URC97081
A Categorization of Dynamic Analyzers

Michelle R. Lujan™
Department of Computer Science
The University of Texas at El Paso
ElPaso, TX 79968
email mlujan@cs. utep.edu

1 Introduction

Program analysis techniques and tools are essential to the development process because of the support they
provide in detecting errors and deficiencies at different phases of development. The types of information
rendered through analysis includes the following: statistical measurements of code, type checks, dataflow
analysis, consistency checks, test data,verification of code, and debugging information. Analyzers can be
broken into two major categories: dynamic and static. Static analyzers examine programs with respect
to syntax errors and structural properties [17], This includes gathering statistical information on program
content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition,
static analyzers provide the ability tocheck for the consistency of programs with respect to variables.
Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability
to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides
information on the behavior of’ a program rather than on the syntax [1 7]. Both types of analysis detect
errors in a program, but dynamic analyzers accomplish this through run-time behavior.
‘This paper focuses on the following broad classification of dynamic analyzers:

. Metrics
. Models
. Monitors

Metrics are those anal yzers that provide measurement. The next category, models, captures those analyz-
ers that present the state of the program to the user at specified points in time. Thelast category, monitors,
checks specified code based onsome criteria. The paper discusses each classification and the techniques that
are included under them. in addition, the role of each technique in the software life cycle is discussed. Famil-
iarization with the tools that measure, model and monitor programs provides a framework for understanding
the program’s dynamic behavior from different, perspectives through analysis of the input/output data.

2 Metrics

The term metrics is defined as the measure of properties of systems [14]. Metrics are used to rneasure
the quality of a program, control productivity of software projects, and attempt, to predict the effort in
developing software {2]. In addition, errors can be detected in programs through the use of st atistical
information. According to [14], metrics should have the following properties to be useful:

1. Automatable: the metrics must be processed automatically.
2. Feasible: the cost of gathering metrics must be feasible in cost and time in order to be useful.

3.Understandable: the metrics must have theoretical and empirical foundations and clear meaning.

* THS WRK ws SPONSORED BY NASA uNDEr oovtracT NAG-1012 ao NCCW-0089

471

4. Sensitive: the metrics should be sensitive to all the factors that affect the qualitytobe estimated and
not those that, are unrelated.

(]

. Applicable: the metrics should be applicable 1o any programming language and to a large class of
systems, and not to any particular stage of the lifecycle.

6. Useful: metrics should not measure values but should provide feedback concerning software activities.

7. Flexible: a variety of metrics is needed to provide users with a broad picture of the properties of the
system.

W bile static metrics generate information about variable anomalies and program content, dynamic met-
rics produce data on program interconnections and variable behaviors [9]. one category of dynamic metrics,
coverage analyzers, records information concerning logic, statements, cent rol paths, decision, conditions,
dataflow and iteration. A few are discussed next. Control palh coverage analyzers record the control paths
covered by each test case[5]. Stetementcoverage analyzers check that every stat ement in the program is
executed by the test data set at least once. Decision coverage analyzers verifies that each predicate decision
assumes a true and a false outcome at least once during testing on a test suite. Clearly, coverage measures
are categorized as dynamic analyzers because they require execution of the program in order to collect the
metrics. Even though the general notion of coverage provides a simple methodology for developing test
suites, many errors may still escape detection [17].

Reliability measures, another category of dynamic metrics, generate a probability measure that a software
fault does not occur during a specified timeinterval [1 4]. These measures provide information concerning the
number of failures during a specified amount of runs and the totality of failures within a specified interval.

Performance measures produce a statistic on the overall performance of a program. Measures of this
type include estimating the stability and reliability of a program [9] [14]. An exampleof a performance
measure that approximates the stability of a program is Yau and Collofello’s Logical Stability Metric [9].
This calculation is used to determine the expected impact of a modification of a variable in a module. The
stability metric reflects the result of changing a single variable in a module and the impact of the change on
the behavior of the program. The authors’ basic argument is that maintenance breaks down to changes in
variables regardiess of how complex the task.

3 Models

Observing the state of a program throughout different points of execution time provides valuable information
to the person analyzing a program. Models provide a systematic method to accomplish this end. By supplying
the users with the ability to test, hypothesis and draw conclusions about program behavior, models support
the evolution of programs over time [3].

Interpreters, a category of models, execute and translate programs at the same time. This is an advantage
because many interpreters show the likely place and cause of errors [13]. Interpreters are made up of four
basic components [16]:

1. an engine to interpret the program,
2. memory that contains the pseudocode to be interpreted,
3. representation of the control state of the interpretation engine, and

4. a representation of the current state of the program being simulated.

As aresult, the state of the machine can be observed through the execution of the program with the provided
input. Because interpreters dependon execution and input, they are categorized as dynamic analyzers.
Prototypes, the second category of models, provide a mechanism to learn more about the problem and
the problem solution through a partialimplementation of the system [4]. Prototypes enable potential users
to experiment with the system relatively early in the development process. Essentially, this allows users
to provide feedback to designers on whether the behavior of the system is as expected and to determine
user needs [4].Prototyping is often viewed as a way of progressively developing an application and at the
same time understanding the requirements [8]. The cost, of the system is reduced because prototypes can be
produced early in the development process without implementing the entire system. Prototypes are viewed
as the first version of thesystern. Two types of prototypes are throwaway and evolutionary. Throwaway

472

prototypes are those that are discarded after it isused. Evolutionary prototypes are those that continually
changed over time until it behaves as expected (becoming the fina producet)[4}. The evolutionary prototype
is more cost effective because it isnot destroyed after it is used [4]. A prototyping environment is provided
through Computer-Aided Prototyping (CAPS) [i 1}, being developed at the U.S.Naval Postgraduate School.
CAPS is comprised of the following toocls that aid the development of a prototype: a graph data model,
change merging facility, automatic generators for schedule and control code and automated retrievals for
reusable components.

Debuggers aid in locating, analyzing, and correcting errors by providing the user with the ability to
examine a program by executing code one line at a time. These tools allow the users to inspect the execution
of a program in detail, to control the time that each instruction takes to execute, and to control the progress
of the computation [3]. The history of execution can be generated along with the state of variables and the
machine. This trace facilitates the collection and manipulation of information [3].

A few examples of debuggers are YODA [12], TSL [12], and EBBA Event Based Behavioral Abstraction)
[1]. The YODA system stores Ada event histories as Prolog facts. Predicates in Prolog define the common
temporal relationships. This system has the capability to specify when variables can be updated, what,
values variables can take on when updated and the communication between variables. The TSL system
automatically checks specifications against the events produced by an Ada tasking program. In addition, it
uses Ada semantics to ensure that pairs of events appear in the correct order in the event history. These
debuggers provide a method to detect errors in concurrent Ada programs [1 2].

The debugging tool EBBA isalso based on event histories. A distinguishing feature of this approach is its
ability to model system behavior through clustering and filtering. Clustering expresses behavior as composite
events whereas filtering removes from consideration those events that are not needed for the behaviors being
investigated [1].

4 Monitors

Programs often need to meet certain criteria in order to provide the desired functionality. Montiors provide
the ability to examane code against criteria imposed by the user or the designer to check for satisfiability.
The a@m is to monitor the reliability and quality of software systems.

The first, category of mnouitors, assertion checkers, are those tools that support automatic runtime detec-
ion of software faults during debugging, testing and maintenance {15]. Through the use of assertion checkers,
developers are provided with the capability to incorporate assertions in programs in order to ensure that
they are not violated throughout execution. Assertions are defined as formal specifications that describe
the properties of programs using mathematical notation. In other words, assertions specify what asystem
is supposed to do instead of how to implement it. Assertion checkers verify that assertions are maintained
throughout, runtime. A few tools that fall under the category of assertion checkers follow.

The annotation language ANNA (A NNotated Ada) is used to embed assertions into Ada programs and
performs consistency tests to determine if the computation satisfies the specified properties, ANNA has the
ability to ensure that assertions are maintained throughout the execution of a program. Features of A NNA
include the following [10]:

. generates consistency checks from annotations on types, variables, subprograms, and exceptions,
. uses incremental theorem proving to check algebraic specifications at runtime, and
. constructs large software systems based on agebraic specification of system models.

Based on ANNA, the Annotation Preprocessor (APP)for C programs is a replacement for the standard
preprocessing pass of the C compiler. In addition, APP provides a mechanism to define how assertion
violations will be handled during execution and the tevel of checking that is to be done [15]. An assertion
in APP specifies a constraint that is related to some state of computation. Constraints are specified using
>'s expression language. APP converts each assertion into a runtime check in order to test for violations of
constraints. In this way, APP provides a convenient method to specify and maintain assertions.

FORMAN (FORmal Annotation), an assertion language, has the capability to express assertions on
events and sequences Of operations and eveuts [6]. Included in FORMAN, is the ability to describe universal
assertions on the program. Assertions canbe collected into ii braries to increase the level of automation
to encounter errors. FORMAN includes a flexible langnage for trace specification based on event patterns

473

and regular expression [1]. In addition, FORMAN has the capability to express both general operational
assertions and declarative assertions.

Another language, Behavioral Expressions (BE), provides the capability to write assertions about se-
guences of process interactions. It also has the functionaity to describe allowed sequences of events as well
as some predicates [1]. Eventsare used to describe process communication, termination, connection, and
detachment of process to channels. BE performs evaluations of assertions atruntime.

Context monitoring [7] is an approach that provides the developer with tools to manage, and communicate
across personnel, application domain knowledge about the properties on and relationships between objects
being modeled by a software system. Knowledge about the data, the intended context in which programs will
run and other knowledge about the program is captured through integrity constraints. The constraints are
elicited from domain experts, custorners, analysts, designers and programmers using established methods.
The constraint satisfiability mechanism dynamical ly monitors a program to ensure that the constraints are
being enforced by the program. If a violation occurs, the user is notified and, because links exist between the
congstraints and the documents that support the constraint, the user can identify the source of the constraint,.
This approach is distinguished from the others because t he constraints are not embedded in the program
code, but are maintained in a repository.

5 Summary

Classification | Techniques Principal L ife Cycle Support
Metrics Coverage measures Testing
Reliability measures Implementation
Maintenance
Performance measures | Implementation
Maintenance
Models Interpreters Implementation
Testing
Prototypes Requirements
Design
Debuggers Implementation
Maintcnance
Monitors Assertion checkers Requirements
Implementation/Maintenance
Testing
Context monitoring Requirernents
Design
Implementati on/M aintenance
Testing

Figure 1. A Classification of Dynamic Analyzers.

Examining runtime behavior is an important step in error detection and analysis. Data gathered from
runtime behavior can provide insight into errors which may not be detected through static analysis. Metrics,
models and monitors all produce different types of dynamic information about programs and, depending cm
the technique, support different aspects of the software life cycle (see Fig. 1). Metrics generate statistical
information about variables and program interconnections. Models monitor the state of the machine at
specified times during program execution. Monitors oversee that criteria specified by designers or users are
not violated, Even though dynamic analyzers aone do not supply enough data about programs to localize
al errors, they do furnish information that static analyzers do not.

References

[1] Auguston, M., “ A Language for Debugging Automation”, in Proceedings of SEKE,U.S.A.: Knowledge
Systems Institute, 1994, pp.108-115.

474

[2] Basili, V. R., Selby, R. W., Yun, T., “ Metric Analysis and Data Validation Across Fortran Projects’,
IEEE Transactions Softwarekng. SE-9 (6), 652663 (1983).

(3] Brindle, A. F,, Taylor, R. N.,Martin,D.I., “A Debugger for Ada Tasking”. /[EEE Transactions Soffware
Eng. SE-15 (3), 293-304 (1989).

[4] Davis, A. M., “Soft ware Prototyping”, in Yovits, M. C., Zelkowitz, M. V. (eds.), Advancesin Computers
Vol. 40. San Diego: Academic Press, 1995, pp. 39-63.

[5] Fairley, R., Software Engineering Concepts. New York: McGraw-Hill Publishing Company) 1985

[6] Fritzon, P., Auguston, M., Shahmehri, N., ” Using Assertions in Declarative and Operational Models for
Automated Debugging”, J. Systems Software 25, 223-239 (1994).

(7] Gates, A. Q., F. G. Fernandez and L. Romo, “Building Systems with integrity Constraints,” to ap-
pear in The Proceedings of the Second World Conference on Integrated Design and Process Technology,
December 1-4, 1996, Austin, Texas.

[8] Ghezzi, C., J azayeri, M., Mandrioli, D., Fundamentals of Software Engineering. New Jersey: Prentice
Hall, 1991.

[9] Kafura, D., Reddy, G. R., “ The Use of Software Complexity Metrics in Software Maintenance”, 1EEE
Transactions Software EngSE-13 (3), 335-343 (1987).

[10] Luckham, D. and Von Henke, 1?. W., “An Overview of Anna: A Specification Language for Ada,” [EEE
Software, 20(2):9-23, 1985.

[11] Lugi, Goguen, J. and V. Berzins, “Formal Support for Software Evolution,” 1994 Monterey Workshop
Increasing the Practical Impaci of Formal Methods for Compuler-Aided Software Development: Soft ware
Evolution. Monterey, CA: U.S. Naval Postgraduate School, Sept. 7-9, 1994, pp. 10-21.

[12] McDowell, C. E., Helmbold, D. P, “ Debugging Concurrent, Programs’, ACM Compuling Surveys 21
(4), 593-622 (1989).

[13] Pfaffenberger, B. Que’s Computer User’'s Dictionary. 4thed. U. S. A.: Que, 1993

[14] Ramamoorthy, C. V., Prakash, A., Garg, V.. Yamura, T., Bhide, A., “Issues in the Development, of
Large, Distributed, and Reliable Software”, in Yovits, M. C. (ed.), Advances in Computer Vol. .26. San
Diego: Academic Press, 1987, pp. 393-443.

[15] Rosenblum, D. S, “ A Practical Approach to Programming With Assertions’, IEEE Transactions Sofi-
ware Eng. 21 (1), 19-31 (1995).

[16] Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging Discipline. New Jersey:
Prentice Hall, 1996.

[17] White, L. J., “Software Testing and Verification”, in Yovits, M. C. (cd.), Advances in Computer Vol.
26. San Diego: Academic Press, 1987, pp. 335-391.

475

