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ABSTRACT

This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augment-
ing compensator variables to the original state equations of the aircraft, a new dynamic model is considered
to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified
region, LQ formulation provides the inherent robustness properties. The time response for ride quality is
significantly improved with a set of dynamic compensators.

1. Introduction:

While designing a feedback control, ride and handling qualities are major performance objectives in aircraft
control problems. Such objectives are normally achieved by closed closed loop pole assignment [1]. Preserving
these closed loop poles ( within the desired regions ) in the presence of perturbations is another requirement
[2]. LQ problems have inherent stability margins to tolerate unstructured uncertainties. LQ design techniques
with regional pole constraints have been studied extensively in the literature see [3], and its references ].
Similar approach, but with dynamic compensators, have been investigated for automotive applications [4].
The compensators given in [5] for aircraft control problem are considered in LQ problem setting. The
objective of this approach is to improve aircraft ride quality defined in [1].

I1. Problem Formulation:

An aircraft model in pitch plane [ with normal acceleration ( n.), pitch rate {¢ ) and elevator deflection (
. ) as state variables and command input ( é. ) as control variable], is given by [2i:
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It is well known that the control law
u(t)= =R Px(t) + r(t) )
minimizes the performance index
J= Jw{x’Qz + o Rulds @)
and satisfies the algebraic riccati equation
AP—-PbR™WP+PA+Q=0 @)

Selection of weighting matrices to achieve a controller in equation 2 for exact pole assignment has been
extensively investigated in reference [3]. Suppose, we choose a set of dynamic compensators given in {35} for
the control law structure [2] ( see Figure-1), then the state equations for the compensators are:
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Figure 2: Regional Constraints for Aircraft

Il. Simulation Results:
For F-4 aircraft model at Mach= 1..5, Altitude =35,000ft, the system dynamic matrices are given by:

-0.5162 26.96 178.9 1
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The matrices A and & for the sate vector Z(t) == [z(t), 21(t), 22(t)] are

4 0 O
A = Al -7 (0]
_Ag 0 —Tgl
[ —175.6
o}
b o= —-14 where,
o]
i 0
A = [1 0 0]

Ay = [ —0.6896 (1,225 + r,) —30.38 |

At this flight condition, the short period damping ( {s; ) and frequency ( ws, ) requirements are:

0.35< (< 1.3 (12)
and
3.29< we, < 11.8 (13)
In complex plane, these constraints impose regional pole constraints shown in Figure 2.
Table- 1
Design
Variables ws, {on
Q. R 4.5078 0.4789
Q, R 6.44.58 0.5316
Desired [3.29, 11.8] [0.35, 1.3]
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Figure 1: Control Law Structure [Ref 2] with Filters Fj (s) = - and Fa(s) = &2

z1 - —Tiatn, (5)
Za—§ = —Tar2+ Taq (6)

From the aircraft dynamical equations 1, substituting for ¢, we have
2y = @217 + (@22 + To)g + @23be — T322 (7)

For the new state vector z(t),

’

Z(t) = [a(t), 21 (t), 22(8)]

the state space equations become,

z(t) = Az(t) + ba(t) (8)
where,
a a2 a3 0 0
an a2 a3 O 0
A4 = 0 0 -14 o O
1 0 0 —T1 0
| an (a2 +T2) a3 0 -7
by
0
b = 14
0
0

It can be verified that for these dynamic compensators, the system in equation 8 is completely controllable.
Thus the control law ~
a(t) = —R™b Pz(t) + () 9)

minimizes the performance index
J= A {z' Oz + @ Ra}dt (10)
and satisfies the algebraic riccati equation
AP-PoR'OP+PA+(Q=0 (11)

With the above formulations, we shall now present the closed loop eigenvalues for various values of the design
parameters. The design parameters for .J are obviously the weighting matrices @ and R. However, note that
the performance index J is significantly influenced by the other design parameters 71, T2, and 73, in addition
to Q and R. The next section presents the simulation results.

299



2
1
5
B 0 i with Compensators
= 1= 25
£ Ty = 75
Z -1 73=4.0
=]
8
‘<
z
3 +— without compensators
0 05 1 15 2 2.5 3

Figure 3: Time response pelts due to step input

The weighting matrices Q = 1,and R. = 10*as well as the weighting matrices @ = 1,and R = 10°provide
the acceptable closed loop poles [ see Table 1 ].

However, what needs to be observed is the time response plots ( due to step input ) shown in Figure 3. We
observe that the normal acceleration at the sensor location is nonminimal. Moreover, the peak accelerations
are significantly reduced with dynamic compensators ( about 50% ).
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