,lle domain experts in field of pharmaceuticals, hut is nonetheless a restriction on the operation of the
system imposed by the developers.

Work is currently being done to define methodologies for eliciting system c.o[wtraints from domain ex-
perts and cud-users during the requirements analysis, functional specification ancl other stages of sof~ware
clevelopment (see, for exanlple, [5]),

2.2 Constraint Satisfiability Mechanism

Tllc constraints irre specified as statelllerlts in frrst-c)rder logic and maintained in a cerltral repository. During
prt>grar~l execution, t,his repository is consllltcd to deter-mine if the system is in fact rnforcing the constraints.

An important, concept of tllc constraint satisfiability Inechanism is the state of the progratn: a set of
program variable-value pairs that capture R snapshot of memory at a given poin~ of time during program
execution. Constraint checks are tms.ecl on ch angm in tile state of a program.

The idea bel[iud cc,nstraiut satisfialrility is to monitor programs for violations of constraints during
execution. The state of the program is rnonitorecl and, wllcn a change in state occurs, all constraints
relevant to this state change arc checked for violations, For example, if the vaiue of variable X changes
after an execution step, then only t,hcrsc constraints associated with variable X arc checked for violations. lf
no violations occur, program executiol] continues. If a constraint violation does occur, the integrity of the
program data has been compronlised and as a result, program correctness from that point on can no longer
be ass u red.

3 Constraint Satisfiability in SequenceL

‘TIlis section describes t,hc ill~IJlerr~elltatiorl of a constraint satisfiability mechanisrr~ irl a high level language
called Secluence L. A brief description of the language is provicled, and the motivation for using it for the
initial attempt is described. A description of the implerneutation is t]len given.

3.1 The SequcnceL Language

SVquctlccl, is a high-levr=] Iangllage for processing non-scalar data [I]. In SequenceL, problems are solved by
sp~cifyin,g the form and content of the data to proccssecl. Tile ,iterativc/recu rsive details of the prob]ern are
abstracted from the solution.

The basic data structure of the language is the sequence. Fronl tliis simple structure, any other data
structure can be constructed (i.e., sets, trees, records, etc..). In addition to tlic h,asic data structure, Lhcrc
arc also basic. operatior]s which can ho performed 011 sequences, such as addition, subtraction, multiplication,
division, and other more complicated operations. A more detailed clescriptioll of the language can be found
in [1].

The language uses the not,ion of a universe, a collection of variable-value pairings. There are no explicit
methods for input and output to a SequenceL program. Instead, program input is providecl implicitly as the
initial universe, and the final ur)ivcrse is the implicit output. A program begins with a collection of functions
and an initial universe. A ,SequenceL function is definecl by the domain arguments it must have in order to
execute, the range arguments that arc produced as a result of processing the c]omain arguments, and the
operations to be performed to process the domain and produce the range. ScquenceL operates on an event,-
trased rnodcl. As a result, function execution is not sequential, but based on the availability of parameter data
in the universe. This makes the language non-deterministic, and also open to parallelizability. A. function is
executed only if al] of t}ie domain arguments of the functions arc available in the universe. [f a function is
cdigible, it consumes the domain argulueuts from the universe, executes the body of the function, and places
the range arguments that result, from processing back in the universe.

3.2 Implementation of Constraint Satisfiability

Extencling the SequenceL execution model for constraint satisfiability involves two major tasks. First,
identifying where in the execution model constraint checks should be made. A state change occurs at a cIearly
identifiable point, i.e., at the end of execution of a function, The second more difficult task is to extend the

244

Stnrt
t 1 1 I

n. eligible

function

bout put

SequenceL Execution Model

Figure 1: ‘J’hr SequenceL Execution Model.

SequcnceL language to define what, it means to check integrity constraint sirtisfiability for a program ancl a set
of constrain. For simplification, ~l)e integrity constraint repository is represented by a program composed
of boolean functions defining the relations and limitations of data objects in the Sequence], program. These
constraint functions are defined as SeqllenccI, fllllctions, and thus the same execution engine is used to check

the satisfiability of a constraint, as is used to execute the Seque~}ceL progranl. Figure 1 demonstrates the
Sequence], execution model, aud figur~ 2 shc)ws t-he extended [nodel witli constraint satist%bility monitoring.

The rlevelopmcnt of i~ collst,raint satisfiability monitor in Sequel~ceL is more than just an exercise. in
fact, the reason for cleveloping the monitor for a specific programming language is to stucly the interaction
betweeu constraint monitoring and program execution. The ScqucnccL model demonstrates how monitoring
occurs iu a program, and more importantly, provides a basic architecture model which can be used as the
basis for a more general monitor.

4 Generalizing the Satisfiability Mechanism

The ultimate objective of the research is to create a general constraint satisfiability mechanism that can
be used to ensure enforcement of data object properties independent of the programming language used to
build a software system. This section exalnines possible software architectures for sucli a lnechanism and
alternatives to an external monitor.

4.1 I s s u e s

To understand how to provide a general constraint satisfiability monitoring mechanism, it is important to
first identify some of the issues.

Any general mechanism will require recta knoroiedge. about the environment it will be monitoring, such
as how variables take on values and knowledge that ties constraints to the program. As a simple example,
consider a language that allows the usc of array data structures. If the array is being processed within a
loop, it might be the case that array should not be considered “changed” until the end of the loop processing.
In other words, everr though the array is undergoing a change during each iteration of the loop, it is not
considered to be processed until the loop tm-rninates. This type of information would be captured in the
rneta-knowledge.

A second consideration is how the monitor is related to the program it is monitoring. One possibility is
that it forms a “wrapper” around the program, In this sense, the monitor is external to the program, and
monitors it from the outside. It is somehow made aware that a state change has occurred in the program
and that constraint checks must be made. Another possibility is that the monitor uses the meta knowledge

245

Constraint

Program

no violati0n3 Constraint

v
Squ. ”ce L Fun.t ie” (unction S.que”c. L
Program Euabler +

Function

constraint violation

SequenceL with Constraint Monitor

F’igure 2: The SequenceL Execution Model with Integrity Constraints.

of the program environment to embed the constraint checks within the program itself. In this sense, the
mmlitor is more of a pre-processor that transforlns the program in sLIch a way that it is able t,o monitor for
constrairlt violations itself.

A third i)nporlanl issue is I1OW constraints will be represented. ‘1’his issue is dependent upon the im-
plementation of the monitoring system. lf the monitor is an external system inctepmrdcnt of the program
it is Jtlonitoring, it is possib]c to use a tlrst-order logic representation of constraints. If constraints are to
be ernbeddcd withitl the program it will be necessary to transdatc them from t]lcir first-order representation
int,o equivalent reprcscntatlions in the language of the program

4.2 Architectures for External Monitoring of Constraint Satisfiability

Two architectures are outlined: tl)c event 7noJe/ and the tajgcd pro~ram ?r~odcl. In the event model [7],
changes in rr program state implicitly trigger constraint satisfrability checks. ‘] ’he program broadcasts a
chauge in state. The satisfiabiiit,y nlechanisrn, an external system monitoring the program, registers this
state change broadcast and invokes appropriate constraint, checks. The monitor must use rneta-knowiedge to
iclentify how the program will broadcast a change in state and how it will have access to the variables it must
check for violations. Figure 3 gives a pictoral view of the event model, One advantage to the event, model is
that the constraint monitoring can be easily parallelized. ‘The program simply broadcasts that a change in
state has occured and continues execution while the monitor checks the satisflability of the constraints.

A second model is the tagged program model. Here, the monitor uses the recta-knowledge about the
programming language to tag t hc source code for constraint checks. Prior to compilation, the program source
COCJC is passed to the satisfiability mechanism. The mechanism uses knowledge about the Ianguage ancl state
char~ges to tag the program at points where checks should be made. During program execution, a constraint
check is heralded when a tag is reached. Tags may be at t ached to variables in the program’s symbol table,
inclicat,ing constraints should be checked when the value of that variable changes. Alternatively, tags may
be placed after program statements, indicating that constraints shou]d be checked upon completion of that,
statement. Figure 4 shows an overview of the tagged program model.

4,3 Embedded Constraint Enforcement

An alternative to an external satisflability monitor is the use of embedded constraint satisfiability checks.
Some languages, such as C, provide constructs to embed assertions in programs to check program properties
[6]. The main disadvantage to using embedded checks such as these is precisely the fact that the constraint
checks arc embedded. With embedded checks, it is not possible to reason about or study constraints outside

246

TM e t s

Ruled

AConstraints

Event Model I

Figurc3: Architecture Diagramf orthe Event Jlodel.

Resume Control

IJrogra

Constraint
Repository

Tagged Program System

Figure 4: The Tagged Program Architecture Diagram.

247

of the program. [f a change in constraints is required, it is necessary to urrtanglc the mnbedcled checks from
within the program, which may be a difficult arlcl t,edious process.

Another possibilil,y k to Lw.e]anguage extension packages that provic]c in~erfaces to external querying
systems. An example of such a package is EQIJEI, (Embedded QU15L), which provides FORTRAN with an
interface Lo the IN GR12S relational database system. The clisadvantage here is that every language would
have to have an interface package specific to that language. Thus, the constraint satisfiability WOUIC1 not bc
a general mechanism, hut, a distinct one for each language.

5 Summary

Context rnonitorirrg and constraint satisfiability are powerful tools for rnanagi ng the cnforcernent of vital
system properties. J3y providing a system where constraints are maintained separately from a program : it
is possible to study, reason about, and modify them separately from the system. In addition, it may be
J~ossible to para]lelizc the constraint monitoring process to improve overall performance of the system.

Work is currentJy being be done toward designing a general satisfiability monitor. One issue being
addressed is an analysis of programming languages to develop rncta-rules about how variables under-go
changes and how constraints can be irssociaterl to variables within a program. Also, methods for integrating
a. general constraint satisfiability monitor and different programming languages is being examined.

References

[1] Cooke, D. E., “An Introduction to SequenceL: A Language to Experinmnt with Constructs for Processing
Nonsca]ars,” to appear in Software Practice and Experience, 1996.

[2] Gates, A., Conicxl Monitoring Wiih lntcgrity Constrain. Las Cruces, NM: New Mexico State [Univer-
sity, 1994 (1>11.11. Dissertation).

[3] Gates, A.Q. and Cooke, D. E., ml~ Usc of liltegrity CoAjraiuts in Software EngiIieering”, S1;1{11 ‘f?5
Procecdznys Software Engineering I(nou;lcdge Engineering, Rockville, MI), 199.5. Skokic, IL: Knowledge
Syst,erns Institute, 1995, pp. 383:390.

[4] Gates, A. Q., “On Defining a Class of integrity Constraints,” $EKE ’96 Proceedings Soflware Engineering
}inowlcdge Engineering, Lake Tahoe, hrv, 1 !3!)6. Skokie, IL: Knowledge Syst,erns Institute, 1996, pp. 338-
344.

[.5] Gates, A. Q., “Builcling Systclns with Intmgrity Constraints” ,Proceedings of the Second Wor/d Conference
on integrated D~szgn and Process Technologyj Austin, ‘TX, 1996.

[6] Rosenblum, D. S., “A Practical Apporach to Programming with Assertions,” IEEE ?’ransactions Sofl-
ware Engineering, 21(1), 1995, pp. 19-31.

[7] Shaw, M. and Garland, D., Software Architecture: Perspectives 071 an Emerging Discipline Upper Saddle
River,iXew ,Jmsey: Prentice Hall, 1996.

