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1 Introduction

Passive remote sensing of the atmosphere is usecl  to determine the atmospheric state. A radiometer measures
microwave emissions from earth’s atmosphere and surface. The radiance measured by the radiometer is
proportional to the brightness temperature. This brightness temperature can be usecl  to estimate atmospheric
parameters such as temperature ancl water vapor content. These quantities are of primary importance for
different applications in meteorology, oceanography, and geophysical sciences. Depending on the range in the
electromagnetic spectrum being measured by the radiometer and the atmospheric quantities to be estimated,
the retrieval or inverse problem of determining atmospheric parameters from brightness temperature might be
linear or nonlinear. In most applications, the retrieval problem requires the inversion of a Fredholm integral
equation of the first kind making this an ill-posed problem. The numerical solution of the retrieval problem
requires the transformation of the continuous problem into a discrete problem. The ill-posedness  of the
continuous problem translates into ill-conditioning or ill-poscdness  of the discrete problem. Regularization
methods are used to convert the ill-posecl  problem into a well-posed one.

In this paper, we present some results of our work in applying different regularization techniques to
atmospheric temperature retrievals using brightness temperatures measured with the SSM/T- 1 sensor. Sim-
ulation results are presented which show the potential of these techniques to improve temperature retrievals.
In particular, no statistical assumptions are needed and the algorithms were capable of correctly estimating
the temperature profile corner at the tropopause  independent of the initial guess.

2 Radiative Transfer Theory in the Microwave Region

Radiative transfer theory describes the intensity of radiation propagating in a general class of media that
absorbs, emit, and scatter the radiation [5]. The radiative transfer equation for a plane-parallel atmosphere
is given by

d .Iv
Cose — =

d,z
–cr(z)I.  + J.(z) (1)

where Iv (z) is the instantaneous radiant intensity that flows at each point in the medium per unit area, per
unit of solid angle, at a given frequency v; a(z) is the extinction coefficient; and J is a source term. These
last two quantities describe the loss/gain into the given direction. ‘The angle # is the direction angle with
respect to the vertical axis z with 6’ = O when pointing upwards.

In the general case, scattering into and from other directions can lead to both gains and losses to the
intensity and are taken care by the terms o and J. For the microwave region, the scattering term is usually
neglected [3]. If scattering is neglected, the only source term to consider is that due to local emission and the
extinction coefficient reduces to the absorption coefficient nn. Assuming local thermodynamic equilibrium,
each point can be characterized by a temperature T and from Kirchoff’s law we get

Jr,(z) = c7a(z)B,, (T’(z)) (2)
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where B,, (T) is the Planck function:

2111)3
B.(T) =  —

1
C2 exp hvkT – 1

(3)

where h = 6.625x 10–34  .Js is Planck’s constant, c = 2.988x  10s m/s is the speed of light, and k = 1.381x 10–23

J/K. Equation (1) is a Iinear non-hornogeneous  first-order differential equation with solution

[4)

where .IV (.zO) is the boundary condition,

which results in (3) taking the form

In the microwave region of the spectrum

hv << kT

2u2kT 2~T
BV(T)  = ~ =  —~2 (5)

where A is the wavelength. This is known as the Raleigh-Jeans approximation. From this expression, it is
clear that in the microwave region the energy emitted is proportional to the physical temperature T. Another
commonly used result from this relation is to define a scaling of the intensity IV as follows

(6)

The quantity Tb (v) is called the brightness temperature which is commonly used in the microwave retrieval
literature instead of 1,,. In terms of brightness temperature and using (5), (4) takes the form

/
Tb(z) = Tb(~o)e–(6(z,)-fi(z))  ‘“0 + Secfl ‘z ,7a(7)  e–(fi(7)-$(~))  sec@T(7)~T (7)

2’,,

is the optical thickness and co represents the top of the atmosphere (TOA).  Here the dependency of all these
quantities in frequency v is not shown for convenience

For our purpose, it is of interest to solve this equation to obtain the brightness temperature that a satellite
will measure at the top of the atmosphere when looking to the surface at an angle O off nadir. This will
correspond to ZO = O surface (sfc)  and z = m in (7). The boundary term Tb (0) is given by

Tb(0)  = ET, +(1 – E) T~

where T~ is the surface temperature, Td is the downwelling  radiation reflected by the surface back towards
the satellite, and c is the surface emissivity.  For the reflected component, it is assumed that the surface is
a smooth, homogeneous, and isothermal so only the radiation in the specular direction O is accounted for.
In our reference coordinates, the propagation angle for the downwelling  radiation is m – 0. The downwelling
radiation is obtained by solving the radiative transfer equation where integration is from the TOA to the
surface with propagation angle m – 0. This is taken care in (7) by setting ZO = oo and z = O. The boundary
term in this case is given by the cosmic microwave background emission with T= = 2.7 K. The resulting
expression for the brightness temperature at the TOA at an angle O off nadir

[ 1Tb = ET. + (1 – t) Z’ce-J(O~ ‘“6 e–6(0)  ‘“” -I- r ~ 1T(.z) 1 –  (1 –  ~)e-2(6(0)–6(~))  SCC o e–6(2)  secodz (9)

Simulation of this expression if all quantities were known is a simple matter. However, the computation
of the opticai thickness and the absorption parameter requires the use of databases containing information
about the spectral characteristics of atmospheric constituents such as HITRAN. In our work, aIl optical
depth computations were carried out using the FASE  Radiative Transfer Code.
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3 Atmospheric Remote Sensing

The satellite instrument measures radiance that carrives  into its field of view. The radiance that arrives is
the sum of the radiance emittecl  ancl reflected by the surface, emitted and reflected by the atmosphere, and
that scattered by the atmosphere into the field of view of the instrument. The relative contribution of each
component depends on the region of the spectra seen by the instrument. Remote sensing of the surface takes
advantage of those regions of the spectrum where the atmosphere is transparent or nearly so. In the case of
atmospheric remote sensing, the satellite sensor is Ioolcing at regions in the spectra where the atmosphere
blocks the radiance emitted or reflected by the surface and therefore it receives that radiation that is emitted
or reflected by the atmosphere. The interaction of electromagnetic waves with the atmosphere depencls
on the characteristics of the propagating wave (primarily its wavelength), the physical characteristics of
the atmosphere and its constituents (pressure, temperature, density, absorbing gases, suspended particles).
The mechanisms for interactions are: scattering, absorption, emission, and refraction. In regions where the
atmospheric constituents characteristics are known or understood as in the 60 GHz oxygen and 183 GHz
water vapor absorption lines, measurements of brightness temperature can be used to infer atmospheric
properties of interest. The relation between atmospheric properties with brightness temperature is given by
the radiative transfer equation (7). Therefore the problem of inte~est is to infer the atmospheric quantities
of interest from measured brightness temperature by inversion of the radiative transfer equation.

4 Temperature I?etrieval Problem

If the atmosphere strongly absorbs, most of the contribution to the measured brightness temperature will
come from the atmosphere itself. In the case of the microwave region of the spectrum, scattering is negligible
and the energy into the field of view of the sensor wiU come from atmospheric emission. Assuming that the
satellite is looking at nadir (i.e. # = O), and that the surface temperature T. and emissivity  ~ are lcnown,  (9)
can be rewritten as

Pb =
/“

T(z) 1{(V, z) dz (lo)
(1

where

[ 1~b = ~~, – cT. + (1 – 6) TCe–6(0)  e–6(0)

If the absorber is uniformly mixed with a known concentration, as 02, the quantity K(u, z) is known and the
temperature profile T(z) could be retrieved by inverting (10). The function K(v, z) is called in the literatlwe
[~] the weighting ,fvmtaon. From this point on, in our discussion we would not distinguish between T~ and
Tb in (10). 02 has several absorption lines around between 50 and 60 GHz. The Special Sensor Microwave
Temperature-1 (SSM/T-1)  sensor of the sensor suite of the DMSP satellite has 7 channels located in the 50
to 60 GHz range used for temperature retrievals. A summary of the SSM/T-l sensor characteristics is given
in [6]. In the 02 band, the shape of the weighting function is independent of the temperature making the
inversion of (10) a linear inversion problem.

4.1 Problem Discretization

To numerically solve the temperature retrieval problem, first we cliscretize  (10) by approximating the integral
with a numerical integration formula. This results in the algebraic linear system of equation

Tl, =KT+e (U)

where T~ E ‘R’n’ and T ~ 7?-n are the brightness and atmospheric temperature vector; K e %L~ x ‘“ is the
matrix of weighting functions; and e is an error term associated with measurement noise and the truncation
error arising from the discretization  of the integral equation. The number of measurecl  brightness tempera-
tures m, is usually smaller than the vertical resolution or number of temperature levels n to estimate. In the
case of the SSM/T-l  sensor, there are m = 7 channels and normally n > 20 temperature Ievels. ‘Therefore
the resulting algebmic linear system of equations (11) is under constrained (i.e. there are more unknowns
than equations).
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4.2 Regularization  of the Discrete Problem

The temperature retrieval problem is related to the solution of the linear system of equations (11). This
problem has two major difficulties associated with it: (i) ill-conditioning due to the ill-posedness  of the
associated integral equation, and (ii) multiple solutions because of trying to estimate more temperature
levels than measurements available. To overcome these difficulties, we will use the so called regularization
methods. Regularization  theory [1] transforms an ill-posed problem to a well-posed one, using a prior!
knowledge on the nature of the solution. Depending on the prior information, regularization techniques can
be classified into two major groups: statistical and deterministic.

4.2.1 Statistical Regularization

In statistical reg-ularization, prior statistical information is used to regularize the temperature retrieval
problem. Our prior information in this case is the prior distribution of the temperature profiles Pr (2’) and
the conditional distribution ~fi)/T(T~). According to Bayesian  estimation theory [4], the best estimator T
based on the brightness temperature observation T~ of the temperature profile T in a mean square sense is
the conditional mean

T = E (T/T~) (12)

We will refer to this estimator as the minimum mean square estimator (MMSE).  The analytical determination
of this function might be a very difficult task. In many instances, the estimator is constrained to be Iinear
which results in the Linear Minimum Mean Squares Estimator (LMMSE)  [4]

T = T + AT,7-,,  A~,~,T,,  (T6 – T/,) (13)

where T is the a priori mean of T, TIJ is the mean of T6 given T, A,r,T,, is the cross covariance between
T and T~, and AN,,T, is the conditional covariance  of the brightness temperature. The LMMSE  is easy to
construct, since only the first and second order statistics are needed rather than their complete probability
densities. Also, if T and T~ are jointly Gaussian, the LMMSE is the optimal Bayesian  MMSE.

4.2.2 Deterministic Methods

In this section, we wiIl look at two regularization  methods for ill-posed linear algebraic systems of equa-
tions: Tikhonov  regularization, and discrepancy principle regularization. Other methods are discussed in
[2]. Computation of the regularized solution was done using the MATLAB Regularization  Toolbox presented
in [2].

Tikhonov’s  Regularization

One way to regularize (11) is computing T as khe solution to the optirnization  problem

(14)

where TO is a prior temperature profile estimate, ] I , ! is the 2-norm,  and A is the regularization  parameter.
A key issue in this method is the selection of the regularization  parameter A. The value used in the

simulation results presented here was based on the L-curve method described in [2]. The optimal value of A
balances the prediction error ~ IKT – T~ II with the regularization  error l\L(T  – TO ) Il.

Discrepancy Method

Another possibility to regulate the temperature retrieval problem is by computing T as the solution to the
quadratically constrained Iinear  least squares problem

T&= arg~rin, l\L(T – TO)112

subject to l\KT – T~l\2  < a’

(15)

where a plays the role of a regularization  parameter. The solution to this problem can be made identical to
T~ for a suitably chosen Q [2]. We prefer to select a based on the measurement noise norm hell.
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5 Simulation Experiments

In this section, we present some simulation results that illustrate the use of deterministic methods to reg-
ularize the temperature retrieval problem. For the simulation experiments, a 98 layer atmosphere based
on the US %andard Atmosphere moclel was used. The optical thickness for each layer was computed us-
ing the FASE code. The radiative transfer equation was numerically integrated using the trapezoidal rule.
The implementation of Tikhonov’s and the discrepancy algorithm available in the NfatlabTA4  R,egularination
Toolbox were used to compute the temperature retrievals. All computations with the exception of the optical
thickness were done under the MATLABT’Vf environment. In our simulations, the surface emissivit  y e was
set to 0.9 and the surface temperature T~ set to 288.2 degrees Kelvin. Figures 1 and 2 show the results
of applying Tikhonov’s  regularization  to the temperature retrieval problem with perfect measurements (no
noise). The regularization  parameter ~ was set 0.0044. The solici  line is the retrieved temperature profile,
the dashed line is the actual temperature profile, and the dash-dot line is the initial guess fed to the al-
gorithm. We can see from this simulations that the algorithm was capable of estimating temperature up
to 40 km. Beyond 40 km, the resulting estimate was identical to the initial guess. An important result is
how the retrieval algorithm is capable of determining the height of tropopause  corner when fed with initial
guesses that have that corner at heights far from the actual height as shown in Figure 2. The importance of
determining this peak comes from the fact that most important weather features are located at this region
of the atmosphere. Also, the location of the tropop~use  peak serves as a figure of merit in evaluating the
performance of temperature retrieval algorithms. We are not showing results for the algorithm basecl  on the
discrepancy principle regularization  since they were similar to those of Tikhormv  regularization.

Figures 3 and 4 show the performance of Tikhonov regularization  under the presence of noisy data. The
noise vector added to the measured brightness temperature has a normal distribution with zero mean and
unit variance. The regularization parameter for this case was A = 0,016. NTotice  that the noise causes the
retrieved profile to be noisier with a maximum error in the first 20 km of 10 degrees Kelvin. Quite high
compared to some retrieval methods that claim accuracies of 0.5 degrees Kelvin. However, the algorithm is
still capable of determining the height of the tropopause.

Figures 5 and 6 show the results for the retrievals in the noisy case computecl using discrepancy principle
regularization.  The regularization  parameter for this case WEUS set at a = 3. That value corresponds to three
standard deviations of the noise distribution. The resulting retrievals are smoother than those retrievals
from Tikhonov  regnlarization. The maximum error is in the neighborhood of 3 to 4 degrees Kelvin in the
tropopause. The estimation of the location of the tropopause peak is also improved.

6 Conclusions and Final Comments

This paper presents some preliminary work in the application of regularization techniques to the linear
problem of atmospheric temperature retrievals from microwave radiometry. The proposed techniques were
evaluated using simulated data. We used algorithms implemented in the MATLAB  Regularization  Toolbox
developed by [2]. The results obtained were quite encouraging. In particular, being able to estimate the
location of the tropopause  corner of the temperature profile even with bad initial guess and noisy data is a
result not previously observed with other algorithms.
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Figure 1: “rikhonov ReguMization  with 10 km
Tropopause.
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Figure 2: Tikhonov  regularization with 20
tropopauseinitia)  guess: noise free.
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Figure 3: Tikhonov regularization with 10 km
tropopause  initial guess: noisy case.
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F i g u r e  4 :  Tikhonov regularization  with 20 klm
tropopause  initial guess: noisy case.
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Figure 5: Discrepancy regularization with 10 km
lropopause  initial guess: noisy case.
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Figure 6: Discrepancy regularization with 20 km
tropopause  initial guess: noisy case.
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