
URC97081

A Categorization of Dynamic Analyzers

Middle R.. Lujan*
l)epart,ment of Computer Science

‘1’he University of Texas at El Paso
~] paSO, TX 79968

email Illlujall@cs. utcp. ed{l

1 Introduction

Program analysis techniques and tools are essential to the development process because of the support they
provide in detecting errors and deficiencies at different phases of development. The types of information
rendered through analysis includes the following: statistical rneasurernents of code, type checks, dataflow
analysis, consistency checks, test data, vcrificat, ion of code, and debugging information. Analyzers can be
broken into two major catc’gorics: dynamic and static. Static analyzers examine programs with respect
to syntax errors and structural properties [17], This includes gathering statistical information on program
content, such as the number of lines of executable code, source lines. and cyclomatic complexity. In addition,
static analyzers provide the ability to check for the consistency of programs with respect to variables.
Dynamic analyzers in contrast are dependent on input and the execution of a program providing the ability
to find errors that cannot be detected through the use of static analysis alone. Dynamic analysis provides
information on the behavior of’ a prcrgra!n rather than on the syntax [1 7]. Both types of analysis detect
errors in a program, but dynamic analyzers accomplish this through run-time behavior.

‘1’his paper focuses on the following broad classification of dynamic analyzers:

● Metrics

● Models

● Monitors

Metrics are those anal yzers that provide mmsuremeut,. The next, category, models, captures those analyz-
ers that present the state of the program to the user at specified points in time. The last category, monitor%
checks specified code based on solne criteria. The paper discusses each classification and the techniques that
are included under them. in addition, the role of each technique in the software life cycie is discussed. Famil-
iarization with the tools that measure, model and rnoni tor programs provides a framework for understanding
the program’s dynamic bel]avior from different, perspectives through analysis of the input/output data.

2 Metrics

The term metrics is defined as the measure of properties of systems [14]. Metrics are used to rnea.sure
the quality of a program, control productivity of software projects, and attempt, to predict the effort in
ckveloping software [2]. In addition, errors can be detected in programs through the use of st atistica~
information. According to [14], metrics should have the following properties to be useful:

1. Autornatable: the metrics must be processed automatically.

2. Feasible: the cost of gathering metrics must be fm.sible in cost and time in order to be useful.

3. Understaudabie: the metrics must Ilave theoretical and empirical foundations and clear meaning.

* THIS WORK WAS SPCJNSOR.ED BY NASA UNDER CONTRACT NAG-1012 AND NCCW-0089

471

.

4. Sensitive: the metrics should be sensitive to all the factors that, affect the quaIity to be estimated and
not those that, are unrelated.

5. Applicable: the metrics should be applicable to any progranlming language and to a large class of
systems, and not t,o any particular stage of the Iifecycle.

6. Useful: metrics should not measure values klut, should provide feedback concerning software activities.

7. Flexible: a variety of rnet,rics is needed to provide users with a broad picture of the properties of the
system.

W bile static metrics generate information about variable anomalies and program corrt.ent, dynamic met,-
rics produce data on program interconnections and variable behaviors [9]. one category of dynamic metrics,
coverage analyzers, records information concerning logic,, statements, cent rol paths, ciecisiou, conditions,
dataflow and iteration. A few are discussed next. Control path coverage analyzers record the control paths
covered by each test case [s]. $taierrtent cweragc analyzers check that every stat, enlent in tile program is
executed by the test data set at ieast once. Dccwion. coverage analyzers verifies tilat each predicate decision
assumes a true and a false outcome at ieast once during testing on a test suite. CIeariy, coverage measures
are categorized as dynamic analyzers because tiley require execution of the program in order to coliect the
metrics. Even though the generai notion of coverage provides a simpie methodology for developing test
suites, many errors may stiii escape detection [17].

Reliability measures, another category of dynamic metrics, generate a probability meaaure that a software
fauit does not occur during a specifieci time intervai [1 4]. These measures provide information concerning the
number of failures during a specified amount of runs and the totaiity of failures within a specified interval.

Performance measures produce a statistic on the overaIi performance of a program. Measures of this
type include estimating the st,abiiity and reliability of a program [!)] [14]. An exampie of a performance
measure that approximates the stability of a program is Yau and Collofeilo’s Logical Stabiiity Metric [9].
This calculation is used t,o determine the expectd impact of a modification of a variable in a module. The
stability metric reflects the result of changing a singie variable in a module and tile impact of the change on
the imhavior of the program. The authors’ i]asic argument is t,i~at maintenance breaks down to changes in
variables regardless of how complex the task.

3 Models

Observing the state of a program throughout different points of execution time provides valuable information
to the person anaiyzing a program. Models provide a systematic method to accomplish this end. By supplying
the users with the ability to test, hypothesis and draw conclusions about program behavior, models support
the evoiution of programs over time [3].

Interpreters, a category of rnocicis, execute and transiate programs at the same time. This is an advantage
because many interpreters show the likely place and cause of errors [13]. Interpreters are made up of four
imsic components [16]:

1. an engine to interpret tile program,

2. memory that contains the pseudocode to be interpreted,

3. represxmtation of tile controi state of the interpretation engine, and

4. a representation of the current state of the program being simulated.

As a result, the state of the machine can be observe{i through the execution of the program with the provided
input. 13ecausc interpreters depend ou execution and input, they are categorized as dynamic anaiyzers.

Prototypes, the seconci category of rnodeis, provide a mechanism to iearn more aboul the problem and
the problem soiution through a part,iai implementatio[l of the system [4]. Fhmtotypes enable potential users
to experiment with the system relatively eariy in the (feveioplnent, process. i!ksent iai iy, tjilis ailows users
to provide feedback to ciesigners on wheti]er tile behavior of the system is as expected and to determine
user needs [4]. Prototyping is often viewed as a way of progressively dcvcioping an application and at tkle
same time understanding t,ile requirements [8]. The cost, of the system is reduced i]ecause prot,o~ypes can be
produced early ill the deveioplnerrt process without ilnpiementillg tbe entire system. Prototypes are viewed
as tile first version of the syst,cm. Two types of prototypes are throwaway and evolutionary. Throwaway

472

.

prototypes are those that am cliscarded after it is used. Evolutionary prototypes arc those that colltinual]y
changed over time until it behaves as expected (becoming the final producet,) [4]. The evolutionary prototype
is more cost effective because it is not destroyed after it is used [4]. A protot,yping environment is provided
through Con~puter-Aided Prototyping (CAPS) [i 1], being developed at the (J .S. NavaI Postgraduate School.
CAPS is comprised of the following tools that aid the developmcrtt of a prototype: a graph data model,
change merging facility, automatic generators for schedule and control code and automated retrievals for
reusable components.

Debuggers aid in locating, analyzing, and correcting errors by providing the user with the ability to
examine a program by cxecut,ing code one line at a tin~e. These tools allow the users to iuspect the execution
of a program irl detail, to control the time that each instruction takes to execute, and to control the progress
of the computation [3]. The history of execution can be generated along wit,h the state of variables and the
machine. This trace facilitates the collection and manipulation of inforrnat,ion [3].

A few examples of debuggers are YODA [12], TSL [12], and EH3BA Event Based Behavioral Abstraction)
[1]. The YODA system stores Ada event histories as Prolog facts. Predicates in Prolog define the common
temporal relationships. This system has the capability to specify when variables can be updated, what,
values variables can take on when updated and the communication between variables. The TSL system
automatically checks specifications against the events produced by an Ada tasking program. In addition, it
uscs Ada semantics to ensure that pairs of events appear in the correct order in the event history. These
debuggers provide a method to detect errors in concurrent Ada programs [1 2].

The debugging tool EBBA is also based on event !irist,ories. A distinguishing feature of this approach is its
ability to model system behavior through clustering and filtering. Clustering expresses behavior as composite
events whereas filtering removes from consideration those events that are not needed for the behaviors being
investigated [1].

4 Monitors

l’rograms often need to meet certain criteria in order to provide the desired functiorla]it,y. Monitors provide
the ability to examtne code against criteria imposed by the user or the designer to check for satisfiability.
The aim is to monitor the reliability and quality of software systems.

‘1’he first, category of ~nonit,ors, assertion checkers, are those tools that support automatic runtirne detect-
ion of software faults duril}g dchugging, t,csting and maintenance [i 5]. Through the use of ase~t.ion checkers,
developers are prcwidec[with t,he capability to incorporate ~assertions in programs in order to ensure that
they are not violated throughout execution. Assertions are defined as formal specifications that describe
the properties of programs using nlatbenlaticaI notation. In other words, assertions specify what, a system
is supposed to do instead of bow to implement it. Assertion checkers verify that assertions are maintained
throughout, runtime. A few tools that fall under the category of assertion checkers follow.

The annotation language ANNA (A NNotated Ada) is used to embed assertions into Ada programs and
performs consistency tests t,o determine if the computation satisfies the specified properties, ANNA has the
ability to ensure that assertions are maintained throughout the execution of a program. Features of A NN’A
include the following [10]:

● generates consistency checks from annotations on types, variables, subprwgrarns, and exceptions,

. uses incremental theorem proving to check algebraic specifications at runtime. anrf

● constructs large software systems based on algebraic specification of system models.

Based on ANNA, the Annotation Preprocessor (APP) for C programs is a replacement for the standard
ilreprocessing pass of the (u compiler. In addition, APP provides a mechanism to define how assertion
violat, ious will be handled during execution and the level of checking that is to be done [15]. An assertion
in APP specifies a constraint that is related to some stat,e of computation. Constraints are specified using
C’s expression language. API) converts each assertion into a runtirne check in order to test for violations of
constraints. In this way, API> provides a convenient method to specify and maintain zussertions.

FORhIAN (FORmal Annotation), an assertion language, has the capability to express assertions on
events and seq~lences of operations ancl events [6]. Included in ~ORMAN, is the ability to describe universal
assertions on the program. Assertions can be collected into ii braries to increase the level of automation
to encounter errors. HJRMAN includes a flexible Iarlgllage for trace specification based on event patterns

473

.

and regular expression [1]. In addition, I~OR,MAN has the capability to express both general operational
asscr~ions and declarative a.ssertiom.

Another language, Behavioral Expressions (BE), provides the capability to write assertions about se-
quences of process interactions. It aiso has the functionality to describe allowed sequences of events as well
as some predicates [1]. Events are used to ciescribe process corn munication, termination, connection, and
detachment of process to channels. BE performs evaluations of assertions at runtirne.

Context monitoring [7] is an approach that provides the developer with tools to manage, and communicate
across personnel, application domain knowledge about the i~roperties on aud relationships between objects
being modeled by a software system. Knowledge about the data, the intended context in which programs will
run and other knowledge about the program is capturecl through integrity constraints. The constraints are
elicited from domain experts, custcxners, analysts, designers and programmers using established methods.
The constraint satisfiability mechanism dynamical Iy monitors a program to ensure that the constraints are
being enforced by the program. If a violation occurs, the user is notified and, because links exist between the
constraints and the documents that support the constraint, the user can identify the source of the constraint,.
“l’his approach is distinguished from the others because t hc constraints arc not, embedded in the program
code, but are maintained in a repository.

5 Summary

(lassijlcation Techniques Przneipal [. ife Cycle ,~upport
Metrics Coverage rneasrrres Testing

Reliability measures Implementation
Maintenance

Performance measures Implementation
Maintenance

Models 1 nterprcters Implementation
Testing

Prototypes Requirements
Design

Debuggers Implementation
Maintcnancc

Monitors Assertion checkers Requirements
lrrlplemcr)tation/Maintenar)ce
Testing

Contextj monitoring R,equirernrmts
Design
Implementation/Maintenance
Testing

Figure 1: A Classification of Dynamic Analyzers.

Examining runtime behavior is an important step in error detection and analysis. Data gathered from
rrrntime behavior can provide insight into errors which may not be detected through static analysis. Metrics,
models and monitors all produce different types of dynamic information about programs and, clepending cm
the technique, support different aspects of the software life cycle (see Fig. 1). Metrics generate statistical
information about variabies and program interconnections. Nlodcls monitor the state of the machine at
specified times during program execution. Monitors oversee that criteria specified by designers or users are
not violated, Even though dynamic analyzers alone do not supply enough data about programs to localize
all errors, they do furnish information that static analyzers do not.

References

[1] Augustorll M., “ A Lan,guagc for Debugging Automation”, in Proceed~ngs of SEl(i?, [J .S .A.: Knowledge
Systems Institute, 1994, pp.108-l 15.

474

[2] 13asili, V. R,, %lby, R. W., Yrrn, T., “ Metric Amlysis and Data Validation Across Frrrtran Projects”,
IEEE Transactions Softu)ar. Eng. SE-9 (6), 6.52-663 (1983).

(3] Brindle, A. F., Taylor, R. N,, Martir~, D. ~., “A Debugger for Ada ‘r~king”, IE17E Transactions Sofiu/are
h’ng. SE-15 (3), 293-304 (1989).

[4] Davis, A. M., “Soft ware Prototyping”, in Yovitsl M. C., Zelkowitz, M. V. (eds.), Adrrances in Computers
VU(. 40. San [)iego: Academic Press, 1995, pp. 39-63.

[5] Fairley, R., Software Engineering Concepts. New York: McGraw-JIill Publishing Company) 1985

[6] Fritzon, P., August,on, M., Shahmchri, N., “ Using Assertions in Declarative and Operational Models for
Automated Debugging”, J, Systems Software 25, 223-239 (1994).

[7] Gates, A. Q., F. G. Fernandez and L. Rorno, “Building Systems with integrity Constraints,” to ap-
pear in The Proceedings of the ,Second World Conference on [niegraied Design and Process Technology,
December 1-4, 1!396, Austin, Texas,

[8] Ghezzi, C., J azayeri, M.l Mandrioli, D., FurzdamentuL~ of Software Engirr eering. New Jersey: Prentice
Hall, 1991.

[9] Kafura, D., Reddy, G. R., “ The [Jse of Software Complexity Metrics in Software Maintenance”, IEEE
Transactions Software Eng SE-13 (3), 335-343 (1987).

[10] Luckham, l). and Von Henke, I?. W., “AK] Overview of Anna: A Specification Language for Ada,” IEEE
Software, 20(2):9-2.3, 1985.

[11] Luqi, Gogrren, J. and V. 13erzins, “Formal Support for Software Evolution,” 1994 Monterey Workshop
Increasing the Practical lmpaci of Formal Metihods for Compuler-A aded Soflware Development: Soft ware
Evolution. IMont.ercy, CA: [J.S. Naval Postgraduate School, Sept. 7-9,]994, pp. 10-21.

[12] McL)owell, (.;. E., Helmbold, D. P., “ Debugging Concurrent, Programs”, A C M ~omputzng ,$urveys 21
(4), 593-622 (1989).

[13] Pfaffenberger, B. Que’s Computer User’s Dictionary. 4th ed. U. S. A.: Que, 1993

[14] Ramarnoorthy, C. V., Prakash, A., Garg, V.. Yamura, T., i3hicle, A. , “ lssrres in the Development, of
Large, Distributed, and Reliable software” , in Yovits, M. C. (ed.), Advances in Computer Vol. .26. San
Diego: Academic Press, 1987, pp. 393-443.

[15] Rosenblum, D. S., “ A Practical Approach to Programming With Assertions”, IEEE Transactions Sofi-
ware Eng. 21 (l), 19-31 (1995).

[16] Shaw, M., Garlan, D., Software Architecture: Perspectives on an Emerging Discipline. New Jersey:
Prentice Hal], 1996.

[17] White, L. J., “Software Testing and Verification”, in Yovits, M. C. (cd.), Advances in Computer Vol.
26. San Diego: Academic Press, 1987, pp. 335-391.

475

