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ABSTRACT

This paper considers a given set of fixed order compensators for aircraft pitch control problem. By augment-
ing compensator variables to the original state equations of the aircraft, a new dynamic model is considered
to seek a LQ controller. While the fixed order compensators can achieve a set of desired poles in a specified
region, LQ formulation provides the inherent robustness properties. The time response for ride quality is
significantly improved with a set of dynamic compensators.

1. Introduction:

While designing a feedback control, ride and handling qualities are major performance objectives in aircraft
control problems. Such objectives are normally achieved by closed  closed loop pole assignment [I]. Preserving
these closed loop poles ( within the desired regions ) in the presence of perturbations is another requirement
[2]. LQ problems have inherent stability margins to tolerate unstructured uncertainties. LQ design techniques
with regional pole constraints have been studied extensively in the literature see [3], and its references ].
Similar approach, but with dynamic compensators, hwe been investigated for automotive applications [4].
The compensators given in [5] for aircraft control problem are considered in LQ problem setting. The
objective of this approach is to improve aircraft ride quality defined in [1].

II. Prol}lem  Formulation:

An aircraft model in pitch plane [ with normal acceleration ( 712 ), pitch rate ( q ) and elevator deflection (
6e ) as state variables and command input ( tiC ) as control variable], is given by [2;:

‘=[’~ ‘: ~’Hj’j+hJ
A z(t) b

(1)

It is well known that the control law

u(t) = –R–lb’ l%(t) + r(t) (2)

minimizes the performance index

.1 = J‘{zrQz + ?;R?J}(it (3)
o

and satisfies the algebraic riccati equation

A’P– PbR-lb’P+PA+Q=O (4)

Selection of weighting matrices to achieve a controller in equation 2 for exact pole assignment  has been
extensively investigated in reference [3]. Suppose, we choose a set of dynamic compensators given in [s] for
the control law structure ~2] ( see Figure-1 ), then the state equations for the compensators are:
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Figure 2: Regional Constraints for Aircraft

II. Simulation Results:

For F-4 aircraft model at Mach= 1..5, Altitude =35,000ft, the system dynamic matrices are given by:

[

–0.5162 26.96 1’78.9
A = –0.6896 –1.225 –30.38

o 0 –14 1
[1–17.5.6

b =
–14

The matrices ~ and b for the state vector ~(t) = [z(t), ZI(t),  z2(t)]’ arc

~=[;:” 1

0 0
—T1 o
0 — TS

Ii

–175.6
o

$= –14 where,
o
0

A1=[l OO]

AZ = [ –0.6896 (–1,225 + r.. ) –30.38 ]

At this flight condition, the short period damping ( <.P ) and frequency ( W,P ) requirements are:

0.35< <.p <1.3

and
3.29< w~p <11.8

In complex plane, these constraints impose regional pole constraints shown in Figure 2.

Table- 1

Design
Variables Wsv <s,

Q. R 4.50’78 0.4789

Q, R 6.44.58 0.5316

Desired [3.29, 11.8] [0.35, 1.3]
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Figure 1: Control Law Structure [Ref  2] with Filters F’1 (s) = ~ and F’z(s)  = ~

21 = —Tlzl + 7-12
. .
%2-Y= —T3Z2  ~ T2~

From the aircraft dynamical equations 1, substituting for ~, we have

~~ = azlrzz  + (azz + r~)q + aztfi, — T3Z2

For the new state vector z(t),

the state space equations become,

where,

z(t) = [z(t), Zl(t), z2(f)]’

i(t) = m(t) + k(t)

(211 alz 013 0 0
LZ21 (L22 Q3 o 0

0 0 –14 o 0

(5)
(6)

(7)

(8)

II
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o

6=14
o
0

It can be verified that for these dynamic compensators, the system in equation 8 is completely controllable.
Thus the control law

m(t) = –R–16’FT(t)  + ?-(t) (9)

minimizes the performance index

3=
/

‘{Z’QZ  + 12’Rti}dt (10)
.0

and satisfies the algebraic riccati equation
———

ii’~-PbR-li~+~~+~=O (11)

With the above formulations, we shall now present the closed loop eigenvalues for various values of the design
parameters. The design parameters for J are obviously the weighting matrices Q and R. However, note that
the performance index ~ is significantly influenced by the other design parameters T1, T2, and r3, in addition
to Q and ~. The next, section presents the simulation results.
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Figure 3: Time response pelts due to step input

The weighting matrices Q = 13 and R. = 104 as well as the weighting matrices ~ = 13 and ~ = 104 provide
the acceptable closed loop poles [ see Table 1 ].

I-Iowever,  what needs to be observed is the time response plots ( due to step input ) shown in Figure 3. We
observe that the normal acceleration at the sensor location is nonminimal. Moreover, the peak accelerations
are significantly reduced with dynamic compensators ( about 50% ).
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