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Abstract

The opening of the NASA Pan American Center for Environmental and Earth Sciences (PACES)
at the University of Texas at El Paso made it possible to organize the student Center for Theoretical
Research and its Applications in Computer Science (TRACS).

In this abstract, we briefly describe the main NASA-related research directions of the TRACS center,
and give an overview of the preliminary results of student research.

1 Preamble
The opening of the NASA Pan American Center for Environmental and Earth Sciences (PACES) at the
University of Texas at El Paso made it possible to organize the student Center for Theoretical Research and
its Applications in Computer Science (TRACS).

This center was one of the sponsors of the student regional conference in Computational Sciences SC-
COSMIC (October 1996, El Paso, TX) [7], and it was instrumental in bringing the 1997 Annual ACM
Symposium on Theory of Computing to El Paso.

The main emphasis of this center is not only on today’s engineering problems, but also on the fundamental
problems that can eventually be of use in different areas of practice, in particular, in the area of space
exploration. In this abstract, we briefly describe the main NASA-related research direction of the TRACS
center, and give an overview of its results.

2 Space-related computations: specific features, specific prob-
lems

How are computations and data processing related to space research different from computations in other
application areas? There are many differences, regarding the input, the cornput at ional resources available
for these computations, and the desired result.

Input. Many on-Earth computations deal with the reasonably well known areas, for which a lot of infor-
mation already exists. Most space missions are, to the large extent, missions into the unknown. As a result,
in computations related to space mission, there is usually a much smaller amount of a priori  information.

The amount of information coming from the space missions is, usually, also much smaller than usual.
There are several reasons for that; the three main reasons are:

● first, each additional sensor on-board costs a lot to launch and to maintain, and therefore, the designers
try to keep the total number of sensors reasonably low;

● second, the more accurate and more reliable sensors are usually more complicated, weigh more, require
more energy and other resources, and are usually less robust in the sense that may require too many
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additional resources to protect them against the often hostile space environment; therefore, the sensors
that are actually launched are often not the most accurate and the most reliable;

● finally, each additional bit of information has to be collected and transferred to the Earth, creating an
additional burden on the spaceship communication system.

Computational resources. Processors launched into space (or placed on board of a planetary rover) must
take as small amount of space, energy, etc., as possible. As a result, we must be able to perform all necessary
computations on the available limited computational resources.

Desired result. Since space missions are usually very expensive, every potential error is very costly, and
in manned space missions, errors are simply inadmissible. So, space-related computations must be 100%
reliable.

3 Due to these specific features, problems of space-related com-
putations are, in general, computationally intractable

Interval computations. First of all, in space-related computations, we need the guaranteed results. To-
gether with the fact that the input comes from not 100% accurate sensors, this means that we have to
estimate the accuracy of the results of data processing, while in traditional computing, accuracy is usually
not an issue<

This bring up the importance of computations that take this inaccuracy into consideration and lead to
guaranteed results. Due to the fact that we want not simply a numerical estimate of the desired quantity,
but an intertjal within which the actual values of this quantity is guaranteed to lie, the corresponding area
of theory of computing is called interval comp~~tations.

The problems become computationally  intractable. In interval computations, there are important
theoretical results, but it turns out that if we take the inaccuracies of the input data into consideration and
require the results to be 100% reliable, then even the simplest tasks such as solving a liner system become,
in general, computationally  intractable (N P-hard) [1 O, 1].

What can we do?

4 How can we solve computationally intractable problems?

First approach: finding classes of solvable problems. The fact that the problem is computationally
intractable means that there is no general algorithm for solving these problems. Therefore, a natural approach
is to find classes  of problems for which there are feasible algorithms. In this, theory of computing, with its
large experience of designing new algorithms, can be of great help.

In particular,

● for general interval data processing, theory-rnoti vated algorithms are presented in [11];

● for a specific problem of chemical i dentificat ion, a problem that is very important for space exploration,
algorithms based on theoretical ideas are presented in [4, 3].

Second approach: using human intelligence. In many real-life situations, the problem that we must
solve does not belong to any of the classes for which feasible algorithms are known. In some of these cases,
we know that human experts can often solve these problems really well. How can we describe the experience
of these experts in such a way that the computer will be able to understand this knowledge and use it in
data processing’?

Here, there are three types of theoretical problems:

● is a certain type of formalism suficient for a certain class of problems?

● what is a computational compiezity  of using this formalism?

● how can we make the resulting computations faster?

In TRACS, all three types of problems are analyzed:

444



●

●

●

Su@cient.  In [12], it is shown that one of the
reasonably general type of knowledge. In [13],

Complexity. In [5], it is shown that even if

logic programming formalisms is sufficient to represent
a similar problem of sufficiently is analyzed for robots.

we manage to describe all the knowledge in terms of
an expert system, the computational problems related to using this expert system are, in general,
computationally  intractable.

Faster. In [9], a fast algorithm is developed for an important particular class of ~uzzy data processing
algorithms.

Third approach: trying to make the existing computers faster. If the existing algorithms are too
slow, and no expert knowledge is available, then we can try to speed up the computers.

The design of a faster computer usually involves lots of engineering problems and heuristic methods, but,
as it is shown in [8], theory of computing, with its experience of evaluating the computational abilities and
computational times of different hypothetic computational devices, can definitely help in selecting the most
promising design of a real-life computer.

Fourth approach: looking for radically new ways of computing. If the existing computers cannot
solve our problems, then maybe some radically new ways of computing will be more helpful. In particular,
one way to speed up computations is to miniaturize the computers.

At TRACS, we have looked into the potential abilities of chemical computers [6] that operation on the
level of molecules and quantum computers [2] that operate on the level of elementary particles. Baaed on the
results of this analysis, both approaches seem to be very promising.
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