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Abstract

The recent development of more sophisticated remote sensing systems enables the measurement
of radiation in many mm-e spectral intervals than previous possible. An example of this
technology is the AVIRIS system, which collects image data in 220 bands. The increased
dimensionality of such hyperspectral  data provides a challenge to the current techniques for
analyzing such data. Human experience in three dimensional space tends to mislead one’s
intuition of geometrical and statistical properties in high dimensional space, properties which
must guide our choices in the data analysis process. In this paper high dimensional space
properties are mentioned with their implication for high dimensional data analysis in order to
illuminate the next steps that need to be taken for the next generation of hyperspectral  data
classifiers.

I. Introduction

The complexity of dimensionality  has been known for more

.-.

than three decades, and its impact
varies from one field to another. In combinatorial optimization over many dimensions, it is ;een
as an exponential growth of the computational effort with the number of dimensions. In
statistics, it manifests itself as a problem with parameter or density estimation due to the paucity
of data. The negative effect of this paucity results from some geometrical, statistical and
asymptotical properties of high dimensional feature space. These characteristics exhibit
surprising behavior of data in higher dimensions.

There are many assumptions that we make about characteristics of lower dimensional spaces
based on our experience in three dimensional Euclidean space. There is a conceptual barrier that
makes it difficult to have proper intuition of the properties of high dimensional space and its
consequences in high dimensional data behavior. Most of the assumptions that are important for
statistical purposes we tend to relate to our three dimensional space intuition, for example, as to
where the concentration of volume is of such figures as cubes, spheres, and ellipsoids or where
the data concentration is in known density function families such as normal and uniform. Other
important perceptions that are relevant for statistical analysis are, for example, how the diagonals
relate to the coordinates, the number of labeled samples required for supervised classification, the
assumption of normality in data, and the importance of mean and covariance difference in the
process of discrimination among different statistical classes. In the next section some
characteristics of high dimensional space will be mentioned, and their impact in supervised
classification data analysis will be discussed. Most of these properties do not fit our experience
in three dimensional Euclidean space as mentioned before.

II. Geometrical, Statistical and Asymptotical Properties

In this section we illustrate some unusual or unexpected hyperspace characteristics including a
discussion of its implications for supervised classification. These illustrations are intended to
show that higher dimensional space is quite different from the three dimensional space with
which we are familiar.

As dimensionality increases:

* Work reported herein was funded in part by NASA Grant NAGW-3924.

367



A. The volume of a hypercube concentrates
concentrates in an outside shell [Scott 1992].

in the corners and the volume of a hypersphere

These characteristics have two important consequences for high dimensional data that appear
immediately. The first one is that high dimensional space is mostly empty, which implies that
multivariate data in Rd is usually in a lower dimensional structure. As a consequence high
dimensional data can be projected to a lower dimensional subspace  without losing significant
information in terms of separability among the different statistical classes. The second
consequence of the foregoing, is that normally distributed data will have a tendency to
concentrate in the tails; similarly, uniformly distributed data will be more likely to be collected in
the corners, making density estimation more difficult. Local neighborhoods are almost surely
empty, requiring the bandwidth of estimation to be large and producing the effect of losing
detailed density estimation. Support for this tendency can be found in the statistical behavior of
normally and uniformly distributed multivariate  data at high dimensionality.  It is expected that as
the dimensionality increases the data will concentrate in an outside shell. As the number of
dimensions increases that shell will increase its distance from the origin as well. Under these
circumstances it would be difficult to implement any density estimation procedure and to obtain
accurate results. Generally nonparametric approaches will have even greater problems with high
dimensional data.

B. The required number of labeled samples for supervised classification increases as a function of
dimensionality.

Fukunaga [Fukunaga  1989] proves that the required number of training samples is linearly related
to the dimensionality for a linear classifier and to the square of the dimensionality  for a quadratic
classifier. That fact is very relevant, especially since experiments have demonstrated that there
are circumstances where second order statistics are more relevant than first  order statistics in
discriminating among classes in high dimensional data [Lee and Landgrebe,  July 1993], In terms of
nonparametric  classifiers the situation is even more severe. It has been estimated that as the
number of dimensions increases, the sample size needs to increase exponentially in order to have
an effective estimate of multivariate  densities [Scott 1992, pp 208-212] [Hwang, Lay, Lippman
1994],

It is to be expected that high dimensional data contains more information. At the same time the
above characteristics tell us that it is difficult with the current techniques, which are usually
based on computations at fill dimensionality,  to extract such information unless the available
labeled data is substantial. A concrete example of this is the so-called Hughes phenomena.
Hughes proved that with a limited number of training samples there is a penalty in classification
accuracy as the number of features increases beyond some point [Hughes 1968].

C. For most high dimensional data sets’, low linear projections have the tendency to be normal, or
a combination of normal distributions, as the dimension increases.

That is a significant characteristic of high dimensional data that is quite relevant to its analysis. It
has been proved [Diaconis  and Freedman 1984] [Hall and Li 1993] that as the dimensionality
tends to infinity, lower dimensional linear projections will approach a normality model with
probability approaching one (see Figure 6). Normality in this case implies a normal or a
combination of normal distributions.

In all the cases above we can see the advantage of developing an algorithm that will estimate the
projection directions that separate the explicitly defined classes, doing the computations in a
lower dimensional space. The vectors that it computes will separate the classes, and at the same
time, the explicitly defined classes will behave asymptotically more like a normal distribution.
The assumption of normality will be better grounded in the projected subspace than in fill
dimensionality.
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D. The role of the second order statistics become as important as the first order statistics.

Lee and Landgrebe [Lee and Landgrebe  July 1993] performed an experiment where they classified
some high dimensional data in order to see the relative role that first and second order statistics
played.

In that particular experiment as the number of dimension grew the role played by the second
order statistics increased in discriminating among classes. Under these circumstances, the shape
of the distribution given by the second order statistics becomes as important as the location
provided by the first order statistics.

III. High dimensional characteristics implications for supervised classification

Based on the characteristics of high dimensional data that the volume of hypercubes  have a
tendency to concentrates in the corners, and in a hyperellipsoid in an outside shell, it is apparent
that high dimensional space is mostly empty, and multivariate  data is usually in a lower
dimensional structure. As a consequence it is possible to reduce the dimensionality without
losing significant information and separability. Due to the difficulties of density estimation in
nonparametric  approaches, a parametric version of data analysis algorithms maybe expected to
provide better performance where only limited numbers of labeled samples are available to
provide the needed a priori information.

The increased number of labeled samples required for supervised classification as the
dimensionality increases presents a problem to current feature extraction algorithms where
computation is done at fill dimensionality,  e.g. Principal Components, Discriminant Analysis
and Decision Boundary Feature Extraction [Lee & Landgrebe,  April 1993]. A new method is
required that, instead of doing the computation at full dimensionality,  computes in a lower
dimensional subspace.  Performing the computation in a lower dimensional subspace that is a
result of a linear projection from the original high dimensional space will make the assumption of
normality better grounded in reality, giving a better parameter estimation, and better classification
accuracy.

A preprocessing method of high dimensional data based on such characteristics has been
developed based on a technique called Projection Pursuit. The preprocessing method is called
Parametric Projection Pursuit [Jimenez  and Landgrebe  IGARSS 95] [Jimenez  and Landgrebe
SMC 95].

Parametric Projection Pursuit reduces the dimensionality  of the data maintaining as much
information as possible by optimizing a Projection Index that is a measure of separability. The
projection index that is used is the minimum Bhattacharyya distance among the classes, taking in
consideration first and second order characteristics. The calculation is performed in the lower
dimensional subspace where the data is to be projected. Such preprocessing is used before a
feature extraction algorithm and classification process, as shown in Figure 1.

In Figure 1 the different feature spaces have been named with Greek letters in order to avoid
confusion. @ is the original high dimensional space. r is the subspace resulting from a class-
conditional linear projection from @ using a preprocessing algorithm, e.g. Parametric Projection
Pursuit. Y is the result of a feature extraction method. Y could be projected directly from @ or,
if preprocessing is used, it is projected from 17. Finally Q is a one dimensional space that is a
result of classification of data from Y space. Note that the three procedures, preprocessing,
feature extraction and classification use labeled samples as a priori information.
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Figure 1. Classification of high dimensional data including preprocessing

IV. Experiment

In order to see the relevance of high dimensional geometrical and statistical properties for high
dimensional data analysis purposes two experiments were designed. In both experiments a
comparison is provided between high dimensional feature extraction and the method that uses a
Parametric Projection Pursuit based preprocessing to reduce the dimensionality before a feature
extraction method is used. The multispectral data used in these experiments are a segment of
AVIRIS data taken of NW Indiana’s Indian Pine test site. From the original 220 spectral channels
200 were used, discarding the atmospheric absorption bands.

The classification task for several classes in this and the next experiment are particularly difficult
ones. The data were collected early in the growing season when the canopy of both corn and
soybeans covered only about 5% of the area, There were three levels of tillage,  no till in which
there would be a great deal of residue on the soil surface fi-om last year’s crop, minimum till
leaving a moderate amount of residue, and clean till for which there would be little or no residue.
Add to this the normal amount of spectral variability due to the varying soil types present in the
fields. Thus the 95% background would be highly variable, as compared to the relatively small
difference in spectral response between corn and soybeans.

In this experiment four classes were defined: corn, corn-notill,  soybean-rein, soybean-notill. The
total number of training samples is 179 (less than the number of bands used) and the total number
of test samples is 3501. Observe that this is an extreme case that is used to show the potentials
of Parametric Projection Pursuit. Two types of dimensional reduction algorithms were used. The
first is Discriminant Analysis (DA 200-3) that reduces the dimensionality  from 200 to 3. It
directly projects the data from @ space to Y subspace.  In the second method Parametric
Projection Pursuit was used to reduce the dimensionality  from 200 to 22. It projected the data
from the @ space to the 17 subspace.  After that preprocessing method was used, Discriminant
Analysis was used (PPDA 200-3) in order to linearly project the data from the 17 subspace to
the Y’ subspace. As mentioned before, this has the advantage of doing the computation with the
same number of training samples but at lower d,~ensionality.  In both cases the best three
features were used for classification purposes.

Four types of classifiers were used. The first one is ML classifier, the second is ML with 2%
threshold. The third classifier is a spectral-spatial classifier named ECHO [Kettig  & Landgrebe
1976] ~andgrebe  1980] and the fourth is ECHO with a 2% threshold. In the second and the
fourth, a threshold was applied to the standard classifiers whereby in case of true normal
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distributions of the data, 2% of the least likely points will be thresholded.  These 2% thresholds
provide one indication of how well the data fit the normal model.

The results are shown in Figure 2. Parametric Projection Pursuit followed by Discriminant
Analysis at lower dimensionality  performed substantially better than using Discriminant
Analysis at fill dimensionality.  The application of a threshold to Discriminant Analysis at full
dimensionality reduced its classification accuracy more severely than when a threshold was
applied in the case where Projection Pursuit was first applied, followed by Discriminant
Analysis at lower dimensionality.  This is due to Parametric Projection Pursuit preprocessing
being better fitted to the assumption of normality.

n

■ DA 200-3

❑ PPDA 200-3

ti’ML
1- ‘ ML-2% ‘ Echo ‘ Echo-2% ‘

Type of Classifier
Figure 2. Test fields classification accuracy for two feature extraction methods and four classifiers.

Observe how significantly the performance of classifiers with 2% thresholds improves when
using Parametric Projection Pursuit. The reason is that making the computation at low
dimensional space, I’, the assumption of normality has greater validity. In the case of having less
samples and classes Discriminant Analysis will be significantly affected by the high dimensional
geometrical and statistical characteristics. The next experiment will show this difficulty.

VI. Conclusion

In this section we will consider some implications of what has been discussed for supervised
classification. In terms of parameter estimation, a large number of samples are required to make a
given estimation in multispectral data to adequate precision. In a nonparametric approach, the
number of samples required to satisfactorily estimate the density is even greater. Both kinds of
estimations confront the problem of high dimensional space characteristics. As a consequence, it
is desirable to project the data to a lower dimensional space where high-dimensional geometric
characteristics and the Hughes phenomena are reduced. Commonly used techniques such as
Principal Components, Discriminant Analysis, and Decision Boundary Feature Extraction have
the disadvantage of requiring computations at full dimensionality  in which the required number of
labeled samples is very large. The procedures use estimated statistics that are not necessarily
accurate. Another problem is the assumption of normality. Nothing guarantees that at full
dimensionality, that model fits well.

It has been shown that high dimensional spaces are mostly empty, indicating that the data
structures involved exist primarily in a subspace.  The problem is which subspace it is to be
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found in is situation-specific. Thus the goal is to reduce the dimensionality of the data to the right
subspace without losing separability information. The approach is to make the computations in a
lower dimensional space, i.e. in 17 instead of @, where the projected data produce a maximally
separable structure and which, in turn, avoids the problem of dimensionality in the face of the
limited number of training samples. Further, a linear projection to a lower dimensional subspace
will make the assumption of normality in the 17 subspace  more suitable than in the original @. In
such a lower dimensional subspace  any method used for feature extraction could be used before a
final classification of data, even those that have the assumption of normality.
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